
SAT-based Termination Analysis for
Java Bytecode with AProVE?

Carsten Fuhs

LuFG Informatik 2, RWTH Aachen University, Germany
fuhs@informatik.rwth-aachen.de

Abstract. SAT solvers are nowadays the standard solving engines for
the search problems in automated termination analysis. Consequently,
the performance of current termination tools heavily relies on the speed
of modern SAT solvers on the corresponding SAT encodings. If a model
for the SAT instance at hand is found, it can be used to instantiate the
parameters for the current proof step to advance the termination proof.
This SAT benchmark submission has been created using the automated
termination prover AProVE [6]. All instances originate from termination
analysis of Java Bytecode programs. This whole benchmark suite only
consists of satisfiable instances, and any speed-up for SAT solvers on
these instances will directly lead to performance improvements also for
automated termination provers.

1 Introduction

Termination is one of the most important properties of programs. Therefore,
there is a need for suitable methods and tools to analyze the termination be-
havior of programs automatically. In particular, there has been intensive re-
search on techniques for termination analysis of term rewrite systems (TRSs)
[2]. Instead of developing many separate termination techniques for different
programming languages, it is a promising approach to transform programs from
different languages into TRSs instead. Then termination tools for TRSs can be
used for termination analysis of many different programming languages such as
Java Bytecode, cf. e.g. [5,8,10,9,3].

The increasing interest in automated termination analysis is also demon-
strated by the International Competition of Termination Tools,1 held annually
since 2004. Here, each participating tool is applied to the examples from the
Termination Problem Data Base (TPDB)2 and gets 60 seconds per termination
problem to prove or disprove termination. Thus, in order for a termination prover
to be competitive, one needs efficient search techniques for finding termination
(dis)proofs automatically.

However, many of the arising search problems in automated termination
analysis are NP-complete. Due to the impressive performance of modern SAT

? Description of benchmark instances submitted to the SAT Competition 2011.
1 See http://termination-portal.org/wiki/Termination_Competition.
2 See http://termination-portal.org/wiki/TPDB.

http://termination-portal.org/wiki/Termination_Competition
http://termination-portal.org/wiki/TPDB


solvers, in recent years it has become common practice to tackle such problems
by encoding them to SAT and by then applying a SAT solver on the resulting
CNF to advance the modular termination proof.

2 Benchmark Instances

This SAT benchmark submission has been created using the automated termina-
tion prover AProVE [6], which can be used to analyze the termination behavior
of term rewriting systems, Java Bytecode programs [9,3], Prolog programs [10],
and Haskell 98 programs [5]. More concretely, in this benchmark suite we focus
on SAT instances that stem from termination analysis of Java Bytecode.

Recently, automated termination analysis for Java Bytecode programs has
become an area of intensive research [11,1,9,3]. This is reflected by Java Bytecode
being the most recent addition of input languages to the TPDB, which consists
of thousands of termination problems in various formalisms (currently these
are term rewrite systems in different flavors, Java Bytecode, Prolog, and Haskell
programs) used as benchmarks in the Termination Competition. In AProVE,
termination analysis of Java Bytecode is performed in a two-stage process [9,3]:

1. The Java Bytecode program is translated into Integer Term Rewrite Systems
(ITRSs). ITRSs are term rewrite systems (TRSs) extended by built-in in-
tegers [4] in order to combine the power of TRS techniques on user-defined
data types with a powerful treatment of pre-defined integers. In this way,
ITRSs are a suitable intermediate representation for termination analysis
of programming languages with built-in integers. The translation from Java
Bytecode to ITRSs is designed in such a way that termination of the ITRSs
implies termination of the original Java Bytecode program.

2. Then dedicated techniques for ITRSs [4] are invoked to complete the termi-
nation proof. Here the corresponding constraint-based techniques in AProVE
are automated by a reduction to SAT. Here we first encode into a propo-
sitional formula with arbitrary junctors. This formula is represented via a
directed acyclic graph with sharing of identical subformulas (i.e., structural
hashing). Then we convert this formula DAG into an equisatisfiable formula
in CNF using SAT4J’s [7] implementation of Tseitin’s algorithm [12].

Details. The submitted CNFs are named AProVE11-n.dimacs. For the analyzed
Java Bytecode programs from the TPDB, Fig. 1 provides details on the termina-
tion problem for each n. Here all paths need to be prefixed by tpdb-8.0/JBC/.

3 Conclusion

SAT solving nowadays is a key technology for automated termination analysis
of programs written e.g. in Java Bytecode. Therefore, any improvements in ef-
ficiency of SAT solvers on the submitted SAT instances will also have a direct
impact on efficiency and power of the state of the art in termination proving for
Java Bytecode.



Fig. 1. Details on the submitted SAT instances from TPDB problems

n Termination problem

01 Aprove_09/Count.jar

02 Aprove_09/Count.jar

03 Aprove_09/LogAG.jar

04 Aprove_09/PastaA10.jar

05 Aprove_09/SortCount.jar

06 Aprove_09/SortCount.jar

07 Costa_Julia_09/KnapsackDP.jar

08 Costa_Julia_09/KnapsackDP.jar

09 Julia_10_Iterative/Infix2Postfix.jar

10 Julia_10_Iterative/Infix2Postfix.jar

11 Julia_10_Iterative/Iterations.jar

12 Julia_10_Iterative/RSA.jar

13 Julia_10_Iterative/Test3.jar

14 Julia_10_Iterative/Test5.jar

15 Julia_10_Iterative/TriTas.jar

16 Julia_10_Iterative/TriTas.jar

References

1. E. Albert, P. Arenas, M. Codish, S. Genaim, G. Puebla, and D. Zanardini. Termi-
nation analysis of Java Bytecode. In Proc. Formal Methods for Open Object-Based
Distributed Systems (FMOODS ’08), volume 5051 of LNCS, pages 2–18, 2008.

2. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

3. M. Brockschmidt, C. Otto, C. von Essen, and J. Giesl. Termination graphs for
Java Bytecode. In Verification, Induction, Termination Analysis - Festschrift for
Christoph Walther on the Occasion of His 60th Birthday, volume 6463 of LNAI,
pages 17–37, 2010.

4. C. Fuhs, J. Giesl, M. Plücker, P. Schneider-Kamp, and S. Falke. Proving termi-
nation of integer term rewriting. In Proc. Rewriting Techniques and Applications
(RTA ’09), volume 5595 of LNCS, pages 32–47, 2009.

5. J. Giesl, M. Raffelsieper, P. Schneider-Kamp, S. Swiderski, and R. Thiemann.
Automated termination proofs for Haskell by term rewriting. ACM TOPLAS,
33:1–39, 2011.

6. J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic termi-
nation proofs in the dependency pair framework. In Proc. International Joint
Conference on Automated Reasoning (IJCAR ’06), volume 4130 of LNAI, pages
281–286, 2006.

7. D. Le Berre and A. Parrain. The SAT4J library, release 2.2. Journal on Satisfia-
bility, Boolean Modelling and Computation (JSAT), 7:59–64, 2010.

8. E. Ohlebusch. Termination of logic programs: Transformational methods revisited.
AAECC, 12(1-2):73–116, 2001.

9. C. Otto, M. Brockschmidt, C. von Essen, and J. Giesl. Automated termination
analysis of Java Bytecode by term rewriting. In Proc. Rewriting Techniques and
Applications (RTA ’10), volume 6 of LIPIcs, pages 259–276, 2010.



10. P. Schneider-Kamp, J. Giesl, A. Serebrenik, and R. Thiemann. Automated ter-
mination proofs for logic programs by term rewriting. ACM TOPLAS, 11:1–52,
2009.

11. F. Spoto, F. Mesnard, and É. Payet. A termination analyser for Java Bytecode
based on path-length. ACM TOPLAS, 32(3), 2010.

12. G. Tseitin. On the complexity of derivation in propositional calculus. In Stud-
ies in Constructive Mathematics and Mathematical Logic, pages 115–125. 1968.
Reprinted in Automation of Reasoning, volume 2, pages 466–483, Springer, 1983.


	SAT-based Termination Analysis for Java Bytecode with AProVE
	Carsten Fuhs

