
Appeared in Appli
able Algebra in Engineering, Communi-

ation and Computing, 12(1,2):39-72, 2001.

Veri�
ation of Erlang Pro
esses by

Dependen
y Pairs

?

J�urgen Giesl

1

, Thomas Arts

2

1

LuFG Informatik II, RWTH Aa
hen, Ahornstr. 55, 52074 Aa
hen, Germany,

E-mail: giesl�informatik.rwth-aa
hen.de

2

Computer S
ien
e Lab., Eri
sson Utve
klings AB, Box 1505, 125 25

�

Alvsj�o,

Sweden, E-mail: thomas�
slab.eri
sson.se

Re
eived: date / Revised version: date

Abstra
t Erlang is a fun
tional programming language developed by

Eri
sson Tele
om, whi
h is parti
ularly well suited for implementing
on-

urrent pro
esses. In this paper we show how methods from the area of term

rewriting are presently used at Eri
sson. To verify properties of pro
esses,

su
h a property is transformed into a termination problem of a
onditional

term rewriting system (CTRS). Subsequently, this termination proof
an be

performed automati
ally using dependen
y pairs.

The paper illustrates how the dependen
y pair te
hnique
an be ap-

plied for termination proofs of
onditional TRSs. Se
ondly, we present three

re�nements of this te
hnique, viz. narrowing, rewriting, and instantiating

dependen
y pairs. These re�nements are not only of use in the industrial

appli
ations sket
hed in this paper, but they are generally appli
able to ar-

bitrary (C)TRSs. Thus, in this way dependen
y pairs
an be used to prove

termination of even more (C)TRSs automati
ally.

Keywords: veri�
ation, distributed pro
esses, rewriting, termination

1 Introdu
tion

In a patent appli
ation [24℄, Eri
sson developed a proto
ol for a query lookup

in a distributed database. In several produ
ts of Eri
sson, for example their

newer tele
ommuni
ation swit
hes, this database plays a key role in the re-

overy after a shutdown or
rash of the system. Clearly, this
riti
al part

of the software should be trustworthy. This paper originates from an at-

tempt to verify this proto
ol's implementation written in Erlang. To save

the amount of work and to in
rease reliability, the aim was to perform as

?

This work was partially supported by the DFG under grant GI 274/4-1.

2 J�urgen Giesl, Thomas Arts

mu
h as possible of this veri�
ation automati
ally. Model
he
king te
h-

niques were not appli
able, sin
e the properties to be proved require the

onsideration of the in�nite state spa
e of the pro
esses. A user guided ap-

proa
h based on theorem proving by a spe
ialized proof
he
king tool was

su

essful, but very labour intensive [1℄. We des
ribe two of the properties

whi
h had to be veri�ed in Se
t. 2 and Se
t. 7, respe
tively, and we show

that they
an be represented as non-trivial termination problems of CTRSs.

In general, proving termination of CTRSs is
onsiderably more diÆ
ult

than showing termination of un
onditional TRSs. Therefore, standard te
h-

niques (see e.g. [14,18,31℄) fail with the termination proofs required for the

proto
ol veri�
ation des
ribed above. Moreover, due to the
omplexity and

the safety requirements arising with pra
ti
al appli
ations in industry, a

high degree of automation is desirable for the termination proofs required.

These reasons motivate why we
hose to apply the dependen
y pair te
h-

nique [2,3,5,8℄ (i.e., the
urrently most powerful termination proof method

that is amenable to automation). However, it turned out that (without fur-

ther extensions) even the dependen
y pair te
hnique
ould not perform the

required termination proofs automati
ally.

In Se
t. 3 we show that termination problems of CTRSs
an be redu
ed

to termination problems of un
onditional TRSs. After re
apitulating the

basi
 notions of dependen
y pairs in Se
t. 4, we present three important

extensions, viz. narrowing (Se
t. 5), rewriting (Se
t. 6), and instantiating

dependen
y pairs (Se
t. 7), whi
h are parti
ularly useful in the
ontext of

CTRSs. With these re�nements, the dependen
y pair approa
h
ould solve

the termination problems automati
ally.

2 A Pro
ess Veri�
ation Problem

We have to prove properties of pro
esses in a network. A pro
ess P

n

re
eives

messages from a pro
ess P

n�1

that
onsist of a list of data items and an

integer M. For every item in the list, pro
ess P

n

omputes a new list of data

items. For example, the data items
ould be telephone numbers and the

pro
ess
ould generate a list of
alls to that number on a
ertain date. The

resulting list may have arbitrary length, in
luding zero. The integer M in

the message indi
ates how many items of the newly
omputed list should

be sent to the next pro
ess P

n+1

. The restri
tion on the number of items

that may be sent is imposed for pra
ti
al optimization reasons.

: : :

-

��

��

P

n-1

-

��

��

P

n

-

��

��

P

n+1

-

: : :

Fig. 1 Pro
ess P

n

in a network

Of
ourse, pro
ess P

n

may have
omputed more than M new items and in

that
ase, it stores the remaining answers in an a

umulator (implemented

Veri�
ation of Erlang Pro
esses by Dependen
y Pairs 3

by an extra argument Store of the pro
ess). However, whenever it has sent

the �rst M items to the next pro
ess P

n+1

, pro
ess P

n

may re
eive a new

message from P

n�1

. To respond to the new message, it �rst
he
ks whether

its store already
ontains at least M items. In this
ase, it sends the �rst

M items from its store to P

n+1

and depending on the in
oming message,

probably some new items are
omputed afterwards. Otherwise, if the store

ontains fewer than M items, then pro
ess P

n+1

has to wait until the new

items are
omputed. After this
omputation, the �rst M items from the newly

obtained item list and the store are sent to P

n+1

. Again, those items that

ex
eed the limit M are stored in the pro
ess a

umulator. Finally, in order

to empty the store, pro
ess P

n�1

repeatedly sends the empty list to pro
ess

P

n

. In the end, so is the
laim, pro
ess P

n

will send the empty list as well.

We des
ribe how we are able to formally verify this
laim with a high

degree of automation. The Erlang
ode exe
uted by the pro
esses is given

below (to save spa
e, the
ode for obvious library fun
tions like app and

leq is not presented).

pro
ess(NextPid,Store) ->

re
eive

fItems,Mg ->

ase leq(M,length(Store)) of

true ->

fToSend,ToStoreg = split(M,Store),

NextPid!fToSend,Mg,

pro
ess(NextPid,app(map f(self(),Items),ToStore));

false ->

fToSend,ToStoreg =

split(M,app(map f(self(),Items),Store)),

NextPid!fToSend,Mg,

pro
ess(NextPid,ToStore)

end

end.

map f(Pid,nil) -> nil;

map f(Pid,
ons(H,T)) -> app(f(Pid,H),map f(Pid,T)).

For a list L, split(M,L) returns a pair of lists fL

1

,L

2

g where L

1

on-

tains the �rst M elements (or L if its length is shorter than M) and L

2

ontains the rest of L. The
ommand `!' denotes the sending of data and

NextPid!fToSend,Mg stands for sending the items ToSend and the integer

M to the pro
ess with the identi�er NextPid. A pro
ess
an obtain its own

identi�er by
alling the fun
tion self(). For every item in the list Items,

the fun
tion map f(Pid,Items)
omputes new data items by means of the

fun
tion f(Pid,Item). So the a
tual
omputation that f performs depends

on the pro
ess identi�er Pid. Hen
e, to
ompute new data items for the

in
oming Items, a pro
ess P

n

has to pass its own identi�er to the fun
tion

map f, i.e., it
alls map f(self(),Items).

4 J�urgen Giesl, Thomas Arts

Note that a pro
ess itself is not a terminating fun
tion: in fa
t, it has

been designed to be non-terminating. Our aim is not to prove its termina-

tion, but to verify a
ertain property, whi
h
an be expressed in terms of

termination. As part of the
orre
tness proof of the software, we have to

prove that if a pro
ess P

n

ontinuously re
eives the message fnil,Mg for

any integer M, then eventually the pro
ess will send the message fnil,Mg as

well. This property must hold independent of the value of the store and of

the way in whi
h new data items are generated from given ones. Therefore,

f has been left unspe
i�ed, i.e., f may be any terminating fun
tion whi
h

returns a list of arbitrary length.

The framework of term rewriting [10,17℄ is very useful for this veri�
a-

tion. We prove the desired property by
onstru
ting a CTRS
ontaining a

binary fun
tion pro
ess whose arguments represent the stored data items

Store and the integer M sent in the messages. In this example, we may ab-

stra
t from the pro
ess
ommuni
ation. Thus, the Erlang fun
tion self()

be
omes a
onstant and we drop the send
ommand (!) and the argu-

ment NextPid in the CTRS. Sin
e we assume that the pro
ess
onstantly

re
eives the message fnil,Mg, we hard-
ode it into the CTRS. Thus, the

variable Items is repla
ed by nil. As we still want to reason about the

variable M, we added it to the arguments of the pro
ess. To model the

fun
tion split (whi
h returns a pair of lists) in the CTRS, we use sep-

arate fun
tions fstsplit and sndsplit for the two
omponents of split's re-

sult. Thus, fstsplit(m; store) results in the �rst m elements of the store and

sndsplit(m; store) results in all but the �rstm elements of the store. Now the

idea is to for
e the fun
tion pro
ess to terminate if ToSend is the empty list

nil. So we only
ontinue the
omputation if appli
ation of the fun
tion empty

to the result of fstsplit yields false. Thus, if all evaluations w.r.t. this CTRS

terminate, then the original pro
ess eventually outputs the demanded value.

As usual, the semanti
s of a rule `s

1

!

�

t

1

; s

2

!

�

t

2

j l! r' is that a redex

l� may only be redu
ed to r� if s

1

� redu
es to t

1

� and s

2

� redu
es to t

2

�

(i.e., the verti
al bar j separates the
onditions from the a
tual rule).

leq(m; length(store))!

�

true;

empty(fstsplit(m; store))!

�

false j

pro
ess(store;m)! pro
ess(app(map f(self; nil); sndsplit(m; store));m) (1)

leq(m; length(store))!

�

false;

empty(fstsplit(m; app(map f(self; nil); store)))!

�

false j

pro
ess(store;m)! pro
ess(sndsplit(m; app(map f(self; nil); store));m) (2)

The auxiliary Erlang fun
tions as well as the fun
tions for empty, fstsplit,

and sndsplit are straightforwardly expressed by un
onditional rewrite rules.

fstsplit(0; x)! nil

fstsplit(s(n); nil)! nil

fstsplit(s(n);
ons(h; t))!
ons(h; fstsplit(n; t))

Veri�
ation of Erlang Pro
esses by Dependen
y Pairs 5

sndsplit(0; x)! x

sndsplit(s(n); nil)! nil

sndsplit(s(n);
ons(h; t))! sndsplit(n; t)

empty(nil)! true

empty(
ons(h; t))! false

leq(0;m)! true

leq(s(n); 0)! false

leq(s(n); s(m))! leq(n;m)

length(nil)! 0

length(
ons(h; t))! s(length(t))

app(nil; x)! x

app(
ons(h; t); x)!
ons(h; app(t; x))

map f(pid; nil)! nil

map f(pid;
ons(h; t))! app(f(pid; h);map f(pid; t))

The rules for the Erlang fun
tion f are not spe
i�ed, sin
e we have to

verify the desired property for any terminating fun
tion f. However, as

Erlang has an eager (
all-by-value) evaluation strategy, if a terminating

Erlang fun
tion f is straightforwardly transformed into a (C)TRS (su
h as

the above library fun
tions), then any evaluation w.r.t. these rules is �nite.

Now to prove the desired property of the Erlang pro
ess, we have to show

that the whole CTRS with all its extra rules for the auxiliary fun
tions only

permits �nite evaluations.

The
onstru
tion of the above CTRS is rather straightforward, but it

presupposes an understanding of the program and the veri�
ation problem

and therefore it
an hardly be me
hanized. But after obtaining the CTRS,

the proof that any evaluation w.r.t. this CTRS is �nite should be done

automati
ally.

In this paper we des
ribe an extension of the dependen
y pair te
hnique

whi
h
an perform su
h automati
 proofs. Moreover, this extension is of

general use for termination proofs of TRSs and CTRSs. Hen
e, our results

signi�
antly in
rease the
lass of systems where termination
an be shown

me
hani
ally.

3 Termination of Conditional Term Rewriting Systems

A CTRS is a TRS where
onditions s

1

= t

1

; : : : ; s

n

= t

n

may be added to

rewrite rules l! r. In this paper, we restri
t ourselves to CTRSs where all

variables in the
onditions s

i

; t

i

also o

ur in l. Depending on the interpreta-

tion of the equality sign in the
onditions, di�erent rewrite relations
an be

asso
iated with a CTRS,
f. e.g. [11,12,15,16,20,22,23,26,27,29,32℄. In our

veri�
ation example, we transformed the problem into an oriented CTRS

[32℄, where the equality signs in
onditions of rewrite rules are interpreted

as rea
hability (!

�

). Thus, we denote rewrite rules by

s

1

!

�

t

1

; : : : ; s

n

!

�

t

n

j l! r: (3)

6 J�urgen Giesl, Thomas Arts

In fa
t, we even have a normal CTRS, be
ause all t

i

are ground normal

forms w.r.t. the TRS whi
h results from dropping all
onditions.

A redu
tion of C[l�℄ to C[r�℄ with rule (3) is only possible if s

i

� redu
es

to t

i

� for all 1 � i � n. Formally, the rewrite relation !

R

of a CTRS R

an be de�ned as !

R

=

S

j�0

!

R

j

, where

R

0

= ; and

R

j+1

=

S

`s

1

!

�

t

1

;:::;s

n

!

�

t

n

jl!r'2R

fl� ! r� j s

i

� !

�

R

j

t

i

� for all 1 � i � ng;

f. e.g. [23,29℄.

A CTRS R is terminating i� !

R

is well founded. But termination is

not enough to ensure that every evaluation with a CTRS is �nite. For

example, assume that evaluation of the
ondition leq(m; length(store)) in

our CTRS would require the redu
tion of pro
ess(store;m). Then evalua-

tion of pro
ess(store;m) would yield an in�nite
omputation. Nevertheless,

pro
ess(store;m)
ould not be rewritten further and thus, the CTRS would

be terminating. But in this
ase, the desired property would not hold for

the original Erlang pro
ess, be
ause this would
orrespond to a deadlo
k

situation where no messages are sent at all.

For that reason, instead of termination one is often mu
h more interested

in de
reasing CTRSs [15℄. In this paper, we use a slightly modi�ed notion

of de
reasingness, be
ause in our evaluation strategy
onditions are
he
ked

from left to right,
f. [33℄. Thus, the i-th
ondition s

i

!

�

t

i

is only
he
ked

if all previous
onditions s

j

!

�

t

j

for 1 � j < i hold.

De�nition 1 (Left-Right De
reasing) A CTRS R is left-right de
reas-

ing if there exists a well-founded relation >
ontaining the rewrite relation

!

R

and the subterm relation � su
h that l� > s

i

� holds for all rules like

(3), all i 2 f1; : : : ; ng, and all substitutions � where s

j

� !

�

R

t

j

� for all

j 2 f1; : : : ; i� 1g.

This de�nition of left-right de
reasingness exa
tly
aptures the �niteness

of re
ursive evaluation of terms. (Obviously, de
reasingness implies left-right

de
reasingness, but not vi
e versa.) Hen
e, now our aim is to prove that the

CTRS
orresponding to the Erlang pro
ess is left-right de
reasing.

A standard approa
h for proving termination of a CTRS R is to ver-

ify termination of the TRS R

0

whi
h results from dropping all
onditions

(and for de
reasingness one has to impose some additional demands). But

this approa
h fails for CTRSs where the
onditions are ne
essary to ensure

termination. This also happens in our example, be
ause without the
ondi-

tions empty(: : :)!

�

false the CTRS is no longer terminating (and thus, not

left-right de
reasing either).

A solution for this problem is to transform CTRSs into un
onditional

TRSs,
f. [13,19,28℄. For un
onditional rules, let tr(l! r) = fl! rg. If �

is a
onditional rule, i.e., � = `s

1

!

�

t

1

; : : : ; s

n

!

�

t

n

j l ! r', we de�ne

tr(�) =

fl! if

1;�

(x; s

1

)g [fif

i;�

(x; t

i

)! if

i+1;�

(x; s

i+1

) j 1 � i < ng [fif

n;�

(x; t

n

)! rg

Veri�
ation of Erlang Pro
esses by Dependen
y Pairs 7

where x is the tuple of all variables in l and the if's are new fun
tion symbols.

To ease readability, instead of if

i;�

we often just write if

m

for some m 2 IN

where if

m

is a fun
tion symbol whi
h has not yet been used before.

Let R

tr

=

S

�2R

tr(�). For CTRSs without extra variables, R

tr

is in-

deed an (un
onditional) TRS. (An extension to deterministi
 CTRSs [12℄

with extra variables is also possible.) The transformation of Rule (1) results

in

pro
ess(store;m)! if

1

(store;m; leq(m; length(store))) (4)

if

1

(store;m; true)! if

2

(store;m; empty(fstsplit(m; store))) (5)

if

2

(store;m; false)! pro
ess(app(map f(self; nil); sndsplit(m; store));m): (6)

Now we aim to prove termination of R

tr

instead of R's left-right de
reas-

ingness.

In [19℄, this transformation is restri
ted to a limited
lass of
onver-

gent CTRSs. However, in the following we show that for our purpose this

restri
tion is not ne
essary. In other words, termination of R

tr

indeed im-

plies left-right de
reasingness (and thus also termination) of R. Thus, this

transformation is a generally appli
able te
hnique to redu
e the termina-

tion problem of CTRSs to a termination problem of un
onditional TRSs.

(A similar approa
h was presented in [28℄ for de
reasingness proofs (instead

of left-right de
reasingness) by using a transformation where all
onditions

of a rule have to be
he
ked in parallel.) We �rst prove that any redu
tion

with R
an be simulated by R

tr

. So in parti
ular, the equational theory of

R is a subset of R

tr

's equational theory.

Lemma 2 Let q; q

0

be terms without if's. If q !

+

R

q

0

, then q !

+

R

tr

q

0

.

Proof There must be a j 2 IN su
h that q !

+

R

j

q

0

(j is the depth of the

redu
tion). We prove the theorem by indu
tion on the depth and the length

of the redu
tion q !

+

R

q

0

(i.e., we use a lexi
ographi
 indu
tion relation).

The redu
tion has the form q !

R

p !

�

R

q

0

and by the indu
tion hy-

pothesis we know p!

�

R

tr

q

0

. Thus, it suÆ
es to prove q !

+

R

tr

p.

If the redu
tion q !

R

p is done with an un
onditional rule of R, then

the
onje
ture is trivial. Otherwise, we must have q = C[l�℄, p = C[r�℄

for some
ontext C and some rule like (3). As the depth of the redu
tions

s

i

� !

�

R

t

i

� is less than the depth of the redu
tion q !

+

R

q

0

, by the indu
tion

hypothesis we have s

i

� !

�

R

tr

t

i

�. This implies q !

+

R

tr

p. ut

Now the desired result is a dire
t
onsequen
e of Lemma 2.

Corollary 3 (Left-Right De
reasingness of R and Termination of

R

tr

) If R

tr

is terminating, then R is left-right de
reasing (and thus, it is

also terminating).

Proof It is well known that if !

R

tr

is well founded, then !

R

tr

[� is well

founded, too (this is a dire
t
onsequen
e of !

R

tr

being
losed under
on-

text). Hen
e, the transitive
losure (!

R

tr

[�)

+

is well founded, too. By

8 J�urgen Giesl, Thomas Arts

Lemma 2, this relation satis�es all
onditions imposed on the relation > in

Def. 1. Hen
e, R is left-right de
reasing. ut

The
onverse of this
orollary does not hold. If R is the CTRS with

a ! b, f(a) ! b, and the
onditional rule f(x) !

�

x j g(x) ! g(a), then

g(a) !

+

g(a) holds in the transformed TRS R

tr

, but not in the original

CTRS. Thus, the transformed TRS R

tr

is not terminating although the

original CTRS R is left-right de
reasing.

However, independently, in the meanwhile this transformation has also

been studied by Ohlebus
h [30℄ and he
ould prove a (restri
ted)
omplete-

ness result for this transformation, viz. that left-right de
reasingness ofR at

least implies innermost termination of R

tr

. (In [30℄, our notion of left-right

de
reasingness is
alled \quasi-de
reasingness".)

In our example, the
onditional rule (2) is transformed into three addi-

tional un
onditional rules. But apart from the if-root symbol of the right-

hand side, the �rst of these rules is identi
al to (4). Thus, we obtain two

overlapping rules in the transformed TRS whi
h
orrespond to the overlap-

ping
onditional rules (1) and (2). However, in the CTRS this
riti
al pair

is infeasible [15℄, i.e., the
onditions of both rules ex
lude ea
h other. Thus,

our transformation of CTRSs into TRSs sometimes introdu
es unne
essary

rules and overlap.

Therefore, whenever we
onstru
t a rule of the form q ! if

k

(t) and there

already exists a rule q ! if

n

(t), then we identify if

k

and if

n

. This does not

a�e
t the soundness of our approa
h, be
ause termination of a TRS where

all o

urren
es of a symbol g are substituted by a symbol f with the same

arity always implies termination of the original TRS.

1

Thus, we obtain the

additional rules:

if

1

(store;m; false)!

if

3

(store;m; empty(fstsplit(m; app(map f(self; nil); store)))) (7)

if

3

(store;m; false)! pro
ess(sndsplit(m; app(map f(self; nil); store));m)(8)

If termination of a CTRS depends on its
onditions, then in general

termination of the transformed TRS
an only be shown if one examines

whi
h terms may follow ea
h other in a redu
tion. However, in the
lassi
al

approa
hes based on simpli�
ation orderings (
f. e.g. [14,31℄), su
h
onsid-

erations do not take pla
e. Hen
e, they fail in proving the termination of (4)

- (8). For this reason, su
h transformations into un
onditional TRSs have

rarely been applied for termination (or de
reasingness) proofs of CTRSs.

However, we will demonstrate that with the dependen
y pair approa
h this

transformation is very useful.

1

This possibility to eliminate unne
essary overlap is an advantage of our trans-

formation
ompared to the one of [28℄, where the transformed un
onditional TRSs

remain overlapping. In pra
ti
e, proving termination of non-overlapping TRSs is

signi�
antly easier, sin
e one may use te
hniques spe
i�
ally tailored to innermost

termination proofs, see below.

Veri�
ation of Erlang Pro
esses by Dependen
y Pairs 9

To verify our original goal, we now have to prove termination of the

transformed TRS whi
h
onsists of (4) - (8), the rules for all auxiliary (li-

brary) fun
tions from Se
t. 2, and the (unknown) rules for the unspe
i�ed

fun
tion f. Note that if an auxiliary Erlang fun
tion is straightforwardly

transformed into a TRS, then this TRS is non-overlapping. Thus, we assume

that all possible rules for the unspe
i�ed fun
tion f are non-overlapping as

well. Then it is suÆ
ient just to prove innermost termination of the result-

ing TRS, sin
e innermost termination of non-overlapping systems implies

their termination,
f. e.g. [21℄. In order to apply veri�
ation on a large s
ale,

the aim is to perform su
h proofs automati
ally.

In the rest of the paper we present some extensions of the dependen
y

pair te
hnique that make this possible. The dependen
y pair te
hnique (in-

luding these extensions) has been implemented in a tool written in Erlang

whi
h provides both a user friendly interfa
e for manual appli
ations of

dependen
y pairs and the possibility to perform fully automati
 termina-

tion proofs of TRSs using dependen
y pairs [9℄. See [4℄ for a
olle
tion of

ben
hmarks to demonstrate the power of the dependen
y pair approa
h.

4 Dependen
y Pairs

Dependen
y pairs allow the use of existing methods like simpli�
ation or-

derings for automated termination and innermost termination proofs where

they were not appli
able before. In this se
tion we brie
y re
apitulate the

basi

on
epts of this approa
h and we present the theorems that we need

for the rest of the paper. For further details and explanations see [3,5,8℄.

In
ontrast to the standard approa
hes for termination proofs, whi
h

ompare left and right-hand sides of rules, we only examine those subterms

that are responsible for starting new redu
tions. For that purpose we
on-

entrate on the subterms in the right-hand sides of rules that have a de�ned

2

root symbol, be
ause these are the only terms a rewrite rule
an ever be

applied to.

More pre
isely, for every rule f(s

1

; : : : ; s

n

) ! C[g(t

1

; : : : ; t

m

)℄ (where

f and g are de�ned symbols), we
ompare the argument tuples s

1

; : : : ; s

n

and t

1

; : : : ; t

m

. To avoid the handling of tuples, for every de�ned symbol f

we introdu
e a fresh tuple symbol F . To ease readability, we assume that

the original signature
onsists of lower
ase fun
tion symbols only, whereas

the tuple symbols are denoted by the
orresponding upper
ase symbols.

Now instead of the tuples s

1

; : : : ; s

n

and t

1

; : : : ; t

m

we
ompare the terms

F (s

1

; : : : ; s

n

) and G(t

1

; : : : ; t

m

).

De�nition 4 (Dependen
y Pair) Let R be a TRS. If f(s

1

; : : : ; s

n

) !

C[g(t

1

; : : : ; t

m

)℄ is a rule of R and g is a de�ned symbol, then hF (s

1

; : : : ; s

n

);

G(t

1

; : : : ; t

m

)i is a dependen
y pair of R.

2

Root symbols of left-hand sides are de�ned and all other fun
tions are
on-

stru
tors.

10 J�urgen Giesl, Thomas Arts

For the rules (4) - (8), (besides others) we obtain the following dependen
y

pairs.

hPROCESS(store;m); IF

1

(store;m; leq(m; length(store)))i (9)

hIF

1

(store;m; true); IF

2

(store;m; empty(fstsplit(m; store)))i (10)

hIF

2

(store;m; false);PROCESS(app(map f(self; nil); sndsplit(m; store));m)i (11)

hIF

1

(store;m; false);

IF

3

(store;m; empty(fstsplit(m; app(map f(self; nil); store))))i (12)

hIF

3

(store;m; false);PROCESS(sndsplit(m; app(map f(self; nil); store));m)i (13)

To tra
e newly introdu
ed redexes in an innermost redu
tion, we
on-

sider spe
ial sequen
es of dependen
y pairs, so-
alled innermost
hains. A

sequen
e of dependen
y pairs hs

1

; t

1

i hs

2

; t

2

i : : : is an innermost
hain if

there exists a substitution � su
h that for all
onse
utive pairs hs

j

; t

j

i and

hs

j+1

; t

j+1

i in the sequen
e we have t

j

�

i

!

�

R

s

j+1

�. Here, \

i

!" denotes

innermost redu
tions (i.e., rewrite steps where only innermost redexes are

ontra
ted). In this way, the right-hand side of every dependen
y pair
an

be seen as the newly introdu
ed redex that should be tra
ed and the redu
-

tions t

j

�

i

!

�

R

s

j+1

� are ne
essary to normalize the arguments of the redex

that is tra
ed. Note that when regarding innermost redu
tions, arguments

of a redex should be in normal form before the redex is
ontra
ted. Thus,

we may restri
t ourselves to substitutions � where all s

j

� are in normal

form.

De�nition 5 (Innermost R-
hains) Let R be a TRS. A sequen
e of

dependen
y pairs hs

1

; t

1

i hs

2

; t

2

i : : : is
alled an innermost R-
hain if there

exists a substitution �, su
h that all s

j

� are in normal form and t

j

�

i

!

�

R

s

j+1

� holds for every two
onse
utive pairs hs

j

; t

j

i and hs

j+1

; t

j+1

i in the

sequen
e.

We always assume that di�erent (o

urren
es of) dependen
y pairs have

disjoint variables and we always regard substitutions whose domains may

be in�nite. In [3℄ we showed that the absen
e of in�nite innermost
hains is

a (suÆ
ient and ne
essary)
riterion for innermost termination.

Theorem 6 (Innermost Termination Criterion) A TRS R is inner-

most terminating i� there exists no in�nite innermost R-
hain.

To improve this
riterion we introdu
ed the following graph whi
h
on-

tains ar
s between all those dependen
y pairs whi
h may follow ea
h other

in innermost
hains.

De�nition 7 (Innermost Dependen
y Graph) The innermost depen-

den
y graph of a TRS R is the dire
ted graph whose nodes are the depen-

den
y pairs and there is an ar
 from hs; ti to hv; wi if hs; ti hv; wi is an

innermost R-
hain.

Veri�
ation of Erlang Pro
esses by Dependen
y Pairs 11

In our example, (besides others) there are ar
s from (9) to (10) and (12),

from (10) to (11), from (12) to (13), and from both (11) and (13) to (9).

The subgraph of the innermost dependen
y graph
ontaining the nodes (9)

- (13) is depi
ted in Figure 2.

-

'

� �

$

�

�

�	

�

�R

�

�R

�

�	

(9)

(10) (12)

(11) (13)

Fig. 2 Subgraph of the innermost dependen
y graph in our example

Sin
e the innermost dependen
y graph is in general not
omputable, we

use an estimation of this graph for automation purposes (
f. [3,5,8℄). The

estimation is su
h that all ar
s in the original graph are also present in the

estimated graph. Let
ap(t) result from t by repla
ing all subterms with

de�ned root symbols by di�erent fresh variables. The estimated innermost

dependen
y graph is the dire
ted graph whose nodes are the dependen
y

pairs and there is an ar
 from hs; ti to hv; wi i�
ap(t) and v are uni�able

by a mgu � where s� and v� are normal forms. It is not diÆ
ult to see that

whenever hs; ti hv; wi is an innermost
hain, then there is also an ar
 from

hs; ti to hv; wi in the estimated innermost dependen
y graph. Thus, this

estimated graph is indeed a supergraph of the (real) innermost dependen
y

graph.

A non-empty set P of dependen
y pairs is
alled a
y
le i� for all

hs; ti; hv; wi 2 P , there is a path from hs; ti to hv; wi in the innermost de-

penden
y graph, whi
h only traverses pairs from P . Obviously, every
y
le

in this graph is also a
y
le in the estimated innermost dependen
y graph.

In our example, the dependen
y pairs (9) - (13) form the
y
les P

1

=

f(9); (10); (11)g, P

2

= f(9); (12); (13)g, and P

3

= f(9); (10); (11); (12); (13)g.

However, (9) - (13) are not on a
y
le with any other dependen
y pair (e.g.,

dependen
y pairs from the rules of the auxiliary library fun
tions or the

unspe
i�ed fun
tion f, sin
e we assume that f does not
all pro
ess). This

leads to the following re�ned
riterion.

Theorem 8 (Modular Innermost Termination Criterion) A �nite

TRS R is innermost terminating i� for ea
h
y
le P in the innermost de-

penden
y graph there exists no in�nite innermost R-
hain of dependen
y

pairs from P.

Note that for the soundness of this theorem one indeed has to regard all

y
les, not just the minimal ones (i.e., not just those
y
les whi
h
ontain

12 J�urgen Giesl, Thomas Arts

no other
y
les as proper subsets). For example, the TRS with the rules

f(0)! g(1), f(1)! g(0), and g(x)! f(x) has three dependen
y pairs

hF(0);G(1)i; (14)

hF(1);G(0)i; (15)

hG(x);F(x)i (16)

and three
y
les P

1

= f(14); (16)g, P

2

= f(15); (16)g, and P

3

= f(14); (15);

(16)g. There is no in�nite innermost
hain from any of the minimal
y
les

P

1

or P

2

. Nevertheless, the TRS is not innermost terminating, and indeed

there is an in�nite innermost
hain from the non-minimal
y
le P

3

.

In our de�nition, a
y
le is a set of dependen
y pairs. Thus, a
y
le

never
ontains multiple o

urren
es of the same dependen
y pair and for

a �nite TRS there only exist �nitely many
y
les P . The automation of

the dependen
y pair te
hnique is based on the generation of inequalities.

For every
y
le P (in the estimated graph) we sear
h for a quasi-ordering

�

P

su
h that for any sequen
e of dependen
y pairs hs

1

; t

1

ihs

2

; t

2

ihs

3

; t

3

i : : :

from P and for any substitution � with t

j

�!

�

R

s

j+1

� (for all j) we have

s

1

� �

P

t

1

� �

P

s

2

� �

P

t

2

� �

P

s

3

� �

P

t

3

� �

P

: : :

Moreover, for at least one hs; ti in P we demand the stri
t inequality s� >

P

t�. Here, >

P

must be a well-founded ordering
ompatible with �

P

(i.e., we

have >

P

Æ �

P

� >

P

or �

P

Æ >

P

� >

P

). Then there exists no innermost

hain of dependen
y pairs from P whi
h traverses all dependen
y pairs in

P in�nitely many times.

In the following we require that both �

P

and >

P

must be
losed under

substitution. Then s

j

�

P

t

j

and s

j

>

P

t

j

ensure s

j

� �

P

t

j

� and s

j

� >

P

t

j

�, respe
tively, for all substitutions �.

We also restri
t ourselves to weakly monotoni
 quasi-orderings �

P

. (A

quasi-ordering �

P

is weakly monotoni
 if s �

P

t implies f(: : : s : : :) �

P

f(: : : t : : :).) Then to guarantee t

j

� �

P

s

j+1

� whenever t

j

�!

�

R

s

j+1

� holds,

it is suÆ
ient to demand l �

P

r for all rules l! r of the TRS that may

be used in this redu
tion. As we restri
t ourselves to normal substitutions

�, not all rules are usable in a redu
tion of t�. In general, if t
ontains a

de�ned symbol f , then all f -rules are usable and moreover, all rules that

are usable for right-hand sides of f -rules are also usable for t.

De�nition 9 (Usable Rules) Let R be a TRS. For any symbol f let

Rls

R

(f) = fl! r 2 R j root(l) = fg. For any term we de�ne the usable

rules:

� U

R

(x) = ;,

� U

R

(f(t

1

; : : : ; t

n

)) = Rls

R

(f) [

S

l!r2Rls

R

(f)

U

R

0

(r) [

S

n

j=1

U

R

0

(t

j

),

where R

0

= R n Rls

R

(f). Moreover, for any set P of dependen
y pairs we

de�ne U

R

(P) =

S

hs;ti2P

U

R

(t).

Veri�
ation of Erlang Pro
esses by Dependen
y Pairs 13

Note that this is indeed a re
ursive de�nition (sin
e R is de
reasing to R

0

in the se
ond equation de�ning U

R

).

Now we obtain the following theorem for automated

3

innermost termi-

nation proofs.

Theorem 10 (Innermost Termination Proofs) A �nite TRS is inner-

most terminating if for ea
h
y
le P there is a weakly monotoni
 quasi-

ordering �

P

and a well-founded ordering >

P

ompatible with �

P

, where

both �

P

and >

P

are
losed under substitution, su
h that

� l �

P

r for all rules l! r 2 U

R

(P),

� s �

P

t for all dependen
y pairs hs; ti from P, and

� s >

P

t for at least one dependen
y pair hs; ti from P.

We already demonstrated that for Thm. 8 (and hen
e, also for Thm. 10)

onsidering just the minimal
y
les would be unsound. In fa
t, for Thm. 10

it would also be unsound just to
onsider maximal
y
les (i.e., those
y
les

whi
h are not
ontained in any other
y
le). The problem is that it is not suf-

�
ient if just one dependen
y pair of ea
h maximal
y
le is stri
tly de
reas-

ing. There must be a stri
tly de
reasing dependen
y pair for every sub
y
le

as well. As a
ounterexample regard the TRS f(s(x)) ! f(s(x)), f(s(x)) !

f(x). Its (only) maximal
y
le is fhF(s(x));F(s(x))i; hF(s(x));F(x)ig. But the

onstraints F(s(x)) � F(s(x)) and F(s(x)) > F(x) for this
y
le are easily

ful�lled although this TRS is
learly not innermost terminating. Thus, it is

ru
ial to
onsider all
y
les P for Thm. 10.

In Se
t. 2 we presented the rules for the auxiliary fun
tions in our pro-

ess example. Proving absen
e of in�nite innermost
hains for the
y
les of

their dependen
y pairs is very straightforward using Thm. 10. So all library

fun
tions of our TRS are innermost terminating. Moreover, as we assumed

f to be a terminating fun
tion, its
y
les do not lead to in�nite innermost

hains either.

Re
all that (9) - (13) are not on
y
les together with the remaining

dependen
y pairs. Thus, what is left for verifying the desired property is

proving absen
e of in�nite innermost
hains for the
y
les P

1

;P

2

;P

3

, where

all rules of the whole TRS are possible
andidates for being usable rules

(also the rules for the unspe
i�ed fun
tion f).

Thm. 10 demands s �

P

t resp. s >

P

t for dependen
y pairs hs; ti on

y
les. However for (9) - (13), these inequalities are not satis�ed by any

quasi-simpli�
ation ordering.

4

Thus, the automated proof fails here. More-

over, it is un
lear whi
h inequalities we have to add for the usable rules, sin
e

the rules for f are not given. Therefore, we have to extend the dependen
y

pair te
hnique.

3

Additional re�nements for the automation
an be found in [3,8℄.

4

Essentially, the reason is that the left-hand side of dependen
y pair (9) is

embedded in the right-hand sides of the pairs (11) and (13).

14 J�urgen Giesl, Thomas Arts

5 Narrowing Dependen
y Pairs

To prove the absen
e of in�nite innermost
hains, for a dependen
y pair

hv; wi it would be suÆ
ient to demand v� �

P

w� resp. v� >

P

w� just

for those instantiations � where an instantiated right
omponent t� of a

previous dependen
y pair hs; ti redu
es to v�. For example, (11) only has

to be regarded for instantiations � where the instantiated right
omponent

IF

2

(store;m; empty(fstsplit(m; store)))� of (10) redu
es to the instantiated

left
omponent IF

2

(store;m; false)� of (11). In fa
t, this
an only happen

if store is not empty, i.e., if store redu
es to the form
ons(h; t). However,

this observation has not been used in the inequalities of Thm. 10 and hen
e,

we
ould not �nd an ordering for them. Thus, the idea is to perform the

omputation of empty on the level of the dependen
y pair. For that purpose

the well-known
on
ept of narrowing is extended to pairs of terms.

De�nition 11 Let R be a TRS. If a term t R-narrows to a term t

0

via the

substitution �, then the pair of terms hs; ti R-narrows to the pair hs�; t

0

i.

In the following, we will usually speak of `narrowing' instead of `R-nar-

rowing' if the TRS R is
lear from the
ontext. For example, the narrowings

of the dependen
y pair (10) are

hIF

1

(x; 0; true); IF

2

(x; 0; empty(nil))i (10a)

hIF

1

(nil; s(n); true); IF

2

(nil; s(n); empty(nil))i (10b)

hIF

1

(
ons(h; t); s(n); true); IF

2

(
ons(h; t); s(n); empty(
ons(h; fstsplit(n; t))))i: (10
)

Thus, if a dependen
y pair hs; ti is followed by some dependen
y pairs

hv; wi in an innermost
hain and if t is not already uni�able with v (i.e., at

least one rule is needed to redu
e t� to v�), then in order to `approximate'

the possible further R-redu
tions of t� we may repla
e hs; ti by all its R-

narrowings. Hen
e, we
an repla
e the dependen
y pair (10) by the new

pairs (10a) - (10
), whi
h already
ontain one `hidden' step of the next

R-redu
tion.

This enables us to extra
t ne
essary information from the last arguments

of if's, i.e., from the former
onditions of the CTRS. Thus, the narrowing

re�nement is the main reason why the transformation of CTRSs into TRSs

is useful when analyzing the termination behaviour with dependen
y pairs.

The number of narrowings for a pair is �nite (up to variable renaming) and

it
an easily be
omputed automati
ally.

Note however that narrowing may indeed only be applied for depen-

den
y pairs whose right-hand side does not unify with any left-hand side

of a dependen
y pair (after variable renaming). As an example regard the

following TRS.

g(f(a))! h(a)

f(b)!

h(x)! g(f(x))

Veri�
ation of Erlang Pro
esses by Dependen
y Pairs 15

This TRS is not innermost terminating as we have the in�nite innermost

redu
tion g(f(a))

i

! h(a)

i

! g(f(a))

i

! : : : The only dependen
y pairs on a

y
le are hG(f(a));H(a)i and hH(x);G(f(x))i. But if the latter dependen
y

pair is narrowed to hH(b);G(
)i, then there is no
y
le any more in the in-

nermost dependen
y graph and hen
e, we would falsely
on
lude innermost

termination. This example also demonstrates why this requirement is still

ne
essary even if we would restri
t ourselves to non-overlapping systems.

Before showing how narrowing helps in solving the inequalities of the

pro
ess example, we �rst prove the soundness of our te
hnique.

Theorem 12 (Narrowing Pairs) Let P be a set of pairs of terms and

let hs; ti 2 P su
h that Var(t) � Var(s) and su
h that for all (renamings

of) hv; wi 2 P, the terms t and v are not uni�able. Let P

0

result from P

by repla
ing hs; ti by all its narrowings. If there exists no in�nite innermost

hain of pairs from P

0

, then there exists no in�nite innermost
hain of pairs

from P either.

Proof Suppose there is an innermost R-
hain

: : : hv

1

; w

1

i hs; ti hv

2

; w

2

i : : :

of pairs from P . It suÆ
es to prove that then there exists a narrowing hs

0

; t

0

i

of hs; ti su
h that : : : hv

1

; w

1

i hs

0

; t

0

i hv

2

; w

2

i : : : is an innermost R-
hain as

well. Here, hs; ti resp. hs

0

; t

0

i may also be the �rst pair in the
hain (i.e.,

hv

1

; w

1

i may be missing). If this has been proved, then all o

urren
es of

hs; ti in an in�nite innermost
hain may be repla
ed by pairs from P

0

.

For the above innermost
hain, there must be a substitution � su
h

that all instantiated left-hand sides of the pairs are normal forms and every

instantiated right-hand side redu
es innermost to the instantiated left-hand

side of the next pair in the innermost
hain. Note that t�
annot be equal

to v

2

�, as otherwise � would be a uni�er of t and v

2

. Hen
e, we have

t�

i

!

R

q

i

!

�

R

v

2

� for some term q.

The redu
tion t�

i

!

R

q
annot take pla
e `in �', be
ause all variables of

t are
ontained in s and hen
e, then s� would not be a normal form. Thus,

t
ontains some subterm f(u) su
h that a rule l! r has been applied to

f(u)�. In other words, l mat
hes f(u)� (i.e. l� = f(u)�). So the redu
tion

has the following form:

t� = t�[f(u)�℄

�

= t�[l�℄

�

i

!

R

t�[r�℄

�

= q:

As in the usual de�nition of narrowing, we assume that the variables

of l! r have been renamed to fresh ones. Therefore we
an extend � to

`behave' like � on the variables of l and r (but it still remains the same

on the variables of all pairs in the innermost
hain). Now � is a uni�er of

l and f(u) and hen
e, there also exists a most general uni�er �. By the

de�nition of most general uni�ers, then there must be a substitution � su
h

that � = �� .

16 J�urgen Giesl, Thomas Arts

Let t

0

be the term t�[r�℄

�

and let s

0

be s�. Then hs; ti narrows to hs

0

; t

0

i.

As we may assume s

0

and t

0

to be variable disjoint from all other pairs, we

may extend � to behave like � on the variables of s

0

and t

0

. Then we have

w

1

�

i

!

�

R

s� = s�� = s

0

� = s

0

� and

t

0

� = t

0

� = t�� [r�� ℄

�

= t�[r�℄

�

= t�[r�℄

�

= q

i

!

�

R

v

2

�:

Hen
e, : : : hv

1

; w

1

i hs

0

; t

0

i hv

2

; w

2

i : : : is also an innermost R-
hain. ut

So we may always repla
e a dependen
y pair by all its narrowings. How-

ever, while this re�nement is sound, in general it destroys the ne
essity of

our innermost termination
riterion in Thm. 8. For example, the TRS with

the rules f(s(x)) ! f(g(h(x))), g(h(x)) ! g(x), g(0) ! s(0), h(0) ! 1

is innermost terminating. But if the dependen
y pair hF(s(x));F(g(h(x)))i

is repla
ed by its narrowings hF(s(0));F(g(1))i and hF(s(x));F(g(x))i, then

hF(s(x));F(g(x))i forms an in�nite innermost
hain (using the instantiation

fx=0g).

Nevertheless, in the appli
ation domain of pro
ess veri�
ation, we
an

restri
t ourselves to TRSs with the unique normal form property.

5

In fa
t,

the TRSs resulting from the translation of Erlang fun
tions are always non-

overlapping. As non-overlapping innermost terminating TRSs are
on
uent,

they also satisfy the unique normal form property. Hen
e, the requirement

of the unique normal form property in the following theorem
ould also be

repla
ed by non-overlappingness.

The theorem shows that for su
h TRSs, narrowing dependen
y pairs

indeed is a
ompleteness preserving te
hnique. More pre
isely, whenever

innermost termination
an be proved with the pairs P , then it
an also be

proved with the pairs P

0

.

Theorem 13 (Narrowing Pairs Preserves Completeness) Let R be

an innermost terminating TRS with the unique normal form property and

let P, P

0

be as in Thm. 12. If there exists no in�nite innermost R-
hain of

pairs from P, then there exists no in�nite innermost R-
hain of pairs from

P

0

either.

Proof We show that every innermost R-
hain : : : hv

1

; w

1

i hs

0

; t

0

i hv

2

; w

2

i : : :

from P

0

an be transformed into an innermost
hain from P of same length.

There must be a substitution � su
h that for all pairs the instantiated left-

hand side is a normal form and the instantiated right-hand side redu
es to

the instantiated left-hand side of the next pair in the innermost
hain. So

in parti
ular we have

w

1

�

i

!

�

R

s

0

� and t

0

�

i

!

�

R

v

2

�:

5

A TRS is said to have the unique normal form property i� for every term t,

whenever s

1

�

 t!

�

s

2

with s

1

and s

2

in normal form, then we have s

1

= s

2

.

Veri�
ation of Erlang Pro
esses by Dependen
y Pairs 17

We know that hs; ti narrows to hs

0

; t

0

i via a substitution �. As the vari-

ables in hs; ti are disjoint from all other variables, we may extend � to

`behave' like �� on the variables of s and t. Then we have s� = s�� = s

0

�

and hen
e, w

1

�

i

!

�

R

s�.

Moreover, by the de�nition of narrowing, t�!

R

t

0

. This implies t��!

R

t

0

� and as t� = t��, we have t�!

R

t

0

�

i

!

�

R

v

2

� where v

2

� is a normal

form. As R is innermost terminating and every term has a unique normal

form, repeated appli
ation of innermost redu
tion steps to t� also yields

the normal form v

2

�, i.e., t�

i

!

�

R

v

2

�. Thus, : : : hv

1

; w

1

i hs; ti hv

2

; w

2

i : : : is

also an innermost R-
hain. ut

Hen
e, independent of the te
hnique used to
he
k the absen
e of in-

�nite innermost
hains, for TRSs with the unique normal form property,

narrowing dependen
y pairs preserves the su

ess of the innermost termi-

nation proof. So we may narrow dependen
y pairs without the risk that the

new pairs we obtain form an in�nite innermost
hain, whereas the original

system is innermost terminating. Thus, in Thm. 6 and 8 when repla
ing the

dependen
y pairs of R by their narrowings, one still obtains a suÆ
ient and

ne
essary
riterion for innermost termination.

Moreover, narrowing
an of
ourse be repeated an arbitrary number of

times. Thus, after repla
ing (10) by (10a) - (10
), we may subsequently

repla
e (10a) and (10b) by their respe
tive narrowings.

hIF

1

(x; 0; true); IF

2

(x; 0; true)i (10aa)

hIF

1

(nil; s(n); true); IF

2

(nil; s(n); true)i (10ba)

This ex
ludes them from being on a
y
le in the estimated innermost de-

penden
y graph. Thus, now instead of the dependen
y pairs (9) - (13) we

onsider (9), (10
), (11), (12), and (13). A further narrowing of (10
) is not

ne
essary for our purposes (but a

ording to Thm. 13 it would not harm

either). The right
omponent of the dependen
y pair (11) uni�es with the

left
omponent of (9) and therefore, (11) must not be narrowed. Instead we

narrow (9).

hPROCESS(nil;m); IF

1

(nil;m; leq(m; 0))i (9a)

hPROCESS(
ons(h; t);m); IF

1

(
ons(h; t);m; leq(m; s(length(t))))i (9b)

hPROCESS(store; 0); IF

1

(store; 0; true)i (9
)

By narrowing (10) to (10
), we determined that we only have to regard

instantiations where store has the form
ons(h; t) and m has the form s(n).

Thus, (9a) and (9
) do not o

ur on a
y
le and therefore, (9)
an be repla
ed

by (9b) only.

As (11)'s right
omponent does not unify with left
omponents any

longer, we may now narrow (11) as well. By repeated narrowing steps and

by dropping those pairs whi
h do not o

ur on
y
les, (11)
an be repla
ed

by

hIF

2

(
ons(h; t); s(n); false);PROCESS(sndsplit(n; t); s(n))i (11aa
)

18 J�urgen Giesl, Thomas Arts

hIF

2

(
ons(h; t); s(n); false);PROCESS(app(nil; sndsplit(n; t)); s(n))i (11ad)

hIF

2

(
ons(h; t); s(n); false);

PROCESS(app(map f(self; nil); sndsplit(n; t)); s(n))i (11d)

Now for the
y
le P

1

, it is (for example) suÆ
ient to demand that (11aa
),

(11ad), and (11d) are stri
tly de
reasing and that (9b), (10
), and all usable

rules are weakly de
reasing. Similar narrowings
an also be applied for the

pairs (12) and (13) whi
h results in analogous inequalities for the
y
les P

2

and P

3

.

Most standard orderings amenable to automation are strongly mono-

toni
 path orderings (
f. e.g. [14,31℄), whereas here we only need weak

monotoni
ity. Hen
e, before synthesizing a suitable ordering, some of the

arguments of fun
tion symbols may be eliminated,
f. [8℄. For example, in

our inequalities one may eliminate the third argument of IF

2

. Then every

term IF

2

(t

1

; t

2

; t

3

) in the inequalities is repla
ed by IF

0

2

(t

1

; t

2

) (where IF

0

2

is a new binary fun
tion symbol). By
omparing the terms resulting from

this repla
ement instead of the original terms, we
an take advantage of

the fa
t that IF

2

does not have to be strongly monotoni
 in its third argu-

ment. Similarly, in our example we will also eliminate the third arguments

of IF

1

and IF

3

and the �rst argument of sndsplit. Note that there are only

�nitely many (and only few) possibilities to eliminate arguments of fun
tion

symbols. Therefore all these possibilities
an be
he
ked automati
ally. In

this way, the re
ursive path ordering (rpo) [14℄ satis�es the inequalities for

(11aa
), (9b), (10
), for the dependen
y pairs resulting from (12) and (13),

and for all (known) usable rules. However, the inequalities resulting from

(11ad) and (11d)

IF

0

2

(
ons(h; t); s(n)) > PROCESS(app(nil; sndsplit

0

(t)); s(n))

IF

0

2

(
ons(h; t); s(n)) > PROCESS(app(map f(self; nil); sndsplit

0

(t)); s(n))

are not satis�ed be
ause of the app-terms on the right-hand sides (as the

app-rules for
e app to be greater than
ons in the pre
eden
e of the rpo).

Moreover, the map f-term in the inequalities requires us to
onsider the

usable rules
orresponding to the (unspe
i�ed) Erlang fun
tion f as well.

To get rid of these terms, one would like to perform narrowing on map f

and app. However, in general narrowing only some subterms of right
om-

ponents is unsound.

6

Instead, we always have to repla
e a pair by all its

narrowings. But then narrowing (11ad) and (11d) provides no solution here,

sin
e narrowing the sndsplit-subterm results in pairs
ontaining problemati

app- and map f-terms again. In the next se
tion we des
ribe a te
hnique

whi
h solves the above problem.

6

As an example regard the TRS f(0; 1) ! s(1), f(x; 0) ! 1, a ! 0, and

g(s(y))! g(f(a; y)). If we would repla
e the dependen
y pair hG(s(y));G(f(a; y))i

by only one of its narrowings, viz. hG(s(0));G(1)i, then one
ould falsely prove

innermost termination, although the term g(s(1)) starts an in�nite innermost re-

du
tion.

Veri�
ation of Erlang Pro
esses by Dependen
y Pairs 19

6 Rewriting Dependen
y Pairs

While performing only some narrowing steps is unsound, for non-over-

lapping TRSs it is at least sound to perform only one of the possible rewrite

steps. So if t! r, then we may repla
e a dependen
y pair hs; ti by hs; ri.

Note that this te
hnique is only appli
able to dependen
y pairs, but not

to rules of the TRS. Indeed, by redu
ing the right-hand side of a rule, a

non (innermost) terminating TRS
an be transformed into a terminating

one, even if the TRS is non-overlapping. As an example regard the TRS

with the rules 0 ! f(0), f(x)! 1 whi
h is
learly not innermost terminat-

ing. However, if the right-hand side of the �rst rule is rewritten to 1, then

the resulting TRS is terminating. The following theorem proves that our

re�nement of the dependen
y pair approa
h is sound.

Theorem 14 (Rewriting Pairs) Let R be non-overlapping and let P be

a set of pairs of terms. Let hs; ti 2 P, let t!

R

r and let P

0

result from P

by repla
ing hs; ti with hs; ri. If there exists no in�nite innermost
hain of

pairs from P

0

, then there exists no in�nite innermost
hain from P either.

Proof By repla
ing all (renamed) o

urren
es of hs; ti with the
orrespond-

ing renamed o

urren
es of hs; ri, every innermost
hain : : : hs; ti hv; wi : : :

from P
an be translated into an innermost
hain from P

0

of same length.

The reason is that there must be a substitution � with t�

i

!

�

R

v� where

v� is a normal form. So t� is weakly innermost terminating

7

and as R is

non-overlapping, by [22, Thm. 3.2.11 (1a) and (4a)℄ t� is
on
uent and ter-

minating. With t!

R

r, we obtain t�!

R

r�. Hen
e, r� is terminating as

well and thus, it also redu
es innermost to some normal form q. Now
on-

uen
e of t� implies q = v�. Therefore, : : : hs; ri hv; wi : : : is an innermost

hain, too. ut

The above theorem enables us to perform a rewrite step in the right-hand

side of a dependen
y pair and to
ontinue with this dependen
y pair instead

of the original one. Note that a weakening of Thm. 14 by just demanding

innermost
on
uen
e instead of non-overlappingness of R is not possible;

not even if we only allow innermost redu
tions in the right-hand side of

a dependen
y pair. As a
ounterexample
onsider h(f(x)) ! h(g(s(x))),

h(g(a)) ! h(f(a)), g(s(x)) ! b, s(a) ! a. This TRS is innermost
on
u-

ent, but not innermost terminating (sin
e h(f(a)) starts a
y
ling redu
-

tion). Thus, the set P of all dependen
y pairs forms an in�nite innermost

hain. But if we perform an innermost rewrite step on the dependen
y pair

hH(f(x));H(g(s(x)))i, then it is repla
ed by hH(f(x));H(b)i. Now the result-

ing set of pairs has no in�nite innermost
hains any more, and thus, we

ould falsely
on
lude innermost termination.

7

We
all a term t (innermost) terminating if all (innermost) redu
tions starting

in t are �nite. Analogously, t is weakly (innermost) terminating if there exists a

�nite (innermost) redu
tion starting in t.

20 J�urgen Giesl, Thomas Arts

However, the demand that the TRS should be non-overlapping may be

weakened by demanding that it is innermost normal form preserving, i.e.,

for any term t, whenever s

i

�

t! r holds for a normal form s, then r

i

!

�

s.

Non-overlapping TRSs are innermost normal form preserving, but not vi
e

versa (
onsider a ! a, a ! b). In pra
ti
e, however, the above version of

Thm. 14 is most important, sin
e it is usually mu
h easier to show that a

TRS is non-overlapping than that it is innermost normal form preserving.

The
onverse of Thm. 14 holds as well if P is obtained from the de-

penden
y pairs by repeated narrowing and rewriting steps. So similar to

narrowing, rewriting dependen
y pairs also preserves the ne
essity of our

riterion.

Theorem 15 (Rewriting Pairs Preserves Completeness) Let R be

an innermost terminating TRS with the unique normal form property and

let P, P

0

be as in Thm. 14. If there exists no in�nite innermost R-
hain of

pairs from P, then there exists no in�nite innermost R-
hain of pairs from

P

0

either.

Proof In an innermost
hain : : : hs; ri hv; wi : : : from P

0

, repla
ing all (re-

named) o

urren
es of hs; ri by
orresponding renamings of hs; ti yields an

innermost
hain from P of same length. The reason is that there must be

a � with r�

i

!

�

R

v�. As R is innermost terminating, there must be a nor-

mal form q whi
h is rea
hable from t� by innermost redu
tion steps, i.e.,

t�

i

!

�

R

q. Thus, t�!

R

r�

i

!

�

R

v� implies q = v� by the unique normal

form property of R, and hen
e, t�

i

!

�

R

v�. ut

In our example we may now eliminate app and map f by rewriting the

pairs (11ad) and (11d). Even better, before narrowing, we
ould �rst rewrite

(11), (12), and (13). Moreover, we
ould simplify (10
) by rewriting it as

well. Thus, the resulting pairs on the
y
les we are interested in are:

hPROCESS(
ons(h; t);m); IF

1

(
ons(h; t);m; leq(m; s(length(t))))i (9b)

hIF

1

(
ons(h; t); s(n); true); IF

2

(
ons(h; t); s(n); false)i (10

0

)

hIF

2

(store;m; false);PROCESS(sndsplit(m; store);m)i (11

0

)

hIF

1

(store;m; false); IF

3

(store;m; empty(fstsplit(m; store)))i (12

0

)

hIF

3

(store;m; false);PROCESS(sndsplit(m; store);m)i (13

0

)

Analogous to Se
t. 5, now we narrow (11

0

), (12

0

), (13

0

), perform a rewrite

step for one of (12

0

)'s narrowings, and delete those resulting pairs whi
h are

not on any
y
le. In this way, (11

0

), (12

0

), (13

0

) are repla
ed by

hIF

2

(
ons(h; t); s(n); false);PROCESS(sndsplit(n; t); s(n))i (11

00

)

hIF

1

(
ons(h; t); s(n); false); IF

3

(
ons(h; t); s(n); false)i (12

00

)

hIF

3

(
ons(h; t); s(n); false);PROCESS(sndsplit(n; t); s(n))i (13

00

)

By eliminating the �rst argument of sndsplit and the third arguments of

IF

1

, IF

2

, and IF

3

(
f. Se
t. 5), we obtain the following inequalities. Note

Veri�
ation of Erlang Pro
esses by Dependen
y Pairs 21

that a

ording to Thm. 10, these inequalities prove the absen
e of in�nite

innermost
hains for all three
y
les built from (9b), (10

0

), and (11

00

) -

(13

00

), sin
e for ea
h of these
y
les (at least) one of its dependen
y pairs is

stri
tly de
reasing.

PROCESS(
ons(h; t);m) � IF

0

1

(
ons(h; t);m)

IF

0

1

(
ons(h; t); s(n)) � IF

0

2

(
ons(h; t); s(n))

IF

0

1

(
ons(h; t); s(n)) � IF

0

3

(
ons(h; t); s(n))

IF

0

2

(
ons(h; t); s(n)) > PROCESS(sndsplit

0

(t); s(n))

IF

0

3

(
ons(h; t); s(n)) > PROCESS(sndsplit

0

(t); s(n))

sndsplit

0

(x) � x

sndsplit

0

(nil) � nil

sndsplit

0

(
ons(h; t)) � sndsplit

0

(t)

l � r for all rules l! r with root(l) 2 fleq; lengthg

Now these inequalities are satis�ed by the rpo. The sndsplit

0

-, leq-, and

length-inequalities are the only ones whi
h
orrespond to the usable rules,

sin
e the rules formap f and f are no longer usable. Hen
e, the TRS of Se
t. 3

is innermost terminating. In this way, left-right de
reasingness of the CTRS

from Se
t. 2
ould be proved automati
ally. Therefore, the desired property

holds for the original Erlang pro
ess.

7 Verifying Networks of Pro
esses

In many appli
ations, one is not only interested in verifying
ertain prop-

erties of a single pro
ess in a network, but instead one wants to verify a

property of the whole network of pro
esses. If these pro
esses work asyn-

hronously, then the exa
t order of the messages passed through the network

is often indeterministi
. Modelling this kind of behaviour usually results in

TRSs whi
h are overlapping (and in fa
t, not
on
uent).

In this se
tion we extend the well-known result that innermost termi-

nation of non-overlapping TRSs implies their termination to the
lass of

overlapping TRSs whi
h result from des
ribing pro
ess networks in our

framework. Then we show that our te
hniques of narrowing and rewrit-

ing dependen
y pairs
an also be applied to overlapping TRSs. Moreover,

we introdu
e a third te
hnique to modify dependen
y pairs, viz. instan-

tiating dependen
y pairs, whi
h is parti
ularly useful when dealing with

non-
on
uent TRSs. With these extensions, we show how an important

property for a network of Erlang pro
esses
ould be su

essfully veri�ed.

In this veri�
ation problem, we have a ring of three asyn
hronous pro-

esses (similar to the pro
ess des
ribed in Se
t. 2). The aim is to prove that

if the �rst pro
ess disregards its input (i.e., it performs as if it repeatedly

gets the empty list as input), then eventually, the third pro
ess will also send

the empty list. Of
ourse, if one
an prove this for a ring of three pro
esses,

then a similar proof for any other number of pro
esses works analogously.

22 J�urgen Giesl, Thomas Arts

To model this situation, we use a CTRS similar to the one of Se
t. 2.

However, as we have to regard all three pro
esses simultaneously, we need a

new de�ned symbol ring to des
ribe the
urrent state of the whole network.

The term

ring(st

1

; in

2

; st

2

; in

3

; st

3

;m)

des
ribes a situation where the stores of the pro
esses 1, 2, and 3 have

the values st

1

, st

2

, and st

3

, respe
tively. The variable in

2

is a list of lists

ontaining all messages whi
h have been sent from Pro
ess 1 to Pro
ess 2,

but whi
h have not yet been re
eived by Pro
ess 2. Similarly, in

3

is the

list of those messages sent from Pro
ess 2 to Pro
ess 3, whi
h have not yet

been re
eived by Pro
ess 3. The messages sent from Pro
ess 3 to Pro
ess

1 are ignored, be
ause in our veri�
ation problem we assume that Pro
ess

1 re
eives no new input any more. Again, m is the (maximum) length of

messages allowed.

In order to prove the desired
onje
ture, we for
e the redu
tion to termi-

nate as soon as all pro
esses in the ring
an only send the empty message. In

addition to the auxiliary fun
tions of Se
t. 2 we now also need the fun
tions

head and tail whi
h are de�ned by the following rules.

head(
ons(h; t))! h tail(
ons(h; t))! t

The CTRS to des
ribe the behaviour of the three pro
esses in the ring

is the following one.

empty(fstsplit(m; st

1

))!

�

false j

ring(st

1

; in

2

; st

2

; in

3

; st

3

;m)!

ring(sndsplit(m; st

1

);
ons(fstsplit(m; st

1

); in

2

); st

2

; in

3

; st

3

;m) (17)

leq(m; length(st

2

))!

�

true;

empty(fstsplit(m; st

2

))!

�

false j

ring(st

1

; in

2

; st

2

; in

3

; st

3

;m)!

ring(st

1

; in

2

; sndsplit(m; st

2

);
ons(fstsplit(m; st

2

); in

3

); st

3

;m) (18)

leq(m; length(st

2

))!

�

false;

empty(fstsplit(m; app(map f(2; head(in

2

)); st

2

)))!

�

false j

ring(st

1

; in

2

; st

2

; in

3

; st

3

;m)!

ring(st

1

; tail(in

2

); sndsplit(m; app(map f(2; head(in

2

)); st

2

));

ons(fstsplit(m; app(map f(2; head(in

2

)); st

2

)); in

3

); st

3

;m) (19)

Veri�
ation of Erlang Pro
esses by Dependen
y Pairs 23

empty(map f(2; head(in

2

)))!

�

true j

ring(st

1

; in

2

; st

2

; in

3

; st

3

;m)! ring(st

1

; tail(in

2

); st

2

; in

3

; st

3

;m) (20)

leq(m; length(st

3

))!

�

true;

empty(fstsplit(m; st

3

))!

�

false j

ring(st

1

; in

2

; st

2

; in

3

; st

3

;m)!

ring(st

1

; in

2

; st

2

; in

3

; sndsplit(m; st

3

);m) (21)

leq(m; length(st

3

))!

�

false;

empty(fstsplit(m; app(map f(3; head(in

3

)); st

3

)))!

�

false j

ring(st

1

; in

2

; st

2

; in

3

; st

3

;m)!

ring(st

1

; in

2

; st

2

; tail(in

3

); sndsplit(m; app(map f(3; head(in

3

)); st

3

));m) (22)

empty(map f(3; head(in

3

)))!

�

true j

ring(st

1

; in

2

; st

2

; in

3

; st

3

;m)! ring(st

1

; in

2

; st

2

; tail(in

3

); st

3

;m) (23)

Rule (17) des
ribes how Pro
ess 1 sends a message
onsisting of the �rst

m items in its store st

1

. To that end, fstsplit(m; st

1

) is added to those other

items in

2

whi
h were already sent as an input to Pro
ess 2, but whi
h have

not yet been re
eived by this next pro
ess. These �rst m items are taken

out of the store st

1

, i.e., its new value is sndsplit(m; st

1

).

The rules (18) and (19) des
ribe the
ase where Pro
ess 2 sends a mes-

sage. If its store already
ontains at leastm items, then Rule (18) applies and

the �rst m items fstsplit(m; st

2

) are dire
tly sent to Pro
ess 3, after whi
h

these items are removed from its store. Otherwise, if st

2

ontains less than

m items, then Rule (19) is used to re
eive one of the in
oming messages from

in

2

, i.e., in

2

is repla
ed by tail(in

2

). For these re
eived items head(in

2

), the

pro
ess
omputes new items map f(2; head(in

2

)) and appends these newly

omputed items to its store. Afterwards it sends the �rst m items of the

new extended store to Pro
ess 3.

Finally, Rule (20) deletes those messages from in

2

that Pro
ess 2 would

not generate any new items from (i.e., where map f(2; head(in

2

)) is empty).

This rule is required in order to allow Pro
ess 2 to
ontinue re
eiving

messages from tail(in

2

), even if fstsplit(m; app(map f(2; head(in

2

)); st

2

)) is

empty.

Similarly, Rules (21) and (22) des
ribe the sending of messages by Pro-

ess 3. The only di�eren
e is that messages sent by Pro
ess 3 are not deliv-

ered to Pro
ess 1 again, but they are ignored. Analogous to Rule (20), Rule

(23) is used to remove those messages from in

3

for whi
h Pro
ess 3 does

not
ompute new items. The ring-term will be irredu
ible as soon as none

of the pro
esses
an send a non-empty message any longer.

24 J�urgen Giesl, Thomas Arts

To prove the desired
onje
ture, we have to show that this CTRS is

left-right de
reasing. Note that this CTRS indeed models an asyn
hronous

behaviour of the pro
esses. The reason is that we do not determine in whi
h

order the pro
esses send messages to the next pro
ess in the ring. Conse-

quently, the translation of this CTRS yields a non-
on
uent un
onditional

TRS. In the following TRS, \. . . " abbreviates the arguments \st

1

; in

2

; st

2

;

in

3

; st

3

;m".

ring(: : :) ! if

1

(: : : ; empty(fstsplit(m; st

1

))) (24)

if

1

(: : : ; false) ! ring(sndsplit(m; st

1

);
ons(fstsplit(m; st

1

); in

2

); st

2

; in

3

; st

3

;m)

(25)

ring(: : :) ! if

2

(: : : ; leq(m; length(st

2

))) (26)

if

2

(: : : ; true) ! if

3

(: : : ; empty(fstsplit(m; st

2

))) (27)

if

3

(: : : ; false) ! ring(st

1

; in

2

; sndsplit(m; st

2

);
ons(fstsplit(m; st

2

); in

3

); st

3

;m)

(28)

if

2

(: : : ; false) ! if

4

(: : : ; empty(fstsplit(m; app(map f(2; head(in

2

)); st

2

)))) (29)

if

4

(: : : ; false) ! ring(st

1

; tail(in

2

); sndsplit(m; app(map f(2; head(in

2

)); st

2

));

ons(fstsplit(m; app(map f(2; head(in

2

)); st

2

)); in

3

); st

3

;m)

(30)

ring(: : :) ! if

5

(: : : ; empty(map f(2; head(in

2

)))) (31)

if

5

(: : : ; true) ! ring(st

1

; tail(in

2

); st

2

; in

3

; st

3

;m) (32)

ring(: : :) ! if

6

(: : : ; leq(m; length(st

3

))) (33)

if

6

(: : : ; true) ! if

7

(: : : ; empty(fstsplit(m; st

3

))) (34)

if

7

(: : : ; false) ! ring(st

1

; in

2

; st

2

; in

3

; sndsplit(m; st

3

);m) (35)

if

6

(: : : ; false) ! if

8

(: : : ; empty(fstsplit(m; app(map f(3; head(in

3

)); st

3

)))) (36)

if

8

(: : : ; false) ! ring(st

1

; in

2

; st

2

; tail(in

3

);

sndsplit(m; app(map f(3; head(in

3

)); st

3

));m) (37)

ring(: : :) ! if

9

(: : : ; empty(map f(3; head(in

3

)))) (38)

if

9

(: : : ; true) ! ring(st

1

; in

2

; st

2

; tail(in

3

); st

3

;m) (39)

A

ording to Corollary 3 now it suÆ
es to show that this TRS is termi-

nating. Note that this TRS is obviously not simply terminating. For exam-

ple, by adding the embedding rules fstsplit(m; st

1

)! st

1

, sndsplit(m; st

1

)!

st

1

, empty(l) ! l, and
ons(h; t) ! t to the �rst two rules (24) and (25),

one
an obtain a
y
ling redu
tion of ring(false; in

2

; st

2

; in

3

; st

3

;m) to itself.

Veri�
ation of Erlang Pro
esses by Dependen
y Pairs 25

In fa
t, to prove termination of this TRS using the dependen
y pair

approa
h in
ombination with simpli�
ation orderings, we again need our

re�nements of narrowing and rewriting dependen
y pairs. However, re
all

that the re�nements of the theorems 12 - 15 were restri
ted to innermost

termination proofs. In the example of Se
t. 3, the resulting TRS was non-

overlapping and thus, innermost termination was enough to
on
lude its

termination. However, now we have a TRS whi
h is not
on
uent and hen
e,

none of the existing results for proving termination by innermost termina-

tion is appli
able.

Nevertheless, the following theorem shows that for TRSs like the one

in our example, innermost termination still implies termination. Note that

our TRS is a hierar
hi
al
ombination of a non-overlapping TRS R

1

(whi
h

de�nes the auxiliary fun
tions) and an overlapping TRS R

2

with the ring-

and if-rules to des
ribe the network veri�
ation problem. In fa
t, TRSs of

this form o

ur frequently in the pro
ess veri�
ation domain, sin
e the aux-

iliary Erlang fun
tions always result in non-overlapping rules, whereas the

des
ription of an asyn
hronous pro
ess network often requires overlapping

rules. The following theorem gives a synta
ti
al
hara
terization of these

TRSs, and it shows that for su
h systems, innermost termination already

implies termination. Hen
e, this theorem is an important result in order to

fa
ilitate their termination proofs.

Theorem 16 (SuÆ
ien
y of Innermost Termination) Let R = R

1

[

R

2

, where R

1

is non-overlapping, R

2

is non-
ollapsing, and R

2

-rules do

not form
riti
al pairs with R

1

-rules. Let �
ontain all root symbols of

left- and right-hand sides of R

2

-rules, i.e., � = froot(l)j l ! r 2 R

2

g [

froot(r)j l ! r 2 R

2

g. If no R

1

-rule
ontains symbols from � and if

no R

2

-rule
ontains symbols from � below the root level, then innermost

termination of R implies termination of R.

Proof For any ground term t, we write t = C[[t

1

; : : : ; t

n

℄℄ provided that C is

a non-empty
ontext (i.e., C 6= 2) whi
h does not
ontain symbols from �

below the root level and provided that root(t

i

) 2 � for all 1 � i � n. Now

it is easy to see that if t = C[[t

1

; : : : ; t

n

℄℄ and t !

R

s, then we have one of

the following three possibilities:

(i) s = C[[t

1

; : : : ; t

i�1

; s

i

; t

i+1

; : : : ; t

n

℄℄ and t

i

!

R

s

i

for some 1 � i � n

(in this
ase, we speak of a bottom rewrite step)

(ii) s = C

0

[[s

1

; : : : ; s

m

℄℄, C !

R

C

0

, and fs

1

; : : : ; s

m

g � ft

1

; : : : ; t

n

g

(in this
ase, we speak of a top rewrite step)

(iii) s = t

i

for some 1 � i � n

(in this
ase, we have a top
ollapsing rewrite step).

The reason is that redu
ing a term t with root(t) 2 � again yields a term

whose root is from � and that symbols of � do not o

ur below the root

level in any rule of R. Thus, if the root of the redex is in C, then we really

must have a step of the form (ii) or (iii).

26 J�urgen Giesl, Thomas Arts

Now assume that R is innermost terminating, but not terminating. Let t

be a minimal ground term (w.r.t. the subterm relation) su
h that t starts an

in�niteR-redu
tion. Again, we must have t = C[[t

1

; : : : ; t

n

℄℄ for some
ontext

C. Due to the minimality of t, its subterms t

1

; : : : ; t

n

are terminating. Thus,

in the in�nite redu
tion of t, there
annot be any top
ollapsing rewrite step

and there
an only be �nitely many bottom rewrite steps. Hen
e, C starts

an in�nite R-redu
tion as well.

In other words, if R is not terminating, then there exists a non-termina-

ting
ontext C whi
h does not
ontain any �-symbol below the root level.

To use standard notation, we will now denote this
ontext C by q, sin
e a

ontext is just a term possibly
ontaining `2' symbols.

First suppose that q does not
ontain any �-symbol at all. Then the only

rules appli
able in any redu
tion of q are from R

1

. However, R's innermost

termination implies that all innermost redu
tions starting from q are �nite.

Thus, q is innermost terminating w.r.t. R

1

and sin
e R

1

is non-overlapping,

by [22, Thm. 3.2.11 (1a)℄ we know that q is also terminating, whi
h yields

a
ontradi
tion.

Thus, innermost termination of R in fa
t implies termination of R

1

for

all terms without symbols from �. Now suppose that the root of q is from

�, i.e., q has the form f

0

(s

0

) with f

0

2 � and s

0

are terms without symbols

from �. Thus, the in�nite R-redu
tion of f

0

(s

0

) must have the following

form.

f

0

(s

0

)!

�

R

1

f

0

(t

0

)!

R

2

f

1

(s

1

)!

�

R

1

f

1

(t

1

)!

R

2

f

2

(s

2

)!

�

R

1

: : :

Here, we have f

i

2 � for all i, the terms s

i

and t

i

do not
ontain any

symbols from �, and we have s

i

!

�

R

1

t

i

.

Hen
e, there must be substitutions �

i

and rules f

i

(l

i

) ! f

i+1

(r

i

) in

R

2

su
h that l

i

�

i

= t

i

and r

i

�

i

= s

i+1

. Let �

0

i

be the substitution with

�

0

i

(x) = (�

i

(x)) #

R

1

. (For terms without symbols from �, the normal form

w.r.t. R

1

is well de�ned, sin
e these terms are terminating and R

1

is non-

overlapping.) Sin
e R

2

does not form
riti
al pairs with R

1

-rules, we have

l

i

�

0

i

= (l

i

�

i

) #

R

1

= t

i

#

R

1

= s

i

#

R

1

. Moreover, we have (r

i

�

0

i

) #

R

1

= s

i+1

#

R

1

by the
onvergen
e of R

1

for terms without symbols from �. This implies

f

0

(s

0

#

R

1

)!

R

2

f

1

(r

0

�

0

0

)!

�

R

1

f

1

(s

1

#

R

1

)!

R

2

f

2

(r

1

�

0

1

)!

�

R

1

f

2

(s

2

#

R

1

)!

R

2

: : :

Sin
e R

1

is terminating, we
an use innermost steps to redu
e ea
h

r

i

�

0

i

to its normal form s

i+1

#

R

1

. Moreover, all the R

2

-steps in the above

redu
tion are innermost steps as well, sin
e the arguments s

i

#

R

1

are in

normal form. Thus, the above redu
tion is an in�nite innermost redu
tion,

whi
h yields a
ontradi
tion to the innermost termination of R. ut

Thus in our example, innermost termination of the transformed TRS

indeed implies termination of the TRS and thus, it implies left-right de-

reasingness of the original CTRS. Hen
e, in this way the property of the

pro
ess network
an be proved.

Veri�
ation of Erlang Pro
esses by Dependen
y Pairs 27

As indi
ated, to perform this innermost termination proof, we again need

our re�nements of narrowing and rewriting dependen
y pairs. However, as

this TRS is not
on
uent, for this purpose these te
hniques now have to be

extended to overlapping TRSs.

It turns out that su
h an extension is indeed possible, be
ause for the

theorems 13 - 15 it is in fa
t suÆ
ient to demand non-overlappingness (resp.

the unique normal form property) just for the usable rules U(P) instead of

the whole TRS R. In our example, the usable rules of the RING-
y
les only

onsist of the rules for the auxiliary fun
tions, i.e., the rules (24) - (39)

are not usable. As demonstrated in Se
t. 2, these auxiliary rules are non-

overlapping. Thus, the following extensions of the theorems 13 - 15 allow us

to apply our new te
hniques for TRSs like the one above, too. In this way,

onje
tures about asyn
hronous networks of pro
esses
an now be veri�ed

by dependen
y pairs as well.

Theorem 17 (Completeness of Narrowing for Non-Con
uent Sys-

tems) Let R be an innermost terminating TRS, let P, P

0

be as in Thm.

12 and let U(P) have the unique normal form property. If there exists no

in�nite innermost R-
hain of pairs from P, then there exists no in�nite

innermost R-
hain of pairs from P

0

either.

Proof The proof is similar to the one of Thm. 13. The only di�eren
e is

the proof that t�!

�

R

v

2

� implies t�

i

!

�

R

v

2

� for the normal form v

2

�. The

reason is that innermost termination ofR implies that there must exist some

normal form q su
h that t�

i

!

�

R

q. Note that all rules used in any redu
tion

of t� are
ontained in U(P). Thus, the unique normal form property of U(P)

is enough to
on
lude q = v

2

�. ut

Theorem 18 (Rewriting Pairs for Non-Con
uent TRSs) Let R be a

TRS and let P be a set of pairs of terms su
h that U(P) is non-overlapping.

Let hs; ti 2 P, let t !

R

r and let P

0

result from P by repla
ing hs; ti with

hs; ri. If there exists no in�nite innermost
hain of pairs from P

0

, then there

exists no in�nite innermost
hain from P either.

Proof Again, the proof is similar to the proof of Thm. 14. The only ex-

tra observation needed is that t�

i

!

�

R

v� implies t�

i

!

�

U(P)

v�, sin
e all

rules appli
able in a redu
tion of t� are
ontained in U(P). Hen
e, by non-

overlappingness of U(P) we
an apply [22, Thm. 3.2.11 (1a) and (4a)℄ to

on
lude termination and
on
uen
e of t� w.r.t. U(P). But as all rules ap-

pli
able in redu
tions of t� are already
ontained in U(P), this means that

t� is terminating and
on
uent w.r.t. R as well. Thus, now the rest of the

proof is identi
al to the one of Thm. 14. ut

Theorem 19 (Completeness of Rewriting for Non-Con
uent TRS)

Let R be an innermost terminating TRS, let P, P

0

be as in Thm. 18, and

let U(P) have the unique normal form property. If there exists no in�nite

innermost R-
hain of pairs from P, then there exists no in�nite innermost

R-
hain of pairs from P

0

either.

28 J�urgen Giesl, Thomas Arts

Proof The
hanges to the proof of Thm. 15 are similar as in the proof

of Thm. 17. We have t�!

�

R

v� for some normal form v� and innermost

termination of R implies t�

i

!

�

R

q for some normal form q. Again, all these

redu
tion steps only use rules from U(P). Thus, U(P)'s unique normal form

property implies v� = q. ut

Note that with these re�ned theorems we
an also handle TRSs where

di�erent, but equivalent if-symbols are not identi�ed (
f. Se
t. 3). However

in pra
ti
e, su
h an identi�
ation is still useful, sin
e it simpli�es the TRSs

onsiderably.

In parti
ular, due to the above extended theorems, now we may apply

narrowing and rewriting to the dependen
y pairs resulting from the rules

(24) - (39). The only dependen
y pair resulting from Rule (24) whi
h is on a

y
le is hRING(: : :); IF

1

(: : :)i. Narrowing and rewriting this dependen
y pair

(and deleting those resulting pairs whi
h are not on
y
les) yields

hRING(
ons(h; t); : : : ; s(n)); IF

1

(
ons(h; t); : : : ; s(n); false)i: (40)

Next we regard the dependen
y pair hIF

1

(: : :); RING(: : :)i resulting from

Rule (25). One would like to perform narrowing on this dependen
y pair.

However, this is not possible sin
e its right-hand side uni�es with the left-

hand sides of the dependen
y pairs resulting from the rules (26), (31), (33),

and (38). In fa
t, this problem is typi
al when regarding overlapping TRSs.

Nevertheless, the only pair whi
h may o

ur before hIF

1

(: : :); RING(: : :)i

in an innermost
hain is (40). When regarding (40), one immediately sees

that therefore one only has to regard instantiations of hIF

1

(: : :); RING(: : :)i

where st

1

is repla
ed by
ons(h; t) and m is repla
ed by s(n).

Re
all that when estimating the innermost dependen
y graph, for every

dependen
y pair hs; ti we
he
k for whi
h (renamings of) dependen
y pairs

hv; wi,
ap(w) uni�es with s (where their mgu must satisfy some additional

normality
ondition). Here,
ap(w) results from repla
ing all subterms of

w with de�ned root symbols by di�erent fresh variables. Let �

1

; : : : ; �

k

be

all mgu's of s and terms of the form
ap(w). Then one may repla
e the

dependen
y pair hs; ti by its instantiations hs�

1

; t�

1

i, . . . , hs�

k

; t�

k

i, sin
e

(spe
ializations of) these instantiations are the only ones that are needed

in in�nite innermost
hains. This leads to the te
hnique of instantiating

dependen
y pairs.

Theorem 20 (Instantiating Pairs) Let P be a set of pairs of terms with

hs; ti 2 P and let Var(w) � Var(v) for all hv; wi 2 P. Let

P

0

= P n fhs; tig [fhs�; t�i j� = mgu(
ap(w); s); hv; wi 2 Pg;

where we again assume that di�erent o

urren
es of pairs from P are vari-

able disjoint. Then there exists no in�nite innermost
hain of pairs from P

0

i� there exists no in�nite innermost
hain of pairs from P.

Veri�
ation of Erlang Pro
esses by Dependen
y Pairs 29

Proof If : : : hv

1

; w

1

i hs; ti hv

2

; w

2

i : : : is an innermost
hain, then there exists

a substitution � su
h that w

1

�

i

!

�

R

s�. Let w

1

have the form C[p

1

; : : : ; p

n

℄,

where the
ontext C
ontains no de�ned symbols and all p

i

have a de�ned

root symbol. As redu
tions
annot take pla
e in � (sin
e otherwise, v

1

�

would not be a normal form), we know that s� = C�[q

1

; : : : ; q

n

℄ where

p

i

�

i

!

�

R

q

i

.

We have
ap(w

1

) = C[y

1

; : : : ; y

n

℄, where the y

i

are fresh variables. Let �

0

be the modi�
ation of � su
h that �

0

(y

i

) = q

i

. Then we obtain
ap(w

1

)�

0

=

s� = s�

0

, i.e.,
ap(w

1

) and s are uni�able. Let � be the mgu of
ap(w

1

) and

s. Thus, there exists a substitution � su
h that �

0

= �� . As the variables

of all (o

urren
es of all) pairs may be assumed disjoint, we may modify �

to behave like � on the variables of hs�; t�i. Then we have w

1

�

i

!

�

R

s� =

s�

0

= s�� = (s�)� and we also have (t�)� = t�� = t�

i

!

�

R

v

2

�. Thus,

: : : hv

1

; w

1

i hs�; t�i hv

2

; w

2

i : : : is an innermost
hain, too.

In this way, one
an repla
e all o

urren
es of hs; ti in innermost
hains

by pairs of P

0

, ex
ept for the very �rst pair in the
hain. However, if

hs; ti hv

1

; w

1

i hv

2

; w

2

i : : : is an in�nite innermost
hain, then hv

1

; w

1

i hv

2

; w

2

i

: : : is an in�nite innermost
hain as well. Thus, by deleting the possibly re-

maining �rst o

urren
e of hs; ti in the end, every in�nite innermost
hain

of P
an indeed be transformed into an in�nite innermost
hain of P

0

.

For the other dire
tion, let : : : hs�; t�i : : : be an innermost
hain. As

di�erent o

urren
es of dependen
y pairs may be assumed variable disjoint,

we
an extend every substitution � to behave like �� on the variables of s.

Hen
e, this dire
tion of the theorem is immediately proved. ut

It should be remarked that the te
hnique of instantiating dependen
y

pairs
an also be used for termination instead of innermost termination

proofs. When using dependen
y pairs for arbitrary termination proofs, one

has to prove absen
e of in�nite
hains (instead of innermost
hains), where

hs

1

; t

1

i hs

2

; t

2

i : : : is an R-
hain if there exists a substitution � su
h that

t

j

� !

�

R

s

j+1

� for all
onse
utive pairs hs

j

; t

j

i and hs

j+1

; t

j+1

i,
f. [2,8℄.

Let ren(t) result from renaming all o

urren
es of variables to fresh vari-

ables (in parti
ular, di�erent o

urren
es of the same variable are also re-

named to di�erent new variables). If P

0

= P n fhs; tig [fhs�; t�i j� =

mgu(ren(
ap(w)); s); hv; wi 2 Pg, then there exists no in�nite
hain of

pairs from P

0

i� there exists no in�nite
hain of pairs from P . The proof is

very similar to the proof of Thm. 20. The only di�eren
e is that now we write

w

1

as C[p

1

; : : : p

n

℄ where C
ontains no de�ned symbols or variables and all

p

i

either have a de�ned root symbol or they are variables. Then we know

that s� = C[q

1

; : : : ; q

n

℄ with p

i

� !

�

R

q

i

and ren(
ap(w

1

)) = C[y

1

; : : : ; y

n

℄

where the y

i

are fresh variables. The rest of the proof is
ompletely analo-

gous.

In our example, the only right-hand side of a pair whose
ap uni�es with

the left-hand side IF

1

(st

1

; in

2

; st

2

; in

3

; st

3

;m; false) of the dependen
y pair

from Rule (25) is IF

1

(
ons(h; t); in

2

; st

2

; in

3

; st

3

; s(n); false) from Pair (40).

30 J�urgen Giesl, Thomas Arts

Thus, we
an instantiate st

1

by
ons(h; t) and m by s(n) in the dependen
y

pair hIF

1

(: : :); RING(: : :)i from Rule (25). Subsequent rewriting yields

hIF

1

(
ons(h; t); : : : ; s(n); false); RING(sndsplit(n; t); : : : ; s(n))i: (41)

The only dependen
y pair resulting from Rule (26) whi
h is on a
y
le

is

hRING(: : :); IF

2

(: : : ; leq(m; length(st

2

))i: (42)

For the dependen
y pair hIF

2

(: : :); IF

3

(: : :)i from Rule (27) we pro
eed

in a similar way as for the one from Rule (24) whi
h yields

hIF

2

(: : : ;
ons(h; t); : : : ; s(n); true); IF

3

(: : : ;
ons(h; t); : : : ; s(n); false)i: (43)

Rule (28) gives rise to a dependen
y pair hIF

3

(: : :);RING(: : :)i. The only

dependen
y pair whi
h may pre
ede this one in innermost
hains is (43).

Thus, by the instantiation te
hnique, st

2

an be repla
ed by
ons(h; t) and

m
an be repla
ed by s(n). Subsequent rewriting yields

hIF

3

(st

1

; in

2

;
ons(h; t); : : :); RING(st

1

; in

2

; sndsplit(n; t); : : :)i: (44)

The dependen
y pair hIF

2

(: : :); IF

4

(: : :)i from Rule (29) yields the fol-

lowing narrowing.

hIF

2

(st

1

;
ons(h; t); : : :); IF

4

(st

1

;
ons(h; t); : : :)i (45)

For the dependen
y pair resulting from Rule (30) we only have to regard

the instantiation where in

2

is repla
ed by
ons(h; t). Rewriting this pair

yields

hIF

4

(st

1

;
ons(h; t); : : :); RING(st

1

; t; : : :)i: (46)

Similarly, narrowing the dependen
y pair hRING(: : :); IF

5

(: : :)i from Rule

(31) yields

hRING(st

1

;
ons(h; t); : : :); IF

5

(st

1

;
ons(h; t); : : :)i: (47)

So the dependen
y pair hIF

5

(: : :); RING(: : :)i from Rule (32) only has to

be regarded for the instantiation of in

2

by
ons(h; t) and thus, rewriting it

results in

hIF

5

(st

1

;
ons(h; t); : : :); RING(st

1

; t; : : :)i: (48)

Finally, for the dependen
y pairs resulting from the rules (33) - (39) we

pro
eed in an analogous way and we obtain seven pairs similar to (42) -

(48). Now the resulting
onstraints from the dependen
y pair approa
h are

satis�ed by the lexi
ographi
 path ordering (lpo) [25℄ if one eliminates the

last arguments of all IF-symbols and the �rst argument of sndsplit before

(to bene�t from the fa
t that these symbols do not have to be strongly

monotoni
 in these arguments). In this way, all of the above dependen
y

pairs are weakly de
reasing and the ones with a RING-term as their right

omponent are stri
tly de
reasing. The pre
eden
e used for this lpo should

make RING and the IF-symbols equally great, whereas the tuple symbols

Veri�
ation of Erlang Pro
esses by Dependen
y Pairs 31

should be greater than all lower
ase symbols. Of
ourse, here we assume

that the rules for the fun
tion f are also weakly de
reasing w.r.t. the lpo.

The reason is that now we
onsider a problem where non-empty lists must

be pro
essed and thus, the f-rules are usable as well. Hen
e, as soon as the

a
tual rules for the fun
tion f are determined, their weak de
reasingness has

to be
he
ked.

Thus, in this se
tion we have demonstrated that although asyn
hronous

networks are des
ribed by non-
on
uent (C)TRSs, proving innermost ter-

mination is still suÆ
ient for their termination proof. Subsequently, we have

shown that our te
hniques of rewriting and narrowing dependen
y pairs
an

be extended to TRSs where just the usable rules (i.e., the rules for the aux-

iliary fun
tions) satisfy non-overlappingness requirements. Finally, we have

introdu
ed a third te
hnique for manipulating dependen
y pairs, viz. in-

stantiation. In this way, now dependen
y pairs
an also be used to prove

statements about asyn
hronous networks of pro
esses.

8 Con
lusion

We have shown that the dependen
y pair approa
h
an be su

essfully ap-

plied for pro
ess veri�
ation tasks in industry. While our work was moti-

vated by spe
i�
 pro
ess veri�
ation problems, in this paper we developed

several te
hniques whi
h are of general use in term rewriting.

First of all, we showed how dependen
y pairs
an be utilized to prove

that
onditional term rewriting systems are de
reasing and terminating.

Moreover, we presented three re�nements whi
h
onsiderably in
rease the

lass of systems where dependen
y pairs are su

essful. The �rst re�nement

of narrowing dependen
y pairs for innermost termination was already intro-

du
ed in [8℄. However, [8℄ did not
ontain an expli
it proof of its soundness,

and
ompleteness of the te
hnique for TRSs with unique normal forms is a

new result. It ensures that appli
ation of the narrowing te
hnique preserves

the su

ess of su
h an innermost termination proof. In fa
t, our narrow-

ing re�nement is the main reason why the approa
h of handling CTRSs by

transforming them into TRSs is su

essful in
ombination with the depen-

den
y pair approa
h (whereas this transformation is usually not of mu
h

use for the standard termination proving te
hniques). To strengthen the

power of dependen
y pairs we also introdu
ed the novel te
hnique of rewrit-

ing dependen
y pairs and proved its soundness and
ompleteness for inner-

most termination of non-overlapping TRSs. Finally, the re�nement of in-

stantiating dependen
y pairs was presented and we showed how to lift the

non-overlappingness restri
tions for narrowing and rewriting dependen
y

pairs in order to apply these te
hniques to non-
on
uent TRSs. We also

developed a new synta
ti
al
hara
terization for a
lass of (possibly) non-

on
uent TRSs where innermost termination implies termination, whi
h

aptures those rewrite systems des
ribing asyn
hronous pro
ess networks.

This paper is a substantially revised and extended version of [6℄ and [7℄.

32 J�urgen Giesl, Thomas Arts

Note that we have used the modularity results for the dependen
y pair

te
hnique [5℄ for both a split and
onquer approa
h and for dealing with

the in
ompleteness of our spe
i�
ation. For many reasons, in pra
ti
e it is

more rule than ex
eption that a spe
i�
ation la
ks some information, like

the de�nition of the fun
tion f in our example. Usually, at a
ertain level of

abstra
tion one stops spe
ifying and, hen
e, for many built-in fun
tions the

spe
i�
ation is preferably hidden (e.g., one
ould add a date as a time stamp

to every message where in many
ases the
omputation of this date is not

relevant). Thus, assuming some properties of the missing part of the spe
-

i�
ation and proving them for that part when it be
omes available makes

sense. In that
ontext the modularity of the dependen
y pair te
hnique is

of great help.

Our te
hniques have shown to be su

essfully appli
able in small, but

real examples, where eventuality properties had to be proved. These expe-

rien
es demonstrate that our approa
h is parti
ularly useful for verifying

properties of pro
esses where a lot of data manipulation is involved and

where
ommuni
ation plays a minor role. Typi
ally, these are the proper-

ties that are hard to handle by model-
he
king. The examples in this paper

represent su
h situations where model-
he
king
annot be used be
ause of

the arbitrary lengths of the stores. These problems have also been ta
kled

by a spe
ialized proof
he
ker for Erlang [1℄. Compared to dependen
y pairs,

the proof
he
ker approa
h is more generally appli
able. But sin
e in that

approa
h the proofs had, up to a great extend, to be provided by hand,

the dependen
y pair approa
h has the important advantage that it is mu
h

better suitable for automation.

Referen
es

1. Arts, T., Dam, M.: Verifying a distributed database lookup manager written

in Erlang. In: Pro
. FM '99, Toulouse, Fran
e. LNCS, Vol. 1708, pp. 682-700.

Springer 1999

2. Arts, T., Giesl, J.: Automati
ally proving termination where simpli�
ation

orderings fail. In: Pro
. TAPSOFT '97, Lille, Fran
e. LNCS, Vol. 1214, pp.

261-273. Springer 1997

3. Arts, T., Giesl, J.: Proving innermost normalisation automati
ally. In: Pro
.

RTA-97, Sitges, Spain. LNCS, Vol. 1232, pp. 157-172. Springer 1997

4. Arts, T., Giesl, J.: Termination of term rewriting using dependen
y pairs.

Te
hni
al Report IBN 97/46, Darmstadt University of Te
hnology, Germany.

http://www-i2.informatik.rwth-aa
hen.de/giesl/papers/ibn-97-46.ps

5. Arts, T., Giesl, J.: Modularity of termination using dependen
y pairs. In:

Pro
. RTA-98, Tsukuba, Japan. LNCS, Vol. 1379, pp. 226-240. Springer 1998

6. Arts, T., Giesl, J.: Veri�
ation of Erlang Pro
esses. In: Pro
. 4th International

Workshop on Termination, Dagstuhl, Germany. 1999

7. Arts, T., Giesl, J.: Applying rewriting te
hniques to the veri�
ation of Erlang

pro
esses. In: Pro
. CSL '99, Madrid, Spain. LNCS, Vol. 1683, pp. 96-110.

Springer 1999

8. Arts, T., Giesl, J.: Termination of term rewriting using dependen
y pairs.

TCS 236, 133-178 (2000). Preliminary extended version appeared in [4℄.

Veri�
ation of Erlang Pro
esses by Dependen
y Pairs 33

9. Arts, T.: System des
ription: The dependen
y pair method. In: Pro
. RTA-00,

Norwi
h, UK. LNCS, Vol. 1833, pp. 261-264. Springer 2000

10. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University

Press 1998

11. Bergstra, J. A., Klop, J. W.: Conditional rewrite rules:
on
uen
e and termi-

nation. JCSS 32, 323-362 (1986)

12. Bertling, H., Ganzinger, H.: Completion-time optimization of rewrite-time

goal solving. In: Pro
. RTA-89, Chapel Hill, USA. LNCS, Vol. 355, pp. 45-58.

Springer 1989

13. Dershowitz, N., Plaisted, D. A.: Equational programming. Ma
hine Intelli-

gen
e 11, 21-56 (1987)

14. Dershowitz, N.: Termination of rewriting. JSC 3, 69-116 (1987)

15. Dershowitz, N., Okada, M., Sivakumar, G.: Canoni
al
onditional rewrite

systems. In: Pro
. CADE-9, Argonne, USA. LNCS, Vol. 310, pp. 538-549.

Springer 1988

16. Dershowitz, N., Okada, M.: A rationale for
onditional equational program-

ming. TCS 75, 111-138 (1990)

17. Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: Handbook of Theo-

reti
al Computer S
ien
e, Vol. B, pp. 243-320. Elsevier 1990

18. Dershowitz, N., Hoot, C.: Natural termination. TCS 142, 179-207. (1995)

19. Giovanetti, E., Moiso, C.: Notes on the eliminations of
onditions. In: Pro
.

CTRS '87, Orsay, Fran
e. LNCS, Vol. 308, pp. 91-97. Springer 1987

20. Gramli
h, B.: On termination and
on
uen
e of
onditional rewrite systems.

In: Pro
. CTRS '94, Jerusalem, Israel. LNCS, Vol. 968, pp. 166-185. Springer

1994

21. Gramli
h, B.: Abstra
t relations between restri
ted termination and
on
u-

en
e properties of rewrite systems. Fundamenta Informati
ae 24, 3-23 (1995)

22. Gramli
h, B.: Termination and
on
uen
e properties of stru
tured rewrite

systems. PhD Thesis. Universit�at Kaiserslautern, Germany (1996)

23. Gramli
h, B.: On termination and
on
uen
e properties of disjoint and

onstru
tor-sharing
onditional rewrite systems. TCS 165, 97-131 (1996)

24. Patent pending, Eri
sson Tele
om AB 1999

25. Kamin, S., Levy, J.-J.: Two generalizations of the re
ursive path ordering.

Department of Computer S
ien
e, University of Illinois, IL (1980)

26. Jouannaud, J.-P., Waldmann, B.: Redu
tive
onditional term rewrite systems.

In: 3rd IFIP Working Conferen
e on Formal Des
ription of Programming

Con
epts, Ebberup, Denmark. pp. 223-244. 1986

27. Kaplan, S.: Conditional rewrite rules. TCS 33, 175-193 (1984)

28. Mar
hiori, M.: Unravelings and ultra-properties. In: Pro
. ALP '96, Aa
hen,

Germany. LNCS, Vol. 1139, pp. 107-121. Springer 1996

29. Middeldorp, A.: Modular properties of
onditional term rewriting systems.

Information and Computation 104, 110-158 (1993)

30. Ohlebus
h, E.: Transforming
onditional rewrite systems with extra vari-

ables into un
onditional systems. In: Pro
. LPAR '99, Tblisi, Georgia. LNAI,

Vol. 1705, pp. 111-130. Springer 1999.

31. Steinba
h, J.: Simpli�
ation orderings: history of results. Fundamenta Infor-

mati
ae 24, 47-87 (1995)

32. Suzuki, T., Middeldorp, A., Ida, T.: Level-
on
uen
e of
onditional rewrite

systems with extra variables in right-hand sides. In: Pro
. RTA-95, Kaisers-

lautern, Germany. LNCS, Vol. 914, pp. 179-193. Springer 1995

33. Wirth, C.-P., Gramli
h, B.: A
onstru
tor-based approa
h for positive/nega-

tive
onditional equational spe
i�
ations. JSC 17, 51-90 (1994)

