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Abstract. We recently proposed Acceleration Driven Clause Learning
(ADCL), a novel calculus to analyze satisfiability of Constrained Horn
Clauses (CHCs). Here, we adapt ADCL to transition systems and intro-
duce ADCL-NT, a variant for disproving termination. We implemented
ADCL-NT in our tool LoAT and evaluate it against the state of the art.

1 Introduction

Termination is one of the most important properties of programs, and thus
termination analysis is a very active field of research. Here, we are concerned
with disproving termination of transition systems (TSs), a popular intermediate
representation for verification of programs written in more expressive languages.

Example 1. Consider the following TS T with entry-point init and two further lo-
cations ℓ1, ℓ2 over the variables x, y, z, where x

′, y′, z′ represent the values of x, y, z

after applying a transition, and
=
x, x++, and x– – abbreviate x′ = x, x′ = x+1, and

x′ = x− 1. The first two transitions are a variant1 of chc-LIA-Lin 052 from the
CHC Competition ’22 [7] and the last two are a variant2 of flip2 rec.jar-obl-8

from the Termination and Complexity Competition (TermComp) [21].

init → ℓ1 Jx′ ≤ 0 ∧ z′ ≥ 5000 ∧ y′ ≤ z′K (τi)

ℓ1 → ℓ1 Jy ≤ 2 · z ∧ x++ ∧ ((x < z ∧ =
y) ∨ (x ≥ z ∧ y++)) ∧ =

zK (τℓ1)

ℓ1 → ℓ2 Jx = y ∧ x > 2 · z ∧ =
x ∧ =

yK (τℓ1→ℓ2)

ℓ2 → ℓ2 Jx = y ∧ x > 0 ∧ =
x ∧ y– –K (τ=ℓ2)

ℓ2 → ℓ2 Jx > 0 ∧ y > 0 ∧ x′ = y ∧ ((x > y ∧ y′ = x) ∨ (x < y ∧ =
y))K (τ ̸=ℓ2)

At ℓ1, T operates in two “phases”: First, just x is incremented until x reaches z
(1st disjunct of τℓ1). Then, x and y are incremented until y reaches 2 · z + 1 (2nd

disjunct of τℓ1). If x = y = c holds for some c > 1 at that point (which is the case
if x ≤ y = z holds initially), then the execution can continue at ℓ2 as follows:

⋆ funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
- 235950644 (Project GI 274/6-2)

1 We generalized the example to make it more interesting, and we added the condition
y ≤ 2 · z to enforce termination of τℓ1 .

2 We combined the transitions for the cases x > y and x < y into the equivalent transi-
tion τ ̸=ℓ2 to demonstrate how our approach can deal with disjunctions in conditions.
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ℓ2(c, c, cz) −→τ=
ℓ2
ℓ2(c, c− 1, cz) −→τ

̸=
ℓ2

ℓ2(c− 1, c, cz) −→τ
̸=
ℓ2

ℓ2(c, c, cz) −→τ=
ℓ2
. . .

Here, ℓ2(c, c, cz) means that the current location is ℓ2 and the values of x, y, z

are c, c, cz. The 1st and 2nd step with τ ̸=ℓ2 satisfy the 1st (x > y ∧ . . .) and 2nd

(x < y ∧ . . .) disjunct of τ ̸=ℓ2 ’s condition, respectively. Thus, T does not terminate.

Ex. 1 is challenging for state-of-the-art tools for several reasons. First, more
than 5000 steps are required to reach ℓ2, so reachability of ℓ2 is difficult to
prove for approaches that unroll the transition relation or use other variants of
iterative deepening. Thus, chc-LIA-Lin 052 is beyond the capabilities of most
other state-of-the-art tools for proving reachability.

Second, the pattern “τ=ℓ2 , 1
st disjunct of τ ̸=ℓ2 , 2

nd disjunct of τ ̸=ℓ2” must be
found to prove non-termination. Therefore, flip2 rec.jar-obl-8 (which does
not use disjunctions) cannot be solved by other state-of-the-art termination tools.

Third, Ex. 1 contains disjunctions, which are not supported by many termi-
nation tools. Presumably, the reason is that most techniques for (dis)proving
termination of loops are restricted to conjunctions (e.g., due to the use of tem-
plates and Farkas’ Lemma). While disjunctions can be avoided by splitting
disjunctive transitions according to the DNF of their conditions, this leads to an
exponential blow-up in the number of transitions.

We present an approach that can prove non-termination of systems like Ex. 1
automatically. To this end, we tightly integrate non-termination techniques into
our recent Acceleration Driven Clause Learning (ADCL) calculus [16], which has
originally been designed for CHCs, but it can also be used to analyze TSs.

Due to the use of acceleration techniques that compute the transitive closure
of recursive transitions, ADCL finds long witnesses of reachability automatically.
If acceleration techniques cannot be applied, it unrolls the transition relation, so
it can easily detect complex patterns of transitions that admit non-terminating
runs. Finally, ADCL reduces reasoning about disjunctions to reasoning about
conjunctions by considering conjunctive variants of disjunctive transitions. Thus,
combining ADCL with non-termination techniques for conjunctive transitions
allows for disproving termination of TSs with complex Boolean structure.

After introducing preliminaries in Sect. 2, Sect. 3 presents a straightforward
adaption of ADCL to TSs. Sect. 4 introduces our main contribution: ADCL-NT,
a variant of ADCL for proving non-termination. Finally, in Sect. 5, we discuss
related work and demonstrate the power of our approach by comparing it with
other state-of-the-art tools. All proofs can be found in [19].

2 Preliminaries

We assume familiarity with basics from many-sorted first-order logic. V is a count-
ably infinite set of variables and A is a first-order theory over a k-sorted signature
ΣA with carrier CA = (CA,1, . . . , CA,k). QF(ΣA) is the set of all quantifier-free
first-order formulas over ΣA, which are w.l.o.g. assumed to be in negation normal
form, and QF∧(ΣA) only contains conjunctions of ΣA-literals. Given a first-order
formula η over ΣA, σ is a model of η (written σ |=A η) if it is a model of A with
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carrier CA, extended with interpretations for V such that η is satisfied. As usual,
|=A η means that η is valid, and η ≡A η′ means |=A η ⇐⇒ η′.

We write x⃗ for sequences and xi is the ith element of x⃗. We use “::” for
concatenation of sequences, where we identify sequences of length 1 with their
elements, so we may write, e.g., x :: xs instead of [x] :: xs.

Transition Systems Let d ∈ N be fixed, and let x⃗, x⃗′ ∈ Vd be disjoint vectors
of pairwise different variables. Each ψ ∈ QF(ΣA) induces a relation −→ψ on

CdA where s⃗ −→ψ t⃗ iff ψ[x⃗/s⃗, x⃗′/t⃗] is satisfiable. So for the condition ψ :=

(x = y ∧ x > 0 ∧ =
x ∧ y– –) of τ=ℓ2 , we have (4, 4, 4) −→ψ (4, 3, 7). L ⊇ {init, err} is

a finite set of locations. A configuration is a pair (ℓ, s⃗) ∈ L × CdA, written ℓ(s⃗).
A transition is a triple τ = (ℓ, ψ, ℓ′) ∈ L × QF(ΣA)× L, written ℓ→ ℓ′ JψK, and
its condition is cond(τ) := ψ. W.l.o.g., we assume ℓ ≠ err and ℓ′ ̸= init. Then τ
induces a relation −→τ on configurations where s −→τ t iff s = ℓ(s⃗), t = ℓ′(⃗t),
and s⃗ −→ψ t⃗. So, e.g., ℓ2(4, 4, 4) −→τ=

ℓ2
ℓ2(4, 3, 7). We call τ recursive if ℓ = ℓ′,

conjunctive if ψ ∈ QF∧(ΣA), initial if ℓ = init, and safe if ℓ′ ̸= err. Moreover, we
define (ℓ→ ℓ′ JψK)|ψ′ := ℓ→ ℓ′ Jψ′K. A transition system (TS) T is a finite set of
transitions, and it induces the relation −→T :=

⋃
τ∈T −→τ .

Chaining τ = ℓs → ℓt JψK and τ ′ = ℓ′s → ℓ′t Jψ′K yields chain(τ, τ ′) := (ℓs →
ℓ′t JψcK) where ψc := ψ[x⃗′/x⃗′′]∧ψ′[x⃗/x⃗′′] for fresh x⃗′′ ∈ Vd if ℓt = ℓ′s, and ψc := ⊥
(meaning false) if ℓt ̸= ℓ′s. So −→chain(τ,τ ′) = −→τ ◦−→τ ′ , and chain(τℓ1→ℓ2 , τ

=
ℓ2
) =

ℓ1 → ℓ2 JψK where ψ ≡A (x = y ∧ x > 2 · z ∧ x > 0 ∧ =
x ∧ y– –). For non-empty,

finite sequences of transitions we define chain([τ ]) := τ and chain([τ1, τ2] :: τ⃗) :=
chain(chain(τ1, τ2) :: τ⃗). We lift notations for transitions to finite sequences via
chaining. So cond(τ⃗) := cond(chain(τ⃗)), τ⃗ is recursive if chain(τ⃗) is recursive,
−→τ⃗ = −→chain(τ⃗), etc. If τ is initial and cond(τ :: τ⃗) ̸≡A ⊥, then (τ :: τ⃗) ∈ T + is
a finite run. T is safe if every finite run is safe. If every finite prefix of τ⃗ ∈ T ω is a
finite run, then τ⃗ is an infinite run. If no infinite run exists, then T is terminating.

Acceleration Acceleration techniques compute the transitive closure of relations.
In the following definition, we only consider relations defined by conjunctive
formulas, since many existing acceleration techniques do not support disjunctions
[4], or have to resort to approximations in the presence of disjunctions [13].

Definition 2 (Acceleration). An acceleration technique is a function accel :
QF∧(ΣA) 7→ QF∧(ΣA′) such that −→+

ψ = −→accel(ψ), where A′ is a first-order the-

ory. For recursive conjunctive transitions τ , we define accel(τ) := τ |accel(cond(τ)).
So we clearly have −→+

τ = −→accel(τ). Note that most theories are not “closed

under acceleration”. E.g., accelerating the Presburger formula x′1 = x1 + x2 ∧
=
x2

yields the non-linear formula n > 0 ∧ x′1 = x1 + n · x2 ∧
=
x2. If neither N nor Z

are contained in CA, then an additional sort for the range of n is required in the
formula that results from applying accel. Hence, Def. 2 allows A′ ̸= A.

3 ADCL for Transition Systems

We originally proposed the ADCL calculus to analyze satisfiability of linear Con-
strained Horn Clauses (CHCs) [16]. Here, we rephrase it for TSs, and in Sect. 4, we
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modify it for proving non-termination. The adaption to TSs is straightforward
as TSs can be transformed into equivalent linear CHCs and vice versa (see,
e.g., [10]).

To bridge the gap between transitions τ where cond(τ) ∈ QF(ΣA) and accel-
eration techniques for formulas from QF∧(ΣA), ADCL uses syntactic implicants.

Definition 3 (Syntactic Implicants [16, Def. 6]). If ψ ∈ QF(ΣA), then:

sip(ψ, σ) :=
∧

{π is a literal of ψ | σ |=A π} if σ |=A ψ

sip(ψ) := {sip(ψ, σ) | σ |=A ψ}
sip(τ) := {τ |ψ | ψ ∈ sip(cond(τ))} for transitions τ

sip(T ) :=
⋃
τ∈T

sip(τ) for TSs T

Here, sip abbreviates syntactic implicant projection.

As sip(ψ, σ) is restricted to literals from ψ, sip(ψ) is finite. Syntactic implicants
ignore the semantics of literals. So we have, e.g., (X > 1) /∈ sip(X > 0∧X > 1) =
{X > 0 ∧X > 1}. It is easy to show ψ ≡A

∨
sip(ψ), and thus −→T = −→sip(T ).

Since sip(τ) is worst-case exponential in the size of cond(τ), we do not compute
it explicitly. Instead, ADCL constructs a run τ⃗ step by step, and to perform
a step with τ , it searches for a model σ of cond(τ⃗ :: τ). If such a model exists,
it appends τ |sip(cond(τ),σ) to τ⃗ . This corresponds to a step with a conjunctive
variant of τ whose condition is satisfied by σ. In other words, our calculus
constructs sip(cond(τ), σ) “on the fly” when performing a step with τ , where
σ |=A cond(τ⃗ :: τ)

The core idea of ADCL is to learn new, non-redundant transitions via accel-
eration. Essentially, a transition is redundant if its transition relation is a subset
of another transition’s relation. Thus, redundant transitions are not useful for
(dis-)proving safety.

Definition 4 (Redundancy, [16, Def. 8]). A transition τ is (strictly) redun-
dant w.r.t. τ ′, denoted τ ⊑ τ ′ (τ ⊏ τ ′) if −→τ ⊆ −→τ ′ (−→τ ⊂ −→τ ′). For a
TS T , we have τ ⊑ T (τ ⊏ T ) if τ ⊑ τ ′ (τ ⊏ τ ′) for some τ ′ ∈ T .

In the sequel, we assume oracles for redundancy, satisfiability of QF(ΣA)-formulas,
and acceleration. In practice, we use incomplete techniques instead (see Sect. 5).

From now on, let T be the TS that is being analyzed with ADCL. A state of
ADCL consists of a TS S that augments T with learned transitions, a run τ⃗ of
S called the trace, and a sequence of sets of blocking transitions [Bi]

k
i=0, where

transitions that are redundant w.r.t. Bk must not be appended to the trace.
The following definition introduces the ADCL calculus. It extends the trace

step by step (using the rule Step, which performs an evaluation step with a
transition) and learns new transitions via acceleration (Accelerate) whenever
a suffix of the trace is recursive. To avoid non-terminating ADCL-derivations, our
notion of redundancy from Def. 4 is used to backtrack whenever a suffix of the
trace corresponds to a special case of another (learned) transition (Covered).
Moreover, Backtrack is used whenever a run cannot be continued. A more
detailed explanation of ADCL is provided after Def. 5.
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Definition 5 (ADCL [16, Def. 9, 10]). A state is a triple (S, [τi]ki=1, [Bi]
k
i=0)

where S ⊇ T is a TS,
⋃k
i=0Bi ⊆ sip(S), and [τi]

k
i=1 ∈ sip(S)∗. The transitions

in sip(T ) are called original and the transitions in sip(S) \ sip(T ) are learned. A
transition τk+1 ⊑ Bk is blocked, and τk+1 ̸⊑ Bk is active if chain([τi]

k+1
i=1 ) is an

initial transition with satisfiable condition (i.e., [τi]
k+1
i=1 is a run). Let

bt(S, [τi]ki=1, [B0, . . . , Bk]) := (S, [τi]k−1
i=1 , [B0, . . . , Bk−1 ∪ {τk}])

where bt abbreviates “backtrack”. Our calculus is defined by the following rules.

T ⇝ (T , [], [∅]) (Init)

τ ∈ sip(S) is active

(S, τ⃗ , B⃗)⇝ (S, τ⃗ :: τ, B⃗ :: ∅) (Step)

τ⃗⟲ is recursive |τ⃗⟲| = |B⃗⟲| accel(τ⃗⟲) = τ ̸⊑ sip(S)
(S, τ⃗ :: τ⃗⟲, B⃗ :: B⃗⟲)⇝ (S ∪ {τ}, τ⃗ :: τ, B⃗ :: {τ}) (Accelerate)

τ⃗ ′ ⊏ sip(S) or τ⃗ ′ ⊑ sip(S) ∧ |τ⃗ ′| > 1

s = (S, τ⃗ :: τ⃗ ′, B⃗)⇝ bt(s) (Covered)

all transitions from sip(S) are inactive τ is safe

s = (S, τ⃗ :: τ, B⃗)⇝ bt(s) (Backtrack)

τ⃗ is unsafe

(S, τ⃗ , B⃗)⇝ unsafe (Refute)

all transitions from sip(S) are inactive

(S, [], [B])⇝ safe (Prove)

We write
I
⇝,

S
⇝, . . . to indicate that the rule Init, Step, . . . was used. Step adds

a transition to the trace. When the trace has a recursive suffix, Accelerate
allows for learning a new transition which then replaces the recursive suffix on the
trace, or we may backtrack via Covered if the recursive suffix is redundant. Note
that Covered does not apply if τ⃗ ′ ⊑ sip(S) and |τ⃗ ′| = 1, as it could immediately
undo every Step, otherwise. If no further Step is possible, Backtrack applies.
Note that Backtrack and Covered block the last transition from the trace
so that we do not perform the same Step again. If τ⃗ is an unsafe run, Refute
yields unsafe, and if the entire search space has been exhausted without finding
an unsafe run (i.e., if all initial transitions are blocked), Prove yields safe.

The definition of ADCL in [16] is more liberal than ours: In our setting,
Accelerate may only be applied if the learned transition is non-redundant,
and our definition of “active transitions” enforces that the first transition on the
trace is always an initial transition. In [16], these requirements are not enforced
by the definition of ADCL, but by the definition of reasonable strategies [16, Def.
14]. For simplicity, we integrated these requirements into Def. 5. Additionally,
Covered should be preferred over Accelerate, and Accelerate should be
preferred over Step.

Example 6. We apply ADCL to a version of Ex. 1 with the additional transition

ℓ1 → err Jx = y ∧ x > 2 · z ∧ =
x ∧ =

y ∧ =
zK. (τerr)
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T I
⇝ (T , [], [∅])

S
⇝

2

(T , [τi, τℓ1 |ψx<z ], [∅,∅,∅]) (x ≤ 1 ∧ z ≥ 5k ∧ y ≤ z)

A
⇝ (S1, [τi, τ

+
x<z], [∅,∅, {τ+x<z}]) (x ≤ z ∧ z ≥ 5k ∧ y ≤ z)

S
⇝ (S1, [τi, τ

+
x<z, τℓ1 |ψx≥z ], [∅,∅, {τ

+
x<z},∅]) (x = z + 1 ∧ z ≥ 5k ∧ y ≤ z + 1)

A
⇝ (S2, [τi, τ

+
x<z, τ

+
x≥z], [∅,∅, {τ

+
x<z}, {τ+x≥z}]) (x ≥ y ∧ x > z ≥ 5k ∧ y ≤ 2 · z + 1)

S
⇝ (S2, [τi, τ

+
x<z, τ

+
x≥z, τerr], [∅,∅, {τ

+
x<z}, {τ+x≥z},∅]) (x = 2 · z + 1 = y ∧ z ≥ 5k)

R
⇝ unsafe

Here, 5k abbreviates 5000 and:

ψx<z := y ≤ 2 · z ∧ x++ ∧ x < z ∧ =
y ∧ =

z ψx≥z := y ≤ 2 · z ∧ x++ ∧ x ≥ z ∧ y++ ∧ =
z

τ+x<z := ℓ1 → ℓ1 Jy ≤ 2 · z ∧ n > 0 ∧ x′ = x+ n ∧ x+ n ≤ z ∧ =
y ∧ =

zK

τ+x≥z := ℓ1 → ℓ1 Jy + n− 1 ≤ 2 · z ∧ n > 0 ∧ x′ = x+ n ∧ x ≥ z ∧ y′ = y + n ∧ =
zK

S1 := T ∪ {τ+x<z} S2 := S1 ∪ {τ+x≥z}

On the right, we show formulas describing the configurations that are reachable
with the current trace. Every ⇝-derivation starts with Init. The first two Steps
add the initial transition τi and an element of sip(τℓ1) to the trace. Since x < z
holds after applying τi, the only possible choice for the latter is τℓ1 |ψx<z .

As τℓ1 |ψx<z is recursive, it is accelerated and replaced with accel(τℓ1 |ψx<z ) =
τ+x<z, which simulates n steps with τℓ1 |ψx<z . Moreover, τ+x<z is also added to the
current set of blocking transitions, as we always have −→2

τ ⊆ −→τ for learned
transitions τ and thus adding them to the trace twice in a row is pointless.

Next, τℓ1 is applicable again. As neither x < z nor x ≥ z holds for all
reachable configurations, we could continue with any element of sip(τℓ1) =
{τℓ1 |ψx<z , τℓ1 |ψx≥z}. We choose τℓ1 |ψx≥z , so that the recursive transition τℓ1 |ψx≥z
can be accelerated to τ+x≥z. Then τerr applies, and the proof is finished via Refute.

For our purposes, the most important property of ADCL is the following.

Theorem 7. If T ⇝∗ (S, τ⃗ , B⃗) and τ⃗ is non-empty, then cond(τ⃗) ̸≡A ⊥ and
−→τ⃗ ⊆ −→+

T . So if T ⇝∗ unsafe, then T is unsafe.

The other properties of ADCL that were shown in [16] immediately carry over
to our setting, too: if T ⇝∗ safe, then T is safe; if T is unsafe, then T ⇝∗ unsafe;
in general, ⇝ does not terminate. The proofs are analogous to [16].

4 Proving Non-Termination with ADCL-NT

From now on, we assume that the analyzed TS T does not contain unsafe
transitions. To prove non-termination, we look for a corresponding certificate.

Definition 8 (Certificate of Non-Termination). Let τ = ℓ → ℓ J. . .K. A
satisfiable formula ψ certifies non-termination of τ , written ψ |=∞

A τ , if for any
model σ of ψ, there is an infinite sequence ℓ(σ(x⃗)) = s1 −→τ s2 −→τ . . .
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There exist many techniques for finding certificates of non-termination automati-
cally, see Sect. 5. However, Def. 8 has several shortcomings. First, the problem of
finding such certificates becomes very challenging if cond(τ) contains disjunctions.
Second, it is insufficient to consider a single transition when only non-singleton
sequences τ⃗ such that chain(τ⃗) is recursive admit non-terminating runs. Third,
just finding a certificate ψ of non-termination for some τ⃗ ∈ T ∗ does not suffice
for proving non-termination of T . Additionally, a proof that the pre-image of
−→τ⃗ |ψ is reachable from an initial configuration is required. All of these problems
can be solved by integrating the search for certificates of non-termination into
the ADCL calculus.

Definition 9 (ADCL-NT). To prove non-termination, we extend ADCL with
the rule Nonterm and modify Covered as shown below. We write ⇝nt for the
relation defined by the (modified) rules from Def. 5 and Nonterm.

τ⃗⟲ is recursive τ⃗⟲ ⊏ sip(S) or τ⃗⟲ ⊑ sip(S) ∧ |τ⃗⟲| > 1

s = (S, τ⃗ :: τ⃗⟲, B⃗)⇝nt bt(s) (Covered)

chain(τ⃗⟲) = ℓ→ ℓ J. . .K ψ |=∞
A τ⃗⟲ τ = ℓ→ err JψK ̸⊑ sip(S)

(S, τ⃗ :: τ⃗⟲, B⃗)⇝nt (S ∪ {τ}, τ⃗ :: τ⃗⟲, B⃗) (Nonterm)

So the idea of Nonterm is to apply a technique which searches for a certificate
of non-termination to a recursive suffix of the trace. Apart from introducing
Nonterm, we restricted Covered to recursive suffixes. The reason is that
backtracking when the trace has a redundant, non-recursive suffix may prevent
us from analyzing loops, resulting in a precision issue.

Example 10. Let T := {τi, τ ′i , τℓ, τℓ′} where

τi := init → ℓ J⊤K τ ′i := init → ℓ′ J⊤K τℓ := ℓ→ ℓ′ J⊤K τℓ′ := ℓ′ → ℓ J⊤K

and⊤means true. Due to the loop ℓ −→τℓ ℓ
′ −→τℓ′ ℓ, T is clearly non-terminating.

Without requiring that τ⃗⟲ is recursive in Covered, T can be analyzed as follows:

T I
⇝nt (T , [], [∅])

S
⇝

2

nt (T , [τi, τℓ],∅3)
C
⇝nt (T , [τi], [∅, {τℓ}])

B
⇝nt (T , [], [{τi}])

S
⇝

2

nt (T , [τ ′i , τℓ′ ], {τi} :: ∅2)
C
⇝nt (T , [τ ′i ], [{τi}, {τℓ′}])

B
⇝nt (T , [], [{τi, τ ′i }])

P
⇝nt safe

The 1st application of Covered is possible as [τi, τℓ] ⊑ τ ′i and the 2nd application
of Covered is possible as [τ ′i , τℓ′ ] ⊑ τi. Note that the trace never contains both
τℓ and τℓ′ , but both transitions are needed to prove non-termination.

Recall the shortcomings of Def. 8 mentioned above. First, due to the use of
syntactic implicants, ADCL-NT reduces reasoning about arbitrary transitions to
reasoning about conjunctive transitions. Second, as Nonterm considers a suffix
τ⃗⟲ of the trace, it can prove non-termination of sequences of transitions. Third,
ADCL’s capability to prove reachability directly carries over to our goal of proving
non-termination. So in contrast to most other approaches (see Sect. 5), ADCL-NT
does not have to resort to other tools or techniques for proving reachability.
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We only search for a certificate of non-termination for τ⃗⟲ if ADCL-NT
established reachability of the pre-image of −→τ⃗⟲ beforehand. Note, however,
that this does not imply reachability of the pre-image of −→ℓ→err JψK, as ψ entails
cond(τ⃗⟲), but not the other way around. Hence, we cannot directly derive non-
termination of T when Nonterm applies. Regarding the strategy for ⇝nt, one
should try to use Nonterm once for each recursive suffix of the trace.

Example 11. Reconsider Ex. 1. Up to (excluding) the second-last step, the deri-
vation from Ex. 6 remains unchanged. Then we get

(S2, [τi, τ
+
x<z, τ

+
x≥z], [. . . ]) (x ≥ y ∧ x > 5k)

S
⇝

4

nt (S2, [τi, τ
+
x<z, τ

+
x≥z, τℓ1→ℓ2 , τ

=
ℓ2 , τ

̸=
ℓ2
|ψx>y , τ

̸=
ℓ2
|ψx<y ], [. . .]) (1 ≡2 y = x > 10k)

N
⇝nt (S3, [τi, τ

+
x<z, τ

+
x≥z, τℓ1→ℓ2 , τ

=
ℓ2 , τ

̸=
ℓ2
|ψx>y , τ

̸=
ℓ2
|ψx<y ], [. . .]) (1 ≡2 y = x > 10k)

S
⇝nt (S3, [τi, τ

+
x<z, τ

+
x≥z, τℓ1→ℓ2 , τ

=
ℓ2 , τ

̸=
ℓ2
|ψx>y , τ

̸=
ℓ2
|ψx<y , τerr], [. . .])

R
⇝nt unsafe

where ψx>y := x > 0 ∧ y > 0 ∧ x′ = y ∧ x > y ∧ y′ = x τerr := ℓ2 → err Jx = y > 1K

ψx<y := x > 0 ∧ y > 0 ∧ x′ = y ∧ x < y ∧ =
y S3 := S2 ∪ {τerr}

The formulas on the right describe the values of x and y that are reachable
with the current trace, where 1 ≡2 y means that y is odd. After the first Step
with τℓ1→ℓ2 , just τ

=
ℓ2

can be used, as cond(τℓ1→ℓ2) implies x′ = y′. While τ=ℓ2 is

recursive,Accelerate cannot be applied next, as −→τ=
ℓ2

= −→+
τ=
ℓ2

, so the learned

transition would be redundant. Thus, we continue with τ ̸=ℓ2 , projected to x > y
(as cond(τ=ℓ2) implies x′ = y′ + 1). Again, all transitions that could be learned are

redundant, so Accelerate does not apply. We next use τ ̸=ℓ2 projected to x < y,

as the previous Step swapped x and y. As the suffix [τ=ℓ2 , τ
̸=
ℓ2
|ψx>y , τ

̸=
ℓ2
|ψx<y ] of

the trace does not terminate (see Ex. 1), Nonterm applies. So we learn the
transition τerr, which is added to the trace to finish the proof, afterwards.

Theorem 12. If T ⇝∗
nt unsafe, then T does not terminate.

While Thm. 12 establishes the soundness of our approach, we now inves-
tigate completeness. In contrast to ADCL for safety (Sect. 3), ADCL-NT is
not refutationally complete, but the proof is non-trivial. So in the following,
we show that there are non-terminating TSs T where T ⇝̸∗

nt unsafe. To prove
incompleteness, we adapt the construction from the proof that ADCL does not
terminate [16, Thm. 18]. There, states (S, τ⃗ , B⃗) were extended by a component L
that maps every element of sip(S) to a regular language over sip(T ). However, the
proof of [16, Thm. 18] just required reasoning about finite (prefixes of infinite) runs,
but we have to reason about infinite runs. So in our setting L maps each element τ
of sip(S) to a regular or an ω-regular language over sip(T ), i.e., L(τ) ⊆ sip(T )∗

or L(τ) ⊆ sip(T )ω. We lift L from sip(S) to sequences of transitions as follows.

L(ε) := ε L(τ⃗ :: τ) := L(τ⃗) :: L(τ) if L(τ) ⊆ sip(τ)∗

Here, “::” denotes language concatenation (i.e., L1 :: L2 = {τ1 :: τ2 | τ1 ∈ L1, τ2 ∈
L2}) and we only consider sequences where L(τ) is regular (not ω-regular) to
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ensure that L is well defined. So while we lift other notations to sequences of
transitions via chaining, L(τ⃗) does not stand for L(chain(τ⃗)).
Definition 13 (ADCL-NT with Regular Languages). We extend states by
a fourth component L, and adapt Init, Accelerate, and Nonterm as follows:

L(τ) = {τ} for all τ ∈ sip(T )

T ⇝nt (T , [], [∅],L) (Init)

τ⃗⟲ is recursive |τ⃗⟲| = |B⃗⟲| accel(τ⃗⟲) = τ ̸⊑ sip(S)
(S, τ⃗ :: τ⃗⟲, B⃗ :: B⃗⟲,L)⇝nt (S ∪ {τ}, τ⃗ :: τ, B⃗ :: {τ},L ⊎ (τ 7→ L(τ⃗⟲)+)) (Accelerate)

chain(τ⃗⟲) = ℓ→ ℓ J. . .K ψ |=∞
A τ⃗⟲ τ = ℓ→ err JψK ̸⊑ sip(S)

(S, τ⃗ :: τ⃗⟲, B⃗,L)⇝nt (S ∪ {τ}, τ⃗ :: τ⃗⟲, B⃗,L ⊎ (τ 7→ L(τ⃗⟲)ω)) (Nonterm)

All other rules from Def. 5 leave the last component of the state unchanged.

Here, L(π)+ :=
⋃
n∈N≥1

L(π)n, and L(π)ω is the ω-regular language consisting of

all words that result from concatenating infinitely many elements of L(π) \ {ε}.
In Accelerate and Nonterm, chain(τ⃗⟲) is recursive. Thus, τ⃗⟲ does not

contain unsafe transitions. Hence, L(τ⃗⟲) and thus also L(τ⃗⟲)+ are well defined
and regular, and L(τ⃗⟲)ω is ω-regular. Moreover, the use of “⊎” is justified by
the condition τ ̸⊑ sip(S). The next lemma states two crucial properties about L.

Lemma 14. Assume T ⇝∗
nt (S, τ⃗ , B⃗,L) and let τ = (ℓ→ ℓ′ JψK) ∈ sip(S).

• If L(τ) ⊆ sip(T )∗, then −→τ =
⋃
τ⃗∈L(τ) −→τ⃗ .

• If L(τ) ⊆ sip(T )ω, then for every model σ of ψ, there is an infinite sequence
ℓ(σ(x⃗)) = s1 −→τ1 s2 −→τ2 . . . where [τ1, τ2, . . .] ∈ L(τ).

Based on this lemma, we can prove that our extension of ⇝nt from Def. 13 is
not refutationally complete. Then refutational incompleteness of ADCL-NT as
introduced in Def. 9 follows immediately. The reason is that L is only used in
the premise of Init in Def. 13, but there the requirement “L(τ) = {τ} for all
τ ∈ sip(T )” is trivially satisfiable by choosing L accordingly.

Theorem 15. There is a non-terminating TS T such that T ̸⇝∗
nt unsafe.

Proof (Sketch). As in the proof of [16, Thm. 18], for any (original or learned)
transition τ such that L(τ) is regular, L(τ) contains at most one square-free word
(i.e., a word without a non-empty infix w :: w). Thus, if L(τ) is ω-regular, then
L(τ) does not contain an infinite square-free word. Moreover, as in the proof
of [16, Thm. 18], one can construct a TS T that admits a single infinite run τ⃗ ,
and this infinite run is square-free. Thus, there is no transition τ such that L(τ)
contains a suffix of τ⃗ , i.e., no ⇝nt-derivation starting with T corresponds to τ⃗ .
Hence, by Lemma 14, assuming T ⇝∗

nt unsafe results in a contradiction. ⊓⊔
Since ADCL can prove unsafety as well as safety, it is natural to ask if there is a

dual to ADCL-NT that can prove termination. The most obvious approach would
be the following: Whenever the trace has a recursive suffix τ⃗⟲, then termination
of τ⃗⟲ needs to be proven before the next ⇝-step. The following example shows
that this is not enough to ensure that T ⇝+

nt safe implies termination of T .

Example 16. Let T := {τi = init → ℓ JψiK}∪ {τm = ℓ→ ℓ JψmK | 0 ≤ m ≤ 2} and
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ψi := x′ = 0 ψ0 := x = 0 ∧ x′ = 1 ψ1 := x = 1 ∧ x′ = 2 ψ2 := x = 2 ∧ x′ = 1.

As we have ℓ(1) −→τ1 ℓ(2) −→τ2 ℓ(1), T is clearly non-terminating. We get:

T I
⇝nt (T , [], [∅])

S
⇝

3

nt (T , [τi, τ0, τ1],∅4)
A
⇝nt (S1, [τi, τ01],∅2 :: {τ01})

S
⇝nt (S1, [τi, τ01, τ2],∅2 :: {τ01} :: ∅)

A
⇝nt (S2, [τi, τ012],∅2 :: {τ01, τ012})

S
⇝nt (S2, [τi, τ012, τ1],∅2 :: {τ01, τ012} :: ∅)

C
⇝nt (S2, [τi, τ012],∅2 :: {τ01, τ012, τ1})

B
⇝nt (S2, [τi],∅ :: {τ012})⇝∗

nt (S2, [τi],∅ :: {τ012, τ0, τ01})
B
⇝nt (S2, [], [{τi}])

P
⇝nt safe

After three Steps, we accelerate the recursive suffix [τ0, τ1] of the trace, resulting
in τ01 = ℓ→ ℓ Jx = 0∧ x′ = 2K and S1 = T ∪ {τ01}. After one more step, [τ01, τ2]
is accelerated to τ012 = ℓ→ ℓ Jx = 0∧x′ = 1K and we get S2 = S1 ∪{τ012}. After
the next step, [τ012, τ1] is redundant w.r.t. τ01, so Covered applies. Then we
Backtrack, as no other transitions are active. The next Steps also yield states
that allow for backtracking (as their traces have the redundant suffixes [τ0, τ1]
and [τ01, τ2]), so we can finally apply Backtrack again and finish with Prove.

Note that whenever the trace has a recursive suffix, then it leads from ℓ(i) to
ℓ(j) where i ̸= j, i.e., each such suffix is trivially terminating. In particular, the
cycle ℓ(1) −→τ1 ℓ(2) −→τ2 ℓ(1) is not apparent in any of the states.

This example reveals a fundamental problem when adapting ADCL for proving
termination: ADCL ensures that all reachable configurations are covered, which is
crucial for proving safety, but there are no such guarantees for all runs. Therefore,
we think that adapting ADCL for proving termination requires major changes.

5 Related Work and Experiments

We presented ADCL-NT, a variant of ADCL for proving non-termination. The
key insight is that tightly integrating techniques to detect non-terminating
transitions into ADCL allows for handling classes of TSs that are challenging for
other techniques. In particular, ADCL-NT can find non-terminating executions
involving disjunctive transitions or complex patterns of transitions. Moreover, it
tightly couples the search for non-terminating configurations and the proof of
their reachability, whereas other approaches usually separate these two steps.

Related Work There are many techniques to find certificates of non-termination
[2,14,15,22,23,25]. We could use any of them (they are black boxes for ADCL-NT).

Most non-termination techniques for TSs first search for non-terminating
configurations, and then prove their reachability [5, 6, 9, 22], or they extract
and analyze lassos [23]. In contrast, ADCL-NT tightly integrates the search for
non-terminating configurations and reachability analysis.

Earlier versions of our tool LoAT [12, 15] also interleaved both steps using
a technique akin to the state elimination method to transform finite automata
to regular expressions. This technique cannot handle disjunctions, and it is
incomplete for reachability. Hence, LoAT is now solely based on ADCL-NT.

Implementation So far, our implementation in our tool LoAT is restricted to
integer arithmetic. It uses the technique from [15] for acceleration and finding
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certificates of non-termination, the SMT solvers Z3 [26] and Yices [11], the
recurrence solver PURRS [1], and libFAUDES [24] to implement the automata-
based redundancy check from [16].

Experiments To evaluate our implementation in LoAT, we used the 1222
Integer Transition Systems (ITSs) and the 335 C Integer Programs from the
Termination Problems Database [28] used in TermComp [21]. The C programs
are small, hand-crafted examples that often require complex proofs. The ITSs
are significantly larger, as they were obtained from automatic transformations
of C or Java programs. Moreover, they contain a lot of “noise”, e.g., branches
where termination is trivial or variables that are irrelevant for (non-)termination.
Thus, they are well suited to test the scalability and robustness of the tools.

We compared our implementation (LoAT ADCL) with other leading termina-
tion analyzers: iRankFinder [2, 9], T2 [6], Ultimate [8], VeryMax [3, 22], and the
previous version of LoAT [15] (LoAT ’22). For T2, VeryMax, and Ultimate, we took
the versions of their last TermComp participations (2015, 2019, and 2022). For
iRankFinder, we used the configuration from the evaluation of [15], which is
tailored towards proving non-termination. We excluded AProVE [20], as it cannot
prove non-termination of ITSs, and it uses LoAT and T2 as backends when
analyzing C programs. Moreover, we excluded Ultimate from the evaluation on
ITSs, as it cannot parse them. All experiments were run on StarExec [27] with 300s
wallclock timeout, 1200s CPU timeout, and 128GB memory limit per example.

No Yes Runtime overall Runtime No
solved unique solved average median timeouts average median

LoAT ADCL 521 9 0 48.6 s 0.1 s 183 2.9 s 0.1 s
LoAT ’22 494 2 0 7.4 s 0.1 s 0 6.2 s 0.1 s

T2 442 3 615 17.2 s 0.6 s 45 7.4 s 0.6 s
VeryMax 421 6 631 28.3 s 0.5 s 30 30.5 s 14.5 s

iRankFinder 409 0 642 32.0 s 2.0 s 93 12.3 s 1.7 s

The table above shows the results for ITSs, where the column “unique” contains
the number of examples that could be solved by the respective tool, but no others.
It shows that LoAT ADCL is the most powerful tool for proving non-termination
of ITSs. The main reasons for the improvement are that LoAT ADCL builds upon
a complete technique for proving reachability (in contrast to, e.g., LoAT ’22), and
the close integration of non-termination techniques into a technique for proving
reachability, whereas most competing tools separate these steps from each other.

If we only consider the examples where non-termination is proven, LoAT ADCL
is also the fastest tool. If we consider all examples, then the average runtime of
LoAT ADCL is significantly slower. This is not surprising, as ADCL-NT does not
terminate in general. So while it is very fast in most cases (as witnessed by the
very fast median runtime), it times out more often than the other tools.

For C integer programs, the best tools are very close (VeryMax: 103×No, LoAT
ADCL: 102×No, Ultimate: 100×No). Regarding runtimes, the situation is analo-
gous to ITSs. See [18] for detailed results, more information about our evaluation,
and a pre-compiled binary. LoAT is open-source and available on GitHub [17].
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non-termination using Max-SMT. In: CAV ’14. pp. 779–796. LNCS 8559 (2014).
https://doi.org/10.1007/978-3-319-08867-9 52

23. Leike, J., Heizmann, M.: Geometric nontermination arguments. In: TACAS ’18. pp.
266–283. LNCS 10806 (2018). https://doi.org/10.1007/978-3-319-89963-3 16

24. libFAUDES Library, https://fgdes.tf.fau.de/faudes/index.html
25. Nishida, N., Winkler, S.: Loop detection by logically constrained term rewriting.

In: VSTTE ’18. pp. 309–321. LNCS 11294 (2018). https://doi.org/10.1007/978-3-
030-03592-1 18

26. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: TACAS ’08. pp. 337–340.
LNCS 4963 (2008). https://doi.org/10.1007/978-3-540-78800-3 24

27. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: A cross-community infras-
tructure for logic solving. In: IJCAR ’14. pp. 367–373. LNCS 8562 (2014).
https://doi.org/10.1007/978-3-319-08587-6 28

28. Termination Problems Data Base (TPDB), https://termination-portal.org/wiki/
TPDB

https://doi.org/10.1007/978-3-030-17502-3_10
https://doi.org/10.1007/978-3-319-08867-9_52
https://doi.org/10.1007/978-3-319-89963-3_16
https://fgdes.tf.fau.de/faudes/index.html
https://doi.org/10.1007/978-3-030-03592-1_18
https://doi.org/10.1007/978-3-030-03592-1_18
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-08587-6_28
https://termination-portal.org/wiki/TPDB
https://termination-portal.org/wiki/TPDB

	Proving Non-Termination by Acceleration Driven Clause Learning (Short Paper)

