4. Type Checking and Type Inference

Complex Haskell \Rightarrow Simple Haskell \Rightarrow Lambda Calculus

Then one should first do type-checking for the obtained λ-term. If it is well typed, it should then be evaluated.

4.1 Type Schemas and Type Assumptions

Main problem: polymorphism

An expression like Nil may have several types:

List a, List Int, List Bool, ...

We want to compute the most general type of any λ-term (e.g., List a). Here, the type variable a stands for any possible type. To make this clearer, we now use type schemas: $\forall a. \text{List } a$

For pre-defined functions and constructors (e.g., constants ϵ of the λ-calculus), we need to know their types before we start
type-checking.

This information is stored in a

\textit{type assumption} (\textit{\textit{\equiv}} “environment” when
defining the semantics of
Haskell)

The \textit{type assumption} assigns a type schema to
every constant (\textit{\textit{\textit{\textit{\equiv}}} from } \mathcal{E}) and every variable
(\textit{\textit{\textit{\textit{\textit{\equiv}}} from } \mathcal{V}) of the \textit{\textit{\textit{\lambda}}} -calculus.

We start with an initial \textit{type assumption} \(A_0 \):

\begin{align*}
A_0 (\text{not}) &= \text{Bool} \to \text{Bool} \\
A_0 (+) &= \text{Int} \to \text{Int} \to \text{Int} \\
A_0 (5) &= \text{Int} \\
A_0 (\times) &= \forall a. a \ (\text{for any } x \in \mathcal{V})
\end{align*}

For data \textit{List} \(a = \text{Nil} | \text{Cons } a \ (\text{List } a) \):

\begin{align*}
A_0 (\text{Nil}) &= \forall a. \text{List } a \\
A_0 (\text{Cons}) &= \forall a. a \to (\text{List } a) \to (\text{List } a)
\end{align*}
Type schemas are built according to the following grammar:

\[
\text{typeschema} \rightarrow \text{tyconstr typeschema}_1 \ldots \text{typeschema}_n, \ n \geq 0 \\
| \ (\text{typeschema}_1 \rightarrow \text{typeschema}_2) \\
| \ (\text{typeschema}_1, \ldots, \text{typeschema}_n), \ n \geq 0 \\
| \ \text{var} \\
| \ \forall \text{var} : \text{typeschema}
\]

For a typeschema \(T \) with free variables \(a_1, \ldots, a_n \), we write \(\forall T \) for \(\forall a_1 \ldots \forall a_n. \ T \).

A type assumption \(A \) is a (possibly partial) function from \(\mathcal{V} \cup \mathcal{E} \) to the set of type schemas.

A type assumption \(A \) with \(A(x_i) = T_i \) for \(1 \leq i \leq n \) which is undefined on other arguments is also written \(A = \{ x_1 : T_1, \ldots, x_n : T_n \} \).

The initial type assumption \(A_0 \) is defined on Slide 59.
Here, we assume that Constr is a user-defined data constructor introduced by:

```
data tyconstr a_1 \ldots a_m = \ldots (Constr \; type_1 \ldots type_n) \ldots
```

For two type assumptions A and A', we define $A + A'$ as:

$$ (A + A')(x) = \begin{cases} A'(x), & \text{if } A'(x) \text{ is defined} \\ A(x), & \text{otherwise} \end{cases} $$