
Functional Programming SS12
Solution - Exam (V3B) 15.08.2012

aaProf. Dr. J. Giesl M. Brockschmidt, F. Emmes

Exercise 1 (Quiz): (4 + 4 + 4 + 4 + 4 = 20 points)

Give a short proof sketch or a counterexample for each of the following statements:

a) Is v always a complete partial order for �at domains like Z⊥,B⊥, . . .?

b) Can the function f : Z⊥ → Z with f(x) =

{
1 if x ∈ Z and x ≤ 0

0 otherwise
be implemented in Haskell?

c) Is g : (Z→ Z⊥)→ Z⊥ with g(h) =

{
0 if h(x) 6= ⊥ for all x ∈ Z
⊥ otherwise

continuous?

d) If a lambda term t can be reduced to s with →βδ using an outermost strategy, can t also be reduced to
s with →βδ using an innermost strategy? Here, you may choose an arbitrary delta-rule set δ.

e) The →βδ reduction in lambda calculus is con�uent. Is Simple Haskell also con�uent?

Solution:

a) Yes, because �at domains only have chains of �nite length and a minimal element. Hence, by Theorem
2.1.13(a), v is a complete partial order.

b) No, as f is not continuous and thus, not computable: Consider the chain S = {⊥, 0}. There exists no
least upper bound for f(S) = {0, 1}, and hence f(tS) = tf(S) does not hold.

c) No. For a counterexample, let fi(x) =

{
0 if x ≤ i
⊥ otherwise

.

Then for the chain S = {f1, f2, . . .}, we have tS = f∞ with f∞(x) = 0 for all x ∈ Z. Then tg(S) =
⊥ 6= 0 = g(tS).
Alternatively, a more intuitive solution: If g were continuous, it would be computable. As it implicitly
solves the halting program for an input function, it is known to be uncomputable, hence, we have a
contradiction.

d) No. Consider the term (λx.42) bot as example (with the usual δ-rule bot → bot for bot), which is
reduced to 42 using an outermost strategy and does not have a normal form when reducing according to
an innermost strategy.

e) Yes, as Simple Haskell can be implemented using the →βδ reduction.

Exercise 2 (Programming in Haskell): (10 + 10 + 8 + 10 + 6 = 44 points)

We de�ne a polymorphic data structure HamsterCave to
represent hamster caves which can contain di�erent types
of food.

data HamsterCave food

= EmptyTunnel

| FoodTunnel food

| Branch (HamsterCave food) (HamsterCave food)

deriving Show

1

Functional Programming SS12
Solution - Exam (V3B) 15.08.2012

The data structure HamsterFood is used to represent food
for hamsters. For example, exampleCave is a valid expres-
sion of type HamsterCave HamsterFood.

data HamsterFood = Grain | Nuts deriving Show

exampleCave :: HamsterCave HamsterFood

exampleCave = Branch

(Branch EmptyTunnel (FoodTunnel Grain))

(Branch (FoodTunnel Nuts) (Branch EmptyTunnel EmptyTunnel))

a) Implement a function digAndFillCave :: Int -> HamsterCave HamsterFood, such that for any inte-
ger number n > 1, digAndFillCave n creates a hamster cave without empty tunnels of depth n, such
that the number of FoodTunnels containing Grain equals the number of FoodTunnels containing Nuts.
Here, the depth of a cave is the maximal number of �nodes� on any path from the entry of the cave to a
dead end. Thus, exampleCave has depth 4.

b) Implement a fold function foldHamsterCave, including its type declaration, for the data structure
HamsterCave. As usual, the fold function replaces the data constructors in a HamsterCave expres-
sion by functions speci�ed by the user. The �rst argument of foldHamsterCave should be the function
for the case of the empty tunnel, the second argument the function for the case of the food tunnel, and
the third argument the function for the case of a branch. As an example, the following function de�nition
uses foldHamsterCave to determine the number of dead ends (either with or without food) in a cave,
such that the call numberOfDeadEnds exampleCave returns 5.

numberOfDeadEnds :: HamsterCave food -> Int

numberOfDeadEnds cave = foldHamsterCave 1 (_ -> 1) (+) cave

c) Implement the function collectFood :: HamsterCave food -> (HamsterCave food, [food]), which
returns a tuple for a given hamster cave. The �rst argument of the tuple is the same hamster cave as the
one given to the function, but without any food (i.e., every FoodTunnel is replaced by an EmptyTunnel).
The second argument is a list of all the food that was removed from the cave. For the de�nition
of collectFood, use only one de�ning equation where the right-hand side is a call to the function
foldHamsterCave.

For example, a call collectFood exampleCave should return the following tuple:

(Branch (Branch EmptyTunnel EmptyTunnel)

(Branch EmptyTunnel (Branch EmptyTunnel EmptyTunnel))

,[Grain,Nuts])

d)

1

1 1

1 2

+

1

1 3

+

3

+

1

1 4

+

6

+

4

+

1

1 5

+

10

+

10

+

5

+

1

Implement a cyclic data structure pascalsTriangle

:: [[Int]] (consisting of lists of lists of Ints) that
represents Pascal's triangle. The �rst row of the trian-
gle is represented by the �rst list of integers ([1]), the
second row by the second list ([1,1]), and so forth.
Each row in Pascal's triangle is constructed from its
preceding row, by adding each pair of consecutive num-
bers. For this, it is assumed that all numbers lying
outside of the preceding row are zeros.
Hint: You should use use the function zipWith :: (a

-> b -> c) -> [a] -> [b] -> [c], which applies
the function given as its �rst argument to combine
the elements of two lists. For example zipWith

(++) ["a","b"] ["c", "d", "e"] results in the list
["ac","bd"]. Note that the length of the resulting list
is the smallest length of both input lists.

2

Functional Programming SS12
Solution - Exam (V3B) 15.08.2012

e) Write a Haskell expression in form of a list comprehension to compute all prime numbers. To determine
if a number i is prime, test whether no number from 2 to i - 1 divides i. You may use the functions
all :: (a -> Bool) -> [a] -> Bool where all p xs is True i� p x is True for all elements x of the
list xs, the function not :: Bool -> Bool, and the function divides as de�ned below.

divides :: Int -> Int -> Bool

i `divides` j = j `mod` i == 0

Solution:

a) digAndFillCave :: Int -> HamsterCave HamsterFood

digAndFillCave n | n > 1 = Branch (cave Nuts (n-1)) (cave Grain (n-1))

where

cave food 1 = FoodTunnel food

cave food n = Branch (cave food (n-1)) (cave food (n-1))

b) foldHamsterCave

:: result

-> (food -> result)

-> (result -> result -> result)

-> HamsterCave food

-> result

foldHamsterCave fET fTWF fTB = go

where

go EmptyTunnel = fET

go (FoodTunnel f) = fTWF f

go (Branch left right) = fTB (go left) (go right)

c) collectFood :: HamsterCave food -> (HamsterCave food, [food])

collectFood = foldHamsterCave

(EmptyTunnel, [])

(\x -> (EmptyTunnel, [x]))

(\(tl, fl) (tr, fr) -> (Branch tl tr, fl ++ fr))

d) pascalsTriangle :: [[Int]]

pascalsTriangle = [1] : map nextRow pascalsTriangle

where

nextRow oldRow = zipWith (+) (oldRow ++ [0]) ([0] ++ oldRow)

e) [i | i <- [2..], all (\j -> not (j `divides` i)) [2..i-1]]

Exercise 3 (Semantics): (21 + 10 + 5 + 4 = 40 points)

a) i) Let v be a cpo on D and f : D → D be continuous. Prove the �xpoint theorem, i.e., that
t{f i(⊥) | i ∈ N} exists and that this is the least �xpoint of f . You may use all other results from
the lecture in your proof.

ii) Let D = 2N, i.e., D is the set of all sets of natural numbers and let ⊆ denote the usual subset
relation.

1) Prove that every chain S ⊆ D has a least upper bound w.r.t. the relation ⊆.
2) Prove that ⊆ is a cpo on D.

3) Give an example for an in�nite chain in (D,⊆).
4) Give a monotonic, non-continuous function f : D → D. You do not need to prove that f has

these properties.

3

Functional Programming SS12
Solution - Exam (V3B) 15.08.2012

b) i) Consider the following Haskell function mult:

mult :: (Int, Int) -> Int

mult (0, y) = 0

mult (x, y) = y + mult (x - 1, y)

Please give the Haskell declaration for the higher-order function f_mult corresponding to mult, i.e.,
the higher-order function f_mult such that the least �xpoint of f_mult is mult. In addition to the
function declaration, please also give the type declaration of f_mult. You may use full Haskell for
f_mult.

ii) Let φf_mult be the semantics of the function f_mult. Give the semantics of φnf_mult(⊥) for n ∈ N,
i.e., the semantics of the n-fold application of φf_mult to ⊥.

iii) Give all �xpoints of φf_mult and mark the least �xpoint.

c) Consider the following data type declaration for natural numbers:

data Nats = Z | S Nats

A graphical representation of the �rst four levels of the domain for Nats could look like this:

S (S (S ⊥))S (S Z)

⊥

Z

S (S ⊥)S Z

S ⊥

Now consider the following data type declarations:

data X = A X Y | B Y

data Y = E Y | H

Give a graphical representation of the �rst three levels of the domain for the type X. The third level
contains the element A (A ⊥ ⊥) ⊥, for example.

d) Consider the usual de�nition for Nats above, i.e., data Nats = Z | S Nats.

Write a function plus :: Nats -> Nats -> Nats in Simple Haskell that computes the sum of two
natural numbers, i.e., plus S(S(Z)) S(Z) should yield S(S(S(Z))). Your solution should use the func-
tions de�ned in the transformation from the lecture such as seln,i, isaconstr , argofconstr, and bot. You
do not have to use the transformation rules from the lecture, though.

Solution:

4

Functional Programming SS12
Solution - Exam (V3B) 15.08.2012

a) i) We �rst prove that f i(⊥) v f i+1(⊥) holds for all i ∈ N by induction. As base case, we consider
i = 0 and of course, f0(⊥) = ⊥ v f1(⊥) holds.
In the induction step, we assume that for some i > 0, f i−1(⊥) v f i(⊥) holds. Then, because f is
continuous, f is also monotonic, hence f(f i−1(⊥)) v f(f i(⊥))⇔ f i(⊥) v f i+1(⊥) holds.
Thus, {f i(⊥) | i ∈ N} is a chain and because v is a cpo on D, t{f i(⊥) | i ∈ N} exists. We now
need to prove that this is the least �xpoint of f . First, we prove that this is indeed a �xpoint:

f(t{f i(⊥) | i ∈ N}) = tf({f i(⊥) | i ∈ N}) (f continuous)

= t{f i+1(⊥) | i ∈ N}
= t({f i+1(⊥) | i ∈ N} ∪ {⊥})
= t{f i(⊥) | i ∈ N}

Now assume there is another �xpoint d of f . We need to prove t{f i(⊥) | i ∈ N} v d and do this by
inductively proving f i(⊥) v d. In the base case, f0(⊥) = ⊥ v d obviously holds. In the induction
step, assume f i(⊥) v d already holds. Then, because f is monotonic, we have f(f i(⊥)) v f(d).
But as d is a �xpoint of f , we can conclude that f i+1(⊥) v d.

ii) Let S = {M1,M2, . . .} with Mi ⊆Mi+1.

1) We have tS =
⋃
Mi. Obviously, Mi ⊆

⋃
Mi. Now assume that there is some other upper bound

B with
⋃
Mi 6⊆ B. Then there is some e ∈

⋃
Mi \ B and by construction, there is some k with

e ∈ Mk. As e 6∈ B, we have Mk 6⊆ B and hence, B is not an upper bound of S w.r.t. ⊆. Thus,
we have a contradiction.

2) In 1), we have proven that for every chain, there exists a lub. Obviously, we have
⋃
Mi ∈ D.

With ∅ as the minimal element, ⊆ is a cpo for D.

3) Let Ni := {k ∈ N | k ≤ i}. Then, Ni ⊆ Ni+1 holds and hence, {N1, N2, . . .} is a chain.

4)

f(M) =

{
∅ M is �nite

{42} otherwise

Alternative: The function g from Ex. 1 c).

b) i) f_mult :: ((Int, Int) -> Int) -> ((Int, Int) -> Int)

f_mult mult (0, y) = 0

f_mult mult (x, y) = y + mult (x - 1, y)

ii)

(φnf_mult(⊥))(x, y) =

0 if x = 0 ∧ n > 0

x · y if 0 < x < n ∧ y 6= ⊥
⊥ otherwise

iii) The least �xpoint of φf_mult is the function

g(x, y) =

0 if x = 0

x · y if 0 < x ∧ y 6= ⊥
⊥ otherwise

Another �xpoint is the function

h(x, y) =

0 if x = 0

x · y if x 6= ⊥ ∧ y 6= ⊥
⊥ if x = ⊥ ∨ (x 6= 0 ∧ y = ⊥) (this is �otherwise�)

5

Functional Programming SS12
Solution - Exam (V3B) 15.08.2012

To be a �xpoint, a function f has to satisfy the equality f(c1, c2) = φf_mult(f)(c1, c2), which is
equivalent to f(c1, c2) = 0 for c1 = 0 (this is the �rst case in the de�nitions above).

For c1 6= 0, we have f(c1, c2) = c2+f(c1−1, c2). This implies that for c1 = ⊥, the result has to be ⊥,
as c1 − 1 is not well-de�ned in that case. For c2 = ⊥ (and c1 6= 0, as that case was handled above),
the result also has to be ⊥, as c2 + f(c1 − 1, c2) is not well-de�ned in that case. This corresponds
to the last case in the de�nition of h.

So �nally, we are left with the cases for c1, c2 ∈ Z, for which f(c1, c2) = c2 + f(c1 − 1, c2) has to
hold, which is exactly the condition for multiplication, yielding the middle case.

c)

B H

⊥

A (A ⊥ ⊥) ⊥ A ⊥ (E ⊥)A (B ⊥) ⊥

A ⊥ ⊥ B ⊥

B (E ⊥)A ⊥ H

d) plus = \x -> \y ->

if (isaZ x) then y

else if (isaS x)

then S (plus (argofS x) y)

else bot

Alternative:

plus = \x -> \y ->

if (isaZ x) then y

else S (plus (argofS x) y)

Exercise 4 (Lambda Calculus): (4 + 6 = 10 points)

a) Please translate the following Haskell expression into an equivalent lambda term (e.g., using Lam).
Translate the pre-de�ned function < to LessThan, + to Plus and - to Minus (remember that the in�x
notation of <, +, - is not allowed in lambda calculus). It su�ces to give the result of the transformation:

let quot = \x y -> if x < y then 0 else 1 + quot (x-y) y in quot v w

b) Let t = λfact .(λx.(If (LessThanOrE x 1) 1 (Times x (fact (Minus x 1))))) and

δ = { If True→ λx y.x,

If False→ λx y.y,

fix→ λf.f(fix f)}
∪ { Minus x y → z | x, y ∈ Z ∧ z = x− y}
∪ { Times x y → z | x, y ∈ Z ∧ z = x · y}
∪ { LessThanOrE x y → b | x, y ∈ Z ∧ ((x ≤ y ∧ b = True) ∨ (x > y ∧ b = False))}

6

Functional Programming SS12
Solution - Exam (V3B) 15.08.2012

Please reduce fix t 1 by WHNO-reduction with the→βδ-relation. List all intermediate steps until reach-
ing weak head normal form, but please write �t� instead of the term it represents whenever possible.

Solution:

a) (fix (λquot x y.If (LessThan x y) 0 (Plus 1 (quot (Minus x y) y)))) v w

b)

fix t 1

→δ (λf.(f (fix f))) t 1

→β t (fix t) 1

→β (λx.(If (LessThanOrE x 1) 1 (Times x (fix t (Minus x 1))))) 1

→β If (LessThanOrE 1 1) 1 (Times 1 (fix t (Minus 1 1))) (∗)
→δ If True 1 (Times 1 (fix t (Minus 1 1)))

→δ (λx.(λy.x)) 1 (Times 1 (fix t (Minus 1 1)))

→β (λy.1) (Times 1 (fix t (Minus 1 1)))

→β 1

[The original exam had a mixed use of If and if, so technically, it was OK to stop after reaching the
term marked with (∗).]

Exercise 5 (Type Inference): (6 points)

Using the initial type assumption A0 := {x :: ∀a.a→ Int} infer the type of the expression λy.y x using the
algorithm W.

Solution:

W(A0, λy.y x)
W(A0 + {y :: b1}, y x)

W(A0 + {y :: b1}, y) = (id, b1)
W(A0 + {y :: b1}, x) = (id, b2 → Int)

mgu(b1, (b2 → Int)→ b3) = [b1/(b2 → Int)→ b3])
= ([b1/(b2 → Int)→ b3], b3)

= ([b1/(b2 → Int)→ b3], ((b2 → Int)→ b3)→ b3)

7

