
Functional Programming SS12
Exam (V3M) 10.09.2012

aaProf. Dr. J. Giesl M. Brockschmidt, F. Emmes

Exam in Functional Programming SS 2012 (V3M)

First Name:

Last Name:

Matriculation Number:

Course of Studies (please mark exactly one):

◦ Informatik Bachelor ◦ Mathematik Master
◦ Informatik Master ◦ Software Systems Engineering Master
◦ Other:

Available Points Achieved Points

Exercise 1 20

Exercise 2 38

Exercise 3 37

Exercise 4 20

Exercise 5 6

Sum 121

Notes:

• On all sheets (including additional sheets) you must write your �rst name, your last

name and your matriculation number.

• Give your answers in readable and understandable form.

• Use permanent pens. Do not use red or green pens and do not use pencils.

• Please write your answers on the exam sheets (also use the reverse sides).

• For each exercise part, give at most one solution. Cancel out everything else. Otherwise
all solutions of the particular exercise part will give you 0 points.

• If we observe any attempt of deception, the whole exam will be evaluated to 0 points.

• At the end of the exam, hand in all sheets together with the sheets containing the

exam questions.

1



Functional Programming SS12
Exam (V3M) 10.09.2012

Name: Matriculation Number:

Exercise 1 (Quiz): (4 + 5 + 5 + 3 + 3 = 20 points)

Give a short proof sketch or a counterexample for each of the following statements:

a) Monotonic unary functions are always strict.

b) Strict unary functions on �at domains are always monotonic.

c) Let B be the Boolean values true, false.

Is f : (B→ B⊥)→ Z with f(g) =

{
1 if g(x) 6= true for all x ∈ B
0 otherwise

monotonic?

d) Is →α terminating?

e) Is →α con�uent?

2



Functional Programming SS12
Exam (V3M) 10.09.2012

Name: Matriculation Number:

Exercise 2 (Programming in Haskell): (8 + 10 + 10 + 10 = 38 points)

We de�ne a polymorphic data structure ZombieHalls
to represent a zombie-infested school whose class-
rooms contain di�erent types of food:

data ZombieHalls food =

HallwayFork (ZombieHalls food) (ZombieHalls food)

| HallwayClassroom (Int, food) (ZombieHalls food)

| HallwayEnd

Here, we use three data constructors: One represent-
ing the case that the hallway forks and we can go in
two directions, one for the case that we have a class-
room on one side and can continue in the hallway
and �nally one case for the end of a hallway. The
data structure ZombieFood is used to represent food
for zombies. As example, consider the following def-
inition of exampleSchool of type ZombieLabyrinth

ZombieFood, corresponding to the illustration on the right:

data ZombieFood = Brains | Nuts deriving Show

exampleSchool :: ZombieHalls ZombieFood

exampleSchool =

HallwayClassroom (3, Nuts)

(HallwayFork

(HallwayClassroom (4, Brains)

(HallwayFork HallwayEnd HallwayEnd))

(HallwayClassroom (0, Brains) HallwayEnd))

a) Implement a function buildSchool :: Int -> ZombieHalls ZombieFood such that for any integer
number n ≥ 0, it returns a structure of hallways containing 2n+1 classrooms in total. Of these, one half
should each contain one brain and the other should each contain one nut.

3



Functional Programming SS12
Exam (V3M) 10.09.2012

Name: Matriculation Number:

b) Implement a fold function foldZombieHalls, including its type declaration, for the data structure
ZombieHalls. As usual, the fold function replaces the data constructors in a ZombieHalls expres-
sion by functions speci�ed by the user. The �rst argument of foldZombieHalls should be the function
for the case of a HallwayFork, the second argument should replace the HallwayClassroom construc-
tor and the third argument should replace the HallwayEnd data constructor. As an example, con-
sider the following function de�nition, which uses foldZombieHalls to determine the number of dead
ends in a ZombieHalls structure, where a classroom does not count as dead end. Hence, the call
numberOfDeadEnds exampleSchool returns 3.

numberOfDeadEnds :: ZombieHalls food -> Int

numberOfDeadEnds school = foldZombieHalls (+) (\_ r -> r) 1 school

c) Implement the function bcCounter :: ZombieHalls ZombieFood -> (Int, Int), which counts the
number of brains and classrooms in a given school and returns the two numbers as a tuple of integers.
The �rst part of the tuple should be the number of brains in the school and the second should be
the number of classrooms. For the de�nition of bcCounter, use only one de�ning equation where the
right-hand side is just one call to the function foldZombieHalls. However, you may use and de�ne
non-recursive auxiliary functions.

For example, a call bcCounter exampleSchool should return the tuple (4, 3).

4



Functional Programming SS12
Exam (V3M) 10.09.2012

Name: Matriculation Number:

d) We now want to write a program that trains a zombie to choose its food on a computer. To do this,
implement a function train :: IO Int that asks the user if they want to eat brains or nuts. The user
should answer with either b or n. If the answer is neither b nor n, an error should be reported and the
question should be repeated. If the answer is valid, a short success message should be shown and then,
the function should return the number of tries it took the user to type a valid answer.

Calling train hence might look as follows:

*Main> train

Please enter 'b' for braaaaaains and 'n' for nuts: braiiiins!

I did not understand you. Please enter 'b' for braaaaaains and 'n' for nuts: b

Good boy! Here are your brains!

2

Note that the last line of this run is provided by the Haskell Interpreter, showing the return value of
train.

Hints:

• You should use the function getLine :: IO String to read the input from the user and the function
putStr :: String -> IO () to print a String.

• To save space, you may assume that the following declarations exist in your program:

question, answerB, answerN, answerO :: String

question = "Please enter 'b' for braaaaaains and 'n' for nuts: "

answerB = "Good boy! Here are your brains!\n"

answerN = "You are a weird zombie. Here are your nuts!\n"

answerO = "I did not understand you. "

5



Functional Programming SS12
Exam (V3M) 10.09.2012

Name: Matriculation Number:

Exercise 3 (Semantics): (22 + 10 + 5 = 37 points)

a) i) Let vD1
and vD2

be complete partial orders on D1 resp. D2 and f : D1 → D2 a function. Prove
that f is continuous if and only if f is monotonic and for all chains S in D1, f(tS) vD2 tf(S)
holds.

6



Functional Programming SS12
Exam (V3M) 10.09.2012

Name: Matriculation Number:

ii) Let D = N → {1}⊥, i.e., D is the set of all functions mapping the natural numbers to ⊥ or 1. Let
v be de�ned as usual on functions.

1) Prove that every chain S v D has a least upper bound w.r.t. the relation v.

2) Prove that v is a cpo on D.

3) Give an example for an in�nite chain in (D,v).

4) Give a monotonic, non-continuous function f : D → D. You do not need to prove that f has
these properties.

7



Functional Programming SS12
Exam (V3M) 10.09.2012

Name: Matriculation Number:

b) i) Consider the following Haskell function exp:

exp :: (Int, Int) -> Int

exp (x, 0) = 1

exp (x, y) = x * exp (x, y - 1)

Please give the Haskell declaration for the higher-order function f_exp corresponding to exp, i.e., the
higher-order function f_exp such that the least �xpoint of f_exp is exp. In addition to the function
declaration, please also give the type declaration of f_exp. You may use full Haskell for f_exp.

ii) Let φf_exp be the semantics of the function f_exp. Give the semantics of φnf_exp(⊥) for n ∈ N, i.e.,
the semantics of the n-fold application of φf_exp to ⊥.

iii) Give the least �xpoint of φf_exp.

8



Functional Programming SS12
Exam (V3M) 10.09.2012

Name: Matriculation Number:

c) Consider the following data type declaration for natural numbers:

data Nats = Z | S Nats

A graphical representation of the �rst four levels of the domain for Nats could look like this:

S (S (S ⊥))S (S Z)

⊥

Z

S (S ⊥)S Z

S ⊥

Now consider the following data type declarations:

data U = V

data T a = C | D (T a) | E a a

Give a graphical representation of the �rst three levels of the domain for the type T U. The third level
contains the element D C, for example.

9



Functional Programming SS12
Exam (V3M) 10.09.2012

Name: Matriculation Number:

Exercise 4 (Lambda Calculus): (4 + 6 + 10 = 20 points)

a) Please translate the following Haskell expression into an equivalent lambda term (e.g., using Lam).
Translate the pre-de�ned function > to GreaterThan, + to Plus, * to Times and - to Minus (remember
that the in�x notation of >, +, *, - is not allowed in lambda calculus). It su�ces to give the result of the
transformation:

let sqrt = \x a -> if a * a > x then a - 1 else sqrt x (a + 1) in sqrt u 0

b) Let t = λfromto.λx.λy.If (Eq x y) Nil (Cons x (fromto (Plus x 1) y)) and

δ = { If True→ λx.λy.x,

If False→ λx.λy.y,

Fix→ λf.f (Fix f)}
∪ { Plus x y → z | x, y ∈ Z ∧ z = x+ y}
∪ { Eq x y → False | x, y ∈ Z ∧ x 6= y}
∪ { Eq x y → True | x, y ∈ Z ∧ x = y}

Please reduce Fix t 1 2 by WHNO-reduction with the →βδ-relation. List all intermediate steps until
reaching weak head normal form, but please write �t� instead of the term it represents whenever possible.
However, you may combine several subsequent →β-steps.

10



Functional Programming SS12
Exam (V3M) 10.09.2012

Name: Matriculation Number:

c) We use the representation of Boolean values in the pure λ-calculus presented in the lecture. So, True is
λx y.x and False is λx y.y. Using this representation, give pure λ-terms for the following functions:

• If, which gets three arguments, of which the �rst argument is Boolean and determines if the second
or third value is returned (i.e., it behaves as you would expect). For example, If True x y →+

β x.

• Xor, which takes two Boolean values and returns true if and only if exactly one of them is True.
You may use True and False in your solution.

11



Functional Programming SS12
Exam (V3M) 10.09.2012

Name: Matriculation Number:

Exercise 5 (Type Inference): (6 points)

Using the initial type assumption A0 := {y :: ∀a.a→ a} infer the type of the expression λx.(y x)x using the
algorithm W.

12


