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Abstra
t Erlang is a fun
tional programming language developed by

Eri
sson Tele
om, whi
h is parti
ularly well suited for implementing 
on-


urrent pro
esses. In this paper we show how methods from the area of term

rewriting are presently used at Eri
sson. To verify properties of pro
esses,

su
h a property is transformed into a termination problem of a 
onditional

term rewriting system (CTRS). Subsequently, this termination proof 
an be

performed automati
ally using dependen
y pairs.

The paper illustrates how the dependen
y pair te
hnique 
an be ap-

plied for termination proofs of 
onditional TRSs. Se
ondly, we present three

re�nements of this te
hnique, viz. narrowing, rewriting, and instantiating

dependen
y pairs. These re�nements are not only of use in the industrial

appli
ations sket
hed in this paper, but they are generally appli
able to ar-

bitrary (C)TRSs. Thus, in this way dependen
y pairs 
an be used to prove

termination of even more (C)TRSs automati
ally.

Keywords: veri�
ation, distributed pro
esses, rewriting, termination

1 Introdu
tion

In a patent appli
ation [24℄, Eri
sson developed a proto
ol for a query lookup

in a distributed database. In several produ
ts of Eri
sson, for example their

newer tele
ommuni
ation swit
hes, this database plays a key role in the re-


overy after a shutdown or 
rash of the system. Clearly, this 
riti
al part

of the software should be trustworthy. This paper originates from an at-

tempt to verify this proto
ol's implementation written in Erlang. To save

the amount of work and to in
rease reliability, the aim was to perform as

?
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mu
h as possible of this veri�
ation automati
ally. Model 
he
king te
h-

niques were not appli
able, sin
e the properties to be proved require the


onsideration of the in�nite state spa
e of the pro
esses. A user guided ap-

proa
h based on theorem proving by a spe
ialized proof 
he
king tool was

su

essful, but very labour intensive [1℄. We des
ribe two of the properties

whi
h had to be veri�ed in Se
t. 2 and Se
t. 7, respe
tively, and we show

that they 
an be represented as non-trivial termination problems of CTRSs.

In general, proving termination of CTRSs is 
onsiderably more diÆ
ult

than showing termination of un
onditional TRSs. Therefore, standard te
h-

niques (see e.g. [14,18,31℄) fail with the termination proofs required for the

proto
ol veri�
ation des
ribed above. Moreover, due to the 
omplexity and

the safety requirements arising with pra
ti
al appli
ations in industry, a

high degree of automation is desirable for the termination proofs required.

These reasons motivate why we 
hose to apply the dependen
y pair te
h-

nique [2,3,5,8℄ (i.e., the 
urrently most powerful termination proof method

that is amenable to automation). However, it turned out that (without fur-

ther extensions) even the dependen
y pair te
hnique 
ould not perform the

required termination proofs automati
ally.

In Se
t. 3 we show that termination problems of CTRSs 
an be redu
ed

to termination problems of un
onditional TRSs. After re
apitulating the

basi
 notions of dependen
y pairs in Se
t. 4, we present three important

extensions, viz. narrowing (Se
t. 5), rewriting (Se
t. 6), and instantiating

dependen
y pairs (Se
t. 7), whi
h are parti
ularly useful in the 
ontext of

CTRSs. With these re�nements, the dependen
y pair approa
h 
ould solve

the termination problems automati
ally.

2 A Pro
ess Veri�
ation Problem

We have to prove properties of pro
esses in a network. A pro
ess P

n

re
eives

messages from a pro
ess P

n�1

that 
onsist of a list of data items and an

integer M. For every item in the list, pro
ess P

n


omputes a new list of data

items. For example, the data items 
ould be telephone numbers and the

pro
ess 
ould generate a list of 
alls to that number on a 
ertain date. The

resulting list may have arbitrary length, in
luding zero. The integer M in

the message indi
ates how many items of the newly 
omputed list should

be sent to the next pro
ess P

n+1

. The restri
tion on the number of items

that may be sent is imposed for pra
ti
al optimization reasons.

: : :
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P

n-1

-

��

��

P

n

-

��

��
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Fig. 1 Pro
ess P

n

in a network

Of 
ourse, pro
ess P

n

may have 
omputed more than M new items and in

that 
ase, it stores the remaining answers in an a

umulator (implemented
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by an extra argument Store of the pro
ess). However, whenever it has sent

the �rst M items to the next pro
ess P

n+1

, pro
ess P

n

may re
eive a new

message from P

n�1

. To respond to the new message, it �rst 
he
ks whether

its store already 
ontains at least M items. In this 
ase, it sends the �rst

M items from its store to P

n+1

and depending on the in
oming message,

probably some new items are 
omputed afterwards. Otherwise, if the store


ontains fewer than M items, then pro
ess P

n+1

has to wait until the new

items are 
omputed. After this 
omputation, the �rst M items from the newly

obtained item list and the store are sent to P

n+1

. Again, those items that

ex
eed the limit M are stored in the pro
ess a

umulator. Finally, in order

to empty the store, pro
ess P

n�1

repeatedly sends the empty list to pro
ess

P

n

. In the end, so is the 
laim, pro
ess P

n

will send the empty list as well.

We des
ribe how we are able to formally verify this 
laim with a high

degree of automation. The Erlang 
ode exe
uted by the pro
esses is given

below (to save spa
e, the 
ode for obvious library fun
tions like app and

leq is not presented).

pro
ess(NextPid,Store) ->

re
eive

fItems,Mg ->


ase leq(M,length(Store)) of

true ->

fToSend,ToStoreg = split(M,Store),

NextPid!fToSend,Mg,

pro
ess(NextPid,app(map f(self(),Items),ToStore));

false ->

fToSend,ToStoreg =

split(M,app(map f(self(),Items),Store)),

NextPid!fToSend,Mg,

pro
ess(NextPid,ToStore)

end

end.

map f(Pid,nil) -> nil;

map f(Pid,
ons(H,T)) -> app(f(Pid,H),map f(Pid,T)).

For a list L, split(M,L) returns a pair of lists fL

1

,L

2

g where L

1


on-

tains the �rst M elements (or L if its length is shorter than M) and L

2


ontains the rest of L. The 
ommand `!' denotes the sending of data and

NextPid!fToSend,Mg stands for sending the items ToSend and the integer

M to the pro
ess with the identi�er NextPid. A pro
ess 
an obtain its own

identi�er by 
alling the fun
tion self(). For every item in the list Items,

the fun
tion map f(Pid,Items) 
omputes new data items by means of the

fun
tion f(Pid,Item). So the a
tual 
omputation that f performs depends

on the pro
ess identi�er Pid. Hen
e, to 
ompute new data items for the

in
oming Items, a pro
ess P

n

has to pass its own identi�er to the fun
tion

map f, i.e., it 
alls map f(self(),Items).
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Note that a pro
ess itself is not a terminating fun
tion: in fa
t, it has

been designed to be non-terminating. Our aim is not to prove its termina-

tion, but to verify a 
ertain property, whi
h 
an be expressed in terms of

termination. As part of the 
orre
tness proof of the software, we have to

prove that if a pro
ess P

n


ontinuously re
eives the message fnil,Mg for

any integer M, then eventually the pro
ess will send the message fnil,Mg as

well. This property must hold independent of the value of the store and of

the way in whi
h new data items are generated from given ones. Therefore,

f has been left unspe
i�ed, i.e., f may be any terminating fun
tion whi
h

returns a list of arbitrary length.

The framework of term rewriting [10,17℄ is very useful for this veri�
a-

tion. We prove the desired property by 
onstru
ting a CTRS 
ontaining a

binary fun
tion pro
ess whose arguments represent the stored data items

Store and the integer M sent in the messages. In this example, we may ab-

stra
t from the pro
ess 
ommuni
ation. Thus, the Erlang fun
tion self()

be
omes a 
onstant and we drop the send 
ommand (!) and the argu-

ment NextPid in the CTRS. Sin
e we assume that the pro
ess 
onstantly

re
eives the message fnil,Mg, we hard-
ode it into the CTRS. Thus, the

variable Items is repla
ed by nil. As we still want to reason about the

variable M, we added it to the arguments of the pro
ess. To model the

fun
tion split (whi
h returns a pair of lists) in the CTRS, we use sep-

arate fun
tions fstsplit and sndsplit for the two 
omponents of split's re-

sult. Thus, fstsplit(m; store) results in the �rst m elements of the store and

sndsplit(m; store) results in all but the �rstm elements of the store. Now the

idea is to for
e the fun
tion pro
ess to terminate if ToSend is the empty list

nil. So we only 
ontinue the 
omputation if appli
ation of the fun
tion empty

to the result of fstsplit yields false. Thus, if all evaluations w.r.t. this CTRS

terminate, then the original pro
ess eventually outputs the demanded value.

As usual, the semanti
s of a rule `s

1

!

�

t

1

; s

2

!

�

t

2

j l! r' is that a redex

l� may only be redu
ed to r� if s

1

� redu
es to t

1

� and s

2

� redu
es to t

2

�

(i.e., the verti
al bar j separates the 
onditions from the a
tual rule).

leq(m; length(store))!

�

true;

empty(fstsplit(m; store))!

�

false j

pro
ess(store;m)! pro
ess(app(map f(self; nil); sndsplit(m; store));m) (1)

leq(m; length(store))!

�

false;

empty(fstsplit(m; app(map f(self; nil); store)))!

�

false j

pro
ess(store;m)! pro
ess(sndsplit(m; app(map f(self; nil); store));m) (2)

The auxiliary Erlang fun
tions as well as the fun
tions for empty, fstsplit,

and sndsplit are straightforwardly expressed by un
onditional rewrite rules.

fstsplit(0; x)! nil

fstsplit(s(n); nil)! nil

fstsplit(s(n); 
ons(h; t))! 
ons(h; fstsplit(n; t))
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sndsplit(0; x)! x

sndsplit(s(n); nil)! nil

sndsplit(s(n); 
ons(h; t))! sndsplit(n; t)

empty(nil)! true

empty(
ons(h; t))! false

leq(0;m)! true

leq(s(n); 0)! false

leq(s(n); s(m))! leq(n;m)

length(nil)! 0

length(
ons(h; t))! s(length(t))

app(nil; x)! x

app(
ons(h; t); x)! 
ons(h; app(t; x))

map f(pid; nil)! nil

map f(pid; 
ons(h; t))! app(f(pid; h);map f(pid; t))

The rules for the Erlang fun
tion f are not spe
i�ed, sin
e we have to

verify the desired property for any terminating fun
tion f. However, as

Erlang has an eager (
all-by-value) evaluation strategy, if a terminating

Erlang fun
tion f is straightforwardly transformed into a (C)TRS (su
h as

the above library fun
tions), then any evaluation w.r.t. these rules is �nite.

Now to prove the desired property of the Erlang pro
ess, we have to show

that the whole CTRS with all its extra rules for the auxiliary fun
tions only

permits �nite evaluations.

The 
onstru
tion of the above CTRS is rather straightforward, but it

presupposes an understanding of the program and the veri�
ation problem

and therefore it 
an hardly be me
hanized. But after obtaining the CTRS,

the proof that any evaluation w.r.t. this CTRS is �nite should be done

automati
ally.

In this paper we des
ribe an extension of the dependen
y pair te
hnique

whi
h 
an perform su
h automati
 proofs. Moreover, this extension is of

general use for termination proofs of TRSs and CTRSs. Hen
e, our results

signi�
antly in
rease the 
lass of systems where termination 
an be shown

me
hani
ally.

3 Termination of Conditional Term Rewriting Systems

A CTRS is a TRS where 
onditions s

1

= t

1

; : : : ; s

n

= t

n

may be added to

rewrite rules l! r. In this paper, we restri
t ourselves to CTRSs where all

variables in the 
onditions s

i

; t

i

also o

ur in l. Depending on the interpreta-

tion of the equality sign in the 
onditions, di�erent rewrite relations 
an be

asso
iated with a CTRS, 
f. e.g. [11,12,15,16,20,22,23,26,27,29,32℄. In our

veri�
ation example, we transformed the problem into an oriented CTRS

[32℄, where the equality signs in 
onditions of rewrite rules are interpreted

as rea
hability (!

�

). Thus, we denote rewrite rules by

s

1

!

�

t

1

; : : : ; s

n

!

�

t

n

j l! r: (3)
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In fa
t, we even have a normal CTRS, be
ause all t

i

are ground normal

forms w.r.t. the TRS whi
h results from dropping all 
onditions.

A redu
tion of C[l�℄ to C[r�℄ with rule (3) is only possible if s

i

� redu
es

to t

i

� for all 1 � i � n. Formally, the rewrite relation !

R

of a CTRS R


an be de�ned as !

R

=

S

j�0

!

R

j

, where

R

0

= ; and

R

j+1

=

S

`s

1

!

�

t

1

;:::;s

n

!

�

t

n

jl!r'2R

fl� ! r� j s

i

� !

�

R

j

t

i

� for all 1 � i � ng;


f. e.g. [23,29℄.

A CTRS R is terminating i� !

R

is well founded. But termination is

not enough to ensure that every evaluation with a CTRS is �nite. For

example, assume that evaluation of the 
ondition leq(m; length(store)) in

our CTRS would require the redu
tion of pro
ess(store;m). Then evalua-

tion of pro
ess(store;m) would yield an in�nite 
omputation. Nevertheless,

pro
ess(store;m) 
ould not be rewritten further and thus, the CTRS would

be terminating. But in this 
ase, the desired property would not hold for

the original Erlang pro
ess, be
ause this would 
orrespond to a deadlo
k

situation where no messages are sent at all.

For that reason, instead of termination one is often mu
h more interested

in de
reasing CTRSs [15℄. In this paper, we use a slightly modi�ed notion

of de
reasingness, be
ause in our evaluation strategy 
onditions are 
he
ked

from left to right, 
f. [33℄. Thus, the i-th 
ondition s

i

!

�

t

i

is only 
he
ked

if all previous 
onditions s

j

!

�

t

j

for 1 � j < i hold.

De�nition 1 (Left-Right De
reasing) A CTRS R is left-right de
reas-

ing if there exists a well-founded relation > 
ontaining the rewrite relation

!

R

and the subterm relation � su
h that l� > s

i

� holds for all rules like

(3), all i 2 f1; : : : ; ng, and all substitutions � where s

j

� !

�

R

t

j

� for all

j 2 f1; : : : ; i� 1g.

This de�nition of left-right de
reasingness exa
tly 
aptures the �niteness

of re
ursive evaluation of terms. (Obviously, de
reasingness implies left-right

de
reasingness, but not vi
e versa.) Hen
e, now our aim is to prove that the

CTRS 
orresponding to the Erlang pro
ess is left-right de
reasing.

A standard approa
h for proving termination of a CTRS R is to ver-

ify termination of the TRS R

0

whi
h results from dropping all 
onditions

(and for de
reasingness one has to impose some additional demands). But

this approa
h fails for CTRSs where the 
onditions are ne
essary to ensure

termination. This also happens in our example, be
ause without the 
ondi-

tions empty(: : :)!

�

false the CTRS is no longer terminating (and thus, not

left-right de
reasing either).

A solution for this problem is to transform CTRSs into un
onditional

TRSs, 
f. [13,19,28℄. For un
onditional rules, let tr( l! r ) = fl! rg. If �

is a 
onditional rule, i.e., � = `s

1

!

�

t

1

; : : : ; s

n

!

�

t

n

j l ! r', we de�ne

tr(�) =

fl! if

1;�

(x; s

1

)g [ fif

i;�

(x; t

i

)! if

i+1;�

(x; s

i+1

) j 1 � i < ng [ fif

n;�

(x; t

n

)! rg
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where x is the tuple of all variables in l and the if's are new fun
tion symbols.

To ease readability, instead of if

i;�

we often just write if

m

for some m 2 IN

where if

m

is a fun
tion symbol whi
h has not yet been used before.

Let R

tr

=

S

�2R

tr(�). For CTRSs without extra variables, R

tr

is in-

deed an (un
onditional) TRS. (An extension to deterministi
 CTRSs [12℄

with extra variables is also possible.) The transformation of Rule (1) results

in

pro
ess(store;m)! if

1

(store;m; leq(m; length(store))) (4)

if

1

(store;m; true)! if

2

(store;m; empty(fstsplit(m; store))) (5)

if

2

(store;m; false)! pro
ess(app(map f(self; nil); sndsplit(m; store));m): (6)

Now we aim to prove termination of R

tr

instead of R's left-right de
reas-

ingness.

In [19℄, this transformation is restri
ted to a limited 
lass of 
onver-

gent CTRSs. However, in the following we show that for our purpose this

restri
tion is not ne
essary. In other words, termination of R

tr

indeed im-

plies left-right de
reasingness (and thus also termination) of R. Thus, this

transformation is a generally appli
able te
hnique to redu
e the termina-

tion problem of CTRSs to a termination problem of un
onditional TRSs.

(A similar approa
h was presented in [28℄ for de
reasingness proofs (instead

of left-right de
reasingness) by using a transformation where all 
onditions

of a rule have to be 
he
ked in parallel.) We �rst prove that any redu
tion

with R 
an be simulated by R

tr

. So in parti
ular, the equational theory of

R is a subset of R

tr

's equational theory.

Lemma 2 Let q; q

0

be terms without if's. If q !

+

R

q

0

, then q !

+

R

tr

q

0

.

Proof There must be a j 2 IN su
h that q !

+

R

j

q

0

(j is the depth of the

redu
tion). We prove the theorem by indu
tion on the depth and the length

of the redu
tion q !

+

R

q

0

(i.e., we use a lexi
ographi
 indu
tion relation).

The redu
tion has the form q !

R

p !

�

R

q

0

and by the indu
tion hy-

pothesis we know p!

�

R

tr

q

0

. Thus, it suÆ
es to prove q !

+

R

tr

p.

If the redu
tion q !

R

p is done with an un
onditional rule of R, then

the 
onje
ture is trivial. Otherwise, we must have q = C[l�℄, p = C[r�℄

for some 
ontext C and some rule like (3). As the depth of the redu
tions

s

i

� !

�

R

t

i

� is less than the depth of the redu
tion q !

+

R

q

0

, by the indu
tion

hypothesis we have s

i

� !

�

R

tr

t

i

�. This implies q !

+

R

tr

p. ut

Now the desired result is a dire
t 
onsequen
e of Lemma 2.

Corollary 3 (Left-Right De
reasingness of R and Termination of

R

tr

) If R

tr

is terminating, then R is left-right de
reasing (and thus, it is

also terminating).

Proof It is well known that if !

R

tr

is well founded, then !

R

tr

[� is well

founded, too (this is a dire
t 
onsequen
e of !

R

tr

being 
losed under 
on-

text). Hen
e, the transitive 
losure (!

R

tr

[�)

+

is well founded, too. By



8 J�urgen Giesl, Thomas Arts

Lemma 2, this relation satis�es all 
onditions imposed on the relation > in

Def. 1. Hen
e, R is left-right de
reasing. ut

The 
onverse of this 
orollary does not hold. If R is the CTRS with

a ! b, f(a) ! b, and the 
onditional rule f(x) !

�

x j g(x) ! g(a), then

g(a) !

+

g(a) holds in the transformed TRS R

tr

, but not in the original

CTRS. Thus, the transformed TRS R

tr

is not terminating although the

original CTRS R is left-right de
reasing.

However, independently, in the meanwhile this transformation has also

been studied by Ohlebus
h [30℄ and he 
ould prove a (restri
ted) 
omplete-

ness result for this transformation, viz. that left-right de
reasingness ofR at

least implies innermost termination of R

tr

. (In [30℄, our notion of left-right

de
reasingness is 
alled \quasi-de
reasingness".)

In our example, the 
onditional rule (2) is transformed into three addi-

tional un
onditional rules. But apart from the if-root symbol of the right-

hand side, the �rst of these rules is identi
al to (4). Thus, we obtain two

overlapping rules in the transformed TRS whi
h 
orrespond to the overlap-

ping 
onditional rules (1) and (2). However, in the CTRS this 
riti
al pair

is infeasible [15℄, i.e., the 
onditions of both rules ex
lude ea
h other. Thus,

our transformation of CTRSs into TRSs sometimes introdu
es unne
essary

rules and overlap.

Therefore, whenever we 
onstru
t a rule of the form q ! if

k

(t) and there

already exists a rule q ! if

n

(t), then we identify if

k

and if

n

. This does not

a�e
t the soundness of our approa
h, be
ause termination of a TRS where

all o

urren
es of a symbol g are substituted by a symbol f with the same

arity always implies termination of the original TRS.

1

Thus, we obtain the

additional rules:

if

1

(store;m; false)!

if

3

(store;m; empty(fstsplit(m; app(map f(self; nil); store)))) (7)

if

3

(store;m; false)! pro
ess(sndsplit(m; app(map f(self; nil); store));m)(8)

If termination of a CTRS depends on its 
onditions, then in general

termination of the transformed TRS 
an only be shown if one examines

whi
h terms may follow ea
h other in a redu
tion. However, in the 
lassi
al

approa
hes based on simpli�
ation orderings (
f. e.g. [14,31℄), su
h 
onsid-

erations do not take pla
e. Hen
e, they fail in proving the termination of (4)

- (8). For this reason, su
h transformations into un
onditional TRSs have

rarely been applied for termination (or de
reasingness) proofs of CTRSs.

However, we will demonstrate that with the dependen
y pair approa
h this

transformation is very useful.

1

This possibility to eliminate unne
essary overlap is an advantage of our trans-

formation 
ompared to the one of [28℄, where the transformed un
onditional TRSs

remain overlapping. In pra
ti
e, proving termination of non-overlapping TRSs is

signi�
antly easier, sin
e one may use te
hniques spe
i�
ally tailored to innermost

termination proofs, see below.
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To verify our original goal, we now have to prove termination of the

transformed TRS whi
h 
onsists of (4) - (8), the rules for all auxiliary (li-

brary) fun
tions from Se
t. 2, and the (unknown) rules for the unspe
i�ed

fun
tion f. Note that if an auxiliary Erlang fun
tion is straightforwardly

transformed into a TRS, then this TRS is non-overlapping. Thus, we assume

that all possible rules for the unspe
i�ed fun
tion f are non-overlapping as

well. Then it is suÆ
ient just to prove innermost termination of the result-

ing TRS, sin
e innermost termination of non-overlapping systems implies

their termination, 
f. e.g. [21℄. In order to apply veri�
ation on a large s
ale,

the aim is to perform su
h proofs automati
ally.

In the rest of the paper we present some extensions of the dependen
y

pair te
hnique that make this possible. The dependen
y pair te
hnique (in-


luding these extensions) has been implemented in a tool written in Erlang

whi
h provides both a user friendly interfa
e for manual appli
ations of

dependen
y pairs and the possibility to perform fully automati
 termina-

tion proofs of TRSs using dependen
y pairs [9℄. See [4℄ for a 
olle
tion of

ben
hmarks to demonstrate the power of the dependen
y pair approa
h.

4 Dependen
y Pairs

Dependen
y pairs allow the use of existing methods like simpli�
ation or-

derings for automated termination and innermost termination proofs where

they were not appli
able before. In this se
tion we brie
y re
apitulate the

basi
 
on
epts of this approa
h and we present the theorems that we need

for the rest of the paper. For further details and explanations see [3,5,8℄.

In 
ontrast to the standard approa
hes for termination proofs, whi
h


ompare left and right-hand sides of rules, we only examine those subterms

that are responsible for starting new redu
tions. For that purpose we 
on-


entrate on the subterms in the right-hand sides of rules that have a de�ned

2

root symbol, be
ause these are the only terms a rewrite rule 
an ever be

applied to.

More pre
isely, for every rule f(s

1

; : : : ; s

n

) ! C[g(t

1

; : : : ; t

m

)℄ (where

f and g are de�ned symbols), we 
ompare the argument tuples s

1

; : : : ; s

n

and t

1

; : : : ; t

m

. To avoid the handling of tuples, for every de�ned symbol f

we introdu
e a fresh tuple symbol F . To ease readability, we assume that

the original signature 
onsists of lower 
ase fun
tion symbols only, whereas

the tuple symbols are denoted by the 
orresponding upper 
ase symbols.

Now instead of the tuples s

1

; : : : ; s

n

and t

1

; : : : ; t

m

we 
ompare the terms

F (s

1

; : : : ; s

n

) and G(t

1

; : : : ; t

m

).

De�nition 4 (Dependen
y Pair) Let R be a TRS. If f(s

1

; : : : ; s

n

) !

C[g(t

1

; : : : ; t

m

)℄ is a rule of R and g is a de�ned symbol, then hF (s

1

; : : : ; s

n

);

G(t

1

; : : : ; t

m

)i is a dependen
y pair of R.

2

Root symbols of left-hand sides are de�ned and all other fun
tions are 
on-

stru
tors.
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For the rules (4) - (8), (besides others) we obtain the following dependen
y

pairs.

hPROCESS(store;m); IF

1

(store;m; leq(m; length(store)))i (9)

hIF

1

(store;m; true); IF

2

(store;m; empty(fstsplit(m; store)))i (10)

hIF

2

(store;m; false);PROCESS(app(map f(self; nil); sndsplit(m; store));m)i (11)

hIF

1

(store;m; false);

IF

3

(store;m; empty(fstsplit(m; app(map f(self; nil); store))))i (12)

hIF

3

(store;m; false);PROCESS(sndsplit(m; app(map f(self; nil); store));m)i (13)

To tra
e newly introdu
ed redexes in an innermost redu
tion, we 
on-

sider spe
ial sequen
es of dependen
y pairs, so-
alled innermost 
hains. A

sequen
e of dependen
y pairs hs

1

; t

1

i hs

2

; t

2

i : : : is an innermost 
hain if

there exists a substitution � su
h that for all 
onse
utive pairs hs

j

; t

j

i and

hs

j+1

; t

j+1

i in the sequen
e we have t

j

�

i

!

�

R

s

j+1

�. Here, \

i

!" denotes

innermost redu
tions (i.e., rewrite steps where only innermost redexes are


ontra
ted). In this way, the right-hand side of every dependen
y pair 
an

be seen as the newly introdu
ed redex that should be tra
ed and the redu
-

tions t

j

�

i

!

�

R

s

j+1

� are ne
essary to normalize the arguments of the redex

that is tra
ed. Note that when regarding innermost redu
tions, arguments

of a redex should be in normal form before the redex is 
ontra
ted. Thus,

we may restri
t ourselves to substitutions � where all s

j

� are in normal

form.

De�nition 5 (Innermost R-
hains) Let R be a TRS. A sequen
e of

dependen
y pairs hs

1

; t

1

i hs

2

; t

2

i : : : is 
alled an innermost R-
hain if there

exists a substitution �, su
h that all s

j

� are in normal form and t

j

�

i

!

�

R

s

j+1

� holds for every two 
onse
utive pairs hs

j

; t

j

i and hs

j+1

; t

j+1

i in the

sequen
e.

We always assume that di�erent (o

urren
es of) dependen
y pairs have

disjoint variables and we always regard substitutions whose domains may

be in�nite. In [3℄ we showed that the absen
e of in�nite innermost 
hains is

a (suÆ
ient and ne
essary) 
riterion for innermost termination.

Theorem 6 (Innermost Termination Criterion) A TRS R is inner-

most terminating i� there exists no in�nite innermost R-
hain.

To improve this 
riterion we introdu
ed the following graph whi
h 
on-

tains ar
s between all those dependen
y pairs whi
h may follow ea
h other

in innermost 
hains.

De�nition 7 (Innermost Dependen
y Graph) The innermost depen-

den
y graph of a TRS R is the dire
ted graph whose nodes are the depen-

den
y pairs and there is an ar
 from hs; ti to hv; wi if hs; ti hv; wi is an

innermost R-
hain.
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In our example, (besides others) there are ar
s from (9) to (10) and (12),

from (10) to (11), from (12) to (13), and from both (11) and (13) to (9).

The subgraph of the innermost dependen
y graph 
ontaining the nodes (9)

- (13) is depi
ted in Figure 2.

-

'

� �

$

�

�

�	

�

�R

�

�R

�

�	

(9)

(10) (12)

(11) (13)

Fig. 2 Subgraph of the innermost dependen
y graph in our example

Sin
e the innermost dependen
y graph is in general not 
omputable, we

use an estimation of this graph for automation purposes (
f. [3,5,8℄). The

estimation is su
h that all ar
s in the original graph are also present in the

estimated graph. Let 
ap(t) result from t by repla
ing all subterms with

de�ned root symbols by di�erent fresh variables. The estimated innermost

dependen
y graph is the dire
ted graph whose nodes are the dependen
y

pairs and there is an ar
 from hs; ti to hv; wi i� 
ap(t) and v are uni�able

by a mgu � where s� and v� are normal forms. It is not diÆ
ult to see that

whenever hs; ti hv; wi is an innermost 
hain, then there is also an ar
 from

hs; ti to hv; wi in the estimated innermost dependen
y graph. Thus, this

estimated graph is indeed a supergraph of the (real) innermost dependen
y

graph.

A non-empty set P of dependen
y pairs is 
alled a 
y
le i� for all

hs; ti; hv; wi 2 P , there is a path from hs; ti to hv; wi in the innermost de-

penden
y graph, whi
h only traverses pairs from P . Obviously, every 
y
le

in this graph is also a 
y
le in the estimated innermost dependen
y graph.

In our example, the dependen
y pairs (9) - (13) form the 
y
les P

1

=

f(9); (10); (11)g, P

2

= f(9); (12); (13)g, and P

3

= f(9); (10); (11); (12); (13)g.

However, (9) - (13) are not on a 
y
le with any other dependen
y pair (e.g.,

dependen
y pairs from the rules of the auxiliary library fun
tions or the

unspe
i�ed fun
tion f, sin
e we assume that f does not 
all pro
ess). This

leads to the following re�ned 
riterion.

Theorem 8 (Modular Innermost Termination Criterion) A �nite

TRS R is innermost terminating i� for ea
h 
y
le P in the innermost de-

penden
y graph there exists no in�nite innermost R-
hain of dependen
y

pairs from P.

Note that for the soundness of this theorem one indeed has to regard all


y
les, not just the minimal ones (i.e., not just those 
y
les whi
h 
ontain
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no other 
y
les as proper subsets). For example, the TRS with the rules

f(0)! g(1), f(1)! g(0), and g(x)! f(x) has three dependen
y pairs

hF(0);G(1)i; (14)

hF(1);G(0)i; (15)

hG(x);F(x)i (16)

and three 
y
les P

1

= f(14); (16)g, P

2

= f(15); (16)g, and P

3

= f(14); (15);

(16)g. There is no in�nite innermost 
hain from any of the minimal 
y
les

P

1

or P

2

. Nevertheless, the TRS is not innermost terminating, and indeed

there is an in�nite innermost 
hain from the non-minimal 
y
le P

3

.

In our de�nition, a 
y
le is a set of dependen
y pairs. Thus, a 
y
le

never 
ontains multiple o

urren
es of the same dependen
y pair and for

a �nite TRS there only exist �nitely many 
y
les P . The automation of

the dependen
y pair te
hnique is based on the generation of inequalities.

For every 
y
le P (in the estimated graph) we sear
h for a quasi-ordering

�

P

su
h that for any sequen
e of dependen
y pairs hs

1

; t

1

ihs

2

; t

2

ihs

3

; t

3

i : : :

from P and for any substitution � with t

j

�!

�

R

s

j+1

� (for all j) we have

s

1

� �

P

t

1

� �

P

s

2

� �

P

t

2

� �

P

s

3

� �

P

t

3

� �

P

: : :

Moreover, for at least one hs; ti in P we demand the stri
t inequality s� >

P

t�. Here, >

P

must be a well-founded ordering 
ompatible with �

P

(i.e., we

have >

P

Æ �

P

� >

P

or �

P

Æ >

P

� >

P

). Then there exists no innermost


hain of dependen
y pairs from P whi
h traverses all dependen
y pairs in

P in�nitely many times.

In the following we require that both �

P

and >

P

must be 
losed under

substitution. Then s

j

�

P

t

j

and s

j

>

P

t

j

ensure s

j

� �

P

t

j

� and s

j

� >

P

t

j

�, respe
tively, for all substitutions �.

We also restri
t ourselves to weakly monotoni
 quasi-orderings �

P

. (A

quasi-ordering �

P

is weakly monotoni
 if s �

P

t implies f(: : : s : : :) �

P

f(: : : t : : :).) Then to guarantee t

j

� �

P

s

j+1

� whenever t

j

�!

�

R

s

j+1

� holds,

it is suÆ
ient to demand l �

P

r for all rules l! r of the TRS that may

be used in this redu
tion. As we restri
t ourselves to normal substitutions

�, not all rules are usable in a redu
tion of t�. In general, if t 
ontains a

de�ned symbol f , then all f -rules are usable and moreover, all rules that

are usable for right-hand sides of f -rules are also usable for t.

De�nition 9 (Usable Rules) Let R be a TRS. For any symbol f let

Rls

R

(f) = fl! r 2 R j root(l) = fg. For any term we de�ne the usable

rules:

� U

R

(x) = ;,

� U

R

(f(t

1

; : : : ; t

n

)) = Rls

R

(f) [

S

l!r2Rls

R

(f)

U

R

0

(r) [

S

n

j=1

U

R

0

(t

j

),

where R

0

= R n Rls

R

(f). Moreover, for any set P of dependen
y pairs we

de�ne U

R

(P) =

S

hs;ti2P

U

R

(t).
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Note that this is indeed a re
ursive de�nition (sin
e R is de
reasing to R

0

in the se
ond equation de�ning U

R

).

Now we obtain the following theorem for automated

3

innermost termi-

nation proofs.

Theorem 10 (Innermost Termination Proofs) A �nite TRS is inner-

most terminating if for ea
h 
y
le P there is a weakly monotoni
 quasi-

ordering �

P

and a well-founded ordering >

P


ompatible with �

P

, where

both �

P

and >

P

are 
losed under substitution, su
h that

� l �

P

r for all rules l! r 2 U

R

(P),

� s �

P

t for all dependen
y pairs hs; ti from P, and

� s >

P

t for at least one dependen
y pair hs; ti from P.

We already demonstrated that for Thm. 8 (and hen
e, also for Thm. 10)


onsidering just the minimal 
y
les would be unsound. In fa
t, for Thm. 10

it would also be unsound just to 
onsider maximal 
y
les (i.e., those 
y
les

whi
h are not 
ontained in any other 
y
le). The problem is that it is not suf-

�
ient if just one dependen
y pair of ea
h maximal 
y
le is stri
tly de
reas-

ing. There must be a stri
tly de
reasing dependen
y pair for every sub
y
le

as well. As a 
ounterexample regard the TRS f(s(x)) ! f(s(x)), f(s(x)) !

f(x). Its (only) maximal 
y
le is fhF(s(x));F(s(x))i; hF(s(x));F(x)ig. But the


onstraints F(s(x)) � F(s(x)) and F(s(x)) > F(x) for this 
y
le are easily

ful�lled although this TRS is 
learly not innermost terminating. Thus, it is


ru
ial to 
onsider all 
y
les P for Thm. 10.

In Se
t. 2 we presented the rules for the auxiliary fun
tions in our pro-


ess example. Proving absen
e of in�nite innermost 
hains for the 
y
les of

their dependen
y pairs is very straightforward using Thm. 10. So all library

fun
tions of our TRS are innermost terminating. Moreover, as we assumed

f to be a terminating fun
tion, its 
y
les do not lead to in�nite innermost


hains either.

Re
all that (9) - (13) are not on 
y
les together with the remaining

dependen
y pairs. Thus, what is left for verifying the desired property is

proving absen
e of in�nite innermost 
hains for the 
y
les P

1

;P

2

;P

3

, where

all rules of the whole TRS are possible 
andidates for being usable rules

(also the rules for the unspe
i�ed fun
tion f).

Thm. 10 demands s �

P

t resp. s >

P

t for dependen
y pairs hs; ti on


y
les. However for (9) - (13), these inequalities are not satis�ed by any

quasi-simpli�
ation ordering.

4

Thus, the automated proof fails here. More-

over, it is un
lear whi
h inequalities we have to add for the usable rules, sin
e

the rules for f are not given. Therefore, we have to extend the dependen
y

pair te
hnique.

3

Additional re�nements for the automation 
an be found in [3,8℄.

4

Essentially, the reason is that the left-hand side of dependen
y pair (9) is

embedded in the right-hand sides of the pairs (11) and (13).
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5 Narrowing Dependen
y Pairs

To prove the absen
e of in�nite innermost 
hains, for a dependen
y pair

hv; wi it would be suÆ
ient to demand v� �

P

w� resp. v� >

P

w� just

for those instantiations � where an instantiated right 
omponent t� of a

previous dependen
y pair hs; ti redu
es to v�. For example, (11) only has

to be regarded for instantiations � where the instantiated right 
omponent

IF

2

(store;m; empty(fstsplit(m; store)))� of (10) redu
es to the instantiated

left 
omponent IF

2

(store;m; false)� of (11). In fa
t, this 
an only happen

if store is not empty, i.e., if store redu
es to the form 
ons(h; t). However,

this observation has not been used in the inequalities of Thm. 10 and hen
e,

we 
ould not �nd an ordering for them. Thus, the idea is to perform the


omputation of empty on the level of the dependen
y pair. For that purpose

the well-known 
on
ept of narrowing is extended to pairs of terms.

De�nition 11 Let R be a TRS. If a term t R-narrows to a term t

0

via the

substitution �, then the pair of terms hs; ti R-narrows to the pair hs�; t

0

i.

In the following, we will usually speak of `narrowing' instead of `R-nar-

rowing' if the TRS R is 
lear from the 
ontext. For example, the narrowings

of the dependen
y pair (10) are

hIF

1

(x; 0; true); IF

2

(x; 0; empty(nil))i (10a)

hIF

1

(nil; s(n); true); IF

2

(nil; s(n); empty(nil))i (10b)

hIF

1

(
ons(h; t); s(n); true); IF

2

(
ons(h; t); s(n); empty(
ons(h; fstsplit(n; t))))i: (10
)

Thus, if a dependen
y pair hs; ti is followed by some dependen
y pairs

hv; wi in an innermost 
hain and if t is not already uni�able with v (i.e., at

least one rule is needed to redu
e t� to v�), then in order to `approximate'

the possible further R-redu
tions of t� we may repla
e hs; ti by all its R-

narrowings. Hen
e, we 
an repla
e the dependen
y pair (10) by the new

pairs (10a) - (10
), whi
h already 
ontain one `hidden' step of the next

R-redu
tion.

This enables us to extra
t ne
essary information from the last arguments

of if's, i.e., from the former 
onditions of the CTRS. Thus, the narrowing

re�nement is the main reason why the transformation of CTRSs into TRSs

is useful when analyzing the termination behaviour with dependen
y pairs.

The number of narrowings for a pair is �nite (up to variable renaming) and

it 
an easily be 
omputed automati
ally.

Note however that narrowing may indeed only be applied for depen-

den
y pairs whose right-hand side does not unify with any left-hand side

of a dependen
y pair (after variable renaming). As an example regard the

following TRS.

g(f(a))! h(a)

f(b)! 


h(x)! g(f(x))
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This TRS is not innermost terminating as we have the in�nite innermost

redu
tion g(f(a))

i

! h(a)

i

! g(f(a))

i

! : : : The only dependen
y pairs on a


y
le are hG(f(a));H(a)i and hH(x);G(f(x))i. But if the latter dependen
y

pair is narrowed to hH(b);G(
)i, then there is no 
y
le any more in the in-

nermost dependen
y graph and hen
e, we would falsely 
on
lude innermost

termination. This example also demonstrates why this requirement is still

ne
essary even if we would restri
t ourselves to non-overlapping systems.

Before showing how narrowing helps in solving the inequalities of the

pro
ess example, we �rst prove the soundness of our te
hnique.

Theorem 12 (Narrowing Pairs) Let P be a set of pairs of terms and

let hs; ti 2 P su
h that Var(t) � Var(s) and su
h that for all (renamings

of) hv; wi 2 P, the terms t and v are not uni�able. Let P

0

result from P

by repla
ing hs; ti by all its narrowings. If there exists no in�nite innermost


hain of pairs from P

0

, then there exists no in�nite innermost 
hain of pairs

from P either.

Proof Suppose there is an innermost R-
hain

: : : hv

1

; w

1

i hs; ti hv

2

; w

2

i : : :

of pairs from P . It suÆ
es to prove that then there exists a narrowing hs

0

; t

0

i

of hs; ti su
h that : : : hv

1

; w

1

i hs

0

; t

0

i hv

2

; w

2

i : : : is an innermost R-
hain as

well. Here, hs; ti resp. hs

0

; t

0

i may also be the �rst pair in the 
hain (i.e.,

hv

1

; w

1

i may be missing). If this has been proved, then all o

urren
es of

hs; ti in an in�nite innermost 
hain may be repla
ed by pairs from P

0

.

For the above innermost 
hain, there must be a substitution � su
h

that all instantiated left-hand sides of the pairs are normal forms and every

instantiated right-hand side redu
es innermost to the instantiated left-hand

side of the next pair in the innermost 
hain. Note that t� 
annot be equal

to v

2

�, as otherwise � would be a uni�er of t and v

2

. Hen
e, we have

t�

i

!

R

q

i

!

�

R

v

2

� for some term q.

The redu
tion t�

i

!

R

q 
annot take pla
e `in �', be
ause all variables of

t are 
ontained in s and hen
e, then s� would not be a normal form. Thus,

t 
ontains some subterm f(u) su
h that a rule l! r has been applied to

f(u)�. In other words, l mat
hes f(u)� (i.e. l� = f(u)�). So the redu
tion

has the following form:

t� = t�[f(u)�℄

�

= t�[l�℄

�

i

!

R

t�[r�℄

�

= q:

As in the usual de�nition of narrowing, we assume that the variables

of l! r have been renamed to fresh ones. Therefore we 
an extend � to

`behave' like � on the variables of l and r (but it still remains the same

on the variables of all pairs in the innermost 
hain). Now � is a uni�er of

l and f(u) and hen
e, there also exists a most general uni�er �. By the

de�nition of most general uni�ers, then there must be a substitution � su
h

that � = �� .
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Let t

0

be the term t�[r�℄

�

and let s

0

be s�. Then hs; ti narrows to hs

0

; t

0

i.

As we may assume s

0

and t

0

to be variable disjoint from all other pairs, we

may extend � to behave like � on the variables of s

0

and t

0

. Then we have

w

1

�

i

!

�

R

s� = s�� = s

0

� = s

0

� and

t

0

� = t

0

� = t�� [r�� ℄

�

= t�[r�℄

�

= t�[r�℄

�

= q

i

!

�

R

v

2

�:

Hen
e, : : : hv

1

; w

1

i hs

0

; t

0

i hv

2

; w

2

i : : : is also an innermost R-
hain. ut

So we may always repla
e a dependen
y pair by all its narrowings. How-

ever, while this re�nement is sound, in general it destroys the ne
essity of

our innermost termination 
riterion in Thm. 8. For example, the TRS with

the rules f(s(x)) ! f(g(h(x))), g(h(x)) ! g(x), g(0) ! s(0), h(0) ! 1

is innermost terminating. But if the dependen
y pair hF(s(x));F(g(h(x)))i

is repla
ed by its narrowings hF(s(0));F(g(1))i and hF(s(x));F(g(x))i, then

hF(s(x));F(g(x))i forms an in�nite innermost 
hain (using the instantiation

fx=0g).

Nevertheless, in the appli
ation domain of pro
ess veri�
ation, we 
an

restri
t ourselves to TRSs with the unique normal form property.

5

In fa
t,

the TRSs resulting from the translation of Erlang fun
tions are always non-

overlapping. As non-overlapping innermost terminating TRSs are 
on
uent,

they also satisfy the unique normal form property. Hen
e, the requirement

of the unique normal form property in the following theorem 
ould also be

repla
ed by non-overlappingness.

The theorem shows that for su
h TRSs, narrowing dependen
y pairs

indeed is a 
ompleteness preserving te
hnique. More pre
isely, whenever

innermost termination 
an be proved with the pairs P , then it 
an also be

proved with the pairs P

0

.

Theorem 13 (Narrowing Pairs Preserves Completeness) Let R be

an innermost terminating TRS with the unique normal form property and

let P, P

0

be as in Thm. 12. If there exists no in�nite innermost R-
hain of

pairs from P, then there exists no in�nite innermost R-
hain of pairs from

P

0

either.

Proof We show that every innermost R-
hain : : : hv

1

; w

1

i hs

0

; t

0

i hv

2

; w

2

i : : :

from P

0


an be transformed into an innermost 
hain from P of same length.

There must be a substitution � su
h that for all pairs the instantiated left-

hand side is a normal form and the instantiated right-hand side redu
es to

the instantiated left-hand side of the next pair in the innermost 
hain. So

in parti
ular we have

w

1

�

i

!

�

R

s

0

� and t

0

�

i

!

�

R

v

2

�:

5

A TRS is said to have the unique normal form property i� for every term t,

whenever s

1

�

 t!

�

s

2

with s

1

and s

2

in normal form, then we have s

1

= s

2

.
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We know that hs; ti narrows to hs

0

; t

0

i via a substitution �. As the vari-

ables in hs; ti are disjoint from all other variables, we may extend � to

`behave' like �� on the variables of s and t. Then we have s� = s�� = s

0

�

and hen
e, w

1

�

i

!

�

R

s�.

Moreover, by the de�nition of narrowing, t�!

R

t

0

. This implies t��!

R

t

0

� and as t� = t��, we have t�!

R

t

0

�

i

!

�

R

v

2

� where v

2

� is a normal

form. As R is innermost terminating and every term has a unique normal

form, repeated appli
ation of innermost redu
tion steps to t� also yields

the normal form v

2

�, i.e., t�

i

!

�

R

v

2

�. Thus, : : : hv

1

; w

1

i hs; ti hv

2

; w

2

i : : : is

also an innermost R-
hain. ut

Hen
e, independent of the te
hnique used to 
he
k the absen
e of in-

�nite innermost 
hains, for TRSs with the unique normal form property,

narrowing dependen
y pairs preserves the su

ess of the innermost termi-

nation proof. So we may narrow dependen
y pairs without the risk that the

new pairs we obtain form an in�nite innermost 
hain, whereas the original

system is innermost terminating. Thus, in Thm. 6 and 8 when repla
ing the

dependen
y pairs of R by their narrowings, one still obtains a suÆ
ient and

ne
essary 
riterion for innermost termination.

Moreover, narrowing 
an of 
ourse be repeated an arbitrary number of

times. Thus, after repla
ing (10) by (10a) - (10
), we may subsequently

repla
e (10a) and (10b) by their respe
tive narrowings.

hIF

1

(x; 0; true); IF

2

(x; 0; true)i (10aa)

hIF

1

(nil; s(n); true); IF

2

(nil; s(n); true)i (10ba)

This ex
ludes them from being on a 
y
le in the estimated innermost de-

penden
y graph. Thus, now instead of the dependen
y pairs (9) - (13) we


onsider (9), (10
), (11), (12), and (13). A further narrowing of (10
) is not

ne
essary for our purposes (but a

ording to Thm. 13 it would not harm

either). The right 
omponent of the dependen
y pair (11) uni�es with the

left 
omponent of (9) and therefore, (11) must not be narrowed. Instead we

narrow (9).

hPROCESS(nil;m); IF

1

(nil;m; leq(m; 0))i (9a)

hPROCESS(
ons(h; t);m); IF

1

(
ons(h; t);m; leq(m; s(length(t))))i (9b)

hPROCESS(store; 0); IF

1

(store; 0; true)i (9
)

By narrowing (10) to (10
), we determined that we only have to regard

instantiations where store has the form 
ons(h; t) and m has the form s(n).

Thus, (9a) and (9
) do not o

ur on a 
y
le and therefore, (9) 
an be repla
ed

by (9b) only.

As (11)'s right 
omponent does not unify with left 
omponents any

longer, we may now narrow (11) as well. By repeated narrowing steps and

by dropping those pairs whi
h do not o

ur on 
y
les, (11) 
an be repla
ed

by

hIF

2

(
ons(h; t); s(n); false);PROCESS(sndsplit(n; t); s(n))i (11aa
)
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hIF

2

(
ons(h; t); s(n); false);PROCESS(app(nil; sndsplit(n; t)); s(n))i (11ad)

hIF

2

(
ons(h; t); s(n); false);

PROCESS(app(map f(self; nil); sndsplit(n; t)); s(n))i (11d)

Now for the 
y
le P

1

, it is (for example) suÆ
ient to demand that (11aa
),

(11ad), and (11d) are stri
tly de
reasing and that (9b), (10
), and all usable

rules are weakly de
reasing. Similar narrowings 
an also be applied for the

pairs (12) and (13) whi
h results in analogous inequalities for the 
y
les P

2

and P

3

.

Most standard orderings amenable to automation are strongly mono-

toni
 path orderings (
f. e.g. [14,31℄), whereas here we only need weak

monotoni
ity. Hen
e, before synthesizing a suitable ordering, some of the

arguments of fun
tion symbols may be eliminated, 
f. [8℄. For example, in

our inequalities one may eliminate the third argument of IF

2

. Then every

term IF

2

(t

1

; t

2

; t

3

) in the inequalities is repla
ed by IF

0

2

(t

1

; t

2

) (where IF

0

2

is a new binary fun
tion symbol). By 
omparing the terms resulting from

this repla
ement instead of the original terms, we 
an take advantage of

the fa
t that IF

2

does not have to be strongly monotoni
 in its third argu-

ment. Similarly, in our example we will also eliminate the third arguments

of IF

1

and IF

3

and the �rst argument of sndsplit. Note that there are only

�nitely many (and only few) possibilities to eliminate arguments of fun
tion

symbols. Therefore all these possibilities 
an be 
he
ked automati
ally. In

this way, the re
ursive path ordering (rpo) [14℄ satis�es the inequalities for

(11aa
), (9b), (10
), for the dependen
y pairs resulting from (12) and (13),

and for all (known) usable rules. However, the inequalities resulting from

(11ad) and (11d)

IF

0

2

(
ons(h; t); s(n)) > PROCESS(app(nil; sndsplit

0

(t)); s(n))

IF

0

2

(
ons(h; t); s(n)) > PROCESS(app(map f(self; nil); sndsplit

0

(t)); s(n))

are not satis�ed be
ause of the app-terms on the right-hand sides (as the

app-rules for
e app to be greater than 
ons in the pre
eden
e of the rpo).

Moreover, the map f-term in the inequalities requires us to 
onsider the

usable rules 
orresponding to the (unspe
i�ed) Erlang fun
tion f as well.

To get rid of these terms, one would like to perform narrowing on map f

and app. However, in general narrowing only some subterms of right 
om-

ponents is unsound.

6

Instead, we always have to repla
e a pair by all its

narrowings. But then narrowing (11ad) and (11d) provides no solution here,

sin
e narrowing the sndsplit-subterm results in pairs 
ontaining problemati


app- and map f-terms again. In the next se
tion we des
ribe a te
hnique

whi
h solves the above problem.

6

As an example regard the TRS f(0; 1) ! s(1), f(x; 0) ! 1, a ! 0, and

g(s(y))! g(f(a; y)). If we would repla
e the dependen
y pair hG(s(y));G(f(a; y))i

by only one of its narrowings, viz. hG(s(0));G(1)i, then one 
ould falsely prove

innermost termination, although the term g(s(1)) starts an in�nite innermost re-

du
tion.
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6 Rewriting Dependen
y Pairs

While performing only some narrowing steps is unsound, for non-over-

lapping TRSs it is at least sound to perform only one of the possible rewrite

steps. So if t! r, then we may repla
e a dependen
y pair hs; ti by hs; ri.

Note that this te
hnique is only appli
able to dependen
y pairs, but not

to rules of the TRS. Indeed, by redu
ing the right-hand side of a rule, a

non (innermost) terminating TRS 
an be transformed into a terminating

one, even if the TRS is non-overlapping. As an example regard the TRS

with the rules 0 ! f(0), f(x)! 1 whi
h is 
learly not innermost terminat-

ing. However, if the right-hand side of the �rst rule is rewritten to 1, then

the resulting TRS is terminating. The following theorem proves that our

re�nement of the dependen
y pair approa
h is sound.

Theorem 14 (Rewriting Pairs) Let R be non-overlapping and let P be

a set of pairs of terms. Let hs; ti 2 P, let t!

R

r and let P

0

result from P

by repla
ing hs; ti with hs; ri. If there exists no in�nite innermost 
hain of

pairs from P

0

, then there exists no in�nite innermost 
hain from P either.

Proof By repla
ing all (renamed) o

urren
es of hs; ti with the 
orrespond-

ing renamed o

urren
es of hs; ri, every innermost 
hain : : : hs; ti hv; wi : : :

from P 
an be translated into an innermost 
hain from P

0

of same length.

The reason is that there must be a substitution � with t�

i

!

�

R

v� where

v� is a normal form. So t� is weakly innermost terminating

7

and as R is

non-overlapping, by [22, Thm. 3.2.11 (1a) and (4a)℄ t� is 
on
uent and ter-

minating. With t!

R

r, we obtain t�!

R

r�. Hen
e, r� is terminating as

well and thus, it also redu
es innermost to some normal form q. Now 
on-


uen
e of t� implies q = v�. Therefore, : : : hs; ri hv; wi : : : is an innermost


hain, too. ut

The above theorem enables us to perform a rewrite step in the right-hand

side of a dependen
y pair and to 
ontinue with this dependen
y pair instead

of the original one. Note that a weakening of Thm. 14 by just demanding

innermost 
on
uen
e instead of non-overlappingness of R is not possible;

not even if we only allow innermost redu
tions in the right-hand side of

a dependen
y pair. As a 
ounterexample 
onsider h(f(x)) ! h(g(s(x))),

h(g(a)) ! h(f(a)), g(s(x)) ! b, s(a) ! a. This TRS is innermost 
on
u-

ent, but not innermost terminating (sin
e h(f(a)) starts a 
y
ling redu
-

tion). Thus, the set P of all dependen
y pairs forms an in�nite innermost


hain. But if we perform an innermost rewrite step on the dependen
y pair

hH(f(x));H(g(s(x)))i, then it is repla
ed by hH(f(x));H(b)i. Now the result-

ing set of pairs has no in�nite innermost 
hains any more, and thus, we


ould falsely 
on
lude innermost termination.

7

We 
all a term t (innermost) terminating if all (innermost) redu
tions starting

in t are �nite. Analogously, t is weakly (innermost) terminating if there exists a

�nite (innermost) redu
tion starting in t.
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However, the demand that the TRS should be non-overlapping may be

weakened by demanding that it is innermost normal form preserving, i.e.,

for any term t, whenever s

i

 

�

t! r holds for a normal form s, then r

i

!

�

s.

Non-overlapping TRSs are innermost normal form preserving, but not vi
e

versa (
onsider a ! a, a ! b). In pra
ti
e, however, the above version of

Thm. 14 is most important, sin
e it is usually mu
h easier to show that a

TRS is non-overlapping than that it is innermost normal form preserving.

The 
onverse of Thm. 14 holds as well if P is obtained from the de-

penden
y pairs by repeated narrowing and rewriting steps. So similar to

narrowing, rewriting dependen
y pairs also preserves the ne
essity of our


riterion.

Theorem 15 (Rewriting Pairs Preserves Completeness) Let R be

an innermost terminating TRS with the unique normal form property and

let P, P

0

be as in Thm. 14. If there exists no in�nite innermost R-
hain of

pairs from P, then there exists no in�nite innermost R-
hain of pairs from

P

0

either.

Proof In an innermost 
hain : : : hs; ri hv; wi : : : from P

0

, repla
ing all (re-

named) o

urren
es of hs; ri by 
orresponding renamings of hs; ti yields an

innermost 
hain from P of same length. The reason is that there must be

a � with r�

i

!

�

R

v�. As R is innermost terminating, there must be a nor-

mal form q whi
h is rea
hable from t� by innermost redu
tion steps, i.e.,

t�

i

!

�

R

q. Thus, t�!

R

r�

i

!

�

R

v� implies q = v� by the unique normal

form property of R, and hen
e, t�

i

!

�

R

v�. ut

In our example we may now eliminate app and map f by rewriting the

pairs (11ad) and (11d). Even better, before narrowing, we 
ould �rst rewrite

(11), (12), and (13). Moreover, we 
ould simplify (10
) by rewriting it as

well. Thus, the resulting pairs on the 
y
les we are interested in are:

hPROCESS(
ons(h; t);m); IF

1

(
ons(h; t);m; leq(m; s(length(t))))i (9b)

hIF

1

(
ons(h; t); s(n); true); IF

2

(
ons(h; t); s(n); false)i (10


0

)

hIF

2

(store;m; false);PROCESS(sndsplit(m; store);m)i (11

0

)

hIF

1

(store;m; false); IF

3

(store;m; empty(fstsplit(m; store)))i (12

0

)

hIF

3

(store;m; false);PROCESS(sndsplit(m; store);m)i (13

0

)

Analogous to Se
t. 5, now we narrow (11

0

), (12

0

), (13

0

), perform a rewrite

step for one of (12

0

)'s narrowings, and delete those resulting pairs whi
h are

not on any 
y
le. In this way, (11

0

), (12

0

), (13

0

) are repla
ed by

hIF

2

(
ons(h; t); s(n); false);PROCESS(sndsplit(n; t); s(n))i (11

00

)

hIF

1

(
ons(h; t); s(n); false); IF

3

(
ons(h; t); s(n); false)i (12

00

)

hIF

3

(
ons(h; t); s(n); false);PROCESS(sndsplit(n; t); s(n))i (13

00

)

By eliminating the �rst argument of sndsplit and the third arguments of

IF

1

, IF

2

, and IF

3

(
f. Se
t. 5), we obtain the following inequalities. Note
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that a

ording to Thm. 10, these inequalities prove the absen
e of in�nite

innermost 
hains for all three 
y
les built from (9b), (10


0

), and (11

00

) -

(13

00

), sin
e for ea
h of these 
y
les (at least) one of its dependen
y pairs is

stri
tly de
reasing.

PROCESS(
ons(h; t);m) � IF

0

1

(
ons(h; t);m)

IF

0

1

(
ons(h; t); s(n)) � IF

0

2

(
ons(h; t); s(n))

IF

0

1

(
ons(h; t); s(n)) � IF

0

3

(
ons(h; t); s(n))

IF

0

2

(
ons(h; t); s(n)) > PROCESS(sndsplit

0

(t); s(n))

IF

0

3

(
ons(h; t); s(n)) > PROCESS(sndsplit

0

(t); s(n))

sndsplit

0

(x) � x

sndsplit

0

(nil) � nil

sndsplit

0

(
ons(h; t)) � sndsplit

0

(t)

l � r for all rules l! r with root(l) 2 fleq; lengthg

Now these inequalities are satis�ed by the rpo. The sndsplit

0

-, leq-, and

length-inequalities are the only ones whi
h 
orrespond to the usable rules,

sin
e the rules formap f and f are no longer usable. Hen
e, the TRS of Se
t. 3

is innermost terminating. In this way, left-right de
reasingness of the CTRS

from Se
t. 2 
ould be proved automati
ally. Therefore, the desired property

holds for the original Erlang pro
ess.

7 Verifying Networks of Pro
esses

In many appli
ations, one is not only interested in verifying 
ertain prop-

erties of a single pro
ess in a network, but instead one wants to verify a

property of the whole network of pro
esses. If these pro
esses work asyn-


hronously, then the exa
t order of the messages passed through the network

is often indeterministi
. Modelling this kind of behaviour usually results in

TRSs whi
h are overlapping (and in fa
t, not 
on
uent).

In this se
tion we extend the well-known result that innermost termi-

nation of non-overlapping TRSs implies their termination to the 
lass of

overlapping TRSs whi
h result from des
ribing pro
ess networks in our

framework. Then we show that our te
hniques of narrowing and rewrit-

ing dependen
y pairs 
an also be applied to overlapping TRSs. Moreover,

we introdu
e a third te
hnique to modify dependen
y pairs, viz. instan-

tiating dependen
y pairs, whi
h is parti
ularly useful when dealing with

non-
on
uent TRSs. With these extensions, we show how an important

property for a network of Erlang pro
esses 
ould be su

essfully veri�ed.

In this veri�
ation problem, we have a ring of three asyn
hronous pro-


esses (similar to the pro
ess des
ribed in Se
t. 2). The aim is to prove that

if the �rst pro
ess disregards its input (i.e., it performs as if it repeatedly

gets the empty list as input), then eventually, the third pro
ess will also send

the empty list. Of 
ourse, if one 
an prove this for a ring of three pro
esses,

then a similar proof for any other number of pro
esses works analogously.
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To model this situation, we use a CTRS similar to the one of Se
t. 2.

However, as we have to regard all three pro
esses simultaneously, we need a

new de�ned symbol ring to des
ribe the 
urrent state of the whole network.

The term

ring(st

1

; in

2

; st

2

; in

3

; st

3

;m)

des
ribes a situation where the stores of the pro
esses 1, 2, and 3 have

the values st

1

, st

2

, and st

3

, respe
tively. The variable in

2

is a list of lists


ontaining all messages whi
h have been sent from Pro
ess 1 to Pro
ess 2,

but whi
h have not yet been re
eived by Pro
ess 2. Similarly, in

3

is the

list of those messages sent from Pro
ess 2 to Pro
ess 3, whi
h have not yet

been re
eived by Pro
ess 3. The messages sent from Pro
ess 3 to Pro
ess

1 are ignored, be
ause in our veri�
ation problem we assume that Pro
ess

1 re
eives no new input any more. Again, m is the (maximum) length of

messages allowed.

In order to prove the desired 
onje
ture, we for
e the redu
tion to termi-

nate as soon as all pro
esses in the ring 
an only send the empty message. In

addition to the auxiliary fun
tions of Se
t. 2 we now also need the fun
tions

head and tail whi
h are de�ned by the following rules.

head(
ons(h; t))! h tail(
ons(h; t))! t

The CTRS to des
ribe the behaviour of the three pro
esses in the ring

is the following one.

empty(fstsplit(m; st

1

))!

�

false j

ring(st

1

; in

2

; st

2

; in

3

; st

3

;m)!

ring(sndsplit(m; st

1

); 
ons(fstsplit(m; st

1

); in

2

); st

2

; in

3

; st

3

;m) (17)

leq(m; length(st

2

))!

�

true;

empty(fstsplit(m; st

2

))!

�

false j

ring(st

1

; in

2

; st

2

; in

3

; st

3

;m)!

ring(st

1

; in

2

; sndsplit(m; st

2

); 
ons(fstsplit(m; st

2

); in

3

); st

3

;m) (18)

leq(m; length(st

2

))!

�

false;

empty(fstsplit(m; app(map f(2; head(in

2

)); st

2

)))!

�

false j

ring(st

1

; in

2

; st

2

; in

3

; st

3

;m)!

ring(st

1

; tail(in

2

); sndsplit(m; app(map f(2; head(in

2

)); st

2

));


ons(fstsplit(m; app(map f(2; head(in

2

)); st

2

)); in

3

); st

3

;m) (19)
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empty(map f(2; head(in

2

)))!

�

true j

ring(st

1

; in

2

; st

2

; in

3

; st

3

;m)! ring(st

1

; tail(in

2

); st

2

; in

3

; st

3

;m) (20)

leq(m; length(st

3

))!

�

true;

empty(fstsplit(m; st

3

))!

�

false j

ring(st

1

; in

2

; st

2

; in

3

; st

3

;m)!

ring(st

1

; in

2

; st

2

; in

3

; sndsplit(m; st

3

);m) (21)

leq(m; length(st

3

))!

�

false;

empty(fstsplit(m; app(map f(3; head(in

3

)); st

3

)))!

�

false j

ring(st

1

; in

2

; st

2

; in

3

; st

3

;m)!

ring(st

1

; in

2

; st

2

; tail(in

3

); sndsplit(m; app(map f(3; head(in

3

)); st

3

));m) (22)

empty(map f(3; head(in

3

)))!

�

true j

ring(st

1

; in

2

; st

2

; in

3

; st

3

;m)! ring(st

1

; in

2

; st

2

; tail(in

3

); st

3

;m) (23)

Rule (17) des
ribes how Pro
ess 1 sends a message 
onsisting of the �rst

m items in its store st

1

. To that end, fstsplit(m; st

1

) is added to those other

items in

2

whi
h were already sent as an input to Pro
ess 2, but whi
h have

not yet been re
eived by this next pro
ess. These �rst m items are taken

out of the store st

1

, i.e., its new value is sndsplit(m; st

1

).

The rules (18) and (19) des
ribe the 
ase where Pro
ess 2 sends a mes-

sage. If its store already 
ontains at leastm items, then Rule (18) applies and

the �rst m items fstsplit(m; st

2

) are dire
tly sent to Pro
ess 3, after whi
h

these items are removed from its store. Otherwise, if st

2


ontains less than

m items, then Rule (19) is used to re
eive one of the in
oming messages from

in

2

, i.e., in

2

is repla
ed by tail(in

2

). For these re
eived items head(in

2

), the

pro
ess 
omputes new items map f(2; head(in

2

)) and appends these newly


omputed items to its store. Afterwards it sends the �rst m items of the

new extended store to Pro
ess 3.

Finally, Rule (20) deletes those messages from in

2

that Pro
ess 2 would

not generate any new items from (i.e., where map f(2; head(in

2

)) is empty).

This rule is required in order to allow Pro
ess 2 to 
ontinue re
eiving

messages from tail(in

2

), even if fstsplit(m; app(map f(2; head(in

2

)); st

2

)) is

empty.

Similarly, Rules (21) and (22) des
ribe the sending of messages by Pro-


ess 3. The only di�eren
e is that messages sent by Pro
ess 3 are not deliv-

ered to Pro
ess 1 again, but they are ignored. Analogous to Rule (20), Rule

(23) is used to remove those messages from in

3

for whi
h Pro
ess 3 does

not 
ompute new items. The ring-term will be irredu
ible as soon as none

of the pro
esses 
an send a non-empty message any longer.
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To prove the desired 
onje
ture, we have to show that this CTRS is

left-right de
reasing. Note that this CTRS indeed models an asyn
hronous

behaviour of the pro
esses. The reason is that we do not determine in whi
h

order the pro
esses send messages to the next pro
ess in the ring. Conse-

quently, the translation of this CTRS yields a non-
on
uent un
onditional

TRS. In the following TRS, \. . . " abbreviates the arguments \st

1

; in

2

; st

2

;

in

3

; st

3

;m".

ring(: : :) ! if

1

(: : : ; empty(fstsplit(m; st

1

))) (24)

if

1

(: : : ; false) ! ring(sndsplit(m; st

1

); 
ons(fstsplit(m; st

1

); in

2

); st

2

; in

3

; st

3

;m)

(25)

ring(: : :) ! if

2

(: : : ; leq(m; length(st

2

))) (26)

if

2

(: : : ; true) ! if

3

(: : : ; empty(fstsplit(m; st

2

))) (27)

if

3

(: : : ; false) ! ring(st

1

; in

2

; sndsplit(m; st

2

); 
ons(fstsplit(m; st

2

); in

3

); st

3

;m)

(28)

if

2

(: : : ; false) ! if

4

(: : : ; empty(fstsplit(m; app(map f(2; head(in

2

)); st

2

)))) (29)

if

4

(: : : ; false) ! ring(st

1

; tail(in

2

); sndsplit(m; app(map f(2; head(in

2

)); st

2

));


ons(fstsplit(m; app(map f(2; head(in

2

)); st

2

)); in

3

); st

3

;m)

(30)

ring(: : :) ! if

5

(: : : ; empty(map f(2; head(in

2

)))) (31)

if

5

(: : : ; true) ! ring(st

1

; tail(in

2

); st

2

; in

3

; st

3

;m) (32)

ring(: : :) ! if

6

(: : : ; leq(m; length(st

3

))) (33)

if

6

(: : : ; true) ! if

7

(: : : ; empty(fstsplit(m; st

3

))) (34)

if

7

(: : : ; false) ! ring(st

1

; in

2

; st

2

; in

3

; sndsplit(m; st

3

);m) (35)

if

6

(: : : ; false) ! if

8

(: : : ; empty(fstsplit(m; app(map f(3; head(in

3

)); st

3

)))) (36)

if

8

(: : : ; false) ! ring(st

1

; in

2

; st

2

; tail(in

3

);

sndsplit(m; app(map f(3; head(in

3

)); st

3

));m) (37)

ring(: : :) ! if

9

(: : : ; empty(map f(3; head(in

3

)))) (38)

if

9

(: : : ; true) ! ring(st

1

; in

2

; st

2

; tail(in

3

); st

3

;m) (39)

A

ording to Corollary 3 now it suÆ
es to show that this TRS is termi-

nating. Note that this TRS is obviously not simply terminating. For exam-

ple, by adding the embedding rules fstsplit(m; st

1

)! st

1

, sndsplit(m; st

1

)!

st

1

, empty(l) ! l, and 
ons(h; t) ! t to the �rst two rules (24) and (25),

one 
an obtain a 
y
ling redu
tion of ring(false; in

2

; st

2

; in

3

; st

3

;m) to itself.
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In fa
t, to prove termination of this TRS using the dependen
y pair

approa
h in 
ombination with simpli�
ation orderings, we again need our

re�nements of narrowing and rewriting dependen
y pairs. However, re
all

that the re�nements of the theorems 12 - 15 were restri
ted to innermost

termination proofs. In the example of Se
t. 3, the resulting TRS was non-

overlapping and thus, innermost termination was enough to 
on
lude its

termination. However, now we have a TRS whi
h is not 
on
uent and hen
e,

none of the existing results for proving termination by innermost termina-

tion is appli
able.

Nevertheless, the following theorem shows that for TRSs like the one

in our example, innermost termination still implies termination. Note that

our TRS is a hierar
hi
al 
ombination of a non-overlapping TRS R

1

(whi
h

de�nes the auxiliary fun
tions) and an overlapping TRS R

2

with the ring-

and if-rules to des
ribe the network veri�
ation problem. In fa
t, TRSs of

this form o

ur frequently in the pro
ess veri�
ation domain, sin
e the aux-

iliary Erlang fun
tions always result in non-overlapping rules, whereas the

des
ription of an asyn
hronous pro
ess network often requires overlapping

rules. The following theorem gives a synta
ti
al 
hara
terization of these

TRSs, and it shows that for su
h systems, innermost termination already

implies termination. Hen
e, this theorem is an important result in order to

fa
ilitate their termination proofs.

Theorem 16 (SuÆ
ien
y of Innermost Termination) Let R = R

1

[

R

2

, where R

1

is non-overlapping, R

2

is non-
ollapsing, and R

2

-rules do

not form 
riti
al pairs with R

1

-rules. Let � 
ontain all root symbols of

left- and right-hand sides of R

2

-rules, i.e., � = froot(l)j l ! r 2 R

2

g [

froot(r)j l ! r 2 R

2

g. If no R

1

-rule 
ontains symbols from � and if

no R

2

-rule 
ontains symbols from � below the root level, then innermost

termination of R implies termination of R.

Proof For any ground term t, we write t = C[[t

1

; : : : ; t

n

℄℄ provided that C is

a non-empty 
ontext (i.e., C 6= 2) whi
h does not 
ontain symbols from �

below the root level and provided that root(t

i

) 2 � for all 1 � i � n. Now

it is easy to see that if t = C[[t

1

; : : : ; t

n

℄℄ and t !

R

s, then we have one of

the following three possibilities:

(i) s = C[[t

1

; : : : ; t

i�1

; s

i

; t

i+1

; : : : ; t

n

℄℄ and t

i

!

R

s

i

for some 1 � i � n

(in this 
ase, we speak of a bottom rewrite step)

(ii) s = C

0

[[s

1

; : : : ; s

m

℄℄, C !

R

C

0

, and fs

1

; : : : ; s

m

g � ft

1

; : : : ; t

n

g

(in this 
ase, we speak of a top rewrite step)

(iii) s = t

i

for some 1 � i � n

(in this 
ase, we have a top 
ollapsing rewrite step).

The reason is that redu
ing a term t with root(t) 2 � again yields a term

whose root is from � and that symbols of � do not o

ur below the root

level in any rule of R. Thus, if the root of the redex is in C, then we really

must have a step of the form (ii) or (iii).
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Now assume that R is innermost terminating, but not terminating. Let t

be a minimal ground term (w.r.t. the subterm relation) su
h that t starts an

in�niteR-redu
tion. Again, we must have t = C[[t

1

; : : : ; t

n

℄℄ for some 
ontext

C. Due to the minimality of t, its subterms t

1

; : : : ; t

n

are terminating. Thus,

in the in�nite redu
tion of t, there 
annot be any top 
ollapsing rewrite step

and there 
an only be �nitely many bottom rewrite steps. Hen
e, C starts

an in�nite R-redu
tion as well.

In other words, if R is not terminating, then there exists a non-termina-

ting 
ontext C whi
h does not 
ontain any �-symbol below the root level.

To use standard notation, we will now denote this 
ontext C by q, sin
e a


ontext is just a term possibly 
ontaining `2' symbols.

First suppose that q does not 
ontain any �-symbol at all. Then the only

rules appli
able in any redu
tion of q are from R

1

. However, R's innermost

termination implies that all innermost redu
tions starting from q are �nite.

Thus, q is innermost terminating w.r.t. R

1

and sin
e R

1

is non-overlapping,

by [22, Thm. 3.2.11 (1a)℄ we know that q is also terminating, whi
h yields

a 
ontradi
tion.

Thus, innermost termination of R in fa
t implies termination of R

1

for

all terms without symbols from �. Now suppose that the root of q is from

�, i.e., q has the form f

0

(s

0

) with f

0

2 � and s

0

are terms without symbols

from �. Thus, the in�nite R-redu
tion of f

0

(s

0

) must have the following

form.

f

0

(s

0

)!

�

R

1

f

0

(t

0

)!

R

2

f

1

(s

1

)!

�

R

1

f

1

(t

1

)!

R

2

f

2

(s

2

)!

�

R

1

: : :

Here, we have f

i

2 � for all i, the terms s

i

and t

i

do not 
ontain any

symbols from �, and we have s

i

!

�

R

1

t

i

.

Hen
e, there must be substitutions �

i

and rules f

i

(l

i

) ! f

i+1

(r

i

) in

R

2

su
h that l

i

�

i

= t

i

and r

i

�

i

= s

i+1

. Let �

0

i

be the substitution with

�

0

i

(x) = (�

i

(x)) #

R

1

. (For terms without symbols from �, the normal form

w.r.t. R

1

is well de�ned, sin
e these terms are terminating and R

1

is non-

overlapping.) Sin
e R

2

does not form 
riti
al pairs with R

1

-rules, we have

l

i

�

0

i

= (l

i

�

i

) #

R

1

= t

i

#

R

1

= s

i

#

R

1

. Moreover, we have (r

i

�

0

i

) #

R

1

= s

i+1

#

R

1

by the 
onvergen
e of R

1

for terms without symbols from �. This implies

f

0

(s

0

#

R

1

)!

R

2

f

1

(r

0

�

0

0

)!

�

R

1

f

1

(s

1

#

R

1

)!

R

2

f

2

(r

1

�

0

1

)!

�

R

1

f

2

(s

2

#

R

1

)!

R

2

: : :

Sin
e R

1

is terminating, we 
an use innermost steps to redu
e ea
h

r

i

�

0

i

to its normal form s

i+1

#

R

1

. Moreover, all the R

2

-steps in the above

redu
tion are innermost steps as well, sin
e the arguments s

i

#

R

1

are in

normal form. Thus, the above redu
tion is an in�nite innermost redu
tion,

whi
h yields a 
ontradi
tion to the innermost termination of R. ut

Thus in our example, innermost termination of the transformed TRS

indeed implies termination of the TRS and thus, it implies left-right de-


reasingness of the original CTRS. Hen
e, in this way the property of the

pro
ess network 
an be proved.
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As indi
ated, to perform this innermost termination proof, we again need

our re�nements of narrowing and rewriting dependen
y pairs. However, as

this TRS is not 
on
uent, for this purpose these te
hniques now have to be

extended to overlapping TRSs.

It turns out that su
h an extension is indeed possible, be
ause for the

theorems 13 - 15 it is in fa
t suÆ
ient to demand non-overlappingness (resp.

the unique normal form property) just for the usable rules U(P) instead of

the whole TRS R. In our example, the usable rules of the RING-
y
les only


onsist of the rules for the auxiliary fun
tions, i.e., the rules (24) - (39)

are not usable. As demonstrated in Se
t. 2, these auxiliary rules are non-

overlapping. Thus, the following extensions of the theorems 13 - 15 allow us

to apply our new te
hniques for TRSs like the one above, too. In this way,


onje
tures about asyn
hronous networks of pro
esses 
an now be veri�ed

by dependen
y pairs as well.

Theorem 17 (Completeness of Narrowing for Non-Con
uent Sys-

tems) Let R be an innermost terminating TRS, let P, P

0

be as in Thm.

12 and let U(P) have the unique normal form property. If there exists no

in�nite innermost R-
hain of pairs from P, then there exists no in�nite

innermost R-
hain of pairs from P

0

either.

Proof The proof is similar to the one of Thm. 13. The only di�eren
e is

the proof that t�!

�

R

v

2

� implies t�

i

!

�

R

v

2

� for the normal form v

2

�. The

reason is that innermost termination ofR implies that there must exist some

normal form q su
h that t�

i

!

�

R

q. Note that all rules used in any redu
tion

of t� are 
ontained in U(P). Thus, the unique normal form property of U(P)

is enough to 
on
lude q = v

2

�. ut

Theorem 18 (Rewriting Pairs for Non-Con
uent TRSs) Let R be a

TRS and let P be a set of pairs of terms su
h that U(P) is non-overlapping.

Let hs; ti 2 P, let t !

R

r and let P

0

result from P by repla
ing hs; ti with

hs; ri. If there exists no in�nite innermost 
hain of pairs from P

0

, then there

exists no in�nite innermost 
hain from P either.

Proof Again, the proof is similar to the proof of Thm. 14. The only ex-

tra observation needed is that t�

i

!

�

R

v� implies t�

i

!

�

U(P)

v�, sin
e all

rules appli
able in a redu
tion of t� are 
ontained in U(P). Hen
e, by non-

overlappingness of U(P) we 
an apply [22, Thm. 3.2.11 (1a) and (4a)℄ to


on
lude termination and 
on
uen
e of t� w.r.t. U(P). But as all rules ap-

pli
able in redu
tions of t� are already 
ontained in U(P), this means that

t� is terminating and 
on
uent w.r.t. R as well. Thus, now the rest of the

proof is identi
al to the one of Thm. 14. ut

Theorem 19 (Completeness of Rewriting for Non-Con
uent TRS)

Let R be an innermost terminating TRS, let P, P

0

be as in Thm. 18, and

let U(P) have the unique normal form property. If there exists no in�nite

innermost R-
hain of pairs from P, then there exists no in�nite innermost

R-
hain of pairs from P

0

either.
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Proof The 
hanges to the proof of Thm. 15 are similar as in the proof

of Thm. 17. We have t�!

�

R

v� for some normal form v� and innermost

termination of R implies t�

i

!

�

R

q for some normal form q. Again, all these

redu
tion steps only use rules from U(P). Thus, U(P)'s unique normal form

property implies v� = q. ut

Note that with these re�ned theorems we 
an also handle TRSs where

di�erent, but equivalent if-symbols are not identi�ed (
f. Se
t. 3). However

in pra
ti
e, su
h an identi�
ation is still useful, sin
e it simpli�es the TRSs


onsiderably.

In parti
ular, due to the above extended theorems, now we may apply

narrowing and rewriting to the dependen
y pairs resulting from the rules

(24) - (39). The only dependen
y pair resulting from Rule (24) whi
h is on a


y
le is hRING(: : :); IF

1

(: : :)i. Narrowing and rewriting this dependen
y pair

(and deleting those resulting pairs whi
h are not on 
y
les) yields

hRING(
ons(h; t); : : : ; s(n)); IF

1

(
ons(h; t); : : : ; s(n); false)i: (40)

Next we regard the dependen
y pair hIF

1

(: : :); RING(: : :)i resulting from

Rule (25). One would like to perform narrowing on this dependen
y pair.

However, this is not possible sin
e its right-hand side uni�es with the left-

hand sides of the dependen
y pairs resulting from the rules (26), (31), (33),

and (38). In fa
t, this problem is typi
al when regarding overlapping TRSs.

Nevertheless, the only pair whi
h may o

ur before hIF

1

(: : :); RING(: : :)i

in an innermost 
hain is (40). When regarding (40), one immediately sees

that therefore one only has to regard instantiations of hIF

1

(: : :); RING(: : :)i

where st

1

is repla
ed by 
ons(h; t) and m is repla
ed by s(n).

Re
all that when estimating the innermost dependen
y graph, for every

dependen
y pair hs; ti we 
he
k for whi
h (renamings of) dependen
y pairs

hv; wi, 
ap(w) uni�es with s (where their mgu must satisfy some additional

normality 
ondition). Here, 
ap(w) results from repla
ing all subterms of

w with de�ned root symbols by di�erent fresh variables. Let �

1

; : : : ; �

k

be

all mgu's of s and terms of the form 
ap(w). Then one may repla
e the

dependen
y pair hs; ti by its instantiations hs�

1

; t�

1

i, . . . , hs�

k

; t�

k

i, sin
e

(spe
ializations of) these instantiations are the only ones that are needed

in in�nite innermost 
hains. This leads to the te
hnique of instantiating

dependen
y pairs.

Theorem 20 (Instantiating Pairs) Let P be a set of pairs of terms with

hs; ti 2 P and let Var(w) � Var(v) for all hv; wi 2 P. Let

P

0

= P n fhs; tig [ fhs�; t�i j� = mgu(
ap(w); s); hv; wi 2 Pg;

where we again assume that di�erent o

urren
es of pairs from P are vari-

able disjoint. Then there exists no in�nite innermost 
hain of pairs from P

0

i� there exists no in�nite innermost 
hain of pairs from P.
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Proof If : : : hv

1

; w

1

i hs; ti hv

2

; w

2

i : : : is an innermost 
hain, then there exists

a substitution � su
h that w

1

�

i

!

�

R

s�. Let w

1

have the form C[p

1

; : : : ; p

n

℄,

where the 
ontext C 
ontains no de�ned symbols and all p

i

have a de�ned

root symbol. As redu
tions 
annot take pla
e in � (sin
e otherwise, v

1

�

would not be a normal form), we know that s� = C�[q

1

; : : : ; q

n

℄ where

p

i

�

i

!

�

R

q

i

.

We have 
ap(w

1

) = C[y

1

; : : : ; y

n

℄, where the y

i

are fresh variables. Let �

0

be the modi�
ation of � su
h that �

0

(y

i

) = q

i

. Then we obtain 
ap(w

1

)�

0

=

s� = s�

0

, i.e., 
ap(w

1

) and s are uni�able. Let � be the mgu of 
ap(w

1

) and

s. Thus, there exists a substitution � su
h that �

0

= �� . As the variables

of all (o

urren
es of all) pairs may be assumed disjoint, we may modify �

to behave like � on the variables of hs�; t�i. Then we have w

1

�

i

!

�

R

s� =

s�

0

= s�� = (s�)� and we also have (t�)� = t�� = t�

i

!

�

R

v

2

�. Thus,

: : : hv

1

; w

1

i hs�; t�i hv

2

; w

2

i : : : is an innermost 
hain, too.

In this way, one 
an repla
e all o

urren
es of hs; ti in innermost 
hains

by pairs of P

0

, ex
ept for the very �rst pair in the 
hain. However, if

hs; ti hv

1

; w

1

i hv

2

; w

2

i : : : is an in�nite innermost 
hain, then hv

1

; w

1

i hv

2

; w

2

i

: : : is an in�nite innermost 
hain as well. Thus, by deleting the possibly re-

maining �rst o

urren
e of hs; ti in the end, every in�nite innermost 
hain

of P 
an indeed be transformed into an in�nite innermost 
hain of P

0

.

For the other dire
tion, let : : : hs�; t�i : : : be an innermost 
hain. As

di�erent o

urren
es of dependen
y pairs may be assumed variable disjoint,

we 
an extend every substitution � to behave like �� on the variables of s.

Hen
e, this dire
tion of the theorem is immediately proved. ut

It should be remarked that the te
hnique of instantiating dependen
y

pairs 
an also be used for termination instead of innermost termination

proofs. When using dependen
y pairs for arbitrary termination proofs, one

has to prove absen
e of in�nite 
hains (instead of innermost 
hains), where

hs

1

; t

1

i hs

2

; t

2

i : : : is an R-
hain if there exists a substitution � su
h that

t

j

� !

�

R

s

j+1

� for all 
onse
utive pairs hs

j

; t

j

i and hs

j+1

; t

j+1

i, 
f. [2,8℄.

Let ren(t) result from renaming all o

urren
es of variables to fresh vari-

ables (in parti
ular, di�erent o

urren
es of the same variable are also re-

named to di�erent new variables). If P

0

= P n fhs; tig [ fhs�; t�i j� =

mgu(ren(
ap(w)); s); hv; wi 2 Pg, then there exists no in�nite 
hain of

pairs from P

0

i� there exists no in�nite 
hain of pairs from P . The proof is

very similar to the proof of Thm. 20. The only di�eren
e is that now we write

w

1

as C[p

1

; : : : p

n

℄ where C 
ontains no de�ned symbols or variables and all

p

i

either have a de�ned root symbol or they are variables. Then we know

that s� = C[q

1

; : : : ; q

n

℄ with p

i

� !

�

R

q

i

and ren(
ap(w

1

)) = C[y

1

; : : : ; y

n

℄

where the y

i

are fresh variables. The rest of the proof is 
ompletely analo-

gous.

In our example, the only right-hand side of a pair whose 
ap uni�es with

the left-hand side IF

1

(st

1

; in

2

; st

2

; in

3

; st

3

;m; false) of the dependen
y pair

from Rule (25) is IF

1

(
ons(h; t); in

2

; st

2

; in

3

; st

3

; s(n); false) from Pair (40).
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Thus, we 
an instantiate st

1

by 
ons(h; t) and m by s(n) in the dependen
y

pair hIF

1

(: : :); RING(: : :)i from Rule (25). Subsequent rewriting yields

hIF

1

(
ons(h; t); : : : ; s(n); false); RING(sndsplit(n; t); : : : ; s(n))i: (41)

The only dependen
y pair resulting from Rule (26) whi
h is on a 
y
le

is

hRING(: : :); IF

2

(: : : ; leq(m; length(st

2

))i: (42)

For the dependen
y pair hIF

2

(: : :); IF

3

(: : :)i from Rule (27) we pro
eed

in a similar way as for the one from Rule (24) whi
h yields

hIF

2

(: : : ; 
ons(h; t); : : : ; s(n); true); IF

3

(: : : ; 
ons(h; t); : : : ; s(n); false)i: (43)

Rule (28) gives rise to a dependen
y pair hIF

3

(: : :);RING(: : :)i. The only

dependen
y pair whi
h may pre
ede this one in innermost 
hains is (43).

Thus, by the instantiation te
hnique, st

2


an be repla
ed by 
ons(h; t) and

m 
an be repla
ed by s(n). Subsequent rewriting yields

hIF

3

(st

1

; in

2

; 
ons(h; t); : : :); RING(st

1

; in

2

; sndsplit(n; t); : : :)i: (44)

The dependen
y pair hIF

2

(: : :); IF

4

(: : :)i from Rule (29) yields the fol-

lowing narrowing.

hIF

2

(st

1

; 
ons(h; t); : : :); IF

4

(st

1

; 
ons(h; t); : : :)i (45)

For the dependen
y pair resulting from Rule (30) we only have to regard

the instantiation where in

2

is repla
ed by 
ons(h; t). Rewriting this pair

yields

hIF

4

(st

1

; 
ons(h; t); : : :); RING(st

1

; t; : : :)i: (46)

Similarly, narrowing the dependen
y pair hRING(: : :); IF

5

(: : :)i from Rule

(31) yields

hRING(st

1

; 
ons(h; t); : : :); IF

5

(st

1

; 
ons(h; t); : : :)i: (47)

So the dependen
y pair hIF

5

(: : :); RING(: : :)i from Rule (32) only has to

be regarded for the instantiation of in

2

by 
ons(h; t) and thus, rewriting it

results in

hIF

5

(st

1

; 
ons(h; t); : : :); RING(st

1

; t; : : :)i: (48)

Finally, for the dependen
y pairs resulting from the rules (33) - (39) we

pro
eed in an analogous way and we obtain seven pairs similar to (42) -

(48). Now the resulting 
onstraints from the dependen
y pair approa
h are

satis�ed by the lexi
ographi
 path ordering (lpo) [25℄ if one eliminates the

last arguments of all IF-symbols and the �rst argument of sndsplit before

(to bene�t from the fa
t that these symbols do not have to be strongly

monotoni
 in these arguments). In this way, all of the above dependen
y

pairs are weakly de
reasing and the ones with a RING-term as their right


omponent are stri
tly de
reasing. The pre
eden
e used for this lpo should

make RING and the IF-symbols equally great, whereas the tuple symbols
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should be greater than all lower 
ase symbols. Of 
ourse, here we assume

that the rules for the fun
tion f are also weakly de
reasing w.r.t. the lpo.

The reason is that now we 
onsider a problem where non-empty lists must

be pro
essed and thus, the f-rules are usable as well. Hen
e, as soon as the

a
tual rules for the fun
tion f are determined, their weak de
reasingness has

to be 
he
ked.

Thus, in this se
tion we have demonstrated that although asyn
hronous

networks are des
ribed by non-
on
uent (C)TRSs, proving innermost ter-

mination is still suÆ
ient for their termination proof. Subsequently, we have

shown that our te
hniques of rewriting and narrowing dependen
y pairs 
an

be extended to TRSs where just the usable rules (i.e., the rules for the aux-

iliary fun
tions) satisfy non-overlappingness requirements. Finally, we have

introdu
ed a third te
hnique for manipulating dependen
y pairs, viz. in-

stantiation. In this way, now dependen
y pairs 
an also be used to prove

statements about asyn
hronous networks of pro
esses.

8 Con
lusion

We have shown that the dependen
y pair approa
h 
an be su

essfully ap-

plied for pro
ess veri�
ation tasks in industry. While our work was moti-

vated by spe
i�
 pro
ess veri�
ation problems, in this paper we developed

several te
hniques whi
h are of general use in term rewriting.

First of all, we showed how dependen
y pairs 
an be utilized to prove

that 
onditional term rewriting systems are de
reasing and terminating.

Moreover, we presented three re�nements whi
h 
onsiderably in
rease the


lass of systems where dependen
y pairs are su

essful. The �rst re�nement

of narrowing dependen
y pairs for innermost termination was already intro-

du
ed in [8℄. However, [8℄ did not 
ontain an expli
it proof of its soundness,

and 
ompleteness of the te
hnique for TRSs with unique normal forms is a

new result. It ensures that appli
ation of the narrowing te
hnique preserves

the su

ess of su
h an innermost termination proof. In fa
t, our narrow-

ing re�nement is the main reason why the approa
h of handling CTRSs by

transforming them into TRSs is su

essful in 
ombination with the depen-

den
y pair approa
h (whereas this transformation is usually not of mu
h

use for the standard termination proving te
hniques). To strengthen the

power of dependen
y pairs we also introdu
ed the novel te
hnique of rewrit-

ing dependen
y pairs and proved its soundness and 
ompleteness for inner-

most termination of non-overlapping TRSs. Finally, the re�nement of in-

stantiating dependen
y pairs was presented and we showed how to lift the

non-overlappingness restri
tions for narrowing and rewriting dependen
y

pairs in order to apply these te
hniques to non-
on
uent TRSs. We also

developed a new synta
ti
al 
hara
terization for a 
lass of (possibly) non-


on
uent TRSs where innermost termination implies termination, whi
h


aptures those rewrite systems des
ribing asyn
hronous pro
ess networks.

This paper is a substantially revised and extended version of [6℄ and [7℄.
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Note that we have used the modularity results for the dependen
y pair

te
hnique [5℄ for both a split and 
onquer approa
h and for dealing with

the in
ompleteness of our spe
i�
ation. For many reasons, in pra
ti
e it is

more rule than ex
eption that a spe
i�
ation la
ks some information, like

the de�nition of the fun
tion f in our example. Usually, at a 
ertain level of

abstra
tion one stops spe
ifying and, hen
e, for many built-in fun
tions the

spe
i�
ation is preferably hidden (e.g., one 
ould add a date as a time stamp

to every message where in many 
ases the 
omputation of this date is not

relevant). Thus, assuming some properties of the missing part of the spe
-

i�
ation and proving them for that part when it be
omes available makes

sense. In that 
ontext the modularity of the dependen
y pair te
hnique is

of great help.

Our te
hniques have shown to be su

essfully appli
able in small, but

real examples, where eventuality properties had to be proved. These expe-

rien
es demonstrate that our approa
h is parti
ularly useful for verifying

properties of pro
esses where a lot of data manipulation is involved and

where 
ommuni
ation plays a minor role. Typi
ally, these are the proper-

ties that are hard to handle by model-
he
king. The examples in this paper

represent su
h situations where model-
he
king 
annot be used be
ause of

the arbitrary lengths of the stores. These problems have also been ta
kled

by a spe
ialized proof 
he
ker for Erlang [1℄. Compared to dependen
y pairs,

the proof 
he
ker approa
h is more generally appli
able. But sin
e in that

approa
h the proofs had, up to a great extend, to be provided by hand,

the dependen
y pair approa
h has the important advantage that it is mu
h

better suitable for automation.
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