
Functional Programming SS12
Exam (V3B) 10.09.2012

aaProf. Dr. J. Giesl M. Brockschmidt, F. Emmes

Exam in Functional Programming SS 2012 (V3B)

First Name:

Last Name:

Matriculation Number:

Course of Studies (please mark exactly one):

◦ Informatik Bachelor ◦ Mathematik Master
◦ Informatik Master ◦ Software Systems Engineering Master
◦ Other:

Available Points Achieved Points

Exercise 1 20

Exercise 2 42

Exercise 3 41

Exercise 4 10

Exercise 5 6

Sum 119

Notes:

• On all sheets (including additional sheets) you must write your �rst name, your last

name and your matriculation number.

• Give your answers in readable and understandable form.

• Use permanent pens. Do not use red or green pens and do not use pencils.

• Please write your answers on the exam sheets (also use the reverse sides).

• For each exercise part, give at most one solution. Cancel out everything else. Otherwise
all solutions of the particular exercise part will give you 0 points.

• If we observe any attempt of deception, the whole exam will be evaluated to 0 points.

• At the end of the exam, hand in all sheets together with the sheets containing the

exam questions.

1

Functional Programming SS12
Exam (V3B) 10.09.2012

Name: Matriculation Number:

Exercise 1 (Quiz): (4 + 5 + 5 + 3 + 3 = 20 points)

Give a short proof sketch or a counterexample for each of the following statements:

a) Monotonic unary functions are always strict.

b) Strict unary functions on �at domains are always monotonic.

c) Let B be the Boolean values true, false.

Is f : (B→ B⊥)→ Z with f(g) =

{
1 if g(x) 6= true for all x ∈ B
0 otherwise

monotonic?

d) Is →α terminating?

e) Is →α con�uent?

2

Functional Programming SS12
Exam (V3B) 10.09.2012

Name: Matriculation Number:

Exercise 2 (Programming in Haskell): (8 + 10 + 10 + 6 + 8 = 42 points)

We de�ne a polymorphic data structure ZombieHalls
to represent a zombie-infested school whose class-
rooms contain di�erent types of food:

data ZombieHalls food =

HallwayFork (ZombieHalls food) (ZombieHalls food)

| HallwayClassroom (Int, food) (ZombieHalls food)

| HallwayEnd

Here, we use three data constructors: One represent-
ing the case that the hallway forks and we can go in
two directions, one for the case that we have a class-
room on one side and can continue in the hallway
and �nally one case for the end of a hallway. The
data structure ZombieFood is used to represent food
for zombies. As example, consider the following def-
inition of exampleSchool of type ZombieLabyrinth

ZombieFood, corresponding to the illustration on the right:

data ZombieFood = Brains | Nuts deriving Show

exampleSchool :: ZombieHalls ZombieFood

exampleSchool =

HallwayClassroom (3, Nuts)

(HallwayFork

(HallwayClassroom (4, Brains)

(HallwayFork HallwayEnd HallwayEnd))

(HallwayClassroom (0, Brains) HallwayEnd))

a) Implement a function buildSchool :: Int -> ZombieHalls ZombieFood such that for any integer
number n ≥ 0, it returns a structure of hallways containing 2n+1 classrooms in total. Of these, one half
should each contain one brain and the other should each contain one nut.

3

Functional Programming SS12
Exam (V3B) 10.09.2012

Name: Matriculation Number:

b) Implement a fold function foldZombieHalls, including its type declaration, for the data structure
ZombieHalls. As usual, the fold function replaces the data constructors in a ZombieHalls expres-
sion by functions speci�ed by the user. The �rst argument of foldZombieHalls should be the function
for the case of a HallwayFork, the second argument should replace the HallwayClassroom construc-
tor and the third argument should replace the HallwayEnd data constructor. As an example, con-
sider the following function de�nition, which uses foldZombieHalls to determine the number of dead
ends in a ZombieHalls structure, where a classroom does not count as dead end. Hence, the call
numberOfDeadEnds exampleSchool returns 3.

numberOfDeadEnds :: ZombieHalls food -> Int

numberOfDeadEnds school = foldZombieHalls (+) (_ r -> r) 1 school

c) Implement the function bcCounter :: ZombieHalls ZombieFood -> (Int, Int), which counts the
number of brains and classrooms in a given school and returns the two numbers as a tuple of integers.
The �rst part of the tuple should be the number of brains in the school and the second should be
the number of classrooms. For the de�nition of bcCounter, use only one de�ning equation where the
right-hand side is just one call to the function foldZombieHalls. However, you may use and de�ne
non-recursive auxiliary functions.

For example, a call bcCounter exampleSchool should return the tuple (4, 3).

4

Functional Programming SS12
Exam (V3B) 10.09.2012

Name: Matriculation Number:

d) The in�nite sequence of Fibonacci numbers fibi is de�ned as fib0 = 0, fib1 = 1 and fibi = fibi−1 + fibi−2
for all i > 1. The �rst elements of the sequence are 0, 1, 1, 2, 3, 5, 8, 13, 21,

Implement a cyclic data structure fibs :: [Int] that represents the in�nite list of Fibonacci numbers.
Do not use self-de�ned auxiliary functions and ensure that take n fibs has linear complexity.

Hints:

• You should use use the function zipWith :: (a -> b -> c) -> [a] -> [b] -> [c], which ap-
plies the function given as its �rst argument to combine the elements of two lists. For example
zipWith (++) ["a","b"] ["c", "d", "e"] results in the list ["ac","bd"]. Note that the length
of the resulting list is the smallest length of both input lists.

• You may use the pre-de�ned function tail de�ned as tail (x:xs) = xs.

e) Write a function splits :: [a] -> [([a],[a])] that computes all splits of a �nite input list, i.e., a
call splits xs should return all pairs (ys,zs) such that ys ++ zs is again xs. For example, we have
splits "abc" = [("","abc"),("a","bc"),("ab","c"),("abc","")].

The right-hand side of your function should be just a list comprehension.

Hints:

• Use length :: [a] -> Int, wich returns the length of a given list.

• Use take :: Int -> [a] -> [a], where take n xs yields the longest pre�x of xs with length ≤ n.

• Use drop :: Int -> [a] -> [a], where drop n xs returns the list obtained from xs by removing
the �rst n elements.

5

Functional Programming SS12
Exam (V3B) 10.09.2012

Name: Matriculation Number:

Exercise 3 (Semantics): (22 + 10 + 5 + 4 = 41 points)

a) i) Let vD1
and vD2

be complete partial orders on D1 resp. D2 and f : D1 → D2 a function. Prove
that f is continuous if and only if f is monotonic and for all chains S in D1, f(tS) vD2 tf(S)
holds.

6

Functional Programming SS12
Exam (V3B) 10.09.2012

Name: Matriculation Number:

ii) Let D = N → {1}⊥, i.e., D is the set of all functions mapping the natural numbers to ⊥ or 1. Let
v be de�ned as usual on functions.

1) Prove that every chain S v D has a least upper bound w.r.t. the relation v.

2) Prove that v is a cpo on D.

3) Give an example for an in�nite chain in (D,v).

4) Give a monotonic, non-continuous function f : D → D. You do not need to prove that f has
these properties.

7

Functional Programming SS12
Exam (V3B) 10.09.2012

Name: Matriculation Number:

b) i) Consider the following Haskell function exp:

exp :: (Int, Int) -> Int

exp (x, 0) = 1

exp (x, y) = x * exp (x, y - 1)

Please give the Haskell declaration for the higher-order function f_exp corresponding to exp, i.e., the
higher-order function f_exp such that the least �xpoint of f_exp is exp. In addition to the function
declaration, please also give the type declaration of f_exp. You may use full Haskell for f_exp.

ii) Let φf_exp be the semantics of the function f_exp. Give the semantics of φnf_exp(⊥) for n ∈ N, i.e.,
the semantics of the n-fold application of φf_exp to ⊥.

iii) Give the least �xpoint of φf_exp.

8

Functional Programming SS12
Exam (V3B) 10.09.2012

Name: Matriculation Number:

c) Consider the following data type declaration for natural numbers:

data Nats = Z | S Nats

A graphical representation of the �rst four levels of the domain for Nats could look like this:

S (S (S ⊥))S (S Z)

⊥

Z

S (S ⊥)S Z

S ⊥

Now consider the following data type declarations:

data U = V

data T a = C | D (T a) | E a a

Give a graphical representation of the �rst three levels of the domain for the type T U. The third level
contains the element D C, for example.

9

Functional Programming SS12
Exam (V3B) 10.09.2012

Name: Matriculation Number:

d) Consider the usual de�nitions for List a, i.e., data List a = Nil | Cons a (List a) and Nats from
above.

Write a function length :: List a -> Nats in Simple Haskell that computes the length of a list, i.e.,
length (Cons Z (Cons Z Nil)) should yield S(S(Z)). Your solution should use the functions de�ned
in the transformation from the lecture such as seln,i, isaconstr , argofconstr, and bot. You do not have
to use the transformation rules from the lecture, though.

10

Functional Programming SS12
Exam (V3B) 10.09.2012

Name: Matriculation Number:

Exercise 4 (Lambda Calculus): (4 + 6 = 10 points)

a) Please translate the following Haskell expression into an equivalent lambda term (e.g., using Lam).
Translate the pre-de�ned function > to GreaterThan, + to Plus, * to Times and - to Minus (remember
that the in�x notation of >, +, *, - is not allowed in lambda calculus). It su�ces to give the result of the
transformation:

let sqrt = \x a -> if a * a > x then a - 1 else sqrt x (a + 1) in sqrt u 0

b) Let t = λfromto.λx.λy.If (Eq x y) Nil (Cons x (fromto (Plus x 1) y)) and

δ = { If True→ λx.λy.x,

If False→ λx.λy.y,

Fix→ λf.f (Fix f)}
∪ { Plus x y → z | x, y ∈ Z ∧ z = x+ y}
∪ { Eq x y → False | x, y ∈ Z ∧ x 6= y}
∪ { Eq x y → True | x, y ∈ Z ∧ x = y}

Please reduce Fix t 1 2 by WHNO-reduction with the →βδ-relation. List all intermediate steps until
reaching weak head normal form, but please write �t� instead of the term it represents whenever possible.
However, you may combine several subsequent →β-steps.

11

Functional Programming SS12
Exam (V3B) 10.09.2012

Name: Matriculation Number:

Exercise 5 (Type Inference): (6 points)

Using the initial type assumption A0 := {y :: ∀a.a→ a} infer the type of the expression λx.(y x)x using the
algorithm W.

12

