Definition 2.2.11
A complex HASKELL expression \( \text{exp} \) is transformed into \( \text{exp}^{tr} \)
iff
\( \text{exp}^{tr} \) results from \( \text{exp} \) by repeated application of Rules (1) – (12)
and no rule is applicable to \( \text{exp}^{tr} \) any more.

Theorem 2.2.12
Let \( \text{exp} \) be a complex HASKELL expression. Then we have:

(a) Application of the rules (1) – (12) terminates,
i.e., there is an expression \( \text{exp}^{tr} \).

(b) Except Rule (10), the rules are “confluent”, i.e., \( \text{exp}^{tr} \) is unique
up to the order of declarations and nested let-expressions.

(c) \( \text{exp}^{tr} \) is a simple HASKELL expression.