2. Semantics of Functional Programs

up to now: defined syntax of Haskell
now: Semantics of Haskell

needed to implement compilers/interpreters and to know when a program is correct.

2 ways to define the semantics of programming languages:

a2 • denotational semantics: define semantics by a mapping from constructs of the prog. language to mathematical objects

a3 • operational semantics: define semantics by providing an interpreter for the language. Every other interpreter should behave in the same way.

2.1: Mathematical Foundations
2.2: Def. of Semantics of Haskell

2.1. Complete Partial Orders and Fixpoints

2.1.1: math. objects needed for Haskell expressions
2.1.2: — u —— Haskell functions
2.1.3: How can one infer the semantics of a recursively defined Haskell function?
2.1.1. Partially Defined Values

Goal: Define a mapping \(Val \) that maps every Haskell-expression to a mathematical object.
For an expression \(\text{exp} \), \(Val(\text{exp}) \) should be the meaning/semantics of \(\text{exp} \).

Ex: Haskell-expression 5 is mapped to the number 5,
i.e.: \(Val(5) = 5 \).

What about Haskell-functions?

\[
\text{square} :: \text{Int} \rightarrow \text{Int} \\
\text{square} \ x = x \times x
\]

\(Val(\text{square}) \) is the function that takes a number \(n \)
from \(\mathbb{Z} \) and returns \(n \cdot n \).

What about the following non-terminating function?

\[
\text{non-term} :: \text{Int} \rightarrow \text{Int} \\
\text{non-term} \ x = \text{non-term} \ (x + 1)
\]

What is \(Val(\text{non-term} \ 0) \)?
To express undefinedness, we introduce a special undefined value \(\bot \) ("bottom").
Then \(Val(\text{non-term} \ 0) = Val(\text{non-term} \ 1) = \bot \).
So for the semantics of Haskell, we need mathematical objects like \(\mathbb{Z}, \mathbb{L}, \mathbb{B} \), tuples, functions, etc.

Booleans

We will only define semantics for well-typed expressions. At the moment, we disregard polymorphism and assume that every expression has a unique type. For each type we now define a domain of mathematical objects, such that \(\text{Val} \) maps expressions of this type to objects of the corresponding domain.

Domain for type \(\text{Int} \): \(\mathbb{Z}_+ = \{ \mathbb{L}_2, 0, 1, -1, 2, -2, \ldots \} \)

Domain for type \(\text{Bool} \): \(\mathbb{B}_+ = \{ \mathbb{L}_\mathbb{B}, \text{True}, \text{False} \} \)

Similarly for \(\text{Char}, \text{Float}, \ldots \)

For every domain \(D \) we use a partial ordering \(\leq_D \) which compares elements of \(D \) by their definedness. So \(x \leq_D y \) means that \(x, y \in D \) and \(x \) is less defined or equal to \(y \).

So for \(\mathbb{Z}_+ \) we have: \(\mathbb{L}_{\mathbb{Z}_+} \leq_{\mathbb{Z}_+} 0 \) (Slide 29)

\[
\begin{array}{cccc}
-2 & -1 & 0 & 1 & 2 & 3 & \ldots \\
- & - & 0 & \neq & 1 & \neq & \end{array}
\]
Sud domains are called flat, because elements are either completely defined or completely undefined. "≤" is partial because there are elements that can’t be compared with "≤" (e.g., 0 ≤ 1, 1 ≤ 0).

An order (ordering) is a relation with certain properties.

1. \(x \leq x \) (reflexivity)
2. \(x \leq y \) and \(y \leq z \) implies \(x \leq z \) (transitivity)
3. \(x \leq y \) and \(y \leq x \) implies \(x = y \) (antisymmetry)

A transitive antisymmetric relation is called an ordering.

Thus: \(\leq \) is a reflexive ordering.

\(\mathbb{Z}_\perp, \mathbb{B}_\perp, \mathbb{C}_\perp, \perp \) is the set of floating point numbers

\(\mathbb{L}_\perp, \mathbb{P}_\perp, \mathbb{I}_\perp, \perp \) are flat domains.

\(\mathbb{C} = \{ \text{a, b, c, ...} \} \) set of characters

Def. 2.1.1 \(\leq \) on base domains

Let \(D \) be a base domain (i.e., \(\mathbb{Z}_\perp, \mathbb{B}_\perp, \mathbb{C}_\perp, \perp \)). Then for all \(d, d' \in D \) we have: \(d \leq_D d' \) iff \(d = d' \) or \(d = \perp \) or \(d' = \perp \).

Sud domains are called flat. "if and only if"
Now we want to look at a domain for tuple expressions. If \(\exp_1, \exp_2, \ldots, \exp_n \) are expressions where
\(\text{Val}(\exp_1) \in D_1, \ldots, \text{Val}(\exp_n) \in D_n \), then
\(\text{Val}(\langle \exp_1, \ldots, \exp_n \rangle) \in D_1 \times \cdots \times D_n \).
So the Cartesian product of domains is again a domain.

Def 2.1.2 (Product Domains)
Let \(D_1, \ldots, D_n \) be domains, where \(n \geq 2 \). Then \(D_1 \times \cdots \times D_n \) is also a domain. We define
\((d_1, \ldots, d_n) \sim_{D_1 \times \cdots \times D_n} (d'_1, \ldots, d'_n) \) iff \(d_i \sim_{D_i} d'_i \) for all \(1 \leq i \leq n \).
Thus, the smallest element of \(D_1 \times \cdots \times D_n \) is
\(\bot_{D_1 \times \cdots \times D_n} = (\bot_{D_1}, \ldots, \bot_{D_n}) \).

Ex: \(\mathbb{Z}_1 \times \mathbb{Z}_1 \)

\[
\begin{array}{ccccccc}
(0,0) & & (0,1) & & (1,0) & & (1,1) & \\
\vdots & \times & \times & \times & \times & \vdots & \\
(0,1) & & (1,0) & & (1,1) & & (0,1) & \\
\vdots & & & & & & \vdots & \\
(1,1) & & (1,0) & & (0,1) & & (1,1) & \\
\end{array}
\]

Now we have 3 degrees of definedness.
\subseteq is still a reflexive ordering (on product domains)

Lemma 2.1.3 (\(\subseteq\) on product domains)

If all \(\subseteq_{D_i}\) are reflexive orderings, then
\(\subseteq_{D_n \times \cdots \times D_n}\) is also reflexive ordering.

Proof:

Reflexivity: \((d_n, \ldots, d_n) \subseteq_{D_n \times \cdots \times D_n} (d_n, \ldots, d_n)\), since
\(d_n \subseteq_{D_n} d_n, \ldots, d_n \subseteq_{D_n} d_n\) (which holds by reflexivity of
\(\subseteq_{D_n}\)), hence \(\subseteq_{D_n}\).

Transitivity: Let \((d_n, \ldots, d_n) \subseteq_{D_n \times \cdots \times D_n} (d'_n, \ldots, d'_n)\) and
\((d'_n, \ldots, d'_n) \subseteq_{D_n \times \cdots \times D_n} (d''_n, \ldots, d''_n)\).

By definition, we have \(d_i \subseteq_{D_i} d'_i\) and \(d'_i \subseteq_{D_i} d''_i\) for all \(1 \leq i \leq n\). Since \(\subseteq_{D_i}\) is transitive, we have \(d_i \subseteq_{D_i} d''_i\). This implies
\((d_n, \ldots, d_n) \subseteq_{D_n \times \cdots \times D_n} (d''_n, \ldots, d''_n)\).

Antisymmetry: analogous.

For expressions of function type, we also regard functions
from \(D_1\) to \(D_2\) (for domains \(D_1, D_2\)).
(The corresponding function domain will only consist of a subset of the functions from $D_1 \rightarrow D_2$.)
But E can easily be defined for functions as well.

Def 2.1.4 (E on functions)

Let f, g be functions from a domain D_1 to a domain D_2.
Then we define $f \equiv_D g$ iff $f(d) \equiv_{D_2} g(d)$ for all $d \in D_1$.
Thus, the smallest function from D_1 to D_2 (denoted $\bot_{D_1 \rightarrow D_2}$) is the function that returns \bot_{D_2} for all arguments (of D_1).

For functions, there can even be infinite chains such that

$$f_0 \equiv_{D_1 \rightarrow D_2} f_1 \equiv_{D_1 \rightarrow D_2} f_2 \equiv_{D_1 \rightarrow D_2} \ldots$$

Lemma 2.1.5 (E on functions)

If E_{D_2} is a reflexive ordering, then $E_{D_1 \rightarrow D_2}$ is also a reflexive ordering.

Proof: Similar to Lemma 2.1.3