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Available Points Achieved Points

Exercise 1 20

Exercise 2 38

Exercise 3 37

Exercise 4 20

Exercise 5 6

Sum 121

Notes:

• On all sheets (including additional sheets) you must write your �rst name, your last

name and your matriculation number.

• Give your answers in readable and understandable form.

• Use permanent pens. Do not use red or green pens and do not use pencils.

• Please write your answers on the exam sheets (also use the reverse sides).

• For each exercise part, give at most one solution. Cancel out everything else. Otherwise
all solutions of the particular exercise part will give you 0 points.

• If we observe any attempt of deception, the whole exam will be evaluated to 0 points.

• At the end of the exam, hand in all sheets together with the sheets containing the

exam questions.
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Exercise 1 (Quiz): (4 + 5 + 5 + 3 + 3 = 20 points)

Give a short proof sketch or a counterexample for each of the following statements:

a) Monotonic unary functions are always strict.

b) Strict unary functions on �at domains are always monotonic.

c) Let B be the Boolean values true, false.

Is f : (B→ B⊥)→ Z with f(g) =

{
1 if g(x) 6= true for all x ∈ B
0 otherwise

monotonic?

d) Is →α terminating?

e) Is →α con�uent?
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Exercise 2 (Programming in Haskell): (8 + 10 + 10 + 10 = 38 points)

We de�ne a polymorphic data structure ZombieHalls
to represent a zombie-infested school whose class-
rooms contain di�erent types of food:

data ZombieHalls food =

HallwayFork (ZombieHalls food) (ZombieHalls food)

| HallwayClassroom (Int, food) (ZombieHalls food)

| HallwayEnd

Here, we use three data constructors: One represent-
ing the case that the hallway forks and we can go in
two directions, one for the case that we have a class-
room on one side and can continue in the hallway
and �nally one case for the end of a hallway. The
data structure ZombieFood is used to represent food
for zombies. As example, consider the following def-
inition of exampleSchool of type ZombieLabyrinth

ZombieFood, corresponding to the illustration on the right:

data ZombieFood = Brains | Nuts deriving Show

exampleSchool :: ZombieHalls ZombieFood

exampleSchool =

HallwayClassroom (3, Nuts)

(HallwayFork

(HallwayClassroom (4, Brains)

(HallwayFork HallwayEnd HallwayEnd))

(HallwayClassroom (0, Brains) HallwayEnd))

a) Implement a function buildSchool :: Int -> ZombieHalls ZombieFood such that for any integer
number n ≥ 0, it returns a structure of hallways containing 2n+1 classrooms in total. Of these, one half
should each contain one brain and the other should each contain one nut.
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b) Implement a fold function foldZombieHalls, including its type declaration, for the data structure
ZombieHalls. As usual, the fold function replaces the data constructors in a ZombieHalls expres-
sion by functions speci�ed by the user. The �rst argument of foldZombieHalls should be the function
for the case of a HallwayFork, the second argument should replace the HallwayClassroom construc-
tor and the third argument should replace the HallwayEnd data constructor. As an example, con-
sider the following function de�nition, which uses foldZombieHalls to determine the number of dead
ends in a ZombieHalls structure, where a classroom does not count as dead end. Hence, the call
numberOfDeadEnds exampleSchool returns 3.

numberOfDeadEnds :: ZombieHalls food -> Int

numberOfDeadEnds school = foldZombieHalls (+) (\_ r -> r) 1 school

c) Implement the function bcCounter :: ZombieHalls ZombieFood -> (Int, Int), which counts the
number of brains and classrooms in a given school and returns the two numbers as a tuple of integers.
The �rst part of the tuple should be the number of brains in the school and the second should be
the number of classrooms. For the de�nition of bcCounter, use only one de�ning equation where the
right-hand side is just one call to the function foldZombieHalls. However, you may use and de�ne
non-recursive auxiliary functions.

For example, a call bcCounter exampleSchool should return the tuple (4, 3).
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d) We now want to write a program that trains a zombie to choose its food on a computer. To do this,
implement a function train :: IO Int that asks the user if they want to eat brains or nuts. The user
should answer with either b or n. If the answer is neither b nor n, an error should be reported and the
question should be repeated. If the answer is valid, a short success message should be shown and then,
the function should return the number of tries it took the user to type a valid answer.

Calling train hence might look as follows:

*Main> train

Please enter 'b' for braaaaaains and 'n' for nuts: braiiiins!

I did not understand you. Please enter 'b' for braaaaaains and 'n' for nuts: b

Good boy! Here are your brains!

2

Note that the last line of this run is provided by the Haskell Interpreter, showing the return value of
train.

Hints:

• You should use the function getLine :: IO String to read the input from the user and the function
putStr :: String -> IO () to print a String.

• To save space, you may assume that the following declarations exist in your program:

question, answerB, answerN, answerO :: String

question = "Please enter 'b' for braaaaaains and 'n' for nuts: "

answerB = "Good boy! Here are your brains!\n"

answerN = "You are a weird zombie. Here are your nuts!\n"

answerO = "I did not understand you. "
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Exercise 3 (Semantics): (22 + 10 + 5 = 37 points)

a) i) Let vD1
and vD2

be complete partial orders on D1 resp. D2 and f : D1 → D2 a function. Prove
that f is continuous if and only if f is monotonic and for all chains S in D1, f(tS) vD2 tf(S)
holds.
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ii) Let D = N → {1}⊥, i.e., D is the set of all functions mapping the natural numbers to ⊥ or 1. Let
v be de�ned as usual on functions.

1) Prove that every chain S v D has a least upper bound w.r.t. the relation v.

2) Prove that v is a cpo on D.

3) Give an example for an in�nite chain in (D,v).

4) Give a monotonic, non-continuous function f : D → D. You do not need to prove that f has
these properties.
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b) i) Consider the following Haskell function exp:

exp :: (Int, Int) -> Int

exp (x, 0) = 1

exp (x, y) = x * exp (x, y - 1)

Please give the Haskell declaration for the higher-order function f_exp corresponding to exp, i.e., the
higher-order function f_exp such that the least �xpoint of f_exp is exp. In addition to the function
declaration, please also give the type declaration of f_exp. You may use full Haskell for f_exp.

ii) Let φf_exp be the semantics of the function f_exp. Give the semantics of φnf_exp(⊥) for n ∈ N, i.e.,
the semantics of the n-fold application of φf_exp to ⊥.

iii) Give the least �xpoint of φf_exp.
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c) Consider the following data type declaration for natural numbers:

data Nats = Z | S Nats

A graphical representation of the �rst four levels of the domain for Nats could look like this:

S (S (S ⊥))S (S Z)

⊥

Z

S (S ⊥)S Z

S ⊥

Now consider the following data type declarations:

data U = V

data T a = C | D (T a) | E a a

Give a graphical representation of the �rst three levels of the domain for the type T U. The third level
contains the element D C, for example.
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Exercise 4 (Lambda Calculus): (4 + 6 + 10 = 20 points)

a) Please translate the following Haskell expression into an equivalent lambda term (e.g., using Lam).
Translate the pre-de�ned function > to GreaterThan, + to Plus, * to Times and - to Minus (remember
that the in�x notation of >, +, *, - is not allowed in lambda calculus). It su�ces to give the result of the
transformation:

let sqrt = \x a -> if a * a > x then a - 1 else sqrt x (a + 1) in sqrt u 0

b) Let t = λfromto.λx.λy.If (Eq x y) Nil (Cons x (fromto (Plus x 1) y)) and

δ = { If True→ λx.λy.x,

If False→ λx.λy.y,

Fix→ λf.f (Fix f)}
∪ { Plus x y → z | x, y ∈ Z ∧ z = x+ y}
∪ { Eq x y → False | x, y ∈ Z ∧ x 6= y}
∪ { Eq x y → True | x, y ∈ Z ∧ x = y}

Please reduce Fix t 1 2 by WHNO-reduction with the →βδ-relation. List all intermediate steps until
reaching weak head normal form, but please write �t� instead of the term it represents whenever possible.
However, you may combine several subsequent →β-steps.
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c) We use the representation of Boolean values in the pure λ-calculus presented in the lecture. So, True is
λx y.x and False is λx y.y. Using this representation, give pure λ-terms for the following functions:

• If, which gets three arguments, of which the �rst argument is Boolean and determines if the second
or third value is returned (i.e., it behaves as you would expect). For example, If True x y →+

β x.

• Xor, which takes two Boolean values and returns true if and only if exactly one of them is True.
You may use True and False in your solution.
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Exercise 5 (Type Inference): (6 points)

Using the initial type assumption A0 := {y :: ∀a.a→ a} infer the type of the expression λx.(y x)x using the
algorithm W.
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