
Functional Programming SS12
Solution - Exam (V3B) 10.09.2012

aaProf. Dr. J. Giesl M. Brockschmidt, F. Emmes

Exercise 1 (Quiz): (4 + 5 + 5 + 3 + 3 = 20 points)
Give a short proof sketch or a counterexample for each of the following statements:

a) Monotonic unary functions are always strict.

b) Strict unary functions on flat domains are always monotonic.

c) Let B be the Boolean values true, false.

Is f : (B→ B⊥)→ Z with f(g) =

{
1 if g(x) 6= true for all x ∈ B
0 otherwise

monotonic?

d) Is →α terminating?

e) Is →α confluent?

Solution:

a) No. Consider f(x) = 0.

b) Yes. Let f : D− > D′ be some strict function, D flat, d, d′ ∈ D and d v d′. As the domain is flat, we
have two cases:

• d = d′, which directly implies f(d) = f(d′).

• d = ⊥, which due to f ’s strictness implies f(d) = ⊥ v f(d′).

c) No. Consider g1(x) = ⊥ and g2(x) =

{
true if x = true

⊥ otherwise
. We have g1 v g2, but f(g1) = 1 6v 0 = f(g2).

d) No. Consider the derivation λx.x→α λy.y →α λx.x as counterexample.

e) Yes. Let t be some λ-term and t→∗α q, t→∗α p hold. Then, as q and p are just variable-renamed versions
of t, we can directly conclude that q →∗α p and p→∗α q holds.

Exercise 2 (Programming in Haskell): (8 + 10 + 10 + 6 + 8 = 42 points)
We define a polymorphic data structure ZombieHalls
to represent a zombie-infested school whose class-
rooms contain different types of food:

data ZombieHalls food =
HallwayFork (ZombieHalls food) (ZombieHalls food)

| HallwayClassroom (Int, food) (ZombieHalls food)
| HallwayEnd

Here, we use three data constructors: One represent-
ing the case that the hallway forks and we can go in
two directions, one for the case that we have a class-
room on one side and can continue in the hallway
and finally one case for the end of a hallway. The
data structure ZombieFood is used to represent food
for zombies. As example, consider the following def-
inition of exampleSchool of type ZombieLabyrinth
ZombieFood, corresponding to the illustration on the right:

1

Functional Programming SS12
Solution - Exam (V3B) 10.09.2012

data ZombieFood = Brains | Nuts deriving Show

exampleSchool :: ZombieHalls ZombieFood
exampleSchool =

HallwayClassroom (3, Nuts)
(HallwayFork

(HallwayClassroom (4, Brains)
(HallwayFork HallwayEnd HallwayEnd))

(HallwayClassroom (0, Brains) HallwayEnd))

a) Implement a function buildSchool :: Int -> ZombieHalls ZombieFood such that for any integer
number n ≥ 0, it returns a structure of hallways containing 2n+1 classrooms in total. Of these, one half
should each contain one brain and the other should each contain one nut.

b) Implement a fold function foldZombieHalls, including its type declaration, for the data structure
ZombieHalls. As usual, the fold function replaces the data constructors in a ZombieHalls expres-
sion by functions specified by the user. The first argument of foldZombieHalls should be the function
for the case of a HallwayFork, the second argument should replace the HallwayClassroom construc-
tor and the third argument should replace the HallwayEnd data constructor. As an example, con-
sider the following function definition, which uses foldZombieHalls to determine the number of dead
ends in a ZombieHalls structure, where a classroom does not count as dead end. Hence, the call
numberOfDeadEnds exampleSchool returns 3.

numberOfDeadEnds :: ZombieHalls food -> Int
numberOfDeadEnds school = foldZombieHalls (+) (_ r -> r) 1 school

c) Implement the function bcCounter :: ZombieHalls ZombieFood -> (Int, Int), which counts the
number of brains and classrooms in a given school and returns the two numbers as a tuple of integers.
The first part of the tuple should be the number of brains in the school and the second should be
the number of classrooms. For the definition of bcCounter, use only one defining equation where the
right-hand side is just one call to the function foldZombieHalls. However, you may use and define
non-recursive auxiliary functions.

For example, a call bcCounter exampleSchool should return the tuple (4, 3).

d) The infinite sequence of Fibonacci numbers fibi is defined as fib0 = 0, fib1 = 1 and fibi = fibi−1 + fibi−2
for all i > 1. The first elements of the sequence are 0, 1, 1, 2, 3, 5, 8, 13, 21,

Implement a cyclic data structure fibs :: [Int] that represents the infinite list of Fibonacci numbers.
Do not use self-defined auxiliary functions and ensure that take n fibs has linear complexity.

Hints:
• You should use use the function zipWith :: (a -> b -> c) -> [a] -> [b] -> [c], which ap-

plies the function given as its first argument to combine the elements of two lists. For example
zipWith (++) ["a","b"] ["c", "d", "e"] results in the list ["ac","bd"]. Note that the length
of the resulting list is the smallest length of both input lists.

• You may use the pre-defined function tail defined as tail (x:xs) = xs.

e) Write a function splits :: [a] -> [([a],[a])] that computes all splits of a finite input list, i.e., a
call splits xs should return all pairs (ys,zs) such that ys ++ zs is again xs. For example, we have
splits "abc" = [("","abc"),("a","bc"),("ab","c"),("abc","")].

The right-hand side of your function should be just a list comprehension.

Hints:
• Use length :: [a] -> Int, wich returns the length of a given list.

• Use take :: Int -> [a] -> [a], where take n xs yields the longest prefix of xs with length ≤ n.

• Use drop :: Int -> [a] -> [a], where drop n xs returns the list obtained from xs by removing
the first n elements.

2

Functional Programming SS12
Solution - Exam (V3B) 10.09.2012

Solution:

a) buildSchool :: Int -> ZombieHalls ZombieFood
buildSchool n | n == 0 = HallwayClassroom (1, Nuts) (HallwayClassroom (1, Brains) HallwayEnd)

| n > 0 = HallwayFork otherHall otherHall
where otherHall = buildSchool (n-1)

b) foldZombieHalls
:: (result -> result -> result)
-> ((Int, food) -> result -> result)
-> result
-> ZombieHalls food
-> result

foldZombieHalls fHF fHC fHE = go
where

go (HallwayFork l r) = fHF (go l) (go r)
go (HallwayClassroom c h) = fHC c (go h)
go HallwayEnd = fHE

c) bcCounter :: ZombieHalls ZombieFood -> (Int, Int)
bcCounter = foldZombieHalls (\(rB, rN) (cB, cN) -> (rB+cB, rN+cN)) cHelper (0,0)
where
cHelper (n, Brains) (rB, rN) = (rB+n, rN+1)
cHelper (n, _) (rB, rN) = (rB, rN+1)

d) fibs :: [Int]
fibs = 0:1:(zipWith (+) fibs (tail fibs))

e) splits :: [a] -> [([a],[a])]
splits xs = [(take i xs, drop i xs) | i <- [0 .. length xs]]

Exercise 3 (Semantics): (22 + 10 + 5 + 4 = 41 points)
a) i) Let vD1

and vD2
be complete partial orders on D1 resp. D2 and f : D1 → D2 a function. Prove

that f is continuous if and only if f is monotonic and for all chains S in D1, f(tS) vD2
tf(S)

holds.

ii) Let D = N → {1}⊥, i.e., D is the set of all functions mapping the natural numbers to ⊥ or 1. Let
v be defined as usual on functions.

1) Prove that every chain S v D has a least upper bound w.r.t. the relation v.
2) Prove that v is a cpo on D.

3) Give an example for an infinite chain in (D,v).
4) Give a monotonic, non-continuous function f : D → D. You do not need to prove that f has

these properties.

b) i) Consider the following Haskell function exp:

exp :: (Int, Int) -> Int
exp (x, 0) = 1
exp (x, y) = x * exp (x, y - 1)

Please give the Haskell declaration for the higher-order function f_exp corresponding to exp, i.e., the
higher-order function f_exp such that the least fixpoint of f_exp is exp. In addition to the function
declaration, please also give the type declaration of f_exp. You may use full Haskell for f_exp.

3

Functional Programming SS12
Solution - Exam (V3B) 10.09.2012

ii) Let φf_exp be the semantics of the function f_exp. Give the semantics of φnf_exp(⊥) for n ∈ N, i.e.,
the semantics of the n-fold application of φf_exp to ⊥.

iii) Give the least fixpoint of φf_exp.

c) Consider the following data type declaration for natural numbers:

data Nats = Z | S Nats

A graphical representation of the first four levels of the domain for Nats could look like this:

S (S (S ⊥))S (S Z)

⊥

Z

S (S ⊥)S Z

S ⊥

Now consider the following data type declarations:

data U = V
data T a = C | D (T a) | E a a

Give a graphical representation of the first three levels of the domain for the type T U. The third level
contains the element D C, for example.

d) Consider the usual definitions for List a, i.e., data List a = Nil | Cons a (List a) and Nats from
above.

Write a function length :: List a -> Nats in Simple Haskell that computes the length of a list, i.e.,
length (Cons Z (Cons Z Nil)) should yield S(S(Z)). Your solution should use the functions defined
in the transformation from the lecture such as seln,i, isaconstr , argofconstr, and bot. You do not have
to use the transformation rules from the lecture, though.

Solution:

a) i) First, let f be continuous. Then, for any chain S, we have f(tS) = tf(S). Because vD2 is
reflexive, f(tS) vD2 tf(S) follows. To prove monotonicity of f , let d, d′ ∈ D1 with d vD1 d

′. Then
f(t{d, d′}) = f(d′). Since f is continuous, we also have f(t{d, d′}) = t{f(d), f(d′)}. Consequently,
we have f(d) v f(d′).
Now, assume f is monotonic and f(tS) vD2

tf(S) holds. As vD2
is antisymmetric, it suffices to

prove tf(S) vD2
f(tS), i.e., that for all d ∈ S, we have f(d) vD2

f(tS). Obviously, d vD1
tS

holds. As f is monotonic, f(d) v f(tS) follows and therefore, tf(S) vD2
f(tS) holds.

4

Functional Programming SS12
Solution - Exam (V3B) 10.09.2012

ii) Let S = {f1, f2, . . .} with fi v fi+1 be a chain
1) Let Mi = {x ∈ N | f(x) 6= ⊥}. Then, by definition of v, Mi ⊆Mi+1. Let M =

⋃
Mi. We define

tS = f with f(x) =

{
1 if x ∈M
⊥ otherwise

.

First, we prove that f is an upper bound. Assume fi v f does not hold. Then, there is some
n ∈ N with fi(n) = 1 and f(n) = ⊥. But then, we also have n ∈ Mi and hence n ∈ M , so
f(n) = fi(n) = 1, which is a contradiction to our choice of n.
Now, we prove that f is the least upper bound. Assume there is another bound g 6= f with
g v f . Then, there is some n ∈ N with g(n) = ⊥ and f(n) = 1. But then, there is also some k
such that n ∈Mk, i.e., fk(n) = 1, so fk(n) 6v g(n) and hence, g is not an upper bound for S.

2) In 1), we have proven that for every chain, there exists a lub. The constructed function is trivially
again in D. We also have c(x) = ⊥ ∈ D as obvious minimal element, hence, v is a cpo for D.

3) Let Ni := {k ∈ N | k ≤ i}. Then, Ni ⊆ Ni+1 holds. Let

fi(x) =

{
1 if x ∈ Ni
⊥ otherwise

Then, fi v fi+1 holds (see above) and hence, {f1, f2, . . .} is a chain.
4)

f(g) =

{
h(y) = ⊥ if {x ∈ N | g(x) 6= ⊥} is finite
h(y) = 1 otherwise

b) i) f_exp :: ((Int, Int) -> Int) -> ((Int, Int) -> Int)
f_exp exp (x, 0) = 1
f_exp exp (x, y) = x * exp (x, y - 1)

ii)

(φnf_exp(⊥))(x, y) =


1 if y = 0 ∧ n > 0

xy 0 < y < n ∧ x 6= ⊥
⊥ otherwise

iii) The least fixpoint of φf_exp is the function

g(x, y) =


1 if y = 0

xy 0 < y ∧ x 6= ⊥
⊥ otherwise

c)

C E ⊥ ⊥

⊥

D C D (E ⊥ ⊥)E V ⊥ D (D ⊥)E ⊥ V

D ⊥

5

Functional Programming SS12
Solution - Exam (V3B) 10.09.2012

d) length = \xs ->
if (isaNil xs) then Z
else if (isaCons xs)

then S(length (sel2,2 (argofCons xs)))
else bot

Alternative:
length = \xs ->

if (isaNil xs) then Z
else S(length (sel2,2 (argofCons xs)))

Exercise 4 (Lambda Calculus): (4 + 6 = 10 points)
a) Please translate the following Haskell expression into an equivalent lambda term (e.g., using Lam).

Translate the pre-defined function > to GreaterThan, + to Plus, * to Times and - to Minus (remember
that the infix notation of >, +, *, - is not allowed in lambda calculus). It suffices to give the result of the
transformation:

let sqrt = \x a -> if a * a > x then a - 1 else sqrt x (a + 1) in sqrt u 0

b) Let t = λfromto.λx.λy.If (Eq x y) Nil (Cons x (fromto (Plus x 1) y)) and

δ = { If True→ λx.λy.x,

If False→ λx.λy.y,

Fix→ λf.f (Fix f)}
∪ { Plus x y → z | x, y ∈ Z ∧ z = x+ y}
∪ { Eq x y → False | x, y ∈ Z ∧ x 6= y}
∪ { Eq x y → True | x, y ∈ Z ∧ x = y}

Please reduce Fix t 1 2 by WHNO-reduction with the →βδ-relation. List all intermediate steps until
reaching weak head normal form, but please write “t” instead of the term it represents whenever possible.
However, you may combine several subsequent →β-steps.

Solution:

a) (Fix (λsqrt x a.If (Greater (Times a a) x) (Minus a 1) (sqrt x (Plus a 1)))) u 0

b)

Fix t 1 2

→δ (λf.(f (Fix f))) t 1 2

→β t (Fix t) 1 2

→β (λx.λy.If (Eq x y) Nil (Cons x ((Fix t) (Plus x 1) y))) 1 2

→β (λy.If (Eq 1 y) Nil (Cons 1 ((Fix t) (Plus 1 1) y))) 2

→β If (Eq 1 2) Nil (Cons 1 ((Fix t) (Plus 1 1) 2))

→δ If False Nil (Cons 1 ((Fix t) (Plus 1 1) 2))

→δ (λx.λy.y) Nil (Cons 1 ((Fix t) (Plus 1 1) 2))

→β (λy.y) (Cons 1 ((Fix t) (Plus 1 1) 2))

→β Cons 1 ((Fix t) (Plus 1 1) 2)

6

Functional Programming SS12
Solution - Exam (V3B) 10.09.2012

Exercise 5 (Type Inference): (6 points)
Using the initial type assumption A0 := {y :: ∀a.a→ a} infer the type of the expression λx.(y x)x using the
algorithm W.

Solution:

W(A0, λx.(y x)x)
W(A0 + {x :: b1}, (y x)x)

W(A0 + {x :: b1}, y x)
W(A0 + {x :: b1}, y) = (id, b2 → b2)
W(A0 + {x :: b1}, x) = (id, b1)

mgu(b2 → b2, b1 → b3) = [b1/b2, b3/b2])
= ([b1/b2, b3/b2], b2)
W(A0 + {x :: b2}, x) = (id, b2)

mgu(b2, b2 → b4) occur failure

7

