Exam in Functional Programming SS 2012 (V3B)

First Name:

Last Name:
Matriculation Number: \qquad
Course of Studies (please mark exactly one):

- Informatik Bachelor
- Mathematik Master
- Informatik Master
- Other: \qquad

	Available Points	Achieved Points
Exercise 1	20	
Exercise 2	44	
Exercise 3	40	
Exercise 4	10	
Exercise 5	6	
Sum	120	

Notes:

- On all sheets (including additional sheets) you must write your first name, your last name and your matriculation number.
- Give your answers in readable and understandable form.
- Use permanent pens. Do not use red or green pens and do not use pencils.
- Please write your answers on the exam sheets (also use the reverse sides).
- For each exercise part, give at most one solution. Cancel out everything else. Otherwise all solutions of the particular exercise part will give you 0 points.
- If we observe any attempt of deception, the whole exam will be evaluated to $\mathbf{0}$ points.
- At the end of the exam, hand in all sheets together with the sheets containing the exam questions.

Exercise 1 (Quiz):

$$
(4+4+4+4+4=20 \text { points })
$$

Give a short proof sketch or a counterexample for each of the following statements:
a) Is \sqsubseteq always a complete partial order for flat domains like $\mathbb{Z}_{\perp}, \mathbb{B}_{\perp}, \ldots$?
b) Can the function $f: \mathbb{Z}_{\perp} \rightarrow \mathbb{Z}$ with $f(x)=\left\{\begin{array}{ll}1 & \text { if } x \in \mathbb{Z} \text { and } x \leq 0 \\ 0 & \text { otherwise }\end{array}\right.$ be implemented in Haskell?
c) Is $g:\left(\mathbb{Z} \rightarrow \mathbb{Z}_{\perp}\right) \rightarrow \mathbb{Z}_{\perp}$ with $g(h)=\left\{\begin{array}{ll}0 & \text { if } h(x) \neq \perp \\ \perp & \text { otherwise }\end{array}\right.$ for all $x \in \mathbb{Z}$ continuous?
d) If a lambda term t can be reduced to s with $\rightarrow_{\beta \delta}$ using an outermost strategy, can t also be reduced to s with $\rightarrow_{\beta \delta}$ using an innermost strategy? Here, you may choose an arbitrary delta-rule set δ.
e) The $\rightarrow_{\beta \delta}$ reduction in lambda calculus is confluent. Is Simple Haskell also confluent?

Exercise 2 (Programming in Haskell):

$(10+10+8+10+6=44$ points $)$
We define a polymorphic data structure HamsterCave to represent hamster caves which can contain different types of food.

```
data HamsterCave food
    = EmptyTunnel
    | FoodTunnel food
    | Branch (HamsterCave food) (HamsterCave food)
    deriving Show
```

The data structure HamsterFood is used to represent food for hamsters. For example, exampleCave is a valid expression of type HamsterCave HamsterFood.

```
data HamsterFood = Grain | Nuts deriving Show
exampleCave :: HamsterCave HamsterFood
exampleCave = Branch
    (Branch EmptyTunnel (FoodTunnel Grain))
    (Branch (FoodTunnel Nuts) (Branch EmptyTunnel EmptyTunnel))
```

a) Implement a function digAndFillCave :: Int -> HamsterCave HamsterFood, such that for any integer number $\mathrm{n}>1$, digAndFillCave n creates a hamster cave without empty tunnels of depth n , such that the number of FoodTunnels containing Grain equals the number of FoodTunnels containing Nuts. Here, the depth of a cave is the maximal number of "nodes" on any path from the entry of the cave to a dead end. Thus, exampleCave has depth 4.
b) Implement a fold function foldHamsterCave, including its type declaration, for the data structure HamsterCave. As usual, the fold function replaces the data constructors in a HamsterCave expression by functions specified by the user. The first argument of foldHamsterCave should be the function for the case of the empty tunnel, the second argument the function for the case of the food tunnel, and the third argument the function for the case of a branch. As an example, the following function definition uses foldHamsterCave to determine the number of dead ends (either with or without food) in a cave, such that the call numberOfDeadEnds exampleCave returns 5 .

```
numberOfDeadEnds :: HamsterCave food -> Int
numberOfDeadEnds cave = foldHamsterCave 1 (\_ -> 1) (+) cave
```

c) Implement the function collectFood : : HamsterCave food -> (HamsterCave food, [food]), which returns a tuple for a given hamster cave. The first argument of the tuple is the same hamster cave as the one given to the function, but without any food (i.e., every FoodTunnel is replaced by an EmptyTunnel). The second argument is a list of all the food that was removed from the cave. For the definition of collectFood, use only one defining equation where the right-hand side is a call to the function foldHamsterCave.
For example, a call collectFood exampleCave should return the following tuple:
(Branch (Branch EmptyTunnel EmptyTunnel)
(Branch EmptyTunnel (Branch EmptyTunnel EmptyTunnel))
, [Grain, Nuts])
d) Implement a cyclic data structure pascalsTriangle :: [[Int]] (consisting of lists of lists of Ints) that represents Pascal's triangle. The first row of the triangle is represented by the first list of integers ([1]), the second row by the second list $([1,1])$, and so forth. Each row in Pascal's triangle is constructed from its preceding row, by adding each pair of consecutive numbers. For this, it is assumed that all numbers lying outside of the preceding row are zeros.
Hint: You should use use the function zipWith : : (a -> b -> c) -> [a] -> [b] -> [c], which applies the function given as its first argument to combine the elements of two lists. For example zipWith (++) ["a","b"] ["c", "d", "e"] results in the list ["ac", "bd"]. Note that the length of the resulting list is the smallest length of both input lists.

e) Write a Haskell expression in form of a list comprehension to compute all prime numbers. To determine if a number i is prime, test whether no number from 2 to $i-1$ divides i. You may use the functions all :: (a -> Bool) -> [a] -> Bool where all p xs is True iff $p x$ is True for all elements x of the list xs, the function not : : Bool -> Bool, and the function divides as defined below.

```
divides :: Int -> Int -> Bool
i 'divides` j = j 'mod` i == 0
```


Exercise 3 (Semantics):

$$
(21+10+5+4=40 \text { points })
$$

a) i) Let \sqsubseteq be a cpo on D and $f: D \rightarrow D$ be continuous. Prove the fixpoint theorem, i.e., that $\sqcup\left\{f^{i}(\perp) \mid i \in \mathbb{N}\right\}$ exists and that this is the least fixpoint of f. You may use all other results from the lecture in your proof.
ii) Let $D=2^{\mathbb{N}}$, i.e., D is the set of all sets of natural numbers and let \subseteq denote the usual subset relation.

1) Prove that every chain $S \subseteq D$ has a least upper bound w.r.t. the relation \subseteq.
2) Prove that \subseteq is a cpo on D.
3) Give an example for an infinite chain in (D, \subseteq).
4) Give a monotonic, non-continuous function $f: D \rightarrow D$. You do not need to prove that f has these properties.
b) i) Consider the following Haskell function mult:
```
mult :: (Int, Int) -> Int
mult (0, y) = 0
mult (x, y) = y + mult (x - 1, y)
```

Please give the Haskell declaration for the higher-order function f_mult corresponding to mult, i.e., the higher-order function f _mult such that the least fixpoint of $f _m u l t$ is mult. In addition to the function declaration, please also give the type declaration of f_mult. You may use full Haskell for f_mult.
ii) Let ϕ_{f} _mult be the semantics of the function f _mult. Give the semantics of $\phi_{\mathbf{f}_{-} \text {mult }}^{n}(\perp)$ for $n \in \mathbb{N}$, i.e., the semantics of the n-fold application of $\phi_{f_{-} \text {mult }}$ to \perp.
iii) Give all fixpoints of ϕ_{f} mult and mark the least fixpoint.
c) Consider the following data type declaration for natural numbers:

```
data Nats = Z | S Nats
```

A graphical representation of the first four levels of the domain for Nats could look like this:

$$
\mathrm{S}(\mathrm{~S} \mathrm{Z})
$$

S Z

Now consider the following data type declarations:
data X = A X Y | B Y
data Y = E Y | H

Give a graphical representation of the first three levels of the domain for the type X . The third level contains the element A (A $\perp \perp$) \perp, for example.
d) Consider the usual definition for Nats above, i.e., data Nats $=Z \quad \mathrm{I}$ Nats.

Write a function plus :: Nats -> Nats -> Nats in Simple Haskell that computes the sum of two natural numbers, i.e., plus $S(S(Z)) S(Z)$ should yield $S(S(S(Z)))$. Your solution should use the functions defined in the transformation from the lecture such as sel ${ }_{n, i}$, isa constr , argof ${ }_{\underline{\text { constr }}}$, and bot. You do not have to use the transformation rules from the lecture, though.

Exercise 4 (Lambda Calculus):

$$
(4+6=10 \text { points })
$$

a) Please translate the following Haskell expression into an equivalent lambda term (e.g., using $\mathcal{L} a m$). Translate the pre-defined function < to LessThan, + to Plus and - to Minus (remember that the infix notation of $<,+$, - is not allowed in lambda calculus). It suffices to give the result of the transformation:

```
let quot = \x y -> if x < y then O else 1 + quot (x-y) y in quot v w
```

b) Let $t=\lambda$ fact. $(\lambda x$.(If (LessThanOrE $x 1) 1($ Times $x(f a c t(\operatorname{Minus} x 1)))))$ and

```
\(\delta=\{\) If True \(\rightarrow \lambda x y . x\),
    If False \(\rightarrow \lambda x y . y\),
    fix \(\rightarrow \lambda f . f(\) fix \(f)\}\)
    \(\cup\{\) Minus \(x y \rightarrow z \mid x, y \in \mathbb{Z} \wedge z=x-y\}\)
    \(\cup\{\) Times \(x y \rightarrow z \mid x, y \in \mathbb{Z} \wedge z=x \cdot y\}\)
    \(\cup\{\) LessThanOrE \(x y \rightarrow b \mid x, y \in \mathbb{Z} \wedge((x \leq y \wedge b=\) True \() \vee(x>y \wedge b=\) False \())\}\)
```

Please reduce fix $t 1$ by WHNO-reduction with the $\rightarrow_{\beta \delta}$-relation. List all intermediate steps until reaching weak head normal form, but please write " t " instead of the term it represents whenever possible.

Exercise 5 (Type Inference):

Using the initial type assumption $A_{0}:=\{x:: \forall a . a \rightarrow$ Int $\}$ infer the type of the expression $\lambda y . y x$ using the algorithm \mathcal{W}.

