We now define the operational semantics of the Lambda calculus by introducing an interpreter for lambda terms that uses 3 reduction rules: \(\alpha \)-reduction, \(\beta \)-reduction, \(\delta \)-reduction.

\(\alpha \)-reduction: renaming bound variables

Def 321 (\(\alpha \)-Reduction)
(Slide 54)

The relation \(\overrightarrow{\alpha} \subseteq \Lambda \times \Lambda \) is the smallest relation with:

- \(\lambda x. t \overrightarrow{\alpha} \lambda y. t[y/x] \) if \(y \notin \text{free}(t) \)
- if \(t_1 \overrightarrow{\alpha} t_2 \), then \((t_1 \; r) \overrightarrow{\alpha} (t_2 \; r) \)
- \((r \; t_1) \overrightarrow{\alpha} (r \; t_2) \), and \((\lambda y. t_1) \overrightarrow{\alpha} (\lambda y. t_2) \).

Ex: \(\lambda xy. xy \overrightarrow{\alpha} \lambda x.z. xz \)

\[\overrightarrow{\alpha} \lambda v.z. vz \]

\[\overrightarrow{\alpha} \ldots \]

\(\lambda x. xy \not\overrightarrow{\alpha} \lambda x. xz \)
No renaming of free variables
\(\beta \)-reduction is used to apply a \(\lambda \)-abstraction to a term: \((\lambda x. t) \, r \) results in \(t \) where all free occurrences of \(x \) are replaced by \(r \).

Def 3.2.2 (\(\beta \)-Reduction)
(Slide 54)

The relation \(\rightarrow_\beta \subseteq \Lambda \times \Lambda \) is the smallest relation with

1. \((\lambda x. t) \, r \rightarrow_\beta t [x/ r] \)
2. If \(t_1 \rightarrow_\beta t_2 \), then \((t_1 \, r) \rightarrow_\beta (t_2 \, r)\), \((r \, t_1) \rightarrow_\beta (r \, t_2)\), and \((\lambda y. t_1) \rightarrow_\beta (\lambda y. t_2)\)

Ex: \((\lambda x. x) \, \text{Zero} \rightarrow_\beta x [x/ \text{Zero}] = \text{Zero}\)

\((\lambda y. x \, y) \, y \rightarrow_\beta (\lambda y. x \, y) [x/ y] = \lambda y. x \, y \, y'\)

\((\lambda x. \text{plus} \, x \, 1) ((\lambda y. \text{times} \, y \, y) \, 3)\)

\(\rightarrow_\beta\) \(\rightarrow_\beta\)

\(\text{plus} ((\lambda y. \text{times} yy) \, 3) \, 1 \rightarrow_\beta (\lambda x. \text{plus} \, x \, 1) (\text{times} \, 3 \, 3)\)

There can be several possibilities to evaluate a
\(\pi \)-term by \(\beta \)-reduction. Do they always yield the same result?

Def 3.2.3 (transitive-reflexive closure, normal form, confluence)

Let \(\rightarrow \) be a relation on some set \(\mathcal{N} \).

1. The **transitive-reflexive closure** \(\rightarrow^* \) is the smallest relation such that:
 - \(t_1 \rightarrow t_2 \) implies \(t_1 \rightarrow^* t_2 \)
 - \(t_1 \rightarrow t_2 \rightarrow^* t_3 \) implies \(t_1 \rightarrow^* t_3 \)
 - \(t_1 \rightarrow^* t_1 \)

 In other words: \(t \rightarrow^* t_n \) iff \(t \rightarrow t_1 \rightarrow t_2 \rightarrow \ldots \rightarrow t_n \) for \(n \geq 0 \)

2. An object \(q \in \mathcal{N} \) is a **normal form** iff there is no \(q' \in \mathcal{N} \) with \(q \rightarrow q' \).

 We say that \(q \) is a normal form of \(t \) iff \(t \rightarrow^* q \) and \(q \) is a normal form.

3. The relation \(\rightarrow \) is confluent iff for all \(t, q_1, q_2 \in \mathcal{N} \) we have: if \(t \rightarrow^* q_1 \) and \(t \rightarrow^* q_2 \), then there exists a \(q \in \mathcal{N} \) with \(q_1 \rightarrow^* q \) and \(q_2 \rightarrow^* q \).
Lemma 3.2.4 (Confluence implies unique normal forms)
Let \(\to \) be a confluent relation on a set \(N \). Then every \(t \in N \) has at most one normal form.

Proof: Let \(t \in N \) have 2 normal forms \(q_1, q_2 \).

By confluence, there exists a \(q \in N \) with
\[
q_1 \to^* q, \quad q_2 \to^* q.
\]

Since \(q_1, q_2 \) are normal forms, we have
\[
q_1 = q = q_2.
\]

Theorem 3.2.5 (Confluence of the \(\lambda \)-calculus with \(\beta \)-reduction, Church & Rosser)

\(\to_\beta \) is confluent, i.e.,

if \(t \to^*_\beta q_1 \) and \(t \to^*_\beta q_2 \),

then there exist \(q, q' \in \Lambda \) with

\[
q_1 \to^*_\beta q, \quad q_2 \to^*_\beta q', \quad \text{and} \quad q \to^*_\beta q'.
\]
The last form of reduction rules in the λ-calculus is needed to evaluate terms built with constants from \(\mathcal{C} \). In particular, these constants could correspond to pre-defined functions of Haskell.

But: We want to make sure that \(\delta \)-reduction does not destroy the confluence of the λ-calculus.

Solution: Define \(\delta \)-reduction by a set of \(\delta \)-rules. These rules must have a certain restricted form which ensures that evaluation with \(\beta \)- and \(\delta \)-reduction remains confluent.

\[\text{Def 326 (}\delta\text{-Reduction)} \]

A set of rules \(\delta \) of the form \(c \cdot t_1 \ldots t_n \rightarrow r \) with \(c \in \mathcal{C}, t_1, \ldots, t_n, r \in \Lambda \) is a \text{Delta-Rule-Set} if:

- \(t_1, \ldots, t_n, r \) are closed λ-terms

- otherwise: \(c \cdot 0 \rightarrow 0 \) \(\delta \)

Then \(c \cdot 0 \) \(\delta \)
\[t_1, \ldots, t_n \text{ are in } \beta\text{-normal form and they do not contain any left-hand side of a rule from } \delta. \]

- In \(\delta \), there are no two rules \(c \cdot t_1 \ldots t_n \rightarrow r, c \cdot t_1 \ldots t_m \rightarrow r' \) with \(m \geq n \).

For such a set \(\delta \), \(\rightarrow_\delta \) is the smallest relation with

- \(l \rightarrow_\delta r \) for all \(l \rightarrow r \in \delta \)

- if \(t_1 \rightarrow_\delta t_2 \), then \((t_1 r) \rightarrow_\delta (t_2 r) \), \((r t_1) \rightarrow_\delta (r t_2) \)
 and \(\lambda y \cdot t_1 \rightarrow_\delta \lambda y \cdot t_2 \).
We define \[\rightarrow_{\beta \delta} = \rightarrow_{\beta} \cup \rightarrow_{\delta} \].

Ex. for a Delta-Rule-Set:

\[\delta = \{ \text{isa succ} \rightarrow \text{True} \mid t \in A, t \text{ is closed}, \text{ and in } \rightarrow_{\beta \delta} \text{ normal form} \} \cup \]
\[\{ \text{isa succ zero} \rightarrow \text{False} \} \]

Thm 3.2.7 \textit{(Confluence for the } \lambda \text{-calculus with } \rightarrow_{\beta} \text{ and } \rightarrow_{\delta} \text{)}

\[\rightarrow_{\beta \delta} \text{ is confluent, i.e., } \]

if \(t \rightarrow_{\beta \delta}^* q_1 \) and \(t \rightarrow_{\beta \delta}^* q_2 \),

then there exist \(q, q' \in A \) with

\[q_1 \rightarrow_{\beta \delta}^* q, \ q_2 \rightarrow_{\beta \delta}^* q', \text{ and } q \rightarrow_{\alpha} q'. \]

So \(\rightarrow_{\beta \delta} \) defines an operational semantics for the \(\lambda \)-calculus (and \(\rightarrow_{\alpha} \) defines that we regard certain terms as being "equal").
A denotational semantics for the \(\lambda \)-calculus was only invented 30 years later by D. Scott. Crucial idea: Continuous functions.