
Proving Termination of C Programs with Lists⋆

Jera Hensel(B) and Jürgen Giesl(B)

LuFG Informatik 2, RWTH Aachen University, Aachen, Germany

Abstract. There are many techniques and tools to prove termination
of C programs, but up to now these tools were not very powerful for fully
automated termination proofs of programs whose termination depends
on recursive data structures like lists. We present the first approach that
extends powerful techniques for termination analysis of C programs (with
memory allocation and explicit pointer arithmetic) to lists.

1 Introduction

In [11,16,17,25], we introduced an approach for automatic termination analysis
of C that also handles programs whose termination relies on the relation between
allocated memory addresses and the data stored at such addresses. This approach
is implemented in our tool AProVE [14]. Instead of analyzing C directly, AProVE
compiles the program to LLVM code using Clang [9]. Then it constructs a (finite)
symbolic execution graph (SEG) such that every program run corresponds to a
path through the SEG. AProVE proves memory safety during the construction
of the SEG to ensure absence of undefined behavior (which would also allow
non-termination). Afterwards, the SEG is transformed into an integer transition
system (ITS) such that all paths through the SEG (and hence, the C program)
are terminating if the ITS is terminating. To analyze termination of the ITS,
AProVE applies standard techniques and calls the tools T2 [7] and LoAT [12,13]
to detect non-termination of ITSs. However, like other termination tools for C,

struct list {
unsigned int value;
struct list* next; };

int main() {
// initialize length
unsigned int n = nondet_uint();
// initialize list of length n
struct list* tail = NULL;
struct list* curr;
for (unsigned int k = 0; k < n; k++) {

curr = malloc(sizeof(struct list));
curr->value = nondet_uint();
curr->next = tail;
tail = curr; }

// traverse list
struct list* ptr = tail;
while(ptr != NULL) {

ptr = *((struct list**)((void*)ptr +
offsetof(struct list, next)));}}

up to now AProVE supported dynamic data
structures only in a very restricted way.

In this paper, we introduce a novel tech-
nique to analyze C programs on lists. In the
program on the right, nondet uint returns
a random unsigned integer. The for loop
creates a list of n random numbers if n > 0.
The while loop traverses this list via poin-
ter arithmetic: Starting with tail, it com-
putes the address of the next field of the
current element by adding the offset of the
next field within a list to the address
of the current list and dereferencing the
computed address (i.e., the content of the

⋆ funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Founda-
tion) - 235950644 (Project GI 274/6-2)

http://orcid.org/0000-0003-2852-9830
http://orcid.org/0000-0003-0283-8520

2 J. Hensel, J. Giesl

next field). This is done by offsetof, defined in the C library stddef.h.1 Since
the list is acyclic and the next pointer of its last element is the null pointer, list
traversal always terminates. Of course, the while loop could also traverse the list
via ptr = ptr->next, but in C, memory accesses can be combined with pointer
arithmetic. This example contains both the access via curr->next (when ini-
tializing the list) and pointer arithmetic (when traversing the list).

We present a new general technique to infer list invariants via symbolic
execution, which express all properties that are crucial for memory safety and
termination. In our example, the list invariant contains the information that
dereferencing the next pointer in the while loop is safe and that one finally
reaches the null pointer. In general, our novel list invariants allow us to abstract
from detailed information about lists (e.g., about their intermediate elements)
such that abstract states with “similar” lists can be merged and generalized
during the symbolic execution in order to obtain finite SEGs. At the same time,
list invariants express enough information about the lists (e.g., their length, their
start address, etc.) such that memory safety and termination can still be proved.

We define the abstract states used for symbolic execution in Sect. 2. In Sect. 3,
after recapitulating the construction of SEGs, we adapt our techniques for merg-
ing and generalizing states from [25] to infer list invariants. Moreover, we adapt
those rules for symbolic execution that are affected by introducing list invariants.
Sect. 4 discusses the generation of ITSs and the soundness of our approach. Sect.
5 gives an overview on related work. Moreover, we evaluate the implementation
of our approach in the tool AProVE using benchmark sets from SV-COMP [3]
and the Termination Competition [15]. All proofs can be found in [18].

Limitations To ease the presentation, in this paper we treat integer types as un-
bounded. Moreover, we assume that a program consists of a single non-recursive
function and that values may be stored at any address. Our approach can also
deal with bitvectors, data alignments, and programs with arbitrary many (pos-
sibly recursive) functions, see [11,16,25] for details. However, so far only lists
without sharing can be handled by our new technique. Extending it to more
general recursive data structures is one of the main challenges for future work.

2 Abstract States for Symbolic Execution

The LLVM code for the for loop is given on the next page. It is equivalent to
the code produced by Clang without optimizations on a 64-bit computer. We ex-
plain it in detail in Sect. 3. To ease readability, we omitted instructions and key-
words that are irrelevant for our presentation, renamed variables, and wrote list
instead of struct.list. Moreover, we gave the C instructions (in gray) before
the corresponding LLVM code. The code consists of several basic blocks including
cmpF and bodyF (corresponding to the loop comparison and body).

1 Note that ptr + n increases ptr by n times the size of the type *ptr. As we want
to increase ptr by a number of bytes and ptr is not an i8 pointer, we first cast ptr
to void*. Then ((void*)ptr + offsetof(struct list, next)) contains the next

pointer, so we cast our computed address to struct list** before dereferencing it.

Proving Termination of C Programs with Lists 3

list = type { i32, list* }

define i32 @main() { ...
cmpF:

k < n

0: k = load i32, i32* k_ad
1: kltn = icmp ult i32 k, n
2: br i1 kltn, label bodyF, label initPtr

bodyF:
curr = malloc(sizeof(struct list));

0: mem = call i8* @malloc(i64 16)
1: curr = bitcast i8* mem to list*
curr->value = nondet_uint();

2: nondet = call i32 @nondet_uint()
3: curr_val = getelementptr list,

list* curr, i32 0, i32 0
4: store i32 nondet, i32* curr_val
curr->next = tail;

5: tail = load list*, list** tail_ptr
6: curr_next = getelementptr list,

list* curr, i32 0, i32 1
7: store list* tail, list** curr_next
tail = curr;

8: store list* curr, list** tail_ptr
k++

9: kinc = add i32 k, 1
10:store i32 kinc, i32* k_ad
11:br label cmpF
... }

We now recapitulate the abstract
states of [25] used for symbolic execu-
tion and extend them by a component
LI for list invariants, i.e., they have
the form ((b, i),LV ,AL,PT ,LI ,KB).
The first component is a program posi-
tion (b, i), indicating that instruction
i of block b is executed next. Pos ⊆
(Blks ×N) is the set of all program po-
sitions, and Blks are all basic blocks.

The second component is a par-
tial injective function LV ∶ VP ⇀ Vsym ,
which maps local program variables
VP of the program P to an infinite
set Vsym of symbolic variables with
Vsym ∩ VP = ∅. We identify LV with
the set of equations {x = LV (x) ∣ x ∈
domain(LV)} and we often extend LV
to a function from VP ⊎N to Vsym ⊎N
by defining LV (n) = n for all n ∈ N.

The third component of each state is a set AL of (bytewise) allocations
Jv1, v2K with v1, v2 ∈ Vsym , which indicate that v1 ≤ v2 and that all addresses
between v1 and v2 have been allocated. We require any two entries Jv1, v2K and
Jw1, w2K from AL with v1 ≠ w1 or v2 ≠ w2 to be disjoint.

The fourth and fifth components PT and LI model the memory contents.
PT contains “points-to” entries of the form v1 ↪ty v2 where v1, v2 ∈ Vsym and
ty is an LLVM type, meaning that the address v1 of type ty points to v2. In con-
trast, the set LI of list invariants (which is new compared to [25]) does not de-

scribe pointwise memory contents but contains invariants vad
vℓ
↪Ð→ty [(off i ∶ tyi ∶

vi..v̂i)]ni=1 where n ∈N>0, vad , vℓ, vi, v̂i ∈ Vsym , off i ∈ N for all 1 ≤ i ≤ n, ty and
tyi are LLVM types for all 1 ≤ i ≤ n, and there is exactly one “recursive field”
1 ≤ j ≤ n such that tyj = ty*.2 Such an invariant represents a struct ty with n
fields that corresponds to a recursively defined list of length vℓ. Here, vad points
to the first list element, the i-th field starts at address vad +off i (i.e., with offset
off i)

3 and has type tyi, and the values of the i-th fields of the first and last list
element are vi and v̂i, respectively. For example, the following list invariant (1)
represents all lists of length xℓ and type list whose elements store a 32-bit in-
teger in their first field and the pointer to the next element in their second field
with offset 8. The first list element starts at address xmem, the second starts at ad-
dress xnext, and the last element contains the null pointer. Moreover, the first ele-
ment stores the integer value xnd and the last list element stores the integer x̂nd.

2 Soundness of our approach is not affected if there are other recursive fields, but our
symbolic execution technique for list traversal on list invariants in Sect. 3.2.2 can
only be applied if the traversal is done along field j.

3 The field offsets can be computed using the data layout string in the LLVM program.

4 J. Hensel, J. Giesl

xmem
xℓ
↪Ð→list [(0 ∶ i32 ∶ xnd..x̂nd), (8 ∶ list* ∶ xnext..0)] (1)

For example, this invariant represents the list with the allocation Jxmem, xmem+15K,
where the first four bytes store the integer 5 and the last eight bytes store the
pointer xnext, and the allocation Jxnext, xnext+15K, where the first four bytes store
the integer 2 and the last eight bytes store the null pointer (i.e., the address 0).
Here, we have xℓ = 2. Sect. 3.2.2 will show that the expressiveness of our list
invariants is indeed needed to prove termination of programs that traverse a list.

The last component of a state is a knowledge base KB of quantifier-free first-
order formulas that express integer arithmetic properties of Vsym . We identify
sets of first-order formulas {φ1, . . . , φm} with their conjunction φ1 ∧ . . . ∧ φm.

A special state ERR is reached if we cannot prove absence of undefined beha-
vior (e.g., if memory safety might be violated by dereferencing the null pointer).

As an example, the following abstract state (2) represents concrete states at
the beginning of the block cmpF, where the program variable curr is assigned the
symbolic variable xmem, the allocation Jxk ad, x

end
k adK consisting of 4 bytes stores

the value xkinc, and xmem points to the first element of a list of length xℓ (equal
to xkinc) that satisfies the list invariant (1). (This state will later be obtained
during the symbolic execution, see State O in Fig. 3 in Sect. 3.1.)

(cmpF,0), {curr = xmem, kinc = xkinc, ...}, {Jxk ad, x
end
k adK, ...}, {xk ad ↪i32 xkinc, ...},

{xmem

xℓ
↪Ð→list [(0 ∶ i32 ∶ xnd..x̂nd), (8 ∶ list* ∶ xnext..0)]}, {x

end
k ad = xk ad + 3, xℓ = xkinc, ...}

(2)

A state s = (p,LV ,AL,PT ,LI ,KB) is represented by a formula ⟨s⟩ which
contains KB and encodes AL, PT , and LI in first-order logic. This allows us
to use standard SMT solving for all reasoning during the construction of the
SEG. Moreover, ⟨s⟩ is also used for the generation of the ITS afterwards. The
encoding of AL and PT is as in [25], see [18]: ⟨s⟩ contains formulas which express
that allocated addresses are positive, that allocations represent disjoint memory
areas, that equal addresses point to equal values, and that addresses are different
if they point to different values. For each element of LI , we add the following
new formulas to ⟨s⟩ which express that the list length vℓ is ≥ 1 and the ad-
dress vad of the first element is not null. If vℓ = 1, then the values vi and v̂i of the
fields in the first and the last element are equal. If vℓ ≥ 2, then the next pointer
vj in the first element must not be null. Finally, if there is a field whose values
vk and v̂k differ in the first and the last element, then the length vℓ must be ≥ 2.
{vℓ ≥ 1 ∧ vad ≥ 1 ∣ (vad

vℓ
↪Ð→ty [(off i ∶ tyi ∶ vi..v̂i)]ni=1) ∈ LI } ∪

{⋀n
i=1 vi = v̂i ∣ (vad

vℓ
↪Ð→ty [(off i ∶ tyi ∶ vi..v̂i)]ni=1) ∈ LI and ⊧ ⟨s⟩ ⇒ vℓ = 1} ∪

{vj ≥ 1 ∣ (vad
vℓ
↪Ð→ty [(off i ∶ tyi ∶ vi..v̂i)]ni=1) ∈ LI with tyj = ty∗ and ⊧ ⟨s⟩ ⇒ vℓ ≥ 2} ∪

{vℓ ≥ 2 ∣ (vad
vℓ
↪Ð→ty [(off i ∶ tyi ∶ vi..v̂i)]ni=1) ∈ LI and ∃k∈N>0, k ≤ n, s.t. ⊧ ⟨s⟩ ⇒ vk ≠ v̂k}

In concrete states c, all values of variables and memory contents are deter-
mined uniquely. To ease the formalization, we assume that all integers are un-
signed and refer to [16] for the general case. So for all v ∈ Vsym(c) (i.e., all v ∈ Vsym
occurring in c) we have ⊧ ⟨c⟩ ⇒ v = n for some n ∈ N. Moreover, here PT only
contains information about allocated addresses and LI = ∅ since the abstract
knowledge in list invariants is unnecessary if all memory contents are known.

Proving Termination of C Programs with Lists 5

(entry,0), ∅, ∅, ∅, ∅, ∅ A

(cmpF,0), {n = vn, tail ptr = vtp, k ad = vk ad, ...}, {Jvtp, vend
tp K, Jvk ad, v

end
k adK},

{vtp ↪list* 0, vk ad ↪i32 0}, ∅, {vend
tp = vtp + 7, v

end
k ad = vk ad + 3, ...}

B

(cmpF,1), {k = 0, ...}, ALB , PTB , ∅, KBB C

(cmpF,1), {k = 0, ...}, ALB ,

PTB , ∅, {vn > 0, ...}
D (cmpF,1), {k = 0, ...}, ALB ,

PTB , ∅, {vn ≤ 0, ...}
E

(cmpF,2), {kltn = 1, ...}, ALB , PTB , ∅, KBD F ...

(bodyF,0), LVF , ALB , PTB , ∅, KBD G

(bodyF,1), {mem = vmem, ...}, {Jvmem, vend
mem K, ...}, PTB , ∅, {vend

mem = vmem + 15, ...}
H

(bodyF,7), {curr = vmem, nondet = vnd, curr val = vmem, tail = 0, curr next = vcn, ...},

ALH , {vmem ↪i32 vnd, ...}, ∅, {vcn = vmem + 8, ...}

J

(bodyF,11), {kinc = 1, ...}, ALH , {vcn ↪list* 0, vtp ↪list* vmem, vk ad ↪i32 1, ...}, ∅, KBJ K

Fig. 1: SEG for the First Iteration of the for Loop

For instance, all concrete states ((cmpF,0),LV ,AL,PT ,∅,KB) represented
by the state (2) contain ℓ allocations of 16 bytes for some ℓ ≥ 1, where in the
first four bytes a 32-bit integer is stored and in the last eight bytes the address
of the next allocation (or 0, in case of the last allocation) is stored.

See [18] for a formal definition to determine which concrete states are repre-
sented by a state s. To this end, as in [25] we define a separation logic formula
⟨s⟩SL which also encodes the knowledge contained in the memory components
of states. To extend this formula to list invariants, we use a fragment similar to
quantitative separation logic [4], extending conventional separation logic by list
predicates. For any state s, we have ⊧ ⟨s⟩SL ⇒ ⟨s⟩, i.e., ⟨s⟩ is a weakened version
of ⟨s⟩SL that we use for symbolic execution and the termination proof.

3 Symbolic Execution with List Invariants

We first recapitulate the construction of SEGs. Then, Sect. 3.1 extends the tech-
nique for merging and generalization of states from [25] to infer list invariants.
Finally, we adapt the rules for symbolic execution to list invariants in Sect. 3.2.

Our symbolic execution starts with a state A at the first instruction of the
first block (called entry in our example). Fig. 1 shows the first iteration of the
for loop. Dotted arrows indicate that we omitted some symbolic execution steps.
For every state, we perform symbolic execution by applying the corresponding
inference rule as in [25] to compute its successor state(s) and repeat this until
all paths end in return states. We call an SEG with this property complete.

As an example, we recapitulate the inference rule for the load instruction in
the case where a value is loaded from allocated and initialized memory. It loads
the value of type ty that is stored at the address ad to the program variable x.
Let size(ty) denote the size of ty in bytes for any LLVM type ty. If we can prove

6 J. Hensel, J. Giesl

that there is an allocation Jv1, v2K containing all addresses LV (ad), . . . ,LV (ad)+
size(ty) − 1 and there exists an entry (w1 ↪ty w2) ∈ PT such that w1 is equal
to the address LV (ad) loaded from, then we transform the state s at position
p = (b, i) to a state s′ at position p+ = (b, i + 1). In s′, a fresh symbolic variable
w is assigned to x and w = w2 is added to KB . We write LV [x ∶= w] for the
function where LV [x ∶= w](x) = w and LV [x ∶= w](y) = LV (y) for all y ≠ x.
load from initialized allocated memory (p ∶“x = load ty, ty* ad”, x,ad ∈ VP)

s = (p, LV , AL, PT , LI , KB)
s′ = (p+, LV [x ∶= w], AL, PT , LI , KB ∪ {w = w2})

if w ∈ Vsym is fresh and

● there is Jv1, v2K ∈ AL with ⊧ ⟨s⟩ ⇒ (v1 ≤ LV (ad) ∧ LV (ad) + size(ty) − 1 ≤ v2)
● there are w1,w2 ∈ Vsym with ⊧ ⟨s⟩ ⇒ (LV (ad) = w1) and (w1 ↪ty w2) ∈ PT

In our example, the entry block comprises the first three lines of the C
program and the initialization of the pointer to the loop variable k: First, a non-
deterministic unsigned integer is assigned to n, i.e., (n = vn) ∈ LV B , where vn is
not restricted. Moreover, memory for the pointers tail ptr and k ad is allocated
and they point to tail = NULL and k = 0, respectively (tail ptr = vtp and

k ad = vk ad with (vtp ↪list* 0), (vk ad ↪i32 0) ∈ PTB). For simplicity, in Fig. 1
we use concrete values directly instead of introducing fresh variables for them.
Since we assume a 64-bit architecture, tail ptr’s allocation contains 8 bytes.
For the integer value of k, only 4 bytes are allocated. Alignments and pointer
sizes depend on the memory layout and are given in the LLVM program.

State C results from B by evaluating the load instruction at (cmpF,0), see
the above load rule. Thus, there is an evaluation edge from B to C.

The next instruction is an integer comparison whose Boolean return value
depends on whether the unsigned value of k is less than the one of n. If we
cannot decide the validity of a comparison, we refine the state into two successor
states. Thus, the states D and E (with (vn > 0) ∈ KBD and (vn ≤ 0) ∈ KBE) are
reached by refinement edges from State C. Evaluating D yields kltn = 1 in F .
Therefore, the branch instruction leads to the block bodyF in State G. State E
is evaluated to a state with kltn = 0. This path branches to the block initPtr

and terminates quickly as tail ptr points to an empty list.
The instruction at (bodyF,0) allocates 16 bytes of memory starting at vmem

in State H. The next instruction casts the pointer to the allocation from i8*

to list* and assigns it to curr. Now the allocated area can be treated as a list
element. Then nondet uint() is invoked to assign a 32-bit integer to nondet.
The getelementptr instruction computes the address of the integer field of the
list element by indexing this field (the second i32 0) based on the start address
(curr). The first index (i32 0) specifies that a field of *curr itself is computed
and not of another list stored after *curr. Since the address of the integer
value of the list element coincides with the start address of the list element,
this instruction assigns vmem to curr val. Afterwards, the value of nondet is
stored at curr val (vmem ↪i32 vnd), the value 0 stored at vtp is loaded to tail,
and a second getelementptr instruction computes the address of the recursive
field of the current list element (vcn = vmem + 8) and assigns it to curr next,

Proving Termination of C Programs with Lists 7

(cmpF,0), {n = vn, tail ptr = vtp, mem = vmem, curr = vmem, nondet = vnd, curr val = vmem,

curr next = vcn, k = 0, kinc = 1, ...}, {Jvtp, vend
tp K, Jvk ad, v

end
k adK, Jvmem, vend

mem K},
{vtp ↪list* vmem, vk ad ↪i32 1, vmem ↪i32 vnd, vcn ↪list* 0}, ∅,

{vn > 0, vend
k ad = vk ad + 3, v

end
tp = vtp + 7, v

end
mem = vmem + 15, vcn = vmem + 8, ...}

L

(cmpF,0), {n = vn, tail ptr = vtp, mem = wmem, curr = wmem, nondet = wnd, curr val = wmem,

curr next = wcn, k = 1, kinc = 2, ...}, {Jvtp, vend
tp K, Jvk ad, v

end
k adK, Jvmem, vend

mem K, Jwmem, w
end
mem K},

{vtp ↪list* wmem, vk ad ↪i32 2, vmem ↪i32 vnd, vcn ↪list* 0, wmem ↪i32 wnd, wcn ↪list* vmem}, ∅,

{vn > 1, vend
k ad = vk ad+3, v

end
tp = vtp+7, v

end
mem = vmem+15, vcn = vmem+8,w

end
mem = wmem+15,wcn = wmem+8, ...}

M

Fig. 2: Second Iteration of the for Loop

leading to state J . In the path to K, the values of tail and curr are stored
at curr next and tail ptr, respectively (vcn ↪list* 0, vtp ↪list* vmem). Finally,
the incremented value of k is assigned to kinc and stored at k ad (vk ad ↪i32 1).

To ensure a finite graph construction, when a program position is reached for
the second time, we try to merge the states at this position to a generalized state.
However, this is only meaningful if the domains of the LV functions of the two
states coincide (i.e., the states consider the same program variables). Therefore,
after the branch from the loop body back to cmpF (see State L in Fig. 2), we
evaluate the loop a second time and reach M . Here, a second list element with

L ∶ vmem vnd 0

value next

M ∶ wmem wnd vnd 0

value next value next

value wnd and a next pointer wcn pointing to
vmem has been stored at a new allocation Jwmem,
wend
mem K. Now, curr points to the new element and

k has been incremented again, so k ad points to 2.

3.1 Inferring List Invariants and Generalization of States

As mentioned, our goal is to merge L andM to a more general state O that repre-
sents all states which are represented by L or M . The challenging part during
generalization is to find loop invariants automatically that always hold at this po-
sition and provide sufficient information to prove termination of the loop. For O,
we can neither use the information that curr points to a struct whose next field
contains the null pointer (as in L), nor that its next field points to another
struct whose next field contains the null pointer (as in M).

With the approach of [25], when merging states like L and M where a list has
different lengths, the merged state would only contain those list elements that
are allocated in both states (often this is only the first element). Then elements
which are the null pointer in one but not in the other state are lost. Hence, prov-
ing memory safety (and thus, also termination) fails when the list is traversed
afterwards, since now there might be next pointers to non-allocated memory.

We solve this problem by introducing list invariants. In our example, we will
infer an invariant stating that curr points to a list of length xℓ ≥ 1. This invariant
also implies that all struct fields are allocated and that there is no sharing.

To this end, we adapt the merging heuristic from [25]. To merge two states

s and s′ at the same program position with domain(LV s) = domain(LV s′), we
introduce a fresh symbolic variable xvar for each program variable var and use
instantiations µs and µs′ which map xvar to the corresponding symbolic variables

8 J. Hensel, J. Giesl

of s and s′. For the merged state s, we set LV s(var) = xvar. Moreover, we identify
corresponding variables that only occur in the memory components and extend
µs and µs′ accordingly. In a second step, we check which constraints from the
memory components and the knowledge base hold in both states in order to find
invariants that we can add to the memory components and the knowledge base

of s. For example, if Jµs(x), µs(xend)K ∈ ALs and Jµs′(x), µs′(xend)K ∈ ALs′ for
x,xend ∈ Vsym , then Jx, xendK is added to ALs. To extend this heuristic to lists,
we have to regard several memory entries together. If there is an ad ∈ VP such
that µs(xad) = vstart1 and µs′(xad) = wstart

1 both point to lists of type ty but of
different lengths ℓs ≠ ℓs′ with ℓs, ℓs′ ≥ 1, then we create a list invariant.

For a state s we say that vstart1 points to a list of type ty with n fields
and length ℓs with allocations Jvstartk , vendk K and values vk,i (for 1 ≤ k ≤ ℓs and
1 ≤ i ≤ n) if the following conditions (a) − (d) hold:
(a) ty is an LLVM struct type with subtypes tyi and field offsets off i ∈ N for all

1 ≤ i ≤ n such that there exists exactly one 1 ≤ j ≤ n with tyj = ty∗.
(b) There exist pairwise different Jvstartk , vendk K ∈ ALs for all 1 ≤ k ≤ ℓs and
⊧ ⟨s⟩ ⇒ vendk = vstartk + size(ty) − 1.

(c) For all 1 ≤ k ≤ ℓs and 1 ≤ i ≤ n there exist vstartk,i , vk,i ∈ Vsym with ⊧ ⟨s⟩ ⇒
vstartk,i = vstartk + off i and (vstartk,i ↪tyi

vk,i) ∈ PT s.

(d) For all 1 ≤ k < ℓs we have ⊧ ⟨s⟩ ⇒ vk,j = vstartk+1 .

Condition (a) states that ty is a list type with n fields, where the pointer to the
next element is in the j-th field. In (b) we ensure that each list element has a
unique allocation of the correct size where vstart1 is the start address of the first al-
location. Condition (c) requires that for the k-th element, the initial address plus
the i-th offset points to a value vk,i of type tyi. Finally, (d) states that the recur-
sive field of each element indeed points to the initial address of the next element.

Then, for fresh xℓ, xi, x̂i ∈ Vsym , we add the following list invariant to LI s.

xad
xℓ
↪Ð→ty [(off i ∶ tyi ∶ xi..x̂i)]ni=1 (3)

To ensure that the allocations expressed by the list invariant are disjoint from
all allocations in ALs, we do not use the list allocations Jvstartk , vendk K to infer

generalized allocations in ALs. Similarly, to create PT s, we only use entries

v ↪ty w from PT s and PT s′ where v is disjoint from the list addresses, i.e.,
where ⊧ ⟨s⟩ ⇒ v < vstartk ∨ v > vendk holds for all 1 ≤ k ≤ ℓs and analogously for s′.

Moreover, we add formulas to KBs stating that (A) the length xℓ of the list is
at least the smaller length of the merged lists, (B) xℓ is equal to all variables x
which result from merging variables v and w that are equal to the lengths ℓs and
ℓs′ in s and s′, and (C) the symbolic variable xi for the value of the i-th field of
the first list element is equal to all variables x with µs(x) = v1,i and µs′(x) = w1,i

where v1,i and w1,i are the values of the i-th field of the first list element in s
and s′ (and analogously for the values x̂i of the last list element):

(A)min(ℓs, ℓs′) ≤ xℓ

(B)⋀x∈µ−1s (v)∩µ−1s′ (w)
xℓ = x for all v,w ∈ Vsym with ⊧ ⟨s⟩ ⇒ v = ℓs and ⊧ ⟨s′⟩ ⇒ w = ℓs′

(C)⋀x∈µ−1s (v1,i)∩µ−1s′ (w1,i) xi = x and ⋀x∈µ−1s (vℓs,i)∩µ−1s′ (wℓs′ ,i
) x̂i = x for all 1 ≤ i ≤ n

Proving Termination of C Programs with Lists 9

L

M

(cmpF,0), {n = xn, tail ptr = xtp, mem = xmem, curr = xmem, nondet = xnd, curr val = xmem,

curr next = xcn, k = xk, kinc = xkinc, ...}, {Jxtp, x
end
tp K, Jxk ad, x

end
k adK},

{xtp ↪list* xmem, xk ad ↪i32 xkinc}, {xmem

xℓ
↪Ð→list [(0 ∶ i32 ∶ xnd..x̂nd), (8 ∶ list* ∶ xnext..0)]},

{xn > xk, x
end
k ad = xk ad + 3, x

end
tp = xtp + 7, xcn = xmem + 8, xkinc = xk + 1, 1 ≤ xℓ, xℓ = xkinc, ...}

O

Fig. 3: Merging of States

To identify the variables in the list invariant (3) of s with the corresponding
values in s and s′, the instantiations µs and µs′ are extended such that µs(xℓ) =
ℓs, µs′(xℓ) = ℓs′ , µs(xi) = v1,i, µs′(xi) = w1,i, µs(x̂i) = vℓs,i, and µs′(x̂i) = wℓs′ ,i

for all 1 ≤ i ≤ n. Similarly, if there already exist list invariants in s and s′, for
each pair of corresponding variables a new variable is introduced and mapped
to its origin by µs and µs′ . This adaption of the merging heuristic only concerns
the result of merging but not the rules when to merge two states. Thus, the same
reasoning as in [25] can be used to prove soundness and termination of merging.

In our example, L and M contain lists of length ℓL = 1 and ℓM = 2. To
ease the presentation, we re-use variables that are known to be equal instead of
introducing fresh variables. If xmem is the variable for the program variable curr,
we have µL(xmem) = vmem and µM(xmem) = wmem. Indeed, vmem resp. wmem points
to a list with values vk,i resp. wk,i as defined in (a)–(d): For the type list

with n = 2, ty1 = i32, ty2 = list∗, off 1 = 0, off 2 = 8, and j = 2 (see (a)),
we have Jvmem, vendmem K ∈ ALL and Jvmem, vendmem K, Jwmem, w

end
mem K ∈ ALM , all consisting

of size(list) = 16 bytes, see (b). We have (vmem ↪i32 vnd), (vcn ↪list* 0) ∈
PTL with (vcn = vmem + 8) ∈ KBL and (vmem ↪i32 vnd), (vcn ↪list* 0), (wmem ↪i32

wnd), (wcn ↪list* vmem) ∈ PTM with (vcn = vmem + 8), (wcn = wmem + 8) ∈ KBM (see
(c)), so the first list element in M points to the second one (see (d)). Therefore,
when merging L and M to a new state O (see Fig. 3), the lists are merged to a
list invariant of variable length xℓ and we add the formulas (A) 1 ≤ xℓ and (B)
xℓ = xkinc to KBO. By (C), the i32 value of the first element is identified with
xnd, since µL(xnd) is equal to the first value of the first list element in L and
µM(xnd) is equal to the first value of the first list element in M . Similarly, the
values of the last list elements are identified with 0, as in L and M .

After merging s and s′ to a generalized state s, we continue symbolic execu-
tion from s. The next time we reach the same program position, we might have
to merge the corresponding states again. As described in [25], we use a heuristic
for constructing the SEG which ensures that after a finite number of iterations, a
state is reached that only represents concrete states that are also represented by
an already existing (more general) state in the SEG. Then symbolic execution can
continue from this more general state instead. So with this heuristic, the con-
struction always ends in a complete SEG or an SEG containing the state ERR.

We formalized the concept of “generalization” by a symbolic execution rule
in [25]. Here, the state s is a generalization of s if the conditions (g1)−(g6) hold.

Condition (g1) prevents cycles consisting only of refinement and generaliza-
tion edges in the graph. Condition (g2) states that the instantiation µ∶ Vsym(s) →
Vsym(s)∪Z maps symbolic variables from the more general state s to their coun-
terparts from the more specific state s such that they correspond to the same

10 J. Hensel, J. Giesl

program variable. Conditions (g3)–(g6) ensure that all knowledge present in
KB , AL, PT , and LI still holds in s with the applied instantiation.

generalization with instantiation µ

s = (p, LV , AL, PT , LI , KB)

s = (p, LV , AL, PT , LI , KB)
if

(g1) s has an incoming evaluation edge
(g2) domain(LV) = domain(LV) and LV (var) = µ(LV (var)) for all var ∈ VP where

LV and LV are defined
(g3) ⊧ ⟨s⟩ ⇒ µ(KB)
(g4) if Jx1, x2K ∈ AL, then Jv1, v2K ∈ AL with ⊧ ⟨s⟩ ⇒ v1 = µ(x1) ∧ v2 = µ(x2)
(g5) if (x1 ↪ty x2) ∈ PT ,

then (v1 ↪ty v2) ∈ PT with ⊧ ⟨s⟩ ⇒ v1 = µ(x1) ∧ v2 = µ(x2)
(g6) if (xad

xℓ
↪Ð→ty [(off i ∶ tyi ∶ xi..x̂i)]ni=1) ∈ LI ,

then either (vad
vℓ
↪Ð→ty [(off i ∶ tyi ∶ vi..v̂i)]ni=1) ∈ LI with

● ⊧ ⟨s⟩ ⇒ vad = µ(xad) ∧ vℓ = µ(xℓ) and
● ⊧ ⟨s⟩ ⇒ vi = µ(xi) ∧ v̂i = µ(x̂i) for all 1 ≤ i ≤ n,

or vstart1 points to a list of type ty and length ℓ with allocations Jvstartk , vendk K
and values vk,i (for 1 ≤ k ≤ ℓ,1 ≤ i ≤ n) such that
● ⊧ ⟨s⟩ ⇒ vstart1 = µ(xad) ∧ ℓ = µ(xℓ),
● ⊧ ⟨s⟩ ⇒ v1,i = µ(xi) ∧ vℓ,i = µ(x̂i) for all 1 ≤ i ≤ n, and
● if (z1 ↪ty z2) ∈ PT ,

then ⊧ ⟨s⟩ ⇒ µ(z1) < vstartk ∨ µ(z1) > vendk for all 1 ≤ k ≤ ℓ.

Condition (g6) is new compared to [25] and takes list invariants into account.
So for every list invariant l of s there is either a corresponding list invariant l
in s such that lists represented by l in s are also represented by l in s, or there
is a concrete list in s that is represented by l in s. The last condition of the
latter case ensures that disjointness between the memory domains of PT and
LI is preserved. See [18] for the soundness proof of the extended generalization
rule, i.e., that every concrete state represented by s is also represented by s.

Our merging technique always yields generalizations according to this rule,
i.e., the edges from L and M to O in Fig. 3 are generalization edges. Here, one
chooses µL and µM such that µL(xmem) = vmem, µL(xℓ) = 1, µL(xnd) = vnd, µL(x̂nd)
= vnd, µL(xnext) = 0, µM(xmem) = wmem, µM(xℓ) = 2, µM(xnd) = wnd, µL(x̂nd) = vnd,
and µM(xnext) = vmem. In both cases, all conditions of the second case of (g6)
with ℓL = 1 and ℓM = 2 are satisfied. With µL(xkinc) = 1 resp. µM(xkinc) = 2, we
also have ⊧ ⟨L⟩ ⇒ µL(xℓ) = µL(xkinc) resp. ⊧ ⟨M⟩ ⇒ µM(xℓ) = µM(xkinc).

3.2 Adapting List Invariants

To handle and modify list invariants, three of our symbolic execution rules have
to be changed. Sect. 3.2.1 presents a variant of the store rule where the list
invariant is extended by an element. In Sect. 3.2.2, we adapt the load rule to load
values from the first list element and we present a variant of the getelementptr
rule for list traversal. Soundness of our new rules is proved in [18]. For all other
instructions, the symbolic execution rules from [25] remain unchanged.

Proving Termination of C Programs with Lists 11

(bodyF,7), {tail = xmem, curr next = ycn, ...}, {Jymem, yend
mem K, ...}, {ymem ↪i32 ynd, ...},

{xmem

xℓ
↪Ð→list [(0 ∶ i32 ∶ xnd..x̂nd), (8 ∶ list* ∶ xnext..0)]}, {xcn = xmem + 8, ycn = ymem + 8, ...}

P

(bodyF,8), {tail = xmem, curr next = ycn, ...}, {...}, {...},

{ymem
yℓ
↪Ð→list [(0 ∶ i32 ∶ ynd..x̂nd), (8 ∶ list* ∶ xmem..0)]}, {ycn = ymem + 8, yℓ = xℓ + 1, ...}

Q

Fig. 4: Extending a List Invariant

3.2.1 List Extension After merging L and M , symbolic execution continues
from the more general state O in Fig. 3. Here, the values of k and kinc and the
length of the list are not concrete but any positive (resp. non-negative) value with
xℓ = xkinc = xk +1. The symbolic execution of O is similar to the steps from B to
J in Sect. 3 (see Fig. 1). First, the value xkinc stored at k ad is loaded to k. To
distinguish whether k < n still holds, the next state is refined. From the refined
state with k < n, we enter the loop body again. A new block Jymem, yendmem K of 16
bytes is allocated and ymem is assigned to mem and curr. Then, a new unknown
value ynd is assigned to nondet. The address of the i32 value of the current
element (equal to ymem) is computed by the first getelementptr instruction of
the loop and the value ynd of nondet is stored at it. The second getelementptr

instruction computes the address ycn of the recursive field and results in State
P in Fig. 4, where ycn = ymem + 8 is added to KBP . Now, store sets the address
of the next field to the head of the list created in the previous iteration. Since
this instruction extends the list by an element, instead of adding ycn ↪list* xmem
to PTQ, we extend the list invariant: The length is set to yℓ and identified with
xℓ+1 in KBQ. The pointer xmem to the first element is replaced by ymem, while the
first recursive field in the list gets the value xmem. Since (ymem ↪i32 ynd) ∈ PTP ,
ynd is the value of the first i32 integer in the list. We remove all entries from
PTQ that are already contained in the new list invariant, e.g., ymem ↪i32 ynd.

To formalize this adaption of list invariants, we introduce a modified rule
for store in addition to the one in [25]. It handles the case where there is a
concrete list at some address vstart , pa points to the m-th field of this list’s first
element, one wants to store a value t at the address pa, and one already has a list
invariant l for the “tail” of the list in the j-th field (if m ≠ j) resp. for the list at

m ≠ j:

m = j:

vstart 5 2 . . .

pa vad

l

vstart 5 2 . . .

pa vad

l′

vstart 5 2 . . .

pa vad

l

vstart 5 2 . . .

pa vad

l′

sto
re

5
sto

re
v
a
d

the address t (if m = j). In all other cases,
the ordinary store rule is applied.

More precisely, let the list invariant l de-
scribe a list of length vl at the address vad .
Then l is replaced by a new list invariant l′

which describes the list at the address vstart

after storing t at the address pa. Irrespective
of whether m ≠ j or m = j, the resulting list
at vstart has the list at vad as its “tail” and
thus, its length v′ℓ is vℓ+1. We prevent sharing
of different elements by removing the alloca-
tion Jvstart , vendK of the list and all points-to
information of pointers in Jvstart , vendK.

12 J. Hensel, J. Giesl

list extension (p ∶ “store ty t, ty* pa”, t ∈ VP ∪N, pa ∈ VP)
s = (p, LV , AL, PT , LI , KB)

s′ = (p+, LV , AL/{Jvstart , vendK}, PT ′, LI /{l} ∪ {l ′}, KB ′)
if

● there is l = (vad
vℓ
↪Ð→lty [(off i ∶ ltyi ∶ wi..ŵi)]ni=1) ∈ LI with ltyj = lty∗

● there is Jvstart , vendK ∈ AL with ⊧ ⟨s⟩ ⇒ vend = vstart + size(lty) − 1
● there exists 1 ≤m ≤ n such that ty = ltym and ⊧ ⟨s⟩ ⇒ LV (pa) = vstart + off m

● ⊧ ⟨s⟩ ⇒ vad = vj if m ≠ j and ⊧ ⟨s⟩ ⇒ vad = LV (t) if m = j
● for all 1 ≤ i ≤ n with i ≠m there exist vstarti , vi ∈ Vsym

with ⊧ ⟨s⟩ ⇒ vstarti = vstart + off i and (vstarti ↪ltyi
vi) ∈ PT

● PT ′ = {(x1 ↪sy x2) ∈ PT ∣ ⊧ ⟨s⟩ ⇒ (vend < x1) ∨ (x1 + size(sy) − 1 < vstart)}

● l ′ = (vstart
v′ℓ
↪Ð→lty [(off i ∶ ltyi ∶ vi..ŵi)]ni=1)

● KB ′ = KB ∪ {vm = LV (t), v′ℓ = vℓ + 1}, where vm, v′ℓ are fresh

3.2.2 List Traversal After the current element ymem is stored at xtp and the
value xkinc of k is incremented to ykinc and stored at xk ad, we reach a state R at
position (cmpF,0) by the branch instruction. However, our already existing state
O is more general than R, i.e., we can draw a generalization edge from R to O
using the generalization rule with the instantiation µR where µR(xmem) = ymem,
µR(xnd) = ynd, µR(xcn) = ycn, µR(xk) = xkinc, µR(xkinc) = ykinc, µR(xℓ) = yℓ,
µR(x̂nd) = x̂nd, and µR(xnext) = xmem. Thus, the cycle of the first loop closes here.

(initPtr,0), {tail ptr = xtp, ...}, {...}, {xtp ↪list* xmem, ...},

{xmem

xℓ
↪Ð→list [(0 ∶ i32 ∶ xnd..x̂nd), (8 ∶ list* ∶ xnext..0)]}, {...}

S

(cmpW,0), {ptr = xptr, curr’ = xmem, next ptr = xnp,

next = xnext, ...}, {Jxptr, x
end
ptr K, ...}, {xptr ↪list* xnext, ...},

{xmem

xℓ
↪Ð→list [(0 ∶ i32 ∶ xnd..x̂nd), (8 ∶ list* ∶ xnext..0)]},

{xnp = xmem + 8, ...}

T

As mentioned, in the
path from O to R there is
a state at position (cmpF,1)
which is refined (similar to
State C). If k < n holds,
we reach R. The other path
with k /< n leads out of the

initPtr:
0: tail’ = load list*, list** tail_ptr
1: store list* tail’, list** ptr
2: br label cmpW

cmpW:
0: str = load list*, list** ptr
1: notnull = icmp ne list* str, null
2: br i1 notnull, label bodyW, label ret

bodyW:
0: curr’ = bitcast list* str to i8*
1: next_ptr = getelementptr i8, i8* curr’, i64 8
2: next_ptr’ = bitcast i8* next_ptr to list**
3: next = load list*, list** next_ptr’
4: store list* next, list** ptr
5: br label cmpW

for loop to the block initPtr

followed by the while loop (see
State S and the corresponding
LLVM code on the side). The
value xmem at address tail ptr is
loaded to tail’ and stored at a
new pointer variable ptr. State
T is reached after the first it-
eration of the while loop body.
Here, block cmpW loads the value
xmem stored at ptr to str. Since
it is not the null pointer, we en-
ter bodyW, which corresponds to the body of the while loop. First, xmem is cast to
an i8 pointer. Then getelementptr computes a pointer xnp to the next element
by adding 8 bytes to xmem. After another cast back to a list* pointer, we load
the content of the new pointer to next. To this end, we need the following new
variant of the load rule to load values that are described by a list invariant.

Proving Termination of C Programs with Lists 13

(bodyW,1), {ptr = xptr, curr’ = xnext, next ptr = xnp, next = xnext, ...},

{Jxptr, x
end
ptr K, ...}, {xptr ↪list* xnext, ...},

{xmem

xℓ
↪Ð→list [(0 ∶ i32 ∶ xnd..x̂nd), (8 ∶ list* ∶ xnext..0)]},

{xnp = xmem + 8, xnext ≥ 1, ...}

U

(bodyW,2), {ptr = xptr, curr’ = xnext, next ptr = x′np, next = xnext, ...},

{Jxptr, x
end
ptr K, Jxmem, x

end
mem K, ...}, {xptr ↪list* xnext, xmem ↪i32 xnd, xnp ↪list* xnext, ...},

{xnext

x′
ℓ

↪Ð→list [(0 ∶ i32 ∶ x
′
nd..x̂nd), (8 ∶ list* ∶ x

′
next..0)]},

{xnp = xmem + 8, x
end
mem = xmem + 15, x

′
np = xnext + 8, x

′
ℓ = xℓ − 1, ...}

V

Fig. 5: Traversing a List Invariant

load from list invariant (p ∶ “x = load ty, ty* ad i”, x,ad i ∈ VP)
s = (p, LV , AL, PT , LI , KB)

s′ = (p+, LV [x ∶= w], AL, PT , LI , KB ∪ {w = vi})
if w ∈ Vsym is fresh and

● there is l = (vad
vℓ
↪Ð→ty [(off i ∶ tyi ∶ vi..v̂i)]ni=1) ∈ LI

● there exists 1 ≤ i ≤ n such that ty = tyi and ⊧ ⟨s⟩ ⇒ LV (ad i) = vad + off i

With this new load rule, the content of the new pointer is identified as
xnext. It is loaded to next and stored at xptr. Then we return to the block cmpW

(State T). Merging T with its predecessor at the same program position is not
possible yet since the domains of the respective LV functions do not coincide.
Now, xnext is loaded to str and compared to the null pointer. Since we do
not have information about xnext, T ’s successor state is refined to a state with
xnext = 0 (which starts a path out of the loop to a return state), and to a state
with xnext ≥ 1, which reaches U after a few evaluation steps, see Fig. 5. Now,
getelementptr computes the pointer x′np = xnext + 8 to the third element of the
list, which is assigned to next ptr. ⟨U⟩ contains xℓ ≥ 2 since the first and the last
pointer value are known to be different (xnext ≠ 0). This information is crucial for
creating a new list invariant starting at xnext, which is used in the next iteration
of the loop. Therefore, if our list invariant did not contain variables for the first
and the last pointer, we could not prove termination of the program. In such a
case where the pointer to the third element of a list invariant is computed and
the length of the list is at least two, we traverse the list invariant to retain the
correspondence between the computed pointer x′np and the new list invariant.
In the resulting state V , we represent the first list element by an allocation
Jxmem, xend

mem K and preserve all knowledge about this element that was encoded in
the list invariant (xend

mem = xmem +15, xmem ↪i32 xnd, xnp ↪list* xnext). Moreover, we
adapt the list invariant such that it now represents the list at xnext (i.e., without
its first element) starting with the value x′nd. We also relate the length of the
new list invariant to the length of the former one (x′ℓ = xℓ − 1).

Thus, in addition to the rule for getelementptr in [25], we now introduce
rules for list traversal via getelementptr. The rule below handles the case where
the address calculation is based on the type i8 and the getelementptr instruc-
tion adds the number of bytes given by the term t to the address pa. Here, the
offsets in our list invariants are needed to compute the address of the accessed
field. We also have similar rules for list traversal via field access (i.e., where the

14 J. Hensel, J. Giesl

next element is accessed using curr’->next as in the for loop) and for the case
where we cannot prove that the length vℓ of the list is at least 2, see [18].

list traversal (p ∶ “pb = getelementptr i8, i8* pa, im t”, t ∈ VP ∪ N, pa, pb ∈ VP)

s = (p, LV , AL, PT , LI , KB)

s′ = (p+, LV [pb ∶= wstart
j], AL ∪ Jvstart , vendK, PT ′, LI /{l} ∪ {l ′}, KB ′)

if

● there is l = (vad
vℓ
↪Ð→ty [(off i ∶ tyi ∶ vi..v̂i)]ni=1) ∈ LI with tyj = ty∗,

⊧ ⟨s⟩ ⇒ LV (pa) = vj , ⊧ ⟨s⟩ ⇒ LV (t) = off j , and ⊧ ⟨s⟩ ⇒ vℓ ≥ 2
● PT ′ = PT ∪ {(vstarti ↪tyi

vi) ∣ 1 ≤ i ≤ n}
● l ′ = (wstart wℓ

↪Ð→ty [(off i ∶ tyi ∶ wi..v̂i)]ni=1)
● KB ′ = KB ∪ {vstart = vad , vend = vstart + size(ty) − 1, wstart = vj , wℓ = vℓ − 1,

wstart
j = wstart + off j} ∪ {vstarti = vad + off i ∣ 1 ≤ i ≤ n}

● vstart , vend , vstart1 , . . . , vstartn ,wstart ,wℓ,w
start
j ,w1, . . . ,wn ∈ Vsym are fresh

We continue the symbolic execution of State V in our example and finally
obtain a complete SEG with a path from a state W at the position (cmpW,0) to
the next state W ′ at this position, and a generalization edge back from W ′ to
W using an instantiation µW ′ . Both W and W ′ contain a list invariant similar
to T where instead of the length xℓ in T , we have the symbolic variables zℓ and
z′ℓ in W and W ′, where µW ′(zℓ) = z′ℓ (see [18] for more details).

(cmpW,0), {ptr = zptr, curr’ = z′next, next ptr = z′′np, next =

z′′next, ...}, {Jzptr, zendptr K, ...},{zptr ↪list* z′′next, ...},

{zmem
zℓ1

↪ÐÐ→list [(0 ∶i32 ∶znd..z
′
nd), (8 ∶list* ∶znext..z

′
next)],

z′next

zℓ
↪Ð→list [(0 ∶ i32 ∶ z

′′
nd..ẑnd), (8 ∶ list* ∶ z

′′
next..0)]},

{z′′np = z′next + 8, zℓ = z′
ℓ
− 1, ...}

W (cmpW,0), {ptr = zptr, curr’ = z′′next, next ptr = z′′′np , next =

z′′′next, ...}, {Jzptr, zendptr K, ...},{zptr ↪list* z′′′next, ...},

{zmem

z′
ℓ1

↪ÐÐ→list [(0 ∶i32 ∶znd..z
′′
nd), (8 ∶list* ∶znext..z

′′
next)],

z′′next

z′
ℓ

↪Ð→list [(0 ∶ i32 ∶ z
′′′
nd ..ẑnd), (8 ∶ list* ∶ z

′′′
next..0)]},

{z′′′np = z′′next + 8, z′
ℓ1
= zℓ1 + 1, z′

ℓ
= zℓ − 1, ...}W ′

4 Proving Termination

To prove termination of a program P, as in [25] the cycles of the SEG are
translated to an integer transition system whose termination implies termina-
tion of P. The edges of the SEG are transformed into ITS transitions whose
application conditions consist of the state formulas ⟨s⟩ and equations to identify
corresponding symbolic variables of the different states. For evaluation and re-
finement edges, the symbolic variables do not change. For generalization edges,
we use the instantiation µ to identify corresponding symbolic variables. In our
example, the ITS has cyclic transitions of the following form:

O(xn, xk, xkinc, . . .) →+ R(xn, xk, xkinc, . . .) ∣ xkinc = xk + 1 ∧ xn > xk ∧ . . .
R(xn, xk, xkinc, . . .) → O(xn, xkinc, . . .)

W (zℓ, z′ℓ, . . .) →+ W ′(zℓ, z′ℓ, . . .) ∣ zℓ = z′ℓ − 1 ∧ zℓ ≥ 1 ∧ . . .
W ′(zℓ, z′ℓ, . . .) → W (z′ℓ, . . .)

The first cycle resulting from the generalization edge from R to O terminates
since k is increased until it reaches n. The generalization edge yields a condition
identifying xkinc in R with xk in O, since µR(xk) = xkinc. With the conditions
xkinc = xk + 1 and xn > xk (from KBO), the resulting transitions of the ITS
are terminating. The second cycle from the generalization edge from W ′ to W
terminates since the length of the list starting with curr’ decreases. Although

Proving Termination of C Programs with Lists 15

there is no program variable for the length, due to our list invariants the states
contain variables for this length, which are also passed to the ITS. Thus, the
ITS contains the variable zℓ (where zℓ in W is identified with z′ℓ in W ′ due to
µW ′(zℓ) = z′ℓ). Since the condition z′ℓ = zℓ − 1 is obtained on the path from W to

W ′ and zℓ ≥ 1 is part of ⟨W ⟩ due to the list invariant with length zℓ in LIW ,
the resulting transitions of the ITS clearly terminate. Analogous to [25, Cor. 11
and Thm. 13], we obtain the following theorem. To prove that a complete SEG
represents all program paths, in [25] we used the LLVM semantics defined by
the Vellvm project [26]. One now also has to prove soundness of those symbolic
execution rules which were modified due to the new concept of list invariants
(i.e., generalization, list extension, and list traversal), see [18].

Theorem 1 (Memory Safety and Termination). Let P be a program with a
complete SEG G. Since a complete SEG does not contain ERR, P is memory safe
for all concrete states represented by the states in G.4 If the ITS corresponding
to G is terminating, then P is also terminating for all states represented by G.

5 Conclusion, Related Work, and Evaluation

We presented a new approach for automated proofs of memory safety and ter-
mination of C/LLVM-programs on lists. It first constructs a symbolic execution
graph (SEG) which overapproximates all program runs. Afterwards, an integer
transition system (ITS) is generated from this graph whose termination is proved
using standard techniques. The main idea of our new approach is the extension
of the states in the SEG by suitable list invariants. We developed techniques to
infer and modify list invariants automatically during the symbolic execution.

During the construction of the SEG, the list invariants abstract from a con-
crete number of memory allocations to a list of allocations of variable length
while preserving knowledge about some of the contents (the values of the fields
of the first and the last element) and the list shape (the start address of the first
element, the list length, and the content of the last recursive pointer which allows
us to distinguish between cyclic and acyclic lists). They also contain information
on the memory arrangement of the list fields which is needed for programs that
access fields via pointer arithmetic. The symbolic variables for the list length
and the first and last values of list elements are preserved when generating an
ITS from the SEG. Thus, they can be used in the termination proof of the ITS
(e.g., the variables for list length can occur in ranking functions).

In [5,6,22] we developed a technique for termination analysis of Java, based on
a program transformation to integer term rewrite systems instead of ITSs. This
approach does not require specific list invariants as recursive data structures on
the heap are abstracted to terms. However, these terms are unsuitable for C, since
they cannot express memory allocations and the connection to their contents.

Separation logic predicates for termination of list programs were also used in
[1], but their list predicates only consider the list length and the recursive field,

4 Our approach can only prove but not disprove memory safety, i.e., a SEG with the
state ERR just means that we failed in showing memory safety.

16 J. Hensel, J. Giesl

but no other fields or offsets. The tools Cyclist [24] and HipTNT+ [19] are integra-
ted in separation logic systems which also allow to define heap predicates. How-
ever, they require annotations and hints which parameters of the list predicates
are needed as a termination measure. The tool 2LS [20] also provides basic sup-
port for dynamic data structures. But all these approaches are not suitable if ter-
mination depends on the contents or the shape of data structures combined with
pointer arithmetic. In [10], programs can be annotated with arithmetic and struc-
tural properties to reason about termination. In contrast, our approach does not
need hints or annotations, but finds termination arguments fully automatically.

We implemented our approach in AProVE [25]. While C programs with lists
are very common, existing tools can hardly prove their termination. Therefore,
the current benchmark collections for termination analysis contain almost no
list programs. In 2017, a benchmark set5 of 18 typical C-programs on lists was
added to the Termination category of the Competition on Software Verification
(SV-COMP) [3], where 9 of them are terminating. Two of these 9 programs do
not need list invariants, because they just create a list without operating on
it afterwards. The remaining seven terminating programs create a list and then
traverse it, search for a value, or append lists and compute the length afterwards.
Only few tools in SV-COMP produced correct termination proofs for programs
from this set: HipTNT+ and 2LS failed for all of them. CPAchecker [2] and
PeSCo [23] proved termination and non-termination for one of these programs in
2020. UAutomizer [8] proved termination for two and non-termination for seven
programs. The termination proofs of CPAchecker, PeSCo, and UAutomizer only
concern the programs that just create a list. Our new version of AProVE is the
only termination prover6 that succeeds if termination depends on the shape or
contents of a list after its creation. Note that for non-termination, a proof is a
single non-terminating program path, so here list invariants are less helpful.

For the Termination Competition [15] 2022, we submitted 18 terminating C
programs on lists7 (different from the ones at SV-COMP), where two of them
just create a list. Three traverse it afterwards (by a loop or recursion), and ten
search for a value, where for nine, also the list contents are relevant for termina-
tion. Three programs perform common operations like inserting or deleting an
element. UAutomizer proves termination for a program that just creates a list but
not for programs operating on the list afterwards. With our approach, AProVE
succeeds on 17 of the 18 programs. Overall, AProVE and UAutomizer were the two
most powerful tools for termination of C in SV-COMP 2022 and the Termination
Competition 2022, with UAutomizer winning the former and AProVE winning

SV-C T. SV-C Non-T. TermCmp T.

AProVE 7 (of 9) 5 (of 9) 17 (of 18)
UAutomizer 2 (of 9) 7 (of 9) 1 (of 18)

the latter competition. To down-
load AProVE, run it via its web
interface, and for details on our
experiments, see https://aprove-developers.github.io/recursive structs.
5 https://github.com/sosy-lab/sv-benchmarks/tree/master/c/
termination-memory-linkedlists

6 We did not compare with the tool VeriFuzz [21], since it does not prove termination
but only tests for non-termination and thus, it is unsound for inferring termination.

7 https://github.com/TermCOMP/TPDB/tree/master/C/Hensel 22

https://aprove-developers.github.io/recursive_structs
https://github.com/sosy-lab/sv-benchmarks/tree/master/c/termination-memory-linkedlists
https://github.com/sosy-lab/sv-benchmarks/tree/master/c/termination-memory-linkedlists
https://github.com/TermCOMP/TPDB/tree/master/C/Hensel_22

Proving Termination of C Programs with Lists 17

References

1. J. Berdine, B. Cook, D. Distefano, and P. W. O’Hearn. Automatic termination
proofs for programs with shape-shifting heaps. In Proc. CAV ’06, LNCS 4144,
pages 386–400, 2006. doi:10.1007/11817963_35.

2. D. Beyer and M. E. Keremoglu. CPAchecker: A tool for configurable software
verification. In Proc. CAV ’11, LNCS 6806, pages 184–190, 2011. doi:10.1007/

978-3-642-22110-1_16.
3. D. Beyer. Progress on software verification: SV-COMP 2022. In Proc. TACAS ’22,

LNCS 13244, pages 375–402, 2022. For the results of SV-COMP ’22, see https:
//sv-comp.sosy-lab.org/2022/. doi:10.1007/978-3-030-99527-0_20.

4. M. Bozga, R. Iosif, and S. Perarnau. Quantitative separation logic and pro-
grams with lists. J. Aut. Reasoning, 45(2):131–156, 2010. doi:10.1007/

s10817-010-9179-9.
5. M. Brockschmidt, C. Otto, and J. Giesl. Modular termination proofs of recursive

Java Bytecode programs by term rewriting. In Proc. RTA ’11, LIPIcs 10, pages
155–170, 2011. doi:10.4230/LIPIcs.RTA.2011.155.

6. M. Brockschmidt, R. Musiol, C. Otto, and J. Giesl. Automated termination proofs
for Java programs with cyclic data. In Proc. CAV ’12, LNCS 7358, pages 105–122,
2012. doi:10.1007/978-3-642-31424-7_13.

7. M. Brockschmidt, B. Cook, S. Ishtiaq, H. Khlaaf, and N. Piterman. T2: Temporal
property verification. In Proc. TACAS ’16, LNCS 9636, pages 387–393, 2016.
doi:10.1007/978-3-662-49674-9_22.

8. Y.-F. Chen, M. Heizmann, O. Lengál, Y. Li, M.-H. Tsai, A. Turrini, and L. Zhang.
Advanced automata-based algorithms for program termination checking. In Proc.
PLDI ’18, pages 135–150, 2018. doi:10.1145/3192366.3192405.

9. Clang: https://clang.llvm.org.
10. C. David, D. Kroening, M. Lewis, and J. Vitek. Propositional reasoning about

safety and termination of heap-manipulating programs. In Proc. ESOP ’15, LNCS
9032, pages 661–684, 2015. doi:10.1007/978-3-662-46669-8_27.

11. F. Emrich, J. Hensel, and J. Giesl. AProVE: Modular termination analysis of
memory-manipulating C programs. CoRR, abs/2302.02382, 2023. doi:10.48550/
arXiv.2302.02382.

12. F. Frohn and J. Giesl. Proving non-termination via loop acceleration. In Proc.
FMCAD ’19, pages 221–230, 2019. doi:10.23919/FMCAD.2019.8894271.

13. F. Frohn and J. Giesl. Proving non-termination and lower runtime bounds with
LoAT (system description). In Proc. IJCAR ’22, LNCS 13385, pages 712–722, 2022.
doi:10.1007/978-3-031-10769-6_41.

14. J. Giesl, C. Aschermann, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs, C.
Otto, M. Plücker, P. Schneider-Kamp, T. Ströder, S. Swiderski, and R. Thiemann.
Analyzing program termination and complexity automatically with AProVE. J.
Aut. Reasoning, 58(1):3–31, 2017. doi:10.1007/s10817-016-9389-x.

15. J. Giesl, A. Rubio, C. Sternagel, J. Waldmann, and A. Yamada. The termination
and complexity competition. In Proc. TACAS ’19, LNCS 11429, pages 156–166,
2019. For the results of TermComp ’22, see https://termination-portal.org/wiki/
Termination Competition 2022. doi:10.1007/978-3-030-17502-3_10.

16. J. Hensel, J. Giesl, F. Frohn, and T. Ströder. Termination and complexity analysis
for programs with bitvector arithmetic by symbolic execution. Journal of Logical
and Algebraic Methods in Programming, 97:105–130, 2018. doi:10.1016/j.jlamp.
2018.02.004.

https://doi.org/10.1007/11817963_35
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://sv-comp.sosy-lab.org/2022/
https://sv-comp.sosy-lab.org/2022/
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.1007/s10817-010-9179-9
https://doi.org/10.1007/s10817-010-9179-9
https://doi.org/10.4230/LIPIcs.RTA.2011.155
https://doi.org/10.1007/978-3-642-31424-7_13
https://doi.org/10.1007/978-3-662-49674-9_22
https://doi.org/10.1145/3192366.3192405
https://clang.llvm.org
https://doi.org/10.1007/978-3-662-46669-8_27
https://doi.org/10.48550/arXiv.2302.02382
https://doi.org/10.48550/arXiv.2302.02382
https://doi.org/10.23919/FMCAD.2019.8894271
https://doi.org/10.1007/978-3-031-10769-6_41
https://doi.org/10.1007/s10817-016-9389-x
https://termination-portal.org/wiki/Termination_Competition_2022
https://termination-portal.org/wiki/Termination_Competition_2022
https://doi.org/10.1007/978-3-030-17502-3_10
https://doi.org/10.1016/j.jlamp.2018.02.004
https://doi.org/10.1016/j.jlamp.2018.02.004

18 J. Hensel, J. Giesl

17. J. Hensel, C. Mensendiek, and J. Giesl. AProVE: Non-termination witnesses for
C programs (competition contribution). In Proc. TACAS ’22, LNCS 13244, pages
403–407, 2022. doi:10.1007/978-3-030-99527-0_21.

18. J. Hensel and J. Giesl. Proving termination of C programs with lists. CoRR,
abs/2305.12159, 2023. doi:10.48550/arXiv.2305.12159.

19. T. C. Le, S. Qin, and W. Chin. Termination and non-termination specification in-
ference. In Proc. PLDI ’15, pages 489–498, 2015. doi:10.1145/2737924.2737993.

20. V. Maĺık, Š. Martiček, P. Schrammel, M. Srivas, T. Vojnar, and J. Wahlang. 2LS:
Memory safety and non-termination. In Proc. TACAS ’18, LNCS 10806, pages
417–421, 2018. doi:10.1007/978-3-319-89963-3_24.

21. R. Metta, P. Yeduru, H. Karmarkar, and R. K. Medicherla. VeriFuzz 1.4: Checking
for (non-)termination (competition contribution). In Proc. TACAS ’23, LNCS
13994, pages 594–599, 2023. doi:10.1007/978-3-031-30820-8_42.

22. C. Otto, M. Brockschmidt, C. von Essen, and J. Giesl. Automated termination
analysis of Java Bytecode by term rewriting. In Proc. RTA ’10, LIPIcs 6, pages
259–276, 2010. doi:10.4230/LIPIcs.RTA.2010.259.

23. C. Richter and H. Wehrheim. PeSCo: Predicting sequential combinations of ver-
ifiers. In Proc. TACAS ’19, LNCS 11429, pages 229–233, 2019. doi:10.1007/

978-3-030-17502-3_19.
24. R. N. S. Rowe and J. Brotherston. Automatic cyclic termination proofs for re-

cursive procedures in separation logic. In Proc. CPP ’17, pages 53–65, 2017.
doi:10.1145/3018610.3018623.

25. T. Ströder, J. Giesl, M. Brockschmidt, F. Frohn, C. Fuhs, J. Hensel, P. Schneider-
Kamp, and C. Aschermann. Automatically proving termination and memory safety
for programs with pointer arithmetic. J. Aut. Reasoning, 58(1):33–65, 2017. doi:
10.1007/s10817-016-9389-x.

26. J. Zhao, S. Nagarakatte, M. M. K. Martin, and S. Zdancewic. Formalizing the
LLVM intermediate representation for verified program transformations. In Proc.
POPL ’12, pages 427–440, 2012. doi:10.1145/2103656.2103709.

https://doi.org/10.1007/978-3-030-99527-0_21
https://doi.org/10.48550/arXiv.2305.12159
https://doi.org/10.1145/2737924.2737993
https://doi.org/10.1007/978-3-319-89963-3_24
https://doi.org/10.1007/978-3-031-30820-8_42
https://doi.org/10.4230/LIPIcs.RTA.2010.259
https://doi.org/10.1007/978-3-030-17502-3_19
https://doi.org/10.1007/978-3-030-17502-3_19
https://doi.org/10.1145/3018610.3018623
https://doi.org/10.1007/s10817-016-9389-x
https://doi.org/10.1007/s10817-016-9389-x
https://doi.org/10.1145/2103656.2103709

	Proving Termination of C Programs with Lists

