Exercise 1 (Quiz): \(3 + 3 + 3 = 9\) points

a) Is \(\forall f \rightarrow (f \text{ True}) (f \text{ 1})\) well typed in Haskell? Give the expression’s type or briefly explain why it is not well typed.

b) Prove or disprove: If a relation \(\rightarrow\subseteq A \times A\) is confluent, then every element of \(A\) has a normal form with respect to \(\rightarrow\).

c) Are there monotonic functions which are not continuous? If so, give an example. Otherwise, give a brief explanation.

Solution:

a) No, because the most general type schema for this Haskell expression is non-flat, but such type schemata are not allowed in Haskell.

b) Counterexample: \(A = \{a\}\) with \(a \rightarrow a\). Obviously, the relation is confluent and \(a\) does not have a normal form w.r.t. \(\rightarrow\).

c) Yes, e.g., the function \(g : (\mathbb{Z}_\perp \rightarrow \mathbb{Z}_\perp) \rightarrow \mathbb{Z}_\perp\) defined by

\[
g(f) = \begin{cases}
0, & \text{if } f(x) \neq \perp \text{ for all } x \in \mathbb{Z} \\
\perp_{\mathbb{Z}_\perp}, & \text{otherwise}
\end{cases}
\]

is monotonic, but not continuous.

Exercise 2 (Programming in Haskell): \(5 + 7 + 7 = 19\) points

We define a polymorphic data structure \texttt{Train} to represent trains that can contain different types of cargo.

```haskell
data Train a = Locomotive (Train a) | Wagon a (Train a) | Empty deriving Show
```

The data structure \texttt{Cargo} is used to represent different types of cargo.

```haskell
type Quantity = Int
type Weight = Int -- in kg
data Cargo
  = NoCargo
  | Persons Quantity
  | Goods Weight deriving Show
```

For example, \texttt{aTrain} is a valid expression of type \texttt{Train Cargo}.

```haskell
aTrain = Locomotive (Wagon (Goods 100) (Wagon (Persons 10) (Wagon (Goods 200) Empty)))
```

Like \texttt{aTrain}, you can assume that every \texttt{Train} consists of a single \texttt{Locomotive} at its beginning followed by a sequence of \texttt{Wagons} and \texttt{Empty} at its end.

The following function can be used to \textit{fold} a \texttt{Train}.
fold :: (a -> b -> b) -> b -> Train a -> b
fold _ res Empty = res
fold f res (Locomotive t) = fold f res t
fold f res (Wagon c t) = f c (fold f res t)

So for a Train t, fold f res t removes the constructor Locomotive, replaces Wagon by f, and replaces Empty
by res.

In the following exercises, you are allowed to use predefined functions from the Haskell-Prelude.

a) Implement a function filterTrain together with its type declaration (filterTrain :: ...). The
function filterTrain gets a predicate and an object of type Train a as input and returns an object of
type Train a that only contains those wagons from the given Train whose cargo satisfies the predicate.

For example, assume that the function areGoods is implemented as follows:

\[
\begin{align*}
\text{areGoods} & : \text{Cargo} \rightarrow \text{Bool} \\
\text{areGoods} (\text{Goods } _) & = \text{True} \\
\text{areGoods} _ & = \text{False}
\end{align*}
\]

Then the expression \(\text{filterTrain areGoods aTrain} \) should be evaluated to

\[
\text{Locomotive (Wagon (Goods 100) (Wagon (Goods 200) Empty))}
\]

b) Implement a function buildTrain :: [Cargo] \rightarrow \text{Train Cargo}. In the resulting Train, a single Wagon
must not contain more than 1000 kg of Goods. If the input list contains Goods that weigh more than
1000 kg, then these Goods must not be contained in the resulting train. Apart from this restriction, all
the Cargo given via the input list has to be contained. Moreover, the resulting Train has to consist of a
single Locomotive at its beginning, followed by a sequence of Wagons and Empty at its end. In your
solution, you should use the function filterTrain even if you could not solve the previous exercise part.

For example, \(\text{buildTrain [Persons 10, Goods 2000, Goods 1000]} \) should be evaluated to the ex-
pression \(\text{Locomotive (Persons 10) (Wagon (Goods 1000) (Wagon (Goods 1000) Empty))} \).

c) Implement a function weight together with its type declaration which computes the weight of all Goods
in a train of type Train Cargo. For the definition of weight, use only one defining equation where the
right-hand side is a call to the function fold.

For example, \(\text{weight aTrain} \) should be evaluated to 300.

Solution:

\[
\begin{align*}
a) \ \text{filterTrain} & : (\text{a} \rightarrow \text{Bool}) \rightarrow \text{Train a} \rightarrow \text{Train a} \\
\text{filterTrain} p \ \text{Empty} & = \text{Empty} \\
\text{filterTrain} p \ (\text{Locomotive } t) & = \text{Locomotive} (\text{filterTrain} p \ t) \\
\text{filterTrain} p \ (\text{Wagon } c \ t) & = \text{if} \ (p \ c) \ \text{then} \ (\text{Wagon } c \ t') \ \text{else} \ t' \\
& \quad \text{where } t' = \text{filterTrain} p \ t
\end{align*}
\]

\[
b) \ \text{buildTrain} : [\text{Cargo}] \rightarrow \text{Train Cargo} \\
\text{buildTrain} \ \text{cargo} & = \text{filterTrain} (\lambda c \rightarrow \text{case } c \ \text{of} \\
& \quad \text{Goods } x \rightarrow x \leq 1000 \\
& \quad _ \rightarrow \text{True} \\
& \quad (\text{Locomotive} \ (\text{foldr} \ \text{Wagon} \ \text{Empty} \ \text{cargo}))
\]

\[
c) \ \text{weight} : \text{Train Cargo} \rightarrow \text{Int} \\
\text{weight} & = \text{fold} (\lambda c \ \text{res} \rightarrow \text{case } c \ \text{of} \\
& \quad \text{Goods } x \rightarrow \text{res} + x \\
& \quad _ \rightarrow \text{res}) \\
& \quad 0
\]
Exercise 3 (List Comprehensions):

(3 + 3 + 5 = 11 points)

a) Write a Haskell function `divisors :: Int -> [Int]` to compute the list of all proper divisors of a given number `x`. Here, you can assume `x ≥ 2`. The result of `divisors x` includes 1, but not the number `x` itself. So for example, `divisors 6 = [1,2,3]`. Use only one defining equation where the right-hand side is a list comprehension.

Hint: The function `mod :: Int -> Int -> Int` can be used to compute the modulo of two integers.

b) Write a Haskell expression in form of a list comprehension to compute all perfect numbers. A number `x` with `x ≥ 2` is perfect if and only if the sum of its proper divisors is equal to itself. For example, 6 is perfect, since its proper divisors are 1, 2, and 3 and the sum of its proper divisors is 6. In your solution, you should use the function `divisors` even if you were not able to solve the previous exercise part.

Hint: The function `sum :: [Int] -> Int` computes the sum of a list of integers.

c) Write a Haskell expression in form of a list comprehension to compute all semiperfect numbers. A number `x` with `x ≥ 2` is semiperfect if and only if the sum of all or some of its proper divisors is equal to itself. For example, 12 is semiperfect: Its proper divisors are 1, 2, 3, 4, and 6 and the sum of its proper divisors is 12. In your solution, you should use the function `divisors` even if you were not able to solve exercise part (a). Moreover, you may use the function `sum` and the following functions:

- The function `exists :: (a -> Bool) -> [a] -> Bool` tests whether there is an element in the given list that satisfies the given predicate.
- The function `subsequences :: [a] -> [[a]]` computes all subsequences of the given list. For example, we have:

 \[
 \text{subsequences } [1,2,3] = \{[\], [1], [2], [1,2], [3], [1,3], [2,3], [1,2,3]\}
 \]

Solution:

\[
\begin{align*}
a) & \text{divisors :: Int -> [Int]} \\
& \text{divisors } x = \{y | y < -[1..x-1], x \mod y == 0\} \\
b) & \text{perfect :: [Int]} \\
& \text{perfect } = \{x | x < -[2..], \text{sum (divisors } x) == x\} \\
c) & \text{semiperfect :: [Int]} \\
& \text{semiperfect } = \{x | x < -[2..], \text{exists } (s -> \text{sum } s == x) (\text{subsequences } (\text{divisors } x))\}
\end{align*}
\]

Exercise 4 (Semantics):

(10 + 10 + 6 + 3 = 29 points)

a) i) Let `L[] = {[], [[]], [[[]]], ...,}` i.e., `L[]` contains all lists where `m` opening brackets are followed by `m` closing brackets for an `m ∈ \mathbb{N} \setminus \{0\}`. Let `≤_nl \subseteq L[] \times L[]` be the relation that compares the nesting-level of two lists. More formally, if `nl(x)` is the nesting level of the list `x` and `≤ \subseteq \mathbb{N} \times \mathbb{N}` is the usual less-or-equal relation, then

\[
l ≤_nl l' \iff \text{nl}(l) ≤ \text{nl}(l')
\]

So we have, e.g., `[] ≤_nl [[]]` because the nesting level of `[]` is one and the nesting level of `[[[]]]` is two.

1) Give an example for an infinite chain in `(L[], ≤_nl)`.

2) Prove or disprove: the partial order `≤_nl` is complete on `L[]`.

\[
\text{Exercise 4 (Semantics): (10 + 10 + 6 + 3 = 29 points)}
\]

a) i) Let `L[] = {[], [[]], [[[]]], ...}`, i.e., `L[]` contains all lists where `m` opening brackets are followed by `m` closing brackets for an `m ∈ \mathbb{N} \setminus \{0\}`. Let `≤_nl \subseteq L[] \times L[]` be the relation that compares the nesting-level of two lists. More formally, if `nl(x)` is the nesting level of the list `x` and `≤ \subseteq \mathbb{N} \times \mathbb{N}` is the usual less-or-equal relation, then

\[
l ≤_nl l' \iff \text{nl}(l) ≤ \text{nl}(l')
\]

So we have, e.g., `[] ≤_nl [[]]` because the nesting level of `[]` is one and the nesting level of `[[[]]]` is two.

1) Give an example for an infinite chain in `(L[], ≤_nl)`.

2) Prove or disprove: the partial order `≤_nl` is complete on `L[]`.
ii) Let L_0 be the set of all Haskell lists containing only zeros (so, e.g., $\[\] \in L_0$ and $[0,0,0] \in L_0$) and let $\leq_{\text{len}} \subseteq L_0 \times L_0$ be the relation that compares the length of two lists where all infinite lists are considered to have the same length. More formally, if $\text{len}(x)$ is the length of the list x and $\leq \subseteq \mathbb{N} \cup \{\infty\} \times \mathbb{N} \cup \{\infty\}$ is the usual less-or-equal relation, then

$$l \leq_{\text{len}} l' \iff \text{len}(l) \leq \text{len}(l')$$

1) Give an example for an infinite chain in (L_0, \leq_{len}).

2) Prove or disprove: the partial order \leq_{len} is complete on L_0.

b) i) Consider the following Haskell function f:

$$f :: (\text{Int}, \text{Int}) \to \text{Int}$$

$$f (x, 0) = 1$$

$$f (x, y) = x \times f (x, y - 1)$$

Please give the Haskell declaration for the higher-order function ff corresponding to f, i.e., the higher-order function ff such that the least fixpoint of ff is f. In addition to the function declaration, please also give the type declaration for ff. You may use full Haskell for ff.

ii) Let ϕ_{ff} be the semantics of the function ff. Give the definition of $\phi_{ff}^n(\bot)$ in closed form for any $n \in \mathbb{N}$, i.e., give a non-recursive definition of the function that results from applying ϕ_{ff} n-times to \bot.

iii) Give the definition of the least fixpoint of ϕ_{ff} in closed form.

c) Consider the data type declarations on the left and, as an example, the graphical representation of the first three levels of the domain for Nats on the right:

\[
\begin{array}{c|c|c}
\text{data Nats} & \text{S Z} & \text{S (S \bot)} \\
\text{data Train a} & \text{Z} & \text{2nd level} \\
& \text{S (Train a)} -- \text{a Locomotive} & \\
& \text{\mid W a (Train a)} -- \text{a Wagon} & \\
& \text{\mid E} -- \text{an Empty Train} & \\
\text{data Cargo} & \text{Z} & \text{3rd level} \\
& = \text{NC} -- \text{No Cargo} & \\
& \text{\mid P Int} -- n \text{ Persons} & \\
\end{array}
\]

Give a graphical representation of the first three levels of the domain for the type Train Cargo. The third level contains the element \bot, for example. Note that the domain for the type Train Cargo also contains Trains with multiple locomotives, Trains without E at their ends, and so on. In other words, the assumption from Exercise 2 ("Assume that every Train consists of a single Locomotive at its beginning followed by a sequence of Wagons and Empty at its end.") does not hold for this exercise.

d) Consider the definition for Nats from the previous exercise part, i.e., $\text{data Nats} = \text{Z} \mid \text{S Nats}$.

Moreover, consider the following Haskell function f':

$$f' :: \text{Int} \to \text{Int} \to \text{Int}$$

$$f' x 0 = 1$$

$$f' x y = x \times f' (x, y - 1)$$

Write a function $fNat :: \text{Nats} \to \text{Nats} \to \text{Nats}$ in Simple Haskell which, for natural numbers, computes the same result as the function f'. That means, if $n,m \geq 0$ and $f' n m = x$, then we have $fNat (\text{S}^n \text{Z}) (\text{S}^m \text{Z}) = \text{S}^x \text{Z}$. You can assume a predefined function $\text{mult} :: \text{Nats} \to \text{Nats} \to \text{Nats}$.
to multiply two natural numbers. However, there is no predefined function to subtract natural numbers of type \(\text{Nats} \). Your solution should use the functions defined in the transformation from the lecture such as \(\text{isa}_{\text{constr}} \), \(\text{argof}_{\text{constr}} \) and \text{bot}. You do not have to use the transformation rules from the lecture, though.

Solution:

a) 1) \(\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \ldots\} \)

2) Consider the chain above. Since it contains infinitely many elements with increasing nesting level, its upper bounds have to have infinite nesting level. Since lists with infinite nesting level are not contained in \(L_{\emptyset} \), \(\leq_n \) is not a cpo.

ii) 1) \(\{\emptyset, \{0\}, \{0, 0\}, \ldots\} \)

2) The relation \(\leq_{\text{len}} \) is a cpo iff \(L_0 \) has a least element w.r.t. \(\leq_{\text{len}} \) and every \(\leq_{\text{len}} \)-chain has a least upper bound in \(L_0 \). Obviously, the least element is the empty list \(\emptyset \). Let \(C \) be a chain. If \(C \) is finite, then the longest list in \(C \) is the least upper bound. Otherwise, the infinite list \(l_\infty \) containing only zeros (as defined by \(\text{zeros}=0: \text{zeros} \)) is the least upper bound. Thus, \(\leq_{\text{len}} \) is a cpo.

b) i) \(\text{ff} :: ((\text{Int}, \text{Int}) \to \text{Int}) \to ((\text{Int}, \text{Int}) \to \text{Int}) \)

\[
\text{ff} \ f \ (x, 0) = 1 \\
\text{ff} \ f \ (x, y) = x \times f \ (x, y - 1)
\]

ii) \[
(\phi^{\text{ff}}_1)(x, y) = \begin{cases}
1 & \text{if } y = 0 \land 0 < n \\
x^y & \text{if } 0 < y < n \land x \neq \bot \\
\bot & \text{otherwise}
\end{cases}
\]

iii) \[
(\text{lfp} \ \phi^{\text{ff}}_1)(x, y) = \begin{cases}
1 & \text{if } y = 0 \\
x^y & \text{if } 0 < y \land x \neq \bot \\
\bot & \text{otherwise}
\end{cases}
\]

c)

\[
\begin{array}{cccccccc}
\text{L } (L \ \bot) & \text{L } (W \ \bot) & \text{L } E & \text{W } \bot (L \ \bot) & \text{W } \bot (W \ \bot) & \text{W } \bot E & \text{WNC } \bot & \text{W } (P \ \bot) \ \bot \\
\end{array}
\]

\[
\begin{array}{cccccccc}
\text{L } \bot & \text{W } \bot \bot & \text{E} & \ \bot \\
\end{array}
\]

d) \(\text{fNat} = \ \lambda x \to \ \lambda y \to \\
\quad \text{if } (\text{isa}_2 \ y) \text{ then } 1 \\
\quad \text{else } \text{mult } x \ (\text{fNat} \ x \ (\text{argof}_3 \ y))
\]
Exercise 5 (Lambda Calculus): \(4 + 8 = 12 \text{ points} \)

a) Reconsider the function \(f' \) from the previous exercise:

\[
\begin{align*}
f' & : \text{Int} \to \text{Int} \\
f' \ x \ 0 &= 1 \\
f' \ x \ y &= x \ast f' \ x \ (y - 1)
\end{align*}
\]

Please implement this function in the Lambda Calculus, i.e., give a term \(f \) such that, for all \(x, y, z \in \mathbb{Z} \),
\(f' \ x \ y = z \) if and only if \(f \ x \ y \) can be reduced to \(z \) via WHNO-reduction with the \(\rightarrow_{\beta\delta} \)-relation and the set of rules \(\delta \) as introduced in the lecture to implement Haskell. You can use infix notation for predefined functions like \((\ == \), \((\ast \) or \((- \).

b) Let
\[
t = \lambda \text{add} \ x \ y. \ \text{if} \ (y \ == \ 0) \ x \ (\text{add} \ (x + 1) \ (y - 1))
\]

and
\[
\delta = \{ \begin{align*}
& \text{if True} \to \lambda x \ y. x, \\
& \text{if False} \to \lambda x \ y. y, \\
& \text{fix} \to \lambda f. f(\text{fix} \ f) \\
\} \cup \{ x - y \to z \ | \ x, y, z \in \mathbb{Z} \land z = x - y \} \\
\cup \{ x + y \to z \ | \ x, y, z \in \mathbb{Z} \land z = x + y \} \\
\cup \{ x == x \to \text{True} \ | \ x \in \mathbb{Z} \} \\
\cup \{ x == y \to \text{False} \ | \ x, y \in \mathbb{Z}, x \neq y \}
\]

Please reduce \(\text{fix} t 0 0 \) by WHNO-reduction with the \(\rightarrow_{\beta\delta} \)-relation. List all intermediate steps until reaching weak head normal form, but please write “\(\ell \)” instead of
\[
\lambda \text{add} \ x \ y. \ \text{if} \ (y == 0) \ x \ (\text{add} \ (x + 1) \ (y - 1))
\]

whenever possible.

Solution:

\[
\begin{align*}
a) \quad & \text{fix} \ (\lambda \text{f} \ x \ y. \ \text{if} \ (y == 0) \ 1 \ (\text{f} \ x \ (y - 1))))
\end{align*}
\]
b)

\[
\text{fix } t \ 0 \ 0 \\
\rightarrow_\delta (\lambda f. (f (\text{fix } f))) \ 0 \ 0 \\
\rightarrow_\beta t (\text{fix } t) \ 0 \ 0 \\
\rightarrow_\beta (\lambda x \ y. \ \text{if } (y == 0) \ x \ ((\text{fix } t) \ (x + 1) \ (y - 1))) \ 0 \ 0 \\
\rightarrow_\beta (\lambda y. \ \text{if } (y == 0) \ 0 \ ((\text{fix } t) \ (0 + 1) \ (y - 1))) \ 0 \\
\rightarrow_\beta \ 0
\]

Exercise 6 (Type Inference): (10 points)

Using the initial type assumption \(A_0 := \{ x :: \forall a. a \} \), infer the type of the expression \(\lambda f. f (f x) \) using the algorithm \(\mathcal{W} \).

Solution:

\[
\mathcal{W}(A_0, \lambda f. f (f x)) \\
\mathcal{W}(A_0 + \{ f :: b_1 \}, f (f x)) \\
\mathcal{W}(A_0 + \{ f :: b_1 \}, f) = (\text{id}, b_1) \\
\mathcal{W}(A_0 + \{ f :: b_1 \}, f x) \\
\mathcal{W}(A_0 + \{ f :: b_1 \}, x) = (\text{id}, b_2) \\
\text{mgui}(b_1, b_2 \rightarrow b_3) = [b_1/b_2 \rightarrow b_3] \\
\text{mgui}(b_2 \rightarrow b_3, b_1 \rightarrow b_4) = [b_2/b_3, b_4/b_3] \\
\text{mgui}(b_1/b_2 \rightarrow b_3, b_3) = [b_1/b_2, b_3/b_3, b_3] \\
\text{mgui}(b_2 \rightarrow b_3, b_1 \rightarrow b_4) = [b_3/b_3, b_2/b_3, b_1/b_3, b_4/b_3, b_3] \\
\text{mgui}(b_1/b_3 \rightarrow b_3, b_2/b_3, b_1/b_3, b_3) = [b_1/b_3 \rightarrow b_3, b_2/b_3, b_1/b_3, b_3] \\
\]

7