We now present an algorithm \(W \) for type checking under a certain type assumption.

\[W(A, t) \]

\(\uparrow \)

\(\uparrow \)

type assumption \(\lambda \)-term

checks whether \(t \) is well typed under the type assumption \(A \). If yes, then \(W \) returns the result \((\Theta, t)\).

\(\Theta \) most general type of \(t \) under the type assumption \(\Theta(A) \).

We also write \(A\Theta \)

We now introduce the algorithm \(W \) for the different forms of \(\lambda \)-terms \(t \). (Slide 60)

4.2.1. Type Inference for Variables and Constants

Now \(t \) is \(c \in \text{Cuv} \).

If the type assumption contains \(c :: \text{Var}, \ldots, \text{Var} \ldots \text{c} \) where \(\text{c} \) is a type (without "\(\text{Var} \)"), then the most general
type of \(c \) is \(\tau \). Here, we rename the type variables \(a_1, ..., a_n \) to fresh variables \(b_1, ..., b_n \) that do not occur free in \(A \) or \(\tau \).

To make \(c \) well typed, the current type assumption \(A \) does not need to be refined, i.e., \(\Theta \) is the identity \(\text{id} \).

\[
\begin{align*}
 \nu(A_0, x) &= (\text{id}, b) \quad \text{for } x \in \nu \quad A_0(x) = \forall a.e \\
 \nu(A_0, \text{not}) &= (\text{id}, \text{Bool} \to \text{Bool}) \\
 \nu(A_0, \text{Cons}) &= (\text{id}, c \to (\text{list } c) \to (\text{list } c)) \\
 A_0(\text{Cons}) &= \\
 &= \forall a. a \to (\text{list } a) \to (\text{list } a) \\
\end{align*}
\]

General Rule for \(c \in \text{C U V} \):

\[
\nu(A + \{c::\forall a_1, ..., a_n. \tau\}, c) = (\text{id}, \tau \exists a_1/b_1, ..., a_n/b_n)
\]

where \(b_1, ..., b_n \) are fresh variables

4.2.2 Type Inference for Lambda Abstractions

Idea: To determine the type of \(\lambda x.t \):

- assume that we know the type of \(x \) (i.e., \(x \) has some type \(b \))
- extend the previous type assumption by \(x::b \)
- under this assumption, compute the type \(\tau \) of \(t \)

Moreover, we compute a subst \(\Theta \) which states how our type assumption...
Then the whole term has type $b\theta \rightarrow \tau$.

General Rule for $\lambda x.t$:

$$\sigma(A, \lambda x.t) = (\theta, b\theta \rightarrow \tau),$$

where $\sigma(A + \{x::b\}, t) = (\theta, \tau)$,

b is a fresh type variable.

We now illustrate this rule (and type checking for λ-abstractions) with several examples.

Ex:

\[
\begin{array}{c}
\lambda f. \text{plus} (f \text{ True}) (f \text{ 3}) \\
\uparrow \quad \uparrow \quad \uparrow \\
\text{type Int} \rightarrow \text{Int} \rightarrow \text{Int} \\
\text{type Bool} \\
\text{type Int}
\end{array}
\]

So f must have the type schema $\forall a. a \rightarrow \text{Int}$.

Thus, the whole term has the type schema:

$$(\forall a. a \rightarrow \text{Int}) \rightarrow \text{Int} \quad \text{this is the type of functions to Int}$$

Where the argument is a function of type $a \rightarrow \text{Int}$.

What functions have the type schema $\forall a. a \rightarrow \text{Int}$?

$\lambda x. 1$, but not $\lambda x. x$, $\lambda x. x + 1$, ...
So there is an important difference between the following type schemas:

\((\forall a. a \rightarrow \text{Int}) \rightarrow \text{Int}\)

\(\forall a. (a \rightarrow \text{Int}) \rightarrow \text{Int} \iff \text{If \ a \ fct. \ has \ this \ type, then \ it \ also \ has \ the \ types} \)

\((\text{Int} \rightarrow \text{Int}) \rightarrow \text{Int}, (\text{Bool} \rightarrow \text{Int}) \rightarrow \text{Int}, \ldots\)

E.g.: \(\lambda f. \ \text{plus} \ (f \ \text{bot}) \ (f \ \text{bot})\)

Type a

In Haskell, one is restricted to **shallow** type schemas.

Def 42.1 (Shallow Type Schemas)

A type schema is shallow iff it has the form

\(\forall a_1, \ldots, a_n. T\) where \(T\) is a type (i.e., \(T\) does not contain quantifiers).

Most prog. languages are restricted to shallow type schemas to make type checking decidable.

\(\Rightarrow \lambda f. \ \text{plus} \ (f \ \text{True}) \ (f \ \text{3})\)

is not well typed in Haskell. (i.e., \(\lambda x.t\))
Consequence: A variable bound by \(\lambda \) must have the same type for all (free) occurrences of \(x \) in \(t \).

\[\lambda f. \text{plus} \ (f \ True) \ (f \ 3) \] is not well typed

Let \(f = \lambda x \to 1 \) in \(\text{plus} \ (f \ True) \ (f \ 3) \) is well typed

We now execute \(\text{let} \) for some examples:

Ex: \(\lambda x. \text{Cons} \ 0 \ (\text{Cons} \ x \ x) \)

\(\text{type} \ e \to \text{list} e \to \text{List} e \)

is not well typed: \(x \) must get the same type everywhere in \(\text{Cons} \ 0 \ (\text{Cons} \ x \ x) \)

To compute \(\text{let} \ (A_0, \lambda x. \text{Cons} \ 0 \ (\text{Cons} \ x \ x)) \), we need to compute \(\text{let} \ (A_0 + \{x :: b\}, \text{Cons} \ 0 \ (\text{Cons} \ x \ x)) \) which fails.

Note that we have \(x :: b \), not \(x :: A_6.b \)

Indeed, \(\lambda x. \text{Cons} \ 0 \ (\text{Cons} \ x \ x) \) has the (non-shallow) type schema: \((A_6.b) \to (\text{List} \ A_7) \)

Ex: \(\text{let} \ (A_0, \lambda x. \text{tuple}_2 \ x \ x) = (\text{id}, \text{b \to} (b, b)) \), since
\[w(A_0 + \{x \mapsto b\}, \text{tuple}_2 \times x) = (\text{id}, (b, b)) \]

\[\text{Ex: } w(A_0, \lambda x. \text{plus} \times x) = (\frac{b}{\text{Int}}, \frac{\text{Int}}{\text{Int}}) \]

\[w(A_0 + \{x \mapsto b\}, \text{plus} \times x) = (\frac{b}{\text{Int}}, \frac{\text{Int}}{\text{Int}}) \]

\[A_0 \text{ (plus): Int} \rightarrow \text{Int} \rightarrow \text{Int} \]

The current type assumption must be refined (by instantiating \(b \) with \(\text{Int} \)) to make \(\text{plus} \times x \) well-typed.

4.2.3 Type Inference for Applications

\((t_1 \ t_2)\): If \(t_1 \) has type \(\tau_1 \), and \(t_2 \) has type \(\tau_2 \), then check whether \(\tau_1 \) corresponds to \(\tau_2 \rightarrow \tau_3 \).

Then the result has type \(\tau_3 \).

\[\text{Ex: (not True): } \text{Here, "not" has type } \frac{\tau_1}{\text{Bool} \rightarrow \text{Bool}} \]

\[\text{and "True" has type } \frac{\tau_2}{\text{Bool}}. \]

Thus, \(\tau_1 \) corresponds to \(\tau_2 \rightarrow \tau_3 \) for \(\tau_3 = \text{Bool}. \) So term is well-typed.
and has type \(\tau_3 = \text{Bool} \).

In general, "correspondence" of \(\tau_1 \) and \(\tau_2 \rightarrow \tau_3 \) might involve instantiation of type variables.

Ex: \textbf{Cons 0}

\textit{Cons} has type \(\tau_1 = e \rightarrow \text{list} e \rightarrow \text{list} e \)

0 has type \(\tau_2 = \text{Int} \)

Does \(\tau_1 \) 'correspond' to \(\tau_2 \rightarrow \tau_3 \) for some type \(\tau_3 \)?

This means:

Is there a substitution \(\Theta \) of type variables by types such that \(\tau_1 \Theta = (\tau_2 \rightarrow b) \Theta \) holds for a fresh type variable \(b \)?

This means: We search for a \underline{unifier} \(\Theta \) of \(\tau_1 \) and \(\tau_2 \rightarrow b \).

In the example \textbf{Cons 0}:

\(\tau_1 : e \rightarrow \text{list} e \rightarrow \text{list} e \)

\(\tau_2 : \text{Int} \)

Unifier of \(\tau_1 \) and \(\tau_2 \rightarrow b \) is \(\frac{\left[e/\text{Int} \right]}{0} \)

Resulting type of \textbf{Cons 0} is \(b \Theta : \text{list} \text{Int} \rightarrow \text{list} \text{Int} \).

\underline{Def 4.22 (Unification)}
Let \(\Theta \) be a substitution of type variables by types. The subst. \(\Theta \) is a unifier of two types \(\tau_1 \) and \(\tau_2 \) if
\[
\tau_1 \Theta = \tau_2 \Theta.
\]
A subst. \(\Theta' \) is most general unifier (mgu) of \(\tau_1 \) and \(\tau_2 \) iff
- \(\Theta' \) is a unifier of \(\tau_1 \) and \(\tau_2 \)
- for all unifiers \(\Theta \) of \(\tau_1 \) and \(\tau_2 \), there exists a subst. \(\Gamma \) with \(\Theta = \Theta' \Gamma \).

First apply the mgu \(\Theta' \), then apply a more special subst. \(\Gamma \).

We write \(\Theta' = \text{mgu}(\tau_1, \tau_2) \).

Ex: Cons bot

We have to unify \(\tau_1 = \text{e} \rightarrow \text{liste} \rightarrow \text{liste} \)
with \(\tau_2 = \text{a} \rightarrow \text{b} \)

Possible unifiers: \(\Theta_1 = [a/e, b/\text{liste} \rightarrow \text{liste}] \).

Resulting type of Cons bot is \(b \Theta_1 = \text{liste} \rightarrow \text{liste} \)

Which leads to the most general type

\(\Theta_2 = [a/\text{Int}, e/\text{Int}, b/\text{listInt} \rightarrow \text{listInt}] \).

Resulting type of Cons bot is \(b \Theta_2 = \text{list Int} \rightarrow \text{list Int} \).

General Rule for type-checking applications \((\tau_1, \tau_2)\):
\[\omega(A, (t_1, t_2)) = (\Theta_1, \Theta_2, \Theta_3, \delta \Theta_3), \]

where \(\omega(A, t_n) = (\Theta_n, \tau_n) \)

\[\omega(A \Theta_n, t_2) = (\Theta_2, \tau_2) \]

\[\Theta_3 = \text{mgu}(\tau_n, \Theta_2, \tau_2 \rightarrow \delta) \]

\(b \) is a fresh variable

c to make \(t_1 \) well-typed, one has to refine \(A \) to \(A \Theta_1 \). This should be taken into account when type-checking \(t_2 \)

to make \(t_2 \) well-typed, the type assumption must be refined further by \(\Theta_2 \).
Then \(t_1 \) has the type \(\tau_n \Theta_2 \).

Ex: \(\lambda x. \text{Cons} \times x \)

\[\omega(A_0, \lambda x. \text{Cons} \times x) = \]

\[\omega(A_0 + \{x \mapsto b\}, (\text{Cons} \times x)) = \]

\[\omega(A_0 + \{x \mapsto b\}, \text{Cons} \times x) = ([\text{Id} e, b'/\text{Liste} \rightarrow \text{Liste}] \text{Liste} \rightarrow \text{Liste}) \]

\[\omega(A_0 + \{x \mapsto b\}, \text{Cons}) = (\text{Id} e, \text{Liste} \rightarrow \text{Liste} \rightarrow \text{Liste}) \]

\[\omega(A_0 + \{x \mapsto b\}, x) = (\text{Id} e, b) \]

\[\text{mgu}(e \rightarrow \text{Liste} \rightarrow \text{Liste}, b \rightarrow b') = [b/e, b'/\text{Liste} \rightarrow \text{Liste}] \]

\[\omega((A_0 + \{x \mapsto b\})[b/e, b'/\ldots]), x) = (\text{Id} e, b) \]

\[A_0 + \{x \mapsto e\} \]

\[\text{mgu}(\text{Liste} \rightarrow \text{Liste}, e \rightarrow b'') \] fails ("Occur failure")

\[\Rightarrow \text{term is not well typed!} \]

4.2.4 The Full Type Inference Algorithm
The algorithm \(\mathcal{W} \) is a modified version of the \(\mathcal{W} \)-algorithm by R. Milner (1978).

Theorem 4.23 (Correctness of \(\mathcal{W} \))

Let \(t \) be a \(\lambda \)-term over the constants \(\mathcal{C} \) from Def 3.3.4 where \(\mathcal{W}(A_0, t) = (\Theta, \tau) \).

Let \(t \xrightarrow{\betaSS} t' \) where \(\Delta \) is the Delta-Rule-Set for Haskell from Def 3.3.5. Then \(\mathcal{W}(A_0, t') = (\Theta', \tau') \) for some \(\Theta' \).

This means: Static type checking ensures that no type errors are introduced at runtime.