Appeared in Applicable Algebra in Engineering, Communi-
cation and Computing, 12(1,2):39-72, 2001.

Verification of Erlang Processes by
Dependency Pairs*

Jiirgen Giesl'!, Thomas Arts?

! LuFG Informatik II, RWTH Aachen, Ahornstr. 55, 52074 Aachen, Germany,
E-mail: giesl@informatik.rwth-aachen.de

2 Computer Science Lab., Ericsson Utvecklings AB, Box 1505, 125 25 Alvsj('j,
Sweden, E-mail: thomas@cslab.ericsson.se

Received: date / Revised version: date

Abstract FErlang is a functional programming language developed by
Ericsson Telecom, which is particularly well suited for implementing con-
current processes. In this paper we show how methods from the area of term
rewriting are presently used at Ericsson. To verify properties of processes,
such a property is transformed into a termination problem of a conditional
term rewriting system (CTRS). Subsequently, this termination proof can be
performed automatically using dependency pairs.

The paper illustrates how the dependency pair technique can be ap-
plied for termination proofs of conditional TRSs. Secondly, we present three
refinements of this technique, viz. narrowing, rewriting, and instantiating
dependency pairs. These refinements are not only of use in the industrial
applications sketched in this paper, but they are generally applicable to ar-
bitrary (C)TRSs. Thus, in this way dependency pairs can be used to prove
termination of even more (C)TRSs automatically.

Keywords: verification, distributed processes, rewriting, termination

1 Introduction

In a patent application [24], Ericsson developed a protocol for a query lookup
in a distributed database. In several products of Ericsson, for example their
newer telecommunication switches, this database plays a key role in the re-
covery after a shutdown or crash of the system. Clearly, this critical part
of the software should be trustworthy. This paper originates from an at-
tempt to verify this protocol’s implementation written in Erlang. To save
the amount of work and to increase reliability, the aim was to perform as

* This work was partially supported by the DFG under grant GI 274/4-1.

2 Jirgen Giesl, Thomas Arts

much as possible of this verification automatically. Model checking tech-
niques were not applicable, since the properties to be proved require the
consideration of the infinite state space of the processes. A user guided ap-
proach based on theorem proving by a specialized proof checking tool was
successful, but very labour intensive [1]. We describe two of the properties
which had to be verified in Sect. 2 and Sect. 7, respectively, and we show
that they can be represented as non-trivial termination problems of CTRSs.

In general, proving termination of CTRSs is considerably more difficult
than showing termination of unconditional TRSs. Therefore, standard tech-
niques (see e.g. [14,18,31]) fail with the termination proofs required for the
protocol verification described above. Moreover, due to the complexity and
the safety requirements arising with practical applications in industry, a
high degree of automation is desirable for the termination proofs required.
These reasons motivate why we chose to apply the dependency pair tech-
nique [2,3,5,8] (i.e., the currently most powerful termination proof method
that is amenable to automation). However, it turned out that (without fur-
ther extensions) even the dependency pair technique could not perform the
required termination proofs automatically.

In Sect. 3 we show that termination problems of CTRSs can be reduced
to termination problems of unconditional TRSs. After recapitulating the
basic notions of dependency pairs in Sect. 4, we present three important
extensions, viz. narrowing (Sect. 5), rewriting (Sect. 6), and instantiating
dependency pairs (Sect. 7), which are particularly useful in the context of
CTRSs. With these refinements, the dependency pair approach could solve
the termination problems automatically.

2 A Process Verification Problem

We have to prove properties of processes in a network. A process P,, receives
messages from a process P,_; that consist of a list of data items and an
integer M. For every item in the list, process P, computes a new list of data
items. For example, the data items could be telephone numbers and the
process could generate a list of calls to that number on a certain date. The
resulting list may have arbitrary length, including zero. The integer M in
the message indicates how many items of the newly computed list should
be sent to the next process P,;i. The restriction on the number of items
that may be sent is imposed for practical optimization reasons.

Fig. 1 Process P, in a network

Of course, process P, may have computed more than M new items and in
that case, it stores the remaining answers in an accumulator (implemented

Verification of Erlang Processes by Dependency Pairs 3

by an extra argument Store of the process). However, whenever it has sent
the first M items to the next process P, 1, process P, may receive a new
message from P,,_;. To respond to the new message, it first checks whether
its store already contains at least M items. In this case, it sends the first
M items from its store to P,;1 and depending on the incoming message,
probably some new items are computed afterwards. Otherwise, if the store
contains fewer than M items, then process P,;; has to wait until the new
items are computed. After this computation, the first M items from the newly
obtained item list and the store are sent to P,11. Again, those items that
exceed the limit M are stored in the process accumulator. Finally, in order
to empty the store, process P,, 1 repeatedly sends the empty list to process
P, . In the end, so is the claim, process P,, will send the empty list as well.

We describe how we are able to formally verify this claim with a high
degree of automation. The Erlang code executed by the processes is given
below (to save space, the code for obvious library functions like app and
leq is not presented).

process(NextPid,Store) ->
receive
{Items,M} ->
case leq(M,length(Store)) of
true ->
{ToSend,ToStore} = split(M,Store),
NextPid!{ToSend,M},
process (NextPid, app (map_f (self () ,Items) ,ToStore));
false ->
{ToSend, ToStore} =
split (M, app(map_f (self(),Items),Store)),
NextPid!{ToSend,M},
process (NextPid, ToStore)
end
end.

map_f (Pid,nil) -> nil;
map_f (Pid,cons(H,T)) -> app(f(Pid,H) ,map_f(Pid,T)).

For a list L, split(M,L) returns a pair of lists {Li,Ls} where L; con-
tains the first M elements (or L if its length is shorter than M) and L,
contains the rest of L. The command ‘!’ denotes the sending of data and
NextPid!{ToSend,M} stands for sending the items ToSend and the integer
M to the process with the identifier NextPid. A process can obtain its own
identifier by calling the function self (). For every item in the list Items,
the function map_f (Pid,Items) computes new data items by means of the
function f (Pid,Item). So the actual computation that £ performs depends
on the process identifier Pid. Hence, to compute new data items for the
incoming Items, a process P, has to pass its own identifier to the function
map_f, i.e., it calls map_f (self(),Items).

4 Jirgen Giesl, Thomas Arts

Note that a process itself is not a terminating function: in fact, it has
been designed to be non-terminating. OQur aim is not to prove its termina-
tion, but to verify a certain property, which can be expressed in terms of
termination. As part of the correctness proof of the software, we have to
prove that if a process P, continuously receives the message {nil,M} for
any integer M, then eventually the process will send the message {nil,M} as
well. This property must hold independent of the value of the store and of
the way in which new data items are generated from given ones. Therefore,
f has been left unspecified, i.e., £ may be any terminating function which
returns a list of arbitrary length.

The framework of term rewriting [10,17] is very useful for this verifica-
tion. We prove the desired property by constructing a CTRS containing a
binary function process whose arguments represent the stored data items
Store and the integer M sent in the messages. In this example, we may ab-
stract from the process communication. Thus, the Erlang function self ()
becomes a constant and we drop the send command (!) and the argu-
ment NextPid in the CTRS. Since we assume that the process constantly
receives the message {nil,M}, we hard-code it into the CTRS. Thus, the
variable Items is replaced by nil. As we still want to reason about the
variable M, we added it to the arguments of the process. To model the
function split (which returns a pair of lists) in the CTRS, we use sep-
arate functions fstsplit and sndsplit for the two components of split’s re-
sult. Thus, fstsplit(m, store) results in the first m elements of the store and
sndsplit(m, store) results in all but the first m elements of the store. Now the
idea is to force the function process to terminate if ToSend is the empty list
nil. So we only continue the computation if application of the function empty
to the result of fstsplit yields false. Thus, if all evaluations w.r.t. this CTRS
terminate, then the original process eventually outputs the demanded value.
As usual, the semantics of a rule ‘sy —* t1,82 —* t5 | I — 7’ is that a redex
lo may only be reduced to ro if s;o reduces to t10 and syo reduces to too
(i.e., the vertical bar | separates the conditions from the actual rule).

leq(m, length(store)) —* true,
empty(fstsplit(m, store)) —* false |
process(store, m) — process(app(map_f(self, nil), sndsplit(m, store)), m) (1)
leq(m, length(store)) —* false,
empty(fstsplit(m, app(map_f(self, nil), store))) —* false |
process(store, m) — process(sndsplit(m, app(map_f(self, nil), store)), m) (2)
The auxiliary Erlang functions as well as the functions for empty, fstsplit,
and sndsplit are straightforwardly expressed by unconditional rewrite rules.
fstsplit(0,z) — nil
fstsplit(s(n), nil) — nil
fstsplit(s(n), cons(h, t)) — cons(h, fstsplit(n, t))

Verification of Erlang Processes by Dependency Pairs 5

sndsplit(0, z) —
sndsplit(s(n), nil) — n|I
sndsplit(s(n), cons(h,t)) — sndsplit(n, t)
empty(nil) — true
empty(cons(h,t)) — false
leq(0, m) — true
leq(s(n),0) — false
eas(n) s(m) — lea(n,m)
length(nil) —
length(cons(h,t)) — s(Iength()
app(nil, z) —
app(cons(h, t),z) — cons(h app(t, z))
map_f(pid, nil) — nil
map_f(pid, cons(h,t)) — app(f(pid, h), map_f(pid, t))

The rules for the Erlang function f are not specified, since we have to
verify the desired property for any terminating function f. However, as
Erlang has an eager (call-by-value) evaluation strategy, if a terminating
Erlang function f is straightforwardly transformed into a (C)TRS (such as
the above library functions), then any evaluation w.r.t. these rules is finite.
Now to prove the desired property of the Erlang process, we have to show
that the whole CTRS with all its extra rules for the auxiliary functions only
permits finite evaluations.

The construction of the above CTRS is rather straightforward, but it
presupposes an understanding of the program and the verification problem
and therefore it can hardly be mechanized. But after obtaining the CTRS,
the proof that any evaluation w.r.t. this CTRS is finite should be done
automatically.

In this paper we describe an extension of the dependency pair technique
which can perform such automatic proofs. Moreover, this extension is of
general use for termination proofs of TRSs and CTRSs. Hence, our results
significantly increase the class of systems where termination can be shown
mechanically.

3 Termination of Conditional Term Rewriting Systems

A CTRS is a TRS where conditions s; = t1,...,8, = t, may be added to
rewrite rules [— r. In this paper, we restrict ourselves to CTRSs where all
variables in the conditions s;, ¢; also occur in [. Depending on the interpreta-
tion of the equality sign in the conditions, different rewrite relations can be
associated with a CTRS, cf. e.g. [11,12,15,16,20,22,23,26,27,29,32]. In our
verification example, we transformed the problem into an oriented CTRS
[32], where the equality signs in conditions of rewrite rules are interpreted
as reachability (—*). Thus, we denote rewrite rules by

S1 2 1,y S 2t | Lo (3)

6 Jirgen Giesl, Thomas Arts

In fact, we even have a nmormal CTRS, because all ¢; are ground normal
forms w.r.t. the TRS which results from dropping all conditions.

A reduction of Cllo] to C[ro] with rule (3) is only possible if s;0 reduces
to t;o for all 1 < ¢ < n. Formally, the rewrite relation —% of a CTRS R
can be defined as —r= Uj>0 —R;, Where

Ro =0 and

Rjy1 = U {lo = ro|s;0 =5 tioforalll <i<n},
¢ y j
S1—=*t1 S tp |l ER

cf. e.g. [23,29].

A CTRS R is terminating iff -5 is well founded. But termination is
not enough to ensure that every evaluation with a CTRS is finite. For
example, assume that evaluation of the condition leq(m, length(store)) in
our CTRS would require the reduction of process(store,m). Then evalua-
tion of process(store, m) would yield an infinite computation. Nevertheless,
process(store, m) could not be rewritten further and thus, the CTRS would
be terminating. But in this case, the desired property would not hold for
the original Erlang process, because this would correspond to a deadlock
situation where no messages are sent at all.

For that reason, instead of termination one is often much more interested
in decreasing CTRSs [15]. In this paper, we use a slightly modified notion
of decreasingness, because in our evaluation strategy conditions are checked
from left to right, cf. [33]. Thus, the i-th condition s; —* ¢; is only checked
if all previous conditions s; —* t; for 1 < j < ¢ hold.

Definition 1 (Left-Right Decreasing) A CTRS R is left-right decreas-
ing if there exists a well-founded relation > containing the rewrite relation
—x and the subterm relation > such that lo > s;o holds for all rules like
(8), all i € {1,...,n}, and all substitutions o where s;o —% t;o for all
je{1,...,i—1}.

This definition of left-right decreasingness exactly captures the finiteness
of recursive evaluation of terms. (Obviously, decreasingness implies left-right
decreasingness, but not vice versa.) Hence, now our aim is to prove that the
CTRS corresponding to the Erlang process is left-right decreasing.

A standard approach for proving termination of a CTRS R is to ver-
ify termination of the TRS R’ which results from dropping all conditions
(and for decreasingness one has to impose some additional demands). But
this approach fails for CTRSs where the conditions are necessary to ensure
termination. This also happens in our example, because without the condi-
tions empty(...) —* false the CTRS is no longer terminating (and thus, not
left-right decreasing either).

A solution for this problem is to transform CTRSs into unconditional
TRSs, cf. [13,19,28]. For unconditional rules, let tr(l - r)={l - r}. If «
is a conditional rule, i.e., @ = ‘s; =* t1,...,8, =* t, |l = 7', we define
tr(a) =

{l — ifl,a(x, 81)} U {ifiya(x, ti) — ifi+1,a(x, 5¢+1) | 1<i< TL} @] {ifn,a(x, tn) — 7‘}

Verification of Erlang Processes by Dependency Pairs 7

where x is the tuple of all variables in [and the if’s are new function symbols.
To ease readability, instead of if; , we often just write if,, for some m € IN
where if ,, is a function symbol which has not yet been used before.

Let R™ = {J, c g tr(e). For CTRSs without extra variables, R*" is in-
deed an (unconditional) TRS. (An extension to deterministic CTRSs [12]
with extra variables is also possible.) The transformation of Rule (1) results
in

process(store, m) — if;(store, m,leq(m, length(store))) (4)
if1(store, m, true) — ifz(store, m, empty(fstsplit(m, store))) (5)
if2(store, m, false) — process(app(map-_f(self, nil), sndsplit(m, store)), m). (6)

Now we aim to prove termination of R'" instead of R’s left-right decreas-
ingness.

In [19], this transformation is restricted to a limited class of conver-
gent CTRSs. However, in the following we show that for our purpose this
restriction is not necessary. In other words, termination of R indeed im-
plies left-right decreasingness (and thus also termination) of R. Thus, this
transformation is a generally applicable technique to reduce the termina-
tion problem of CTRSs to a termination problem of unconditional TRSs.
(A similar approach was presented in [28] for decreasingness proofs (instead
of left-right decreasingness) by using a transformation where all conditions
of a rule have to be checked in parallel.) We first prove that any reduction
with R can be simulated by R'". So in particular, the equational theory of
R is a subset of R'"’s equational theory.

Lemma 2 Let q,q' be terms without if 's. If g =7, ¢', then q —>£t, q.
Proof There must be a j € IN such that ¢ —)}Qj q' (j is the depth of the
reduction). We prove the theorem by induction on the depth and the length
of the reduction ¢ _>7+z ¢ (i-e., we use a lexicographic induction relation).

The reduction has the form ¢ - p —% ¢ and by the induction hy-
pothesis we know p —%.. ¢'. Thus, it suffices to prove ¢ —>7—;¢r p.

If the reduction ¢ —% p is done with an unconditional rule of R, then
the conjecture is trivial. Otherwise, we must have ¢ = Cllo], p = Clro]
for some context C' and some rule like (3). As the depth of the reductions
8;0 =% t;o is less than the depth of the reduction ¢ _>7+z q', by the induction
hypothesis we have s;o —%.. t;0. This implies ¢ —>7'§" p. O

Now the desired result is a direct consequence of Lemma 2.

Corollary 3 (Left-Right Decreasingness of R and Termination of
RY™) If RY™ is terminating, then R is left-right decreasing (and thus, it is
also terminating).

Proof Tt is well known that if — g« is well founded, then — gz U is well
founded, too (this is a direct consequence of — gz« being closed under con-
text). Hence, the transitive closure (— g« Ur>)T is well founded, too. By

8 Jirgen Giesl, Thomas Arts

Lemma 2, this relation satisfies all conditions imposed on the relation > in
Def. 1. Hence, R is left-right decreasing. O

The converse of this corollary does not hold. If R is the CTRS with
a — b, f(a) — b, and the conditional rule f(z) —* z|g(z) — g(a), then
g(a) =7 g(a) holds in the transformed TRS R, but not in the original
CTRS. Thus, the transformed TRS R is not terminating although the
original CTRS R is left-right decreasing.

However, independently, in the meanwhile this transformation has also
been studied by Ohlebusch [30] and he could prove a (restricted) complete-
ness result for this transformation, viz. that left-right decreasingness of R at
least implies innermost termination of R'Y. (In [30], our notion of left-right
decreasingness is called “quasi-decreasingness”.)

In our example, the conditional rule (2) is transformed into three addi-
tional unconditional rules. But apart from the if-root symbol of the right-
hand side, the first of these rules is identical to (4). Thus, we obtain two
overlapping rules in the transformed TRS which correspond to the overlap-
ping conditional rules (1) and (2). However, in the CTRS this critical pair
is infeasible [15], i.e., the conditions of both rules exclude each other. Thus,
our transformation of CTRSs into TRSs sometimes introduces unnecessary
rules and overlap.

Therefore, whenever we construct a rule of the form g — if(t) and there
already exists a rule ¢ — if,(t), then we identify if;, and if,. This does not
affect the soundness of our approach, because termination of a TRS where
all occurrences of a symbol g are substituted by a symbol f with the same
arity always implies termination of the original TRS.! Thus, we obtain the
additional rules:

if (store, m, false) —
if 3 (store, m, empty(fstsplit(m, app(map_f(self, nil), store)))) (7)
if3(store, m, false) — process(sndsplit(m, app(map_f(self, nil), store)), m)(8)

If termination of a CTRS depends on its conditions, then in general
termination of the transformed TRS can only be shown if one examines
which terms may follow each other in a reduction. However, in the classical
approaches based on simplification orderings (cf. e.g. [14,31]), such consid-
erations do not take place. Hence, they fail in proving the termination of (4)
- (8). For this reason, such transformations into unconditional TRSs have
rarely been applied for termination (or decreasingness) proofs of CTRSs.
However, we will demonstrate that with the dependency pair approach this
transformation is very useful.

! This possibility to eliminate unnecessary overlap is an advantage of our trans-
formation compared to the one of [28], where the transformed unconditional TRSs
remain overlapping. In practice, proving termination of non-overlapping TRSs is
significantly easier, since one may use techniques specifically tailored to innermost
termination proofs, see below.

Verification of Erlang Processes by Dependency Pairs 9

To verify our original goal, we now have to prove termination of the
transformed TRS which consists of (4) - (8), the rules for all auxiliary (li-
brary) functions from Sect. 2, and the (unknown) rules for the unspecified
function f. Note that if an auxiliary Erlang function is straightforwardly
transformed into a TRS, then this TRS is non-overlapping. Thus, we assume
that all possible rules for the unspecified function f are non-overlapping as
well. Then it is sufficient just to prove innermost termination of the result-
ing TRS, since innermost termination of non-overlapping systems implies
their termination, cf. e.g. [21]. In order to apply verification on a large scale,
the aim is to perform such proofs automatically.

In the rest of the paper we present some extensions of the dependency
pair technique that make this possible. The dependency pair technique (in-
cluding these extensions) has been implemented in a tool written in Erlang
which provides both a user friendly interface for manual applications of
dependency pairs and the possibility to perform fully automatic termina-
tion proofs of TRSs using dependency pairs [9]. See [4] for a collection of
benchmarks to demonstrate the power of the dependency pair approach.

4 Dependency Pairs

Dependency pairs allow the use of existing methods like simplification or-
derings for automated termination and innermost termination proofs where
they were not applicable before. In this section we briefly recapitulate the
basic concepts of this approach and we present the theorems that we need
for the rest of the paper. For further details and explanations see [3,5,8].

In contrast to the standard approaches for termination proofs, which
compare left and right-hand sides of rules, we only examine those subterms
that are responsible for starting new reductions. For that purpose we con-
centrate on the subterms in the right-hand sides of rules that have a defined?®
root, symbol, because these are the only terms a rewrite rule can ever be
applied to.

More precisely, for every rule f(si,...,8,) = Clg(t1,...,tm)] (where
f and g are defined symbols), we compare the argument tuples si,..., s,
and ty,...,tn. To avoid the handling of tuples, for every defined symbol f
we introduce a fresh tuple symbol F. To ease readability, we assume that
the original signature consists of lower case function symbols only, whereas
the tuple symbols are denoted by the corresponding upper case symbols.
Now instead of the tuples s¢,...,s, and tq,...,t, we compare the terms
F(s1,...,8,) and G(t1,...,tm)-

Definition 4 (Dependency Pair) Let R be a TRS. If f(s1,...,8,) —
Clg(ti,...,tm)] is a rule of R and g is a defined symbol, then (F(s1,...,Sn),
G(t1,...,tm)) is a dependency pair of R.

2 Root symbols of left-hand sides are defined and all other functions are con-
structors.

10 Jirgen Giesl, Thomas Arts

For the rules (4) - (8), (besides others) we obtain the following dependency
pairs.

PROCESS(store, m), IF1(store, m,leq(m, length(store))))
IF1 (store, m, true), IF;(store, m, empty(fstsplit(m, store)))) (10)
IF2(store, m, false), PROCESS (app(map_f(self, nil), sndsplit(m, store)), m)) (11)

IF.(store, m, false),

—~
=]
~

(
(
(
(

IF3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))) (12)
(IF3(store, m, false), PROCESS (sndsplit(m, app(map_f(self, nil), store)),m)) (13)

To trace newly introduced redexes in an innermost reduction, we con-
sider special sequences of dependency pairs, so-called innermost chains. A
sequence of dependency pairs (si,t1) (s2,t2)... is an innermost chain if
there exists a substitution o such that for all consecutive pairs (s;, ;) and

(8j4+1,tj41) in the sequence we have t;o L sjy+10. Here, “«L7 denotes
innermost reductions (i.e., rewrite steps where only innermost redexes are
contracted). In this way, the right-hand side of every dependency pair can
be seen as the newly introduced redex that should be traced and the reduc-

tions t;o SR sj410 are necessary to normalize the arguments of the redex
that is traced. Note that when regarding innermost reductions, arguments
of a redex should be in normal form before the redex is contracted. Thus,
we may restrict ourselves to substitutions o where all s;o are in normal
form.

Definition 5 (Innermost R-chains) Let R be a TRS. A sequence of
dependency pairs (si,t1) (s2,ta) ... is called an innermost R-chain if there

exists a substitution o, such that all s;o are in normal form and tjoc —*%
sj+10 holds for every two consecutive pairs (s;,t;) and (sjt1,tj4+1) in the
sequence.

We always assume that different (occurrences of) dependency pairs have
disjoint variables and we always regard substitutions whose domains may
be infinite. In [3] we showed that the absence of infinite innermost chains is
a (sufficient and necessary) criterion for innermost termination.

Theorem 6 (Innermost Termination Criterion) A TRS R is inner-
most terminating iff there exists no infinite innermost R-chain.

To improve this criterion we introduced the following graph which con-
tains arcs between all those dependency pairs which may follow each other
in innermost chains.

Definition 7 (Innermost Dependency Graph) The innermost depen-
dency graph of a TRS R is the directed graph whose nodes are the depen-
dency pairs and there is an arc from (s,t) to {(v,w) if (s,t) (v,w) is an
innermost R-chain.

Verification of Erlang Processes by Dependency Pairs 11

In our example, (besides others) there are arcs from (9) to (10) and (12),
from (10) to (11), from (12) to (13), and from both (11) and (13) to (9).
The subgraph of the innermost dependency graph containing the nodes (9)
- (13) is depicted in Figure 2.

(9)
(10)/ \(12)
/ N\

(11) (13)

Fig. 2 Subgraph of the innermost dependency graph in our example

Since the innermost dependency graph is in general not computable, we
use an estimation of this graph for automation purposes (cf. [3,5,8]). The
estimation is such that all arcs in the original graph are also present in the
estimated graph. Let cAP(¢) result from ¢ by replacing all subterms with
defined root symbols by different fresh variables. The estimated innermost
dependency graph is the directed graph whose nodes are the dependency
pairs and there is an arc from (s,t) to (v, w) iff CAP(¢) and v are unifiable
by a mgu p where su and vy are normal forms. It is not difficult to see that
whenever (s,t) (v, w) is an innermost chain, then there is also an arc from
(s,t) to (v,w) in the estimated innermost dependency graph. Thus, this
estimated graph is indeed a supergraph of the (real) innermost dependency
graph.

A non-empty set P of dependency pairs is called a cycle iff for all
(s,t), (v, w) € P, there is a path from (s,t) to (v,w) in the innermost de-
pendency graph, which only traverses pairs from P. Obviously, every cycle
in this graph is also a cycle in the estimated innermost dependency graph.

In our example, the dependency pairs (9) - (13) form the cycles P; =
{(9), (10), (11)}, P2 = {(9), (12), (13)}, and P3 = {(9), (10), (11), (12), (13)}.
However, (9) - (13) are not on a cycle with any other dependency pair (e.g.,
dependency pairs from the rules of the auxiliary library functions or the
unspecified function f, since we assume that f does not call process). This
leads to the following refined criterion.

Theorem 8 (Modular Innermost Termination Criterion) A finite
TRS R is innermost terminating iff for each cycle P in the innermost de-
pendency graph there exists no infinite innermost R-chain of dependency
pairs from P.

Note that for the soundness of this theorem one indeed has to regard all
cycles, not just the minimal ones (i.e., not just those cycles which contain

12 Jirgen Giesl, Thomas Arts

no other cycles as proper subsets). For example, the TRS with the rules
f(0) — g(1), f(1) — g(0), and g(z) — f(x) has three dependency pairs

(F(0),6(1)), (14)
(F(1),6(0)), (15)
(G(2), F(z)) (16)

and three cycles P; = {(14), (16)}, P2 = {(15), (16)}, and Ps = {(14), (15),
(16)}. There is no infinite innermost chain from any of the minimal cycles
P1 or Ps. Nevertheless, the TRS is not innermost terminating, and indeed
there is an infinite innermost chain from the non-minimal cycle Ps.

In our definition, a cycle is a set of dependency pairs. Thus, a cycle
never contains multiple occurrences of the same dependency pair and for
a finite TRS there only exist finitely many cycles P. The automation of
the dependency pair technique is based on the generation of inequalities.
For every cycle P (in the estimated graph) we search for a quasi-ordering
>p such that for any sequence of dependency pairs (s1,t1)(s2,t2)(s3,t3) ...
from P and for any substitution o with ¢;o =% sj10 (for all j) we have

810 2p t10 2p 820 Z>p too 2p 830 2p t30 Zp ...

Moreover, for at least one (s,t) in P we demand the strict inequality so >p
to. Here, >p must be a well-founded ordering compatible with > (i.e., we
have >p 0 >p C >p or >p o >p C >p). Then there exists no innermost
chain of dependency pairs from P which traverses all dependency pairs in
P infinitely many times.

In the following we require that both >p and >p must be closed under
substitution. Then s; >p t; and s; >p t; ensure s;o >p t;o and s;o0 >p
t;o, respectively, for all substitutions o.

We also restrict ourselves to weakly monotonic quasi-orderings >p. (A
quasi-ordering >p is weakly monotonic if s >p t implies f(...s...) >p
f(...t...).) Then to guarantee tjo >p s;410 whenever t;o =% s;;10 holds,
it is sufficient to demand [>p 7 for all rules [—r of the TRS that may
be used in this reduction. As we restrict ourselves to normal substitutions
o, not all rules are usable in a reduction of to. In general, if ¢t contains a
defined symbol f, then all f-rules are usable and moreover, all rules that
are usable for right-hand sides of f-rules are also usable for .

Definition 9 (Usable Rules) Let R be a TRS. For any symbol f let
Risg(f) = {l—=r € R|root(l) = f}. For any term we define the usable
rules:

* Ur(z) =10,
(] UR(f(tl,...,tn)) = RlSR(f) U Ul—)rGRlsR(f)uRl(r) U U?:1UR'(tj),

where R' = R\ Rlsg(f). Moreover, for any set P of dependency pairs we
define Ur (P) = U 1yep Ur(2)-

Verification of Erlang Processes by Dependency Pairs 13

Note that this is indeed a recursive definition (since R is decreasing to R’
in the second equation defining Ug).

Now we obtain the following theorem for automated® innermost termi-
nation proofs.

Theorem 10 (Innermost Termination Proofs) A finite TRS is inner-
most terminating if for each cycle P there is a weakly monotonic quasi-
ordering >p and a well-founded ordering >p compatible with >p, where
both >p and >p are closed under substitution, such that

e [>p 1 for all rules | —r € Ur(P),
e s >pt for all dependency pairs (s,t) from P, and
e s>pt for at least one dependency pair (s,t) from P.

We already demonstrated that for Thm. 8 (and hence, also for Thm. 10)
considering just the minimal cycles would be unsound. In fact, for Thm. 10
it would also be unsound just to consider mazimal cycles (i.e., those cycles
which are not contained in any other cycle). The problem is that it is not suf-
ficient if just one dependency pair of each maximal cycle is strictly decreas-
ing. There must be a strictly decreasing dependency pair for every subcycle
as well. As a counterexample regard the TRS f(s(z)) — f(s(z)), f(s(z)) —
f(z). Its (only) maximal cycle is {{F(s(z)), F(s(z))), (F(s(z)), F(z))}. But the
constraints F(s(z)) > F(s(z)) and F(s(z)) > F(z) for this cycle are easily
fulfilled although this TRS is clearly not innermost terminating. Thus, it is
crucial to consider all cycles P for Thm. 10.

In Sect. 2 we presented the rules for the auxiliary functions in our pro-
cess example. Proving absence of infinite innermost chains for the cycles of
their dependency pairs is very straightforward using Thm. 10. So all library
functions of our TRS are innermost terminating. Moreover, as we assumed
f to be a terminating function, its cycles do not lead to infinite innermost
chains either.

Recall that (9) - (13) are not on cycles together with the remaining
dependency pairs. Thus, what is left for verifying the desired property is
proving absence of infinite innermost chains for the cycles Py, Ps, P3, where
all rules of the whole TRS are possible candidates for being usable rules
(also the rules for the unspecified function f).

Thm. 10 demands s >p ¢ resp. s >p t for dependency pairs (s,t) on
cycles. However for (9) - (13), these inequalities are not satisfied by any
quasi-simplification ordering.* Thus, the automated proof fails here. More-
over, it is unclear which inequalities we have to add for the usable rules, since
the rules for f are not given. Therefore, we have to extend the dependency
pair technique.

3 Additional refinements for the automation can be found in [3,8].
4 Essentially, the reason is that the left-hand side of dependency pair (9) is
embedded in the right-hand sides of the pairs (11) and (13).

14 Jirgen Giesl, Thomas Arts

5 Narrowing Dependency Pairs

To prove the absence of infinite innermost chains, for a dependency pair
(v, w) it would be sufficient to demand vo >p wo resp. vo >p wo just
for those instantiations o where an instantiated right component to of a
previous dependency pair (s,t) reduces to vo. For example, (11) only has
to be regarded for instantiations o where the instantiated right component
IF2(store, m, empty(fstsplit(m, store)))o of (10) reduces to the instantiated
left component IF;(store, m,false)o of (11). In fact, this can only happen
if store is not empty, i.e., if store reduces to the form cons(h,t). However,
this observation has not been used in the inequalities of Thm. 10 and hence,
we could not find an ordering for them. Thus, the idea is to perform the
computation of empty on the level of the dependency pair. For that purpose
the well-known concept of narrowing is extended to pairs of terms.

Definition 11 Let R be a TRS. If a term t R-narrows to a term t' via the
substitution p, then the pair of terms (s,t) R-narrows to the pair (sp,t').

In the following, we will usually speak of ‘narrowing’ instead of ‘R-nar-
rowing’ if the TRS R is clear from the context. For example, the narrowings
of the dependency pair (10) are

(IF1(z,0,true), IF2(z, 0, empty(nil))) (10a)
(IFy (nil,s(n), true), IF2(nil, s(n), empty(nil))) (10Db)
(IF1(cons(h,t),s(n),true), IF2(cons(h, t),s(n),empty(cons(h, fstsplit(n, t))))). (10c)

Thus, if a dependency pair (s,t) is followed by some dependency pairs
(v, w) in an innermost chain and if ¢ is not already unifiable with v (i.e., at
least one rule is needed to reduce to to vo), then in order to ‘approximate’
the possible further R-reductions of to we may replace (s,t) by all its R-
narrowings. Hence, we can replace the dependency pair (10) by the new
pairs (10a) - (10c), which already contain one ‘hidden’ step of the next
R-reduction.

This enables us to extract necessary information from the last arguments
of if’s, i.e., from the former conditions of the CTRS. Thus, the narrowing
refinement is the main reason why the transformation of CTRSs into TRSs
is useful when analyzing the termination behaviour with dependency pairs.
The number of narrowings for a pair is finite (up to variable renaming) and
it can easily be computed automatically.

Note however that narrowing may indeed only be applied for depen-
dency pairs whose right-hand side does not unify with any left-hand side
of a dependency pair (after variable renaming). As an example regard the
following TRS.

Verification of Erlang Processes by Dependency Pairs 15

This TRS is not innermost terminating as we have the infinite innermost
reduction g(f(a)) = h(a) = g(f(a)) = ... The only dependency pairs on a
cycle are (G(f(a)),H(a)) and (H(z),G(f(x))). But if the latter dependency
pair is narrowed to (H(b), G(c)), then there is no cycle any more in the in-
nermost dependency graph and hence, we would falsely conclude innermost
termination. This example also demonstrates why this requirement is still
necessary even if we would restrict ourselves to non-overlapping systems.

Before showing how narrowing helps in solving the inequalities of the
process example, we first prove the soundness of our technique.

Theorem 12 (Narrowing Pairs) Let P be a set of pairs of terms and
let (s,t) € P such that Var(t) C Var(s) and such that for all (renamings
of) (v,w) € P, the terms t and v are not unifiable. Let P’ result from P
by replacing (s,t) by all its narrowings. If there exists no infinite innermost
chain of pairs from P’, then there exists no infinite innermost chain of pairs
from P either.

Proof Suppose there is an innermost R-chain

Avi,wy) (s,t) (va,wa) ...

of pairs from P. It suffices to prove that then there exists a narrowing (s’, ')
of (s,t) such that ... (vy,wy) (s',t') (ve,ws) ... is an innermost R-chain as
well. Here, (s,t) resp. (s’,t') may also be the first pair in the chain (i.e.,
(v1,w1) may be missing). If this has been proved, then all occurrences of
(s,t) in an infinite innermost chain may be replaced by pairs from P’.

For the above innermost chain, there must be a substitution o such
that all instantiated left-hand sides of the pairs are normal forms and every
instantiated right-hand side reduces innermost to the instantiated left-hand
side of the next pair in the innermost chain. Note that to cannot be equal
to veo, as otherwise o would be a unifier of ¢ and vy. Hence, we have

1 1 *
to =g @ =% v20 for some term gq.

The reduction to —»x ¢ cannot take place ‘in ¢’, because all variables of
t are contained in s and hence, then so would not be a normal form. Thus,
t contains some subterm f(u) such that a rule [—r has been applied to
f(u)o. In other words, ! matches f(u)o (i.e. Ip = f(u)o). So the reduction
has the following form:

to = to[f(u)o]x = tollplx —r tolrplr = q.

As in the usual definition of narrowing, we assume that the variables
of [—r have been renamed to fresh ones. Therefore we can extend o to
‘behave’ like p on the variables of [and r (but it still remains the same
on the variables of all pairs in the innermost chain). Now ¢ is a unifier of
[and f(u) and hence, there also exists a most general unifier u. By the
definition of most general unifiers, then there must be a substitution 7 such
that o = pr.

16 Jirgen Giesl, Thomas Arts

Let t' be the term tu[ru], and let s’ be su. Then (s, t) narrows to (s',t').
As we may assume s’ and t’ to be variable disjoint from all other pairs, we
may extend o to behave like 7 on the variables of s’ and ¢'. Then we have

i
wio —5 so = sut = s'Tr =50 and

o =t'r = tur[rut)e = tolrols = tolrpls = q 5% va0.
Hence, ... (v1,wy) (s',t') (v, ws) ... is also an innermost R-chain. 0O

So we may always replace a dependency pair by all its narrowings. How-
ever, while this refinement is sound, in general it destroys the necessity of
our innermost termination criterion in Thm. 8. For example, the TRS with
the rules f(s(z)) — f(g(h(z))), g(h(z)) — g(z), g(0) — s(0), h(0) — 1
is innermost terminating. But if the dependency pair (F(s(z)), F(g(h(xz))))
is replaced by its narrowings (F(s(0)),F(g(1))) and (F(s(z)), F(g(z))), then
(F(s(z)), F(g(z))) forms an infinite innermost chain (using the instantiation
{z/0}).

Nevertheless, in the application domain of process verification, we can
restrict ourselves to TRSs with the unique normal form property.® In fact,
the TRSs resulting from the translation of Erlang functions are always non-
overlapping. As non-overlapping innermost terminating TRSs are confluent,
they also satisfy the unique normal form property. Hence, the requirement
of the unique normal form property in the following theorem could also be
replaced by non-overlappingness.

The theorem shows that for such TRSs, narrowing dependency pairs
indeed is a completeness preserving technique. More precisely, whenever
innermost termination can be proved with the pairs P, then it can also be
proved with the pairs P’.

Theorem 13 (Narrowing Pairs Preserves Completeness) Let R be
an innermost terminating TRS with the unique normal form property and
let P, P’ be as in Thm. 12. If there exists no infinite innermost R-chain of
pairs from P, then there exists no infinite innermost R-chain of pairs from
P’ either.

Proof We show that every innermost R-chain ... (vy,w1) (s',¢') (va,wa) ...
from P’ can be transformed into an innermost chain from P of same length.
There must be a substitution o such that for all pairs the instantiated left-
hand side is a normal form and the instantiated right-hand side reduces to
the instantiated left-hand side of the next pair in the innermost chain. So
in particular we have

i i
wio —5 s'oc and t'oc —% voo.

5 A TRS is said to have the unique normal form property iff for every term t,
whenever s t —* sy with s; and s in normal form, then we have s; = s2.

Verification of Erlang Processes by Dependency Pairs 17

We know that (s,t) narrows to (s',¢') via a substitution p. As the vari-
ables in (s,t) are disjoint from all other variables, we may extend o to
‘behave’ like po on the variables of s and t. Then we have so = suoc = s'c

and hence, wyo —')3‘3 so.
Moreover, by the definition of narrowing, tu —% t'. This implies tuo —x

t'o and as to = tuo, we have to »r t'c —')% v90 where vy0 is a normal
form. As R is innermost terminating and every term has a unique normal
form, repeated application of innermost reduction steps to to also yields
the normal form vy0, i.e., to 3% vao. Thus, ... (vy,w;) (s,t) (va,ws) ... is
also an innermost R-chain. O

Hence, independent of the technique used to check the absence of in-
finite innermost chains, for TRSs with the unique normal form property,
narrowing dependency pairs preserves the success of the innermost termi-
nation proof. So we may narrow dependency pairs without the risk that the
new pairs we obtain form an infinite innermost chain, whereas the original
system is innermost terminating. Thus, in Thm. 6 and 8 when replacing the
dependency pairs of R by their narrowings, one still obtains a sufficient and
necessary criterion for innermost termination.

Moreover, narrowing can of course be repeated an arbitrary number of
times. Thus, after replacing (10) by (10a) - (10c), we may subsequently
replace (10a) and (10b) by their respective narrowings.

(IF1(z, 0, true), IF2(z, 0, true)) (10aa)
(IF1(nil,s(n), true), IF2(nil, s(n), true)) (10ba)

This excludes them from being on a cycle in the estimated innermost de-
pendency graph. Thus, now instead of the dependency pairs (9) - (13) we
consider (9), (10c), (11), (12), and (13). A further narrowing of (10c) is not
necessary for our purposes (but according to Thm. 13 it would not harm
either). The right component of the dependency pair (11) unifies with the
left component of (9) and therefore, (11) must not be narrowed. Instead we
narrow (9).

(PROCESS(nil, m), IFy (nil, m, leq(m, 0))) (9a

(PROCESS(cons(h, t), m), IFy(cons(h,t), m,leq(m, s(length(¢)))))
(PROCESS (store, 0), IFy (store, 0, true))

—_—
© QY ©
a o

By narrowing (10) to (10c), we determined that we only have to regard
instantiations where store has the form cons(h,t) and m has the form s(n).
Thus, (9a) and (9¢) do not occur on a cycle and therefore, (9) can be replaced
by (9b) only.

As (11)’s right component does not unify with left components any
longer, we may now narrow (11) as well. By repeated narrowing steps and
by dropping those pairs which do not occur on cycles, (11) can be replaced
by

(IF2(cons(h, t),s(n), false), PROCESS (sndsplit(n, t),s(n))) (11aac)

18 Jirgen Giesl, Thomas Arts

(IF2(cons(h, t),s(n), false), PROCESS (app(nil, sndsplit(n, t)),s(n))) (1lad)
(IF2(cons(h, t),s(n), false),
PROCESS (app(map_f(self, nil), sndsplit(n, t)),s(n))) (11d)

Now for the cycle Py, it is (for example) sufficient to demand that (11laac),
(11ad), and (11d) are strictly decreasing and that (9b), (10c), and all usable
rules are weakly decreasing. Similar narrowings can also be applied for the
pairs (12) and (13) which results in analogous inequalities for the cycles P,
and Ps.

Most standard orderings amenable to automation are strongly mono-
tonic path orderings (cf. e.g. [14,31]), whereas here we only need weak
monotonicity. Hence, before synthesizing a suitable ordering, some of the
arguments of function symbols may be eliminated, cf. [8]. For example, in
our inequalities one may eliminate the third argument of IF,. Then every
term IFy(t1,t,%3) in the inequalities is replaced by IFy(t1,t2) (where IF)
is a new binary function symbol). By comparing the terms resulting from
this replacement instead of the original terms, we can take advantage of
the fact that IF; does not have to be strongly monotonic in its third argu-
ment. Similarly, in our example we will also eliminate the third arguments
of IF; and IF3 and the first argument of sndsplit. Note that there are only
finitely many (and only few) possibilities to eliminate arguments of function
symbols. Therefore all these possibilities can be checked automatically. In
this way, the recursive path ordering (rpo) [14] satisfies the inequalities for
(11aac), (9b), (10c), for the dependency pairs resulting from (12) and (13),
and for all (known) usable rules. However, the inequalities resulting from
(11ad) and (11d)

),s(n)) > PROCESS (app(nil, sndsplit’(t)), s(n))

IF;(cons(h,
h,t),s(n)) > PROCESS (app(map_f(self, nil), sndsplit’(t)), s(n))

ns
IF},(cons(h,

are not satisfied because of the app-terms on the right-hand sides (as the
app-rules force app to be greater than cons in the precedence of the rpo).
Moreover, the map_f-term in the inequalities requires us to consider the
usable rules corresponding to the (unspecified) Erlang function f as well.

To get rid of these terms, one would like to perform narrowing on map_f
and app. However, in general narrowing only some subterms of right com-
ponents is unsound.® Instead, we always have to replace a pair by all its
narrowings. But then narrowing (11ad) and (11d) provides no solution here,
since narrowing the sndsplit-subterm results in pairs containing problematic
app- and map_f-terms again. In the next section we describe a technique
which solves the above problem.

t
t

6 As an example regard the TRS f(0,1) — s(1), f(z,0) — 1, a — 0, and
g(s(y)) — g(f(a,y)). If we would replace the dependency pair (G(s(y)), G(f(a,y)))
by only one of its narrowings, viz. (G(s(0)),G(1)), then one could falsely prove
innermost termination, although the term g(s(1)) starts an infinite innermost re-
duction.

Verification of Erlang Processes by Dependency Pairs 19

6 Rewriting Dependency Pairs

While performing only some narrowing steps is unsound, for non-over-
lapping TRSs it is at least sound to perform only one of the possible rewrite
steps. So if ¢ — r, then we may replace a dependency pair (s,t) by (s,r).

Note that this technique is only applicable to dependency pairs, but not
to rules of the TRS. Indeed, by reducing the right-hand side of a rule, a
non (innermost) terminating TRS can be transformed into a terminating
one, even if the TRS is non-overlapping. As an example regard the TRS
with the rules 0 — f(0), f(x) — 1 which is clearly not innermost terminat-
ing. However, if the right-hand side of the first rule is rewritten to 1, then
the resulting TRS is terminating. The following theorem proves that our
refinement of the dependency pair approach is sound.

Theorem 14 (Rewriting Pairs) Let R be non-overlapping and let P be
a set of pairs of terms. Let (s,t) € P, let t —x r and let P’ result from P
by replacing (s,t) with (s,r). If there exists no infinite innermost chain of
pairs from P’, then there exists no infinite innermost chain from P either.

Proof By replacing all (renamed) occurrences of (s,t) with the correspond-
ing renamed occurrences of (s,r), every innermost chain ...(s,t) (v,w)...
from P can be translated into an innermost chain from P’ of same length.

The reason is that there must be a substitution o with to % vo where
vo is a normal form. So to is weakly innermost terminating” and as R is
non-overlapping, by [22, Thm. 3.2.11 (1a) and (4a)] to is confluent and ter-
minating. With ¢t —x r, we obtain to —% ro. Hence, ro is terminating as
well and thus, it also reduces innermost to some normal form ¢. Now con-
fluence of to implies ¢ = vo. Therefore, ... (s,7) (v,w)... is an innermost
chain, too. 0O

The above theorem enables us to perform a rewrite step in the right-hand
side of a dependency pair and to continue with this dependency pair instead
of the original one. Note that a weakening of Thm. 14 by just demanding
innermost confluence instead of non-overlappingness of R is not possible;
not even if we only allow innermost reductions in the right-hand side of
a dependency pair. As a counterexample consider h(f(z)) — h(g(s(z))),
h(g(a)) — h(f(a)), g(s(z)) — b, s(a) — a. This TRS is innermost conflu-
ent, but not innermost terminating (since h(f(a)) starts a cycling reduc-
tion). Thus, the set P of all dependency pairs forms an infinite innermost
chain. But if we perform an innermost rewrite step on the dependency pair
(H(f(z)), H(g(s(z)))), then it is replaced by (H(f(z)), H(b)). Now the result-
ing set of pairs has no infinite innermost chains any more, and thus, we
could falsely conclude innermost termination.

" We call a term t (innermost) terminating if all (innermost) reductions starting
in t are finite. Analogously, ¢ is weakly (innermost) terminating if there exists a
finite (innermost) reduction starting in ¢.

20 Jirgen Giesl, Thomas Arts

However, the demand that the TRS should be non-overlapping may be
weakened by demanding that it is innermost normal form preserving, i.e.,

for any term ¢, whenever s <-* ¢ — 7 holds for a normal form s, then r —* s.
Non-overlapping TRSs are innermost normal form preserving, but not vice
versa (consider a — a, a — b). In practice, however, the above version of
Thm. 14 is most important, since it is usually much easier to show that a
TRS is non-overlapping than that it is innermost normal form preserving.

The converse of Thm. 14 holds as well if P is obtained from the de-
pendency pairs by repeated narrowing and rewriting steps. So similar to
narrowing, rewriting dependency pairs also preserves the necessity of our
criterion.

Theorem 15 (Rewriting Pairs Preserves Completeness) Let R be
an innermost terminating TRS with the unigue normal form property and
let P, P’ be as in Thm. 14. If there exists no infinite innermost R-chain of
pairs from P, then there exists no infinite innermost R-chain of pairs from
P’ either.

Proof In an innermost chain ... (s,r) (v,w)... from P’, replacing all (re-
named) occurrences of (s,r) by corresponding renamings of (s,t) yields an
innermost chain from P of same length. The reason is that there must be

a o with ro _I>;z vo. As R is innermost terminating, there must be a nor-
mal form ¢ which is reachable from to by innermost reduction steps, i.e.,

to —'>§2 q. Thus, to —>g ro —'>}‘€ vo implies ¢ = vo by the unique normal

form property of R, and hence, to _I>;z vo. O

In our example we may now eliminate app and map_f by rewriting the
pairs (11ad) and (11d). Even better, before narrowing, we could first rewrite
(11), (12), and (13). Moreover, we could simplify (10c) by rewriting it as
well. Thus, the resulting pairs on the cycles we are interested in are:

(PROCESS(cons(h, t), m), IF1(cons(h,t), m,leq(m, s(length(?))))) (
(IFy(cons(h, t),s(n), true), IFy(cons(h, t),s(n), false)) (
(IF2(store, m, false), PROCESS (sndsplit(m, store), m)) (11
(IFy (store, m, false), IF5(store, m, empty(fstsplit(m, store)))) (
(IF3(store, m, false), PROCESS (sndsplit(m, store), m)) (

Analogous to Sect. 5, now we narrow (11), (12'), (13'), perform a rewrite
step for one of (12)’s narrowings, and delete those resulting pairs which are
not on any cycle. In this way, (11’), (12'), (13') are replaced by

(IF2(cons(h, t),s(n), false), PROCESS(sndsplit(n, t),s(n))) (11")
(IF1(cons(h,t),s(n), false), IFs(cons(h, t),s(n), false)) (12")
(IF3(cons(h,t),s(n), false), PROCESS(sndsplit(n, t),s(n))) (13")

By eliminating the first argument of sndsplit and the third arguments of
IF1, IF3, and IF3 (cf. Sect. 5), we obtain the following inequalities. Note

Verification of Erlang Processes by Dependency Pairs 21

that according to Thm. 10, these inequalities prove the absence of infinite
innermost chains for all three cycles built from (9b), (10¢’), and (11") -
(13"), since for each of these cycles (at least) one of its dependency pairs is
strictly decreasing.

PROCESS(cons(h, t), m) > |F’1(cons(h,t),m)
IF' (cons(h, t),s(n)) > IFy(cons(h, t),s(n))
Fi(cons(h,t),s(n)) > IFy(cons(h,t),s(n))
IF' o(cons(h,t),s(n)) > PROCESS(sndsplit’ (t),s(n))
|F' 3(cons(h, t), (n)) > PROCESS (sndsplit’(t),s(n))
sndspllt (z) >z
sndsplit’ (nil) > n
sndsplit’ (cons(h, t)) > sn dspllt (t)
[> r for all rules | — r with root(l) € {leq, length}

Now these inequalities are satisfied by the rpo. The sndsplit’-, leg-, and
length-inequalities are the only ones which correspond to the usable rules,
since the rules for map_f and f are no longer usable. Hence, the TRS of Sect. 3
is innermost terminating. In this way, left-right decreasingness of the CTRS
from Sect. 2 could be proved automatically. Therefore, the desired property
holds for the original Erlang process.

7 Verifying Networks of Processes

In many applications, one is not only interested in verifying certain prop-
erties of a single process in a network, but instead one wants to verify a
property of the whole network of processes. If these processes work asyn-
chronously, then the exact order of the messages passed through the network
is often indeterministic. Modelling this kind of behaviour usually results in
TRSs which are overlapping (and in fact, not confluent).

In this section we extend the well-known result that innermost termi-
nation of non-overlapping TRSs implies their termination to the class of
overlapping TRSs which result from describing process networks in our
framework. Then we show that our techniques of narrowing and rewrit-
ing dependency pairs can also be applied to overlapping TRSs. Moreover,
we introduce a third technique to modify dependency pairs, viz. instan-
tiating dependency pairs, which is particularly useful when dealing with
non-confluent TRSs. With these extensions, we show how an important
property for a network of Erlang processes could be successfully verified.

In this verification problem, we have a ring of three asynchronous pro-
cesses (similar to the process described in Sect. 2). The aim is to prove that
if the first process disregards its input (i.e., it performs as if it repeatedly
gets the empty list as input), then eventually, the third process will also send
the empty list. Of course, if one can prove this for a ring of three processes,
then a similar proof for any other number of processes works analogously.

22 Jirgen Giesl, Thomas Arts

To model this situation, we use a CTRS similar to the one of Sect. 2.
However, as we have to regard all three processes simultaneously, we need a
new defined symbol ring to describe the current state of the whole network.
The term

ring(sty, ing, sta, ing, sts, m)

describes a situation where the stores of the processes 1, 2, and 3 have
the values stq, ste, and sts, respectively. The variable ins is a list of lists
containing all messages which have been sent from Process 1 to Process 2,
but which have not yet been received by Process 2. Similarly, ing is the
list of those messages sent from Process 2 to Process 3, which have not yet
been received by Process 3. The messages sent from Process 3 to Process
1 are ignored, because in our verification problem we assume that Process
1 receives no new input any more. Again, m is the (maximum) length of
messages allowed.

In order to prove the desired conjecture, we force the reduction to termi-
nate as soon as all processes in the ring can only send the empty message. In
addition to the auxiliary functions of Sect. 2 we now also need the functions
head and tail which are defined by the following rules.

head(cons(h,t)) — h tail(cons(h,t)) — t

The CTRS to describe the behaviour of the three processes in the ring
is the following one.

empty(fstsplit(m, st1)) —* false |
ring(sty,ing, sta, ing, stz,m) —

ring(sndsplit(m, sty), cons(fstsplit(m, st1), ing), ste, ing, stz,m) (17)

leq(m, length(sts)) —* true,
empty(fstsplit(m, stg)) —* false |
ring(sty,ing, sta, ing, stz, m) —

ring(sty, ing, sndsplit(m, st2), cons(fstsplit(m, st2),ins), st3,m) (18)

leq(m, length(sts)) —* false,
empty(fstsplit(m, app(map_f(2, head(ins)), st2))) —* false |
ring(sty,ing, ste, ing, stz, m) —
ring(sty, tail(inz), sndsplit(m, app(map_f(2, head(inz)), st2)),
cons(fstsplit(m, app(map_f(2, head(ing)), st2)),ing), stz,m) (19)

Verification of Erlang Processes by Dependency Pairs 23

empty(map_f(2, head(inzy))) —™ true |

ring(sty, ing, ste, ing, stz, m) — ring(sty, tail(ing), sta, ing, stz,m) (20)

leq(m, length(st3)) —* true,
empty(fstsplit(m, st3)) —* false |
ring(sty,ing, ste, ing, stz, m) —

ring(sty,ing, sta, ing, sndsplit(m, st3), m) (21)

leq(m, length(st3)) —* false,
empty(fstsplit(m, app(map_f(3, head(ins)), st3))) —* false |
ring(sty,ing, sta, ing, stz,m) —

ring(st1,ina, sta, tail(ins), sndsplit(m, app(map_f (3, head(ins)), st3)),m) (22)

empty(map_f(3, head(ins))) —* true |
ring(sty,ing, sta, ing, stz, m) — ring(sty,ing, sto, tail(ing), stz,m) (23)

Rule (17) describes how Process 1 sends a message consisting of the firs
m items in its store st;. To that end, fstsplit(m, st1) is added to those other
items iny which were already sent as an input to Process 2, but which have
not yet been received by this next process. These first m items are taken
out of the store sty, i.e., its new value is sndsplit(m, st1).

The rules (18) and (19) describe the case where Process 2 sends a mes-
sage. If its store already contains at least m items, then Rule (18) applies and
the first m items fstsplit(m, st2) are directly sent to Process 3, after which
these items are removed from its store. Otherwise, if st; contains less than
m items, then Rule (19) is used to receive one of the incoming messages from
ing, i.e., ing is replaced by tail(ins). For these received items head(inz), the
process computes new items map_f(2, head(inz)) and appends these newly
computed items to its store. Afterwards it sends the first m items of the
new extended store to Process 3.

Finally, Rule (20) deletes those messages from in, that Process 2 would
not generate any new items from (i.e., where map_f(2, head(inz)) is empty).
This rule is required in order to allow Process 2 to continue receiving
messages from tail(ins), even if fstsplit(m,app(map_f(2, head(inz)), st2)) is
empty.

Similarly, Rules (21) and (22) describe the sending of messages by Pro-
cess 3. The only difference is that messages sent by Process 3 are not deliv-
ered to Process 1 again, but they are ignored. Analogous to Rule (20), Rule
(23) is used to remove those messages from ing for which Process 3 does
not compute new items. The ring-term will be irreducible as soon as none
of the processes can send a non-empty message any longer.

24 Jirgen Giesl, Thomas Arts

To prove the desired conjecture, we have to show that this CTRS is
left-right decreasing. Note that this CTRS indeed models an asynchronous
behaviour of the processes. The reason is that we do not determine in which
order the processes send messages to the next process in the ring. Conse-
quently, the translation of this CTRS yields a non-confluent unconditional

TRS. In the following TRS, “...” abbreviates the arguments “sti,ing, sta,
ing, stz,m”.

ring(...) — if1(...,empty(fstsplit(m, st1))) (24)
if1(...,false) — ring(sndsplit(m, st1), cons(fstsplit(m, st1), in2), st2, ins, stz, m)

(25)

ring(...) — if2(...,leq(m,length(stz2))) (26)

ifa(...,true) — ifs(...,empty(fstsplit(m, st2))) (27)
if3(...,false) — ring(st1,inz,sndsplit(m, st2), cons(fstsplit(m, st2), ins), stz, m)

(28)

if2(...,false) — if4(...,empty(fstsplit(m, app(map_f(2, head(inz)), st2)))) (29)
ifa(...,false) — ring(st1, tail(inz2), sndsplit(m, app(map-f(2, head(in2)), st2)),
cons(fstsplit(m, app(map_f(2, head(inz)), st2)), ins), sts, m)

(30)
ring(...) — ifs(...,empty(map_f(2, head(inz)))) (31)
if5(...,true) — ring(sty, tail(inz), st2,ins, stz, m) (32)
ring(...) — ifg(...,leq(m,length(sts))) (33)
ifs(...,true) — if7(...,empty(fstsplit(m, st3))) (34)
if7(...,false) — ring(st1,ino, stz, ing, sndsplit(m, st3), m) (35)
if(...,false) — ifs(...,empty(fstsplit(m, app(map_f(3, head(ins)), sts)))) (36)
ifs(...,false) — ring(st1,inq, sta, tail(ins),
sndsplit(m, app(map_f(3, head(ins)), st3)), m) (37)
ring(...) — ifg(...,empty(map_f(3, head(ins)))) (38)
ifg(...,true) — ring(st1, ing, stz, tail(ing), stz, m) (39)

According to Corollary 3 now it suffices to show that this TRS is termi-
nating. Note that this TRS is obviously not simply terminating. For exam-
ple, by adding the embedding rules fstsplit(m, st1) — st1, sndsplit(m, st1) —
sty1, empty(l) — I, and cons(h,t) — t to the first two rules (24) and (25),
one can obtain a cycling reduction of ring(false, ins, sto, ins, st3, m) to itself.

Verification of Erlang Processes by Dependency Pairs 25

In fact, to prove termination of this TRS using the dependency pair
approach in combination with simplification orderings, we again need our
refinements of narrowing and rewriting dependency pairs. However, recall
that the refinements of the theorems 12 - 15 were restricted to innermost
termination proofs. In the example of Sect. 3, the resulting TRS was non-
overlapping and thus, innermost termination was enough to conclude its
termination. However, now we have a TRS which is not confluent and hence,
none of the existing results for proving termination by innermost termina-
tion is applicable.

Nevertheless, the following theorem shows that for TRSs like the one
in our example, innermost termination still implies termination. Note that
our TRS is a hierarchical combination of a non-overlapping TRS R; (which
defines the auxiliary functions) and an overlapping TRS Ro with the ring-
and if-rules to describe the network verification problem. In fact, TRSs of
this form occur frequently in the process verification domain, since the aux-
iliary Erlang functions always result in non-overlapping rules, whereas the
description of an asynchronous process network often requires overlapping
rules. The following theorem gives a syntactical characterization of these
TRSs, and it shows that for such systems, innermost termination already
implies termination. Hence, this theorem is an important result in order to
facilitate their termination proofs.

Theorem 16 (Sufficiency of Innermost Termination) Let R = Rq U
Ro, where Ry is non-overlapping, Ro is non-collapsing, and Rq-rules do
not form critical pairs with Rq-rules. Let X contain all root symbols of
left- and right-hand sides of Rao-rules, i.e., ¥ = {root()] I = r € Ra} U
{root(r)| I — r € Ra}. If no Ryi-rule contains symbols from X and if
no Ro-rule contains symbols from X below the root level, then innermost
termination of R implies termination of R.

Proof For any ground term ¢, we write t = C[t1,...,t,] provided that C is
a non-empty context (i.e., C' # O) which does not contain symbols from X
below the root level and provided that root(t;) € X for all 1 < i < n. Now
it is easy to see that if t = C[ty,...,t,] and t =% s, then we have one of
the following three possibilities:

(i) s=Ct1,---sti-1,8istit1,---,tn] and t; =g s; for some 1 <i<n
(in this case, we speak of a bottom rewrite step)

(il) s=C"[s1,.--y8m], C == C', and {s1,...,8m} C {t1,---,tn}
(in this case, we speak of a top rewrite step)

(iii) s =¢; for some 1 <i<mn
(in this case, we have a top collapsing rewrite step).

The reason is that reducing a term ¢ with root(t) € X again yields a term
whose root is from Y and that symbols of X' do not occur below the root
level in any rule of R. Thus, if the root of the redex is in C, then we really
must have a step of the form (ii) or (iii).

26 Jirgen Giesl, Thomas Arts

Now assume that R is innermost terminating, but not terminating. Let ¢
be a minimal ground term (w.r.t. the subterm relation) such that ¢ starts an
infinite R-reduction. Again, we must have t = C[ty,...,t,] for some context
C. Due to the minimality of ¢, its subterms ¢4, ..., t, are terminating. Thus,
in the infinite reduction of ¢, there cannot be any top collapsing rewrite step
and there can only be finitely many bottom rewrite steps. Hence, C' starts
an infinite R-reduction as well.

In other words, if R is not terminating, then there exists a non-termina-
ting context C' which does not contain any X'-symbol below the root level.
To use standard notation, we will now denote this context C' by g, since a
context is just a term possibly containing ‘00’ symbols.

First suppose that ¢ does not contain any X'-symbol at all. Then the only
rules applicable in any reduction of ¢ are from R;. However, R’s innermost
termination implies that all innermost reductions starting from ¢ are finite.
Thus, g is innermost terminating w.r.t. R and since R is non-overlapping,
by [22, Thm. 3.2.11 (1a)] we know that g is also terminating, which yields
a contradiction.

Thus, innermost termination of R in fact implies termination of R; for
all terms without symbols from Y. Now suppose that the root of ¢ is from
X, i.e., ¢ has the form fy(sg) with fo € X and sg are terms without symbols
from X. Thus, the infinite R-reduction of fo(sp) must have the following
form.

fo(so) =%, fo(to) =r, fi(s1) =%, fi(tr) =r, fa(s2) =%, ...

Here, we have f; € X for all i, the terms s; and t; do not contain any
symbols from ¥, and we have s; =% t;.

Hence, there must be substitutions o; and rules f;(L;) — fi+1(ri) in
Ro such that lijo; = t; and rijo; = sit1. Let o} be the substitution with

oi(z) = (oi(z)) {r,. (For terms without symbols from X, the normal form

3
w.r.t. Ry is well defined, since these terms are terminating and R; is non-
overlapping.) Since Ry does not form critical pairs with R;-rules, we have
lio; = (lioi) Ir,= ti Ir,= si I, Moreover, we have (rio}) I, = Si+1 I®,
by the convergence of Ry for terms without symbols from Y. This implies

fo(sodwr,) =R, f1(I'00(’)) _>;31 fi(silr,) 2w, f2(1'1‘71) _>;a1 fa(s2dry) =Ry -

Since R, is terminating, we can use innermost steps to reduce each
rio; to its normal form s;y1 lr,. Moreover, all the Ro-steps in the above
reduction are innermost steps as well, since the arguments s; |z, are in
normal form. Thus, the above reduction is an infinite innermost reduction,
which yields a contradiction to the innermost termination of R. 0O

Thus in our example, innermost termination of the transformed TRS
indeed implies termination of the TRS and thus, it implies left-right de-
creasingness of the original CTRS. Hence, in this way the property of the
process network can be proved.

Verification of Erlang Processes by Dependency Pairs 27

As indicated, to perform this innermost termination proof, we again need
our refinements of narrowing and rewriting dependency pairs. However, as
this TRS is not confluent, for this purpose these techniques now have to be
extended to overlapping TRSs.

It turns out that such an extension is indeed possible, because for the
theorems 13 - 15 it is in fact sufficient to demand non-overlappingness (resp.
the unique normal form property) just for the usable rules U (P) instead of
the whole TRS R. In our example, the usable rules of the RING-cycles only
consist of the rules for the auxiliary functions, i.e., the rules (24) - (39)
are not usable. As demonstrated in Sect. 2, these auxiliary rules are non-
overlapping. Thus, the following extensions of the theorems 13 - 15 allow us
to apply our new techniques for TRSs like the one above, too. In this way,
conjectures about asynchronous networks of processes can now be verified
by dependency pairs as well.

Theorem 17 (Completeness of Narrowing for Non-Confluent Sys-
tems) Let R be an innermost terminating TRS, let P, P' be as in Thm.
12 and let U(P) have the unique normal form property. If there exists no
infinite innermost R-chain of pairs from P, then there exists no infinite
imnermost R-chain of pairs from P’ either.

Proof The proof is similar to the one of Thm. 13. The only difference is

the proof that to =% voo implies to —'>;‘3 voo for the normal form veo. The
reason is that innermost termination of R implies that there must exist some

normal form ¢ such that to —')% q. Note that all rules used in any reduction
of to are contained in U (P). Thus, the unique normal form property of U (P)
is enough to conclude ¢ = vo0. O

Theorem 18 (Rewriting Pairs for Non-Confluent TRSs) Let R be a
TRS and let P be a set of pairs of terms such that U(P) is non-overlapping.
Let (s,t)y € P, lett —r r and let P’ result from P by replacing (s,t) with
(s,r). If there exists no infinite innermost chain of pairs from P’, then there
exists no infinite innermost chain from P either.

Proof Again, the proof is similar to the proof of Thm. 14. The only ex-
tra observation needed is that to _I)fk vo implies to _I)Z{(P) vo, since all
rules applicable in a reduction of to are contained in U(P). Hence, by non-
overlappingness of U(P) we can apply [22, Thm. 3.2.11 (1a) and (4a)] to
conclude termination and confluence of to w.r.t. (P). But as all rules ap-
plicable in reductions of to are already contained in U(P), this means that
to is terminating and confluent w.r.t. R as well. Thus, now the rest of the
proof is identical to the one of Thm. 14. O

Theorem 19 (Completeness of Rewriting for Non-Confluent TRS)
Let R be an innermost terminating TRS, let P, P’ be as in Thm. 18, and
let U(P) have the unique normal form property. If there exists no infinite
innermost R-chain of pairs from P, then there exists no infinite innermost
‘R-chain of pairs from P’ either.

28 Jirgen Giesl, Thomas Arts

Proof The changes to the proof of Thm. 15 are similar as in the proof
of Thm. 17. We have to =% vo for some normal form vo and innermost

termination of R implies to —'>;‘3 q for some normal form ¢. Again, all these
reduction steps only use rules from U/ (P). Thus, U (P)’s unique normal form
property implies vo =¢q. O

Note that with these refined theorems we can also handle TRSs where
different, but equivalent if-symbols are not identified (cf. Sect. 3). However
in practice, such an identification is still useful, since it simplifies the TRSs
considerably.

In particular, due to the above extended theorems, now we may apply
narrowing and rewriting to the dependency pairs resulting from the rules
(24) - (39). The only dependency pair resulting from Rule (24) which is on a
cycle is (RING(...),IF{(...)). Narrowing and rewriting this dependency pair
(and deleting those resulting pairs which are not on cycles) yields

(RING(cons(h, t),...,s(n)), IF1(cons(h,t),...,s(n), false)). (40)

Next we regard the dependency pair (IF;(...), RING(...)) resulting from
Rule (25). One would like to perform narrowing on this dependency pair.
However, this is not possible since its right-hand side unifies with the left-
hand sides of the dependency pairs resulting from the rules (26), (31), (33),
and (38). In fact, this problem is typical when regarding overlapping TRSs.

Nevertheless, the only pair which may occur before (IF;(...), RING(...))
in an innermost chain is (40). When regarding (40), one immediately sees
that therefore one only has to regard instantiations of (IF;(...), RING(...))
where st is replaced by cons(h,t) and m is replaced by s(n).

Recall that when estimating the innermost dependency graph, for every
dependency pair (s, t) we check for which (renamings of) dependency pairs
(v, w), CAP(w) unifies with s (where their mgu must satisfy some additional
normality condition). Here, CAP(w) results from replacing all subterms of
w with defined root symbols by different fresh variables. Let uq,...,ux be
all mgu’s of s and terms of the form CAP(w). Then one may replace the
dependency pair (s,t) by its instantiations (su1,tp1), - .., (Stk, tur), since
(specializations of) these instantiations are the only ones that are needed
in infinite innermost chains. This leads to the technique of instantiating
dependency pairs.

Theorem 20 (Instantiating Pairs) Let P be a set of pairs of terms with
(s,t) € P and let Var(w) C Var(v) for all (v,w) € P. Let

P'=P\{(s,)} U{(sp,tn) | p = mgu(caP(w),s), (v,w) € P},

where we again assume that different occurrences of pairs from P are vari-
able disjoint. Then there exists no infinite innermost chain of pairs from P’
iff there exists no infinite innermost chain of pairs from P.

Verification of Erlang Processes by Dependency Pairs 29

Proof If ... (v1,w1) (8, t) (vy, ws) ... is an innermost chain, then there exists

a substitution o such that wyo —3% so. Let w; have the form C[p1,...,px],
where the context C contains no defined symbols and all p; have a defined
root symbol. As reductions cannot take place in o (since otherwise, vio

would not be a normal form), we know that so = Co]q,...,q,] where
Pi0 =% G-
We have cAP(w;) = Clyi, . .., Yn], where the y; are fresh variables. Let ¢’

be the modification of o such that o/(y;) = ¢;. Then we obtain CAP(wy)o’ =
so = so’,i.e., CAP(w) and s are unifiable. Let y be the mgu of CAP(w;) and
s. Thus, there exists a substitution 7 such that ¢/ = ur. As the variables
of all (occurrences of all) pairs may be assumed disjoint, we may modify o

to behave like 7 on the variables of (su,tu). Then we have wio % so =

s0’ = sut = (sp)o and we also have (tu)o = tur = to % vso. Thus,

.. (v, wy) (s, tu) (v2,ws) ... is an innermost chain, too.

In this way, one can replace all occurrences of (s, t) in innermost chains
by pairs of P’, except for the very first pair in the chain. However, if
(s,t) (v1,w1) (v2, w2) ...1is an infinite innermost chain, then (v1, w;) (va, wo)
... 1s an infinite innermost chain as well. Thus, by deleting the possibly re-
maining first occurrence of (s,t) in the end, every infinite innermost chain
of P can indeed be transformed into an infinite innermost chain of P’.

For the other direction, let ... (su,tu) ... be an innermost chain. As
different occurrences of dependency pairs may be assumed variable disjoint,
we can extend every substitution ¢ to behave like uo on the variables of s.
Hence, this direction of the theorem is immediately proved. 0O

It should be remarked that the technique of instantiating dependency
pairs can also be used for termination instead of innermost termination
proofs. When using dependency pairs for arbitrary termination proofs, one
has to prove absence of infinite chains (instead of innermost chains), where
(s1,t1) (82,t2) ... is an R-chain if there exists a substitution o such that
tjo —% s;y10 for all consecutive pairs (s;,t;) and (s;i1,tj41), cf. [2,8].
Let REN(t) result from renaming all occurrences of variables to fresh vari-
ables (in particular, different occurrences of the same variable are also re-
named to different new variables). If P' = P\ {(s,¢)} U {(sp, tp) |p =
mgu(REN(CAP(w)), s), (v,w) € P}, then there exists no infinite chain of
pairs from P’ iff there exists no infinite chain of pairs from P. The proof is
very similar to the proof of Thm. 20. The only difference is that now we write
wy as C[p1,...pp] where C contains no defined symbols or variables and all
p; either have a defined root symbol or they are variables. Then we know
that so = Clq1,...,qn] with p;c =% ¢; and REN(CAP(w1)) = Cly1,...,Yn]
where the y; are fresh variables. The rest of the proof is completely analo-
gous.

In our example, the only right-hand side of a pair whose CAP unifies with
the left-hand side IF; (st1,ing, sta, ing, sts, m, false) of the dependency pair
from Rule (25) is IFy(cons(h,t),ing, sta,ins, sts,s(n), false) from Pair (40).

30 Jirgen Giesl, Thomas Arts

Thus, we can instantiate st; by cons(h,t) and m by s(n) in the dependency
pair (IFq1(...), RING(...)) from Rule (25). Subsequent rewriting yields

(IF1(cons(h,t),...,s(n), false), RING(sndsplit(n,t),...,s(n))). (41)

The only dependency pair resulting from Rule (26) which is on a cycle
is
(RING(...), IFa(...,leq(m,length(st))). (42)
For the dependency pair (IFs(...),IF3(...)) from Rule (27) we proceed
in a similar way as for the one from Rule (24) which yields

(IF3(...,cons(h,t),...,s(n),true), IF5(...,cons(h,t),...,s(n), false)). (43)

Rule (28) gives rise to a dependency pair (IF3(...),RING(...)). The only
dependency pair which may precede this one in innermost chains is (43).
Thus, by the instantiation technique, sty can be replaced by cons(h,t) and
m can be replaced by s(n). Subsequent rewriting yields

(IF3(stq,ing, cons(h,t),...), RING(st1,ins, sndsplit(n, t),...)). (44)
The dependency pair (IFa(...), IF4(...)) from Rule (29) yields the fol-

lowing narrowing.
(IF2(stq,cons(h,t),...), IF4(sty,cons(h,t),...)) (45)

For the dependency pair resulting from Rule (30) we only have to regard
the instantiation where ing is replaced by cons(h,t). Rewriting this pair
yields

(IF4(st1,cons(h,t),...), RING(st1,t,...)). (46)

Similarly, narrowing the dependency pair (RING(...), IF5(...)) from Rule
(31) yields

(RING(sty,cons(h,t),...), IFs(st1,cons(h, t),...)). (47)

So the dependency pair (IF5(...), RING(...)) from Rule (32) only has to
be regarded for the instantiation of iny by cons(h,t) and thus, rewriting it
results in

(IFs(sty, cons(h, 1), ..), RING(sty, t,...)). (48)

Finally, for the dependency pairs resulting from the rules (33) - (39) we
proceed in an analogous way and we obtain seven pairs similar to (42) -
(48). Now the resulting constraints from the dependency pair approach are
satisfied by the lexicographic path ordering (lpo) [25] if one eliminates the
last arguments of all IF-symbols and the first argument of sndsplit before
(to benefit from the fact that these symbols do not have to be strongly
monotonic in these arguments). In this way, all of the above dependency
pairs are weakly decreasing and the ones with a RING-term as their right
component are strictly decreasing. The precedence used for this Ipo should
make RING and the IF-symbols equally great, whereas the tuple symbols

Verification of Erlang Processes by Dependency Pairs 31

should be greater than all lower case symbols. Of course, here we assume
that the rules for the function f are also weakly decreasing w.r.t. the Ipo.
The reason is that now we consider a problem where non-empty lists must
be processed and thus, the f-rules are usable as well. Hence, as soon as the
actual rules for the function f are determined, their weak decreasingness has
to be checked.

Thus, in this section we have demonstrated that although asynchronous
networks are described by non-confluent (C)TRSs, proving innermost ter-
mination is still sufficient for their termination proof. Subsequently, we have
shown that our techniques of rewriting and narrowing dependency pairs can
be extended to TRSs where just the usable rules (i.e., the rules for the aux-
iliary functions) satisfy non-overlappingness requirements. Finally, we have
introduced a third technique for manipulating dependency pairs, viz. in-
stantiation. In this way, now dependency pairs can also be used to prove
statements about asynchronous networks of processes.

8 Conclusion

We have shown that the dependency pair approach can be successfully ap-
plied for process verification tasks in industry. While our work was moti-
vated by specific process verification problems, in this paper we developed
several techniques which are of general use in term rewriting.

First of all, we showed how dependency pairs can be utilized to prove
that conditional term rewriting systems are decreasing and terminating.
Moreover, we presented three refinements which considerably increase the
class of systems where dependency pairs are successful. The first refinement
of narrowing dependency pairs for innermost termination was already intro-
duced in [8]. However, [8] did not contain an explicit proof of its soundness,
and completeness of the technique for TRSs with unique normal forms is a
new result. It ensures that application of the narrowing technique preserves
the success of such an innermost termination proof. In fact, our narrow-
ing refinement is the main reason why the approach of handling CTRSs by
transforming them into TRSs is successful in combination with the depen-
dency pair approach (whereas this transformation is usually not of much
use for the standard termination proving techniques). To strengthen the
power of dependency pairs we also introduced the novel technique of rewrit-
ing dependency pairs and proved its soundness and completeness for inner-
most termination of non-overlapping TRSs. Finally, the refinement of in-
stantiating dependency pairs was presented and we showed how to lift the
non-overlappingness restrictions for narrowing and rewriting dependency
pairs in order to apply these techniques to non-confluent TRSs. We also
developed a new syntactical characterization for a class of (possibly) non-
confluent TRSs where innermost termination implies termination, which
captures those rewrite systems describing asynchronous process networks.
This paper is a substantially revised and extended version of [6] and [7].

32 Jirgen Giesl, Thomas Arts

Note that we have used the modularity results for the dependency pair
technique [5] for both a split and conquer approach and for dealing with
the incompleteness of our specification. For many reasons, in practice it is
more rule than exception that a specification lacks some information, like
the definition of the function f in our example. Usually, at a certain level of
abstraction one stops specifying and, hence, for many built-in functions the
specification is preferably hidden (e.g., one could add a date as a time stamp
to every message where in many cases the computation of this date is not
relevant). Thus, assuming some properties of the missing part of the spec-
ification and proving them for that part when it becomes available makes
sense. In that context the modularity of the dependency pair technique is
of great help.

Our techniques have shown to be successfully applicable in small, but
real examples, where eventuality properties had to be proved. These expe-
riences demonstrate that our approach is particularly useful for verifying
properties of processes where a lot of data manipulation is involved and
where communication plays a minor role. Typically, these are the proper-
ties that are hard to handle by model-checking. The examples in this paper
represent such situations where model-checking cannot be used because of
the arbitrary lengths of the stores. These problems have also been tackled
by a specialized proof checker for Erlang [1]. Compared to dependency pairs,
the proof checker approach is more generally applicable. But since in that
approach the proofs had, up to a great extend, to be provided by hand,
the dependency pair approach has the important advantage that it is much
better suitable for automation.

References

1. Arts, T., Dam, M.: Verifying a distributed database lookup manager written
in Erlang. In: Proc. FM 99, Toulouse, France. LNCS, Vol. 1708, pp. 682-700.
Springer 1999

2. Arts, T., Giesl, J.: Automatically proving termination where simplification
orderings fail. In: Proc. TAPSOFT ’97, Lille, France. LNCS, Vol. 1214, pp.
261-273. Springer 1997

3. Arts, T., Giesl, J.: Proving innermost normalisation automatically. In: Proc.
RTA-97, Sitges, Spain. LNCS, Vol. 1232, pp. 157-172. Springer 1997

4. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs.
Technical Report IBN 97/46, Darmstadt University of Technology, Germany.
http://www-i2.informatik.rwth-aachen.de/giesl/papers/ibn-97-46.ps

5. Arts, T., Giesl, J.: Modularity of termination using dependency pairs. In:
Proc. RTA-98, Tsukuba, Japan. LNCS, Vol. 1379, pp. 226-240. Springer 1998

6. Arts, T., Giesl, J.: Verification of Erlang Processes. In: Proc. 4th International
Workshop on Termination, Dagstuhl, Germany. 1999

7. Arts, T., Giesl, J.: Applying rewriting techniques to the verification of Erlang
processes. In: Proc. CSL ’99, Madrid, Spain. LNCS, Vol. 1683, pp. 96-110.
Springer 1999

8. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs.
TCS 236, 133-178 (2000). Preliminary extended version appeared in [4].

Verification of Erlang Processes by Dependency Pairs 33

9.
10.
11.

12.

13.
14.
. Dershowitz, N., Okada, M., Sivakumar, G.: Canonical conditional rewrite
16.
17.

18.
19.

20.

21.
22.
23.

24.
25.

26.
27.
28.
29.

30.

31.

32.

33.

Arts, T.: System description: The dependency pair method. In: Proc. RTA-00,
Norwich, UK. LNCS, Vol. 1833, pp. 261-264. Springer 2000

Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University
Press 1998

Bergstra, J. A., Klop, J. W.: Conditional rewrite rules: confluence and termi-
nation. JCSS 32, 323-362 (1986)

Bertling, H., Ganzinger, H.: Completion-time optimization of rewrite-time
goal solving. In: Proc. RTA-89, Chapel Hill, USA. LNCS, Vol. 355, pp. 45-58.
Springer 1989

Dershowitz, N., Plaisted, D. A.: Equational programming. Machine Intelli-
gence 11, 21-56 (1987)

Dershowitz, N.: Termination of rewriting. JSC 3, 69-116 (1987)

systems. In: Proc. CADE-9, Argonne, USA. LNCS, Vol. 310, pp. 538-549.
Springer 1988

Dershowitz, N., Okada, M.: A rationale for conditional equational program-
ming. TCS 75, 111-138 (1990)

Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: Handbook of Theo-
retical Computer Science, Vol. B, pp. 243-320. Elsevier 1990

Dershowitz, N., Hoot, C.: Natural termination. TCS 142, 179-207. (1995)
Giovanetti, E., Moiso, C.: Notes on the eliminations of conditions. In: Proc.
CTRS ’87, Orsay, France. LNCS, Vol. 308, pp. 91-97. Springer 1987
Gramlich, B.: On termination and confluence of conditional rewrite systems.
In: Proc. CTRS ’94, Jerusalem, Israel. LNCS, Vol. 968, pp. 166-185. Springer
1994

Gramlich, B.: Abstract relations between restricted termination and conflu-
ence properties of rewrite systems. Fundamenta Informaticae 24, 3-23 (1995)
Gramlich, B.: Termination and confluence properties of structured rewrite
systems. PhD Thesis. Universitdt Kaiserslautern, Germany (1996)
Gramlich, B.: On termination and confluence properties of disjoint and
constructor-sharing conditional rewrite systems. TCS 165, 97-131 (1996)
Patent pending, Ericsson Telecom AB 1999

Kamin, S., Levy, J.-J.: Two generalizations of the recursive path ordering.
Department of Computer Science, University of Illinois, IL (1980)
Jouannaud, J.-P., Waldmann, B.: Reductive conditional term rewrite systems.
In: 3rd IFIP Working Conference on Formal Description of Programming
Concepts, Ebberup, Denmark. pp. 223-244. 1986

Kaplan, S.: Conditional rewrite rules. TCS 33, 175-193 (1984)

Marchiori, M.: Unravelings and ultra-properties. In: Proc. ALP ’96, Aachen,
Germany. LNCS, Vol. 1139, pp. 107-121. Springer 1996

Middeldorp, A.: Modular properties of conditional term rewriting systems.
Information and Computation 104, 110-158 (1993)

Ohlebusch, E.: Transforming conditional rewrite systems with extra vari-
ables into unconditional systems. In: Proc. LPAR ’99, Tblisi, Georgia. LNAI,
Vol. 1705, pp. 111-130. Springer 1999.

Steinbach, J.: Simplification orderings: history of results. Fundamenta Infor-
maticae 24, 47-87 (1995)

Suzuki, T., Middeldorp, A., Ida, T.: Level-confluence of conditional rewrite
systems with extra variables in right-hand sides. In: Proc. RTA-95, Kaisers-
lautern, Germany. LNCS, Vol. 914, pp. 179-193. Springer 1995

Wirth, C.-P., Gramlich, B.: A constructor-based approach for positive/nega-
tive conditional equational specifications. JSC 17, 51-90 (1994)

