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Abstract. We propose a new approach for proving safety of infinite state
systems. It extends the analyzed system by transitive relations until its
diameter D becomes finite, i.e., until constantly many steps suffice to cover
all reachable states, irrespective of the initial state. Then we can prove
safety by checking that no error state is reachable in D steps. To deduce
transitive relations, we use recurrence analysis. While recurrence analyses
can usually find conjunctive relations only, our approach also discovers
disjunctive relations by combining recurrence analysis with projections.
An empirical evaluation of the implementation of our approach in our
tool LoAT shows that it is highly competitive with the state of the art.

1 Introduction

We consider relations defined by SMT formulas over two disjoint vectors of pre-
and post-variables x and x′. Such relational formulas can easily represent transi-
tion systems (TSs), linear Constrained Horn Clauses (CHCs), and control-flow
automata (CFAs).1 Thus, they subsume many popular intermediate representa-
tions used for verification of systems specified in more expressive languages.

In contrast to, e.g., source code, relational formulas are unstructured. However,
source code may be unstructured, too (e.g., due to gotos), so being independent
from the structure of the input makes our approach broadly applicable.

Example 1 (Running Example). Let τ := τinc ∨ τdec with:

w
.
= 0 ∧ x′ .= x+ 1 ∧ y′ .= y + 1 (τinc)

w′ .= w ∧ w .
= 1 ∧ x′ .= x− 1 ∧ y′ .= y − 1 (τdec)

We use “
.
=” for equality in relational formulas. The formula τ defines a relation

→τ on Z× Z× Z by relating the non-primed pre-variables with the primed post-
variables. So for all vw, vx, vy, v

′
w, v

′
x, v

′
y ∈ Z, we have (vw, vx, vy) →τ (v′w, v

′
x, v

′
y)

iff [w/vw, x/vx, y/vy, w
′/v′w, x

′/v′x, y
′/v′y] is a model of τ . Let the set of error

states be given by ψerr := w
.
= 1 ∧ x ≤ 0 ∧ y > 0.

With the initial states ψinit := x
.
= 0 ∧ y .

= 0 this example2 is challenging for
existing model checkers: Neither the default configuration of Z3/Spacer [29,36], nor

1 To this end, it suffices to introduce one additional variable that represents the
control-flow location (for TSs and CFAs) or the predicate (for linear CHCs).
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Golem’s [4] implementation of Spacer, LAWI [35], IMC [34], TPA [8], PDKIND [27],
or predicate abstraction [25] can prove its safety. In contrast, all of these techniques
can prove safety with the more general initial states ψinit := x

.
= y. As all of them

are based on interpolation, the reason might be that the inductive invariant x
.
= y

is now a subterm of ψinit, so it is likely to occur in interpolants. However, this
explanation is insufficient, as all techniques fail again for ψinit := x

.
= y ∧ y .

= 0.
This illustrates a well-known issue of interpolation-based verification tech-

niques: They are highly sensitive to minor changes of the input or the underlying
interpolating SMT solver (e.g., [31, p. 102]). So while they can often solve difficult
problems quickly, they sometimes fail for easy examples like the one above.

In another line of research, recurrence analysis has been used for software
verification [14,28]. Here, the idea is to extract recurrence equations from loops
and solve them to summarize the effect of arbitrarily many iterations. While re-
currence analysis often yields very precise summaries for loops without branching,
these summaries are conjunctive. However, for loops with branching, disjunctive
summaries are often important to distinguish the branches.

In this work, we embed recurrence analysis into bounded model checking
(BMC) [3], resulting in a robust, competitive model checking algorithm. To
find disjunctive summaries, we exploit the structure of the relational formula
to partition the state space on the fly via model based projection [29] (which
approximates quantifier elimination), and a variation of recurrence analysis called
transitive projection.

Our approach is inspired by ABMC [19], which combines BMC with ac-
celeration [5, 15, 30]. ABMC uses blocking clauses to speed up the search for
counterexamples, but they turned out to be of little use for this purpose. Instead,
they enable ABMC to prove safety of certain challenging benchmarks. This moti-
vated the development of our novel dedicated algorithm for proving safety via
BMC and blocking clauses. See Sect. 5 for a detailed comparison with ABMC.

Overview We start with an informal explanation of our approach. Given a
relational formula τ , one can prove safety with BMC by unrolling its transition
relation →τ D times, where D is the diameter [3]. So D is the “longest shortest
path” from an initial to some other state, or more formally:

D := sup
v′ is reachable from an initial state

(
min{i ∈ N | v is an initial state,v →i

τ v′}
)

So every reachable state can be reached in ≤ D steps. Hence, if BMC finds no
counterexample in D steps, the system is safe. Our new algorithm Transitive
Relation Learning (TRL) exploits this observation by iteratively constructing an
SMT problem such that its unsatisfiability implies that the diameter has been
reached (see the end of this section for more details). For infinite state systems,
D is rarely finite: Consider the relational formula (1) with the initial state x

.
= 0.

x′
.
= x+ 1 (1) n > 0 ∧ x′ .= x+ n (2)

Then k ∈ N steps are needed to reach a state with x
.
= k. So D is infinite, i.e.,

the diameter cannot be used to prove safety directly.
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The core idea of TRL is to “enlarge” τ to decrease its diameter (even though
TRL never computes the diameter explicitly). To this end, our approach “adds”
transitive relations to τ , which will be called learned relations in the sequel. For
(1), TRL would learn the relational formula (2). Then the diameter of (1) ∨ (2)
is 1, as a state with x

.
= k can be reached in 1 step by setting n to k. Transitive

relations are particularly suitable for decreasing the diameter, as they allow
us to ignore runs where the same learned relation is used twice in a row. TRL
exploits this by adding assertions to the corresponding SMT problem that prevent
consecutive uses of the same learned relation.

This raises the questions when and how new relations should be learned.
Regarding the “when”, our approach unrolls the transition relation, just like
BMC. Thereby, it looks for loops and learns a relation when a new loop is
encountered. However, as we analyze unstructured systems, the definition of a
“loop” is not obvious. Details will be discussed in Sect. 3.2.

Regarding the “how”, TRL ensures that we have a model for the loop, i.e., a
valuation σloop that corresponds to an evaluation of the loop body. Then given a
loop τloop and a model σloop, apart from transitivity we only require two more
properties for a learned relation →π. First, the evaluation that corresponds to
σloop must also be possible with →π. This ensures that TRL makes “progress”,
i.e., that we do not unroll the same loop with the same model again. Second, the
following set must be finite:

{π | σloop is a model of τloop,→π is learned from τloop and σloop}

So TRL only learns finitely many relations from a given loop τloop. While TRL
may diverge (Remark 23), this “usually” ensures termination in practice.

Apart from these restrictions, we have lots of freedom when computing learned
relations, as “enlarging” τ (i.e., adding disjuncts to τ) is always sound for proving
safety. The transitive projection that we use to learn relations (see Sect. 4) heavily
exploits this freedom. It modifies the recurrence analysis from [14] by replacing
expensive operations – convex hulls and polyhedral projections – by a cheap
variation of model based projection [29]. While convex hulls and polyhedral projec-
tions are over-approximations (for integer arithmetic), model based projections
under-approximate. This is surprising at first, but the justification for using
under-approximations is that, as mentioned above, “enlarging” τ is always sound.

Without our modifications, recurrence analysis over-approximates, so we
“mix” over- and under-approximations. Thus, learned relations are not under-
approximations, so TRL cannot prove unsafety and returns unknown if it fails to
prove unreachability of the error states.

Learned relations may reduce the diameter, but computing the diameter is
difficult. Instead, TRL adds blocking clauses to the SMT encoding that force the
SMT solver to prefer learned relations over loops. Then unsatisfiability implies
that the diameter has been reached, so that safe can be returned.

For our example (1), once (2) has been learned, it is preferred over (1). As
(2) must not be used twice in a row, the corresponding SMT problem becomes
unsatisfiable after adding a blocking clause that blocks (1) for the 1st step, and
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one that blocks (1) for the 2nd step. Since we check for reachability of error states
after every step, this implies safety.

Outline After introducing preliminaries in Sect. 2, we present our new algorithm
TRL in Sect. 3. As TRL builds upon transitive projections, we show how to
implement such a projection for linear integer arithmetic in Sect. 4. Finally, in
Sect. 5 we discuss related work and evaluate our approach empirically.

2 Preliminaries

We assume familiarity with basics of first-order logic [13]. V is a countably infinite
set of variables and A is a first-order theory with signature Σ and carrier C. For
each entity e, V(e) is the set of variables that occur in e. QF(Σ) denotes the
set of all quantifier-free first-order formulas over Σ, and QF∧(Σ) only contains
conjunctions of Σ-literals. ⊤ and ⊥ stand for “true” and “false”, respectively.

Given ψ ∈ QF(Σ) with V(ψ) = y, we say that ψ is A-valid (written |=A ψ) if
every model of A satisfies the universal closure ∀y. ψ of ψ. A partial function
σ : V ⇀ C is called a valuation. If V(ψ) ⊆ dom(σ) and |=A σ(ψ), then σ is an
A-model of ψ (written σ |=A ψ). Here, σ(ψ) results from ψ by instantiating all
variables according to σ. If ψ has an A-model, then ψ is A-satisfiable. If σ(ψ)
is A-satisfiable (but not necessarily V(ψ) ⊆ dom(σ)), then we say that ψ is
A-consistent with σ. We write ψ |=A ψ′ for |=A ψ =⇒ ψ′, and ψ ≡A ψ′ means
|=A ψ ⇐⇒ ψ′. In the sequel, we omit the subscript A, and we just say “valid”,
“model”, “satisfiable”, and “consistent”. We assume that A is complete (i.e., |= ψ
or |= ¬ψ holds for every closed formula over Σ) and that A has an effective
quantifier elimination procedure (i.e., quantifier elimination is computable).

We write x for sequences and xi is the ith element of x, where x1 denotes
the first element. We use “::” for concatenation of sequences, where we identify
sequences of length 1 with their elements, so, e.g., x :: x = [x] :: x.

Let d ∈ N be fixed, and let x,x′ ∈ Vd be disjoint vectors of pairwise different
variables, called the pre- and post-variables. All other variables are extra variables.
Each τ ∈ QF(Σ) induces a transition relation →τ on states, i.e., elements of Cd,

where v →τ v′ iff τ [x/v,x′/v′] is satisfiable. Here, [x/v,x′/v′] maps x
(′)
i to v

(′)
i .

We call τ ∈ QF(Σ) a relational formula if we are interested in τ ’s induced
transition relation. Transitions are conjunctive relational formulas without extra
variables (i.e., conjunctions of literals over pre- and post-variables). We sometimes
identify τ with →τ , so we may call τ a relation.

A τ -run is a sequence v1 →τ . . . →τ vk. A safety problem T is a triple
(ψinit, τ, ψerr) ∈ QF(Σ)×QF(Σ)×QF(Σ) where V(ψinit)∪V(ψerr) ⊆ x. It is unsafe
if there are v,v′ ∈ Cd such that [x/v] |= ψinit, v →∗

τ v′, and [x/v′] |= ψerr.
Throughout the paper, we use c, d, e, k, ℓ, s for integer constants (where d

always denotes the size of x, and s and ℓ always denote the start and length
of a loop); v for states; w, x, y for variables; τ, π for relational formulas; σ, θ for
valuations; and µ for variable renamings.
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Algorithm 1: TRL – Input: a safety problem T = (ψinit, τ, ψerr)

1 b← 0; π ← [τ ]; blocked← ∅
2 add(µ1(ψinit)) // encode the initial states

3 while ⊤ // main loop

4 b++; push(); add(µb(ψerr)) // encode the error states

5 if check sat() do return unknown else pop() // check their reachability

6 push() // add backtracking point

7 if b > 1 do add(
(b)

xid
.
= 1 ∨

(b)

xid ̸
.
=

(b−1)

xid ) // encode transitivity

8 add(µb(
∨|π|

n=1(πn ∧ xid
.
= n))) // encode →τ and learned relations

9 add(
∧

(b,π)∈blocked π) // add blocking clauses for this b

10 if ¬check sat() do return safe // check if the search space is exhausted

11 σ ← model(); τ ← traceb(σ,π) // build trace from current model

12 if [τs, . . . , τs+ℓ−1] is a loop do // search loop

13 σloop ← [x/σ(µs,ℓ(x)) | x ∈ x ∪ x′] // build the valuation for the loop

14 if no π ∈ tail(π) is consistent with σloop do // redundancy check

15 τloop ← µ−1
s,ℓ(

∧s+ℓ−1
i=s µi(τi)) // build the loop

16 π ← π :: tp(τloop, σ ◦ µs,ℓ) // learn relation

17 let π ∈ tail(π) and σ ⊇ σloop s.t. σ |= π // pick suitable learned relation

18 blocked.add(s+ ℓ− 1, blocking clause(s, ℓ, π, σ)) // block the loop

19 while b > s { pop(); b-- } // backtrack to the start of the loop

3 Transitive Relation Learning

In this section, we present our novel model checking algorithm Transitive Relation
Learning (TRL) in detail, see Alg. 1. Here, for all i, j ∈ N+ = N \ {0} we define

µi,j(x
′) :=

(i+j)

x if x′ ∈ x′ and µi,j(x) :=
(i)

x , otherwise. So in particular, we have

µi,j(x) =
(i)

x and µi,j(x
′) =

(i+j)

x , where we assume that
(1)

x ,
(2)

x , . . . ∈ Vd are disjoint

vectors of pairwise different fresh variables. Intuitively, the variables
(i)

x represent
the ith state in a run, and applying µi,j to a relational formula yields a formula
that relates the ith and the (i+ j)th state of a run. For convenience, we define

µi := µi,1 for all i ∈ N+, i.e., µi(x) =
(i)

x and µi(x
′) =

(i+1)

x . As in SMT-based
BMC, TRL uses an incremental SMT solver to unroll the transition relation step
by step (Line 1), but in contrast to BMC, TRL infers learned relations on the
fly (Line 1). The input formula τ as well as all learned relations are stored in
π. Before each unrolling, we set a backtracking point with the command push
and add a suitably variable-renamed version of the description of the error states
to the SMT problem (i.e., to the state of the underlying SMT solver) in Line 1.
Then the command check sat checks for reachability of error states, and the
command pop removes all formulas from the SMT problem that have been added
since the last invocation of push (Line 1), i.e., it removes the encoding of the
error states (unless the check succeeds, so that TRL fails). For each unrolling,
suitably variable renamed variants of π’s elements are added to the underlying
SMT problem with the command add in Line 1. If no error state is reachable



6 F. Frohn, J. Giesl

after b− 1 steps, but the transition relation cannot be unrolled b times (i.e., the
SMT problem that corresponds to the b-fold unrolling is unsatisfiable), then the
diameter of the analyzed system (including learned relations) has been reached,
and hence safety has been proven (Line 1).

The remainder of this section is structured as follows: First, Sect. 3.1 introduces
conjunctive variable projections that are used to compute the trace (Line 1 of
Alg. 1). Next, Sect. 3.2 defines loops and discusses how to find non-redundant loops
that are suitable for learning new relations (Line 1). Then, Sect. 3.3 introduces
transitive projections that are used to learn relations (Line 1). Finally, Sect. 3.4
presents blocking clauses, which ensure that learned relations are preferred over
other (sequences of) transitions (Line 1).

3.1 Conjunctive Variable Projections and Traces

To decide when to learn a new relation, TRL inspects the trace (Lines 11 and 12).
The trace is a sequence of transitions induced by the formulas that have been
added to the SMT problem while unrolling the transition relation, and by the
current model (Line 1). To compute them, we use conjunctive variable projections,
which are like model based projections [29], but always yield conjunctions.

Definition 2 (Conjunctive Variable Projection). A function

cvp : QF(Σ)× (V ⇀ C)× 2V → QF(Σ)

is called a conjunctive variable projection if

1. σ |= cvp(τ, σ,X)
2. cvp(τ, σ,X) |= τ
3. {cvp(τ, θ,X) | θ |= τ} is finite

4. V(cvp(τ, σ,X)) ⊆ X ∩ V(τ)
5. cvp(τ, σ,X) ∈ QF∧(Σ)

for all τ ∈ QF(Σ), X ⊆ V, and σ |= τ . We abbreviate cvp(τ, σ,x∪x′) by cvp(τ, σ).

So like model based projection, cvp under-approximates quantifier elimination by
projecting to the variables X (by (2) and (4)). To do so, it implicitly performs a
finite case analysis (by (3)), which is driven by the model σ (by (1)). In contrast
to model based projections, cvp always yields conjunctions (by (5)). Note that
by (1), cvp(τ, σ,X) may only contain variables from dom(σ).

Remark 3 (cvp and mbp). Conjunctive variable projections are obtained by com-
bining a model based projection mbp (which satisfies Def. 2 (1–4)) with syntactic
implicant projection sip [18]. To see how to compute mbp for linear integer arith-
metic, recall that Cooper’s method for quantifier elimination [11] essentially maps
∃y. τ to a disjunction of formulas of the form τ [y/t], where the variables y do
not occur in the terms t. Instead, mbp just computes one of these disjuncts,
which is satisfied by the provided model. For sip(τ, σ), one computes the con-
junction of all literals of τ ’s negation normal form that are satisfied by σ. Then
cvp(τ, σ) := sip(mbp(τ, σ), σ).
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Remark 4 (cvp and Quantifier Elimination). Def. 2 (1–4) imply

∃y. τ ≡
∨

σ|=τ cvp(τ, σ) where y are τ ’s extra variables.

So cvp yields a quantifier elimination procedure qe which maps ∃y. τ to res:

res ← ⊥; while τ has a model σ {res ← res ∨ cvp(τ, σ); τ ← τ ∧ ¬cvp(τ, σ)}

But for a single model σ, cvp(τ, σ) under-approximates quantifier elimination.

So cvp(τ, σ) just computes one disjunct of qe(∃y. τ) which is satisfied by σ.
However, like model based projection, cvp can be implemented efficiently for
many theories with effective, but very expensive quantifier elimination procedures.

Example 5 (cvp). Consider the following formula τ̃ :

((w
.
= 0 ∧ (2)

x
.
= x+1 ∧ (2)

y
.
= y+1) ∨ (

(2)
w

.
= w ∧ w .

= 1 ∧ (2)
x
.
= x−1 ∧ (2)

y
.
= y−1)) ∧

((
(2)
w

.
= 0 ∧ x′ .= (2)

x +1 ∧ y′ .= (2)
y +1) ∨ (w′ .=

(2)
w ∧ (2)

w
.
= 1 ∧ x′ .= (2)

x −1 ∧ y′ .= (2)
y −1))

It encodes two steps with Ex. 1, where
(2)

x = [
(2)

w,
(2)

x ,
(2)

y ] represents the values after

one step. In Line 1, Alg. 1 might find a run like σ(
(1)

x ) →τ σ(
(2)

x ) →τ σ(
(3)

x ) for

σ := [
(1)

w/
(1)

x/
(1)

y /0,
(2)

w/
(2)

x/
(2)

y /1,
(3)

w/1,
(3)

x/
(3)

y /0].

Here, [w/x/y/c, . . .] abbreviates [w/c, x/c, y/c, . . .]. Then the variable renaming
µ1,2 allows us to instantiate the pre- and post-variables by the first and last state,
resulting in the following model of τ̃ :

σ̃ := σ ◦ µ1,2 = σ ∪ [w/x/y/0, w′/1, x′/y′/0] where (σ ◦ µ1,2)(x) = σ(µ1,2(x))

To get rid of
(2)

w,
(2)

x ,
(2)

y , one could compute qe(∃(2)

w,
(2)

x ,
(2)

y . τ̃), resulting in:

w
.
= 0 ∧ x′ .= x+ 2 ∧ y′ .= y + 2 (inc)

∨ w .
= 0 ∧ w′ .= 1 ∧ x′ .= x ∧ y′ .= y (eq)

∨ w .
= 1 ∧ w′ .= 1 ∧ x′ .= x− 2 ∧ y′ .= y − 2. (dec)

Instead, we may have cvp(τ̃ , σ̃) = (eq), as σ̃ |= (eq).

Intuitively, a relational formula τ describes how states can change, so it is
composed of many different cases. These cases may be given explicitly (by
disjunctions) or implicitly (by extra variables, which express non-determinism).
Given a model σ of τ that describes a concrete change of state, cvp computes a
description of the corresponding case. Computing all cases amounts to eliminating
all extra variables and converting the result to DNF, which is impractical.

When unrolling the transition relation in Line 1 of Alg. 1, we identify each
relational formula πn with its index n in the sequence π. To this end, we use a

fresh variable xid, and our SMT encoding forces
(i)

xid to be the identifier of the
relation that is used for the ith step. Similarly to [19], the trace is the sequence
of transitions that results from applying cvp to the unrolling of the transition
relation that is constructed by Alg. 1 in Line 1. So a trace is a sequence of
transitions that can be applied subsequently, starting in an initial state.
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Definition 6 (Trace). Let π be a sequence of relational formulas, let

σ |=
∧b

i=1 µi

(∨|π|
n=1(πn ∧ xid

.
= n)

)
where b ∈ N+, (3)

and let id(i) := σ(
(i)

xid). Then the trace induced by σ is

traceb(σ,π) := [cvp(πid(i), σ ◦ µi)]
b
i=1.

Recall that µi renames x and x′ into
(i)

x and
(i+1)

x , and id(i) = σ(
(i)

xid) is the
index of the relation from π that is used for the ith step. So each model σ of
(3) corresponds to a run σ(µ1(x)) →πid(1)

. . .→πid(b−1)
σ(µb(x)) →πid(b)

σ(µb(x
′)),

and the trace induced by σ contains the transitions that were used in this run.

Example 7 (Trace). Consider the extension of σ from Ex. 5 with [
(1)

xid/1,
(2)

xid/1]:

σ := [
(1)

w/
(1)

x/
(1)

y /0,
(1)

xid/1,
(2)

w/
(2)

x/
(2)

y /
(2)

xid/1,
(3)

w/1,
(3)

x/
(3)

y /0]

Thus, id(1) = σ(
(1)

xid) = 1, id(2) = σ(
(2)

xid) = 1, and πid(1) = πid(2) = π1 = τ . Then

trace2(σ, [τ, τ ]) = [cvp(τ, σ ◦ µ1), cvp(τ, σ ◦ µ2)]

= [cvp(τ, [w/x/y/0, w′/x′/y′/1]), cvp(τ, [w/x/y/1, w′/1, x′/y′/0])] = [τinc, τdec].

3.2 Loops

As π only gives rise to finitely many transitions, the trace is bound to contain
loops, eventually (unless Alg. 1 terminates beforehand).

Definition 8 (Loop). A sequence of transitions τ1, . . . , τk is called a loop if
there are v0, . . . ,vk+1 ∈ Cd such that v0 →τ1 . . .→τk vk →τ1 vk+1.

Intuitively, these loops are the reason why BMC may diverge. To prevent diver-
gence, TRL learns a new relation when a loop is detected (Line 1).

Remark 9 (Finding Loops). Loops can be detected by SMT solving. A cheaper
way is to look for duplicates on the trace, but then loops are found “later”, as
a trace [. . . , π, π, . . .] is needed to detect a loop π, but one occurrence of π is
insufficient. As a trade-off between precision and efficiency, our implementation
uses an approximation based on dependency graphs [19]. More precisely, our
implementation maintains a graph G whose nodes are transitions, and it adds an
edge between two transitions if they occur subsequently on the trace at some
point. Then it considers a subsequence τi, . . . , τj of the trace to be a potential
loop if G contains an edge from τj to τi.

Remark 10 (Disregarding “Learned” Loops). One should disregard “loops” con-
sisting of a single learned transition, i.e., a transition that results from applying
cvp to some π ∈ tail(π), where tail(τ :: π′) := π′. Here, tail(π) contains all
learned relations, as the first element of π is the input formula τ . The reason is
that our goal is to deduce transitive relations, but learned relations are already
transitive. In the sequel, we assume that the check in Line 1 fails for such loops.
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If there are several choices for s and ℓ in Line 1, then our implementation only
considers loops of minimal length and, among those, it minimizes s.

Example 11 (Detecting Loops). Consider the following model for τ from Ex. 1.

σ := [
(1)

w/
(1)

x/
(1)

y /0,
(1)

xid/1,
(2)

w/0,
(2)

x/
(2)

y /1]

Then trace1(σ, [τ ]) = [τinc]. As τinc is a loop,3 this causes TRL to learn a relation
like the following one (see Sect. 3.3 for details).

w
.
= 0 ∧ x′ > x ∧ x′ − x

.
= y′ − y (τ+inc)

TRL only learns relations from loops that are non-redundant w.r.t. all relations
that have been learned before [18].

Definition 12 (Redundancy). If →τ ⊆ →τ ′ , then τ is redundant w.r.t. τ ′.

Example 13. The relation τinc is redundant w.r.t. τ+inc, but τdec is not.

Line 1 uses a sufficient criterion for non-redundancy: If all learned relations are
falsified by the values before and after the loop, then τs, . . . , τs+ℓ−1 cannot be
simulated by a previously learned relation, so it is non-redundant and we learn a
new relation. The values before and after the loop are obtained from the current

model σ by setting x to σ(
(s)

x ) and x′ to σ(
(s+ℓ)

x ), i.e., we use σ ◦ µs,ℓ in Line 1.
To learn a new relation, we first compute the relation

τloop := µ−1
s,ℓ (φloop) where φloop :=

∧s+ℓ−1
i=s µi(τi) (4)

of the loop in Line 1, where µ−1
s,ℓ is the inverse of µs,ℓ. So in Ex. 11, we have

σ ◦ µ1,1 ⊇ [w/x/y/0, w′/0, x′/y′/1] and τloop := µ−1
1,1(µ1(τinc)) = τinc as s = ℓ = 1.

So σ ◦ µs,ℓ indeed corresponds to one evaluation of the loop, as σ ◦ µs,ℓ |= τloop.
To see that τloop is also the desired relation in general, note that φloop is the

conjunction of the transitions that constitute the loop, where all variables are
renamed as in Line 1 of Alg. 1, i.e., in such a way that the post-variables of the
ith step are equal to the pre-variables of the (i+ 1)th step. So we have σ |= φloop

and thus σ ◦ µs,ℓ |= τloop. Hence, we can use τloop and σ ◦ µs,ℓ to learn a new
relation via so-called transitive projections in Line 1.

3.3 Transitive Projections

We now define transitive projections that approximate transitive closures of
loops. As explained in Sect. 1, we do not restrict ourselves to under- or over-
approximations, but we allow “mixtures” of both. Analogously to cvp, transitive
projections perform a finite case analysis that is driven by the provided model σ.

3 Depending on the technique that is used to detect loops, an actual implementation
might require one more unrolling of →τ to obtain the trace [τinc, τinc] in order to
detect the loop τinc, see Remark 9.
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Definition 14 (Transitive Projection). A function

tp : QF(Σ)× (V ⇀ C) → QF(Σ)

is called a transitive projection if the following holds for all transitions τ ∈ QF(Σ)
and all σ |= τ :

1. tp(τ, σ) is consistent with σ
2. {tp(τ, θ) | θ |= τ} is finite

3. →tp(τ,σ) is transitive

Clearly, the specifics of tp depend on the underlying theory. Our implementa-
tion of tp for quantifier-free linear integer arithmetic is explained in Sect. 4.

Example 15 (tp). For Ex. 1, τti := x′−x .
= y′−y over-approximates the transitive

closure →+
τ . Such over-approximations are also called transition invariants [38].

With τti, one can prove safety for any ψinit with ψinit |= x
.
= y, as then ψinit ∧ τti |=

x′
.
= y′, which shows that no error state with w

.
= 1 ∧ x ≤ 0 ∧ y > 0 is reachable.

By using cvp, TRL instead considers τinc and τdec separately and learns

tp(τinc, σinc) := w
.
= 0 ∧ x′ > x ∧ x′ − x

.
= y′ − y (τ+inc)

tp(τdec, σdec) := w′ .= w ∧ w .
= 1 ∧ x′ < x ∧ x′ − x

.
= y′ − y (τ+dec)

if σinc |= τinc and σdec |= τdec. In this way, Alg. 1 can learn disjunctive relations
like τ+inc ∨ τ

+
dec, even if tp only yields conjunctive relational formulas (which is true

for our current implementation of tp – see Sect. 4 – but not enforced by Def. 14).

In contrast to conjunctive variable projections, tp(τ, σ) may contain extra vari-
ables that do not occur in τ (which will be exploited in Sect. 4). Hence, instead
of σ |= tp(τ, σ) we require consistency with σ, i.e., σ(tp(τ, σ)) must be satisfiable.

Remark 16 (Properties of tp). Due to Def. 14 (1), our definition of tp implies

τ |= ∃y.
∨

σ|=τ tp(τ, σ), and thus, →τ ⊆
⋃

σ|=τ →tp(τ,σ),

where y are the extra variables of
∨

σ|=τ tp(τ, σ). However, Def. 14 does not ensure

→+
τ ⊆

⋃
σ|=τ →tp(τ,σ). So there is no guarantee that tp covers →+

τ entirely, i.e.,
tp cannot be used to compute transition invariants, in general. Def. 14 does not
ensure →+

τ ⊇
⋃

σ|=τ →tp(τ,σ) either, as tp(τ, σ) does not imply σ(x) →+
τ σ(x′).

Example 17. To see that tp computes no over- or under-approximations, let

τ := x′
.
= x+ 1 ∧ y′ .= y + x.

Then for all σ |= τ , we might have:

tp(τ, σ) =

{
x ≥ 0 ∧ x′ > x ∧ y′ ≥ y, if σ(x) ≥ 0

x < 0 ∧ x′ > x ∧ y′ < y, if σ(x) < 0

However, (x ≥ 0 ∧ x′ > x ∧ y′ ≥ y) ∨ (x < 0 ∧ x′ > x ∧ y′ < y) is not an
over-approximation of →+

τ (i.e., →+
τ ̸⊆

⋃
σ|=τ →tp(τ,σ)), as we have, e.g.,

(−1, 0) →τ (0,−1) →τ (1,−1) →τ (2, 0), but (−1, 0) ̸→tp(τ,σ) (2, 0)

for all σ |= τ . Moreover, we also have →+
τ ̸⊇

⋃
σ|=τ →tp(τ,σ), since

(−1, 0) →tp(τ,σ) (10,−20), but (−1, 0) ̸→+
τ (10,−20)
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if σ(x) < 0. In contrast to tp(τ, σ), linear over-approximations for →+
τ like x′ > x

cannot distinguish whether y increases or decreases.

As TRL proves safety via blocking clauses (Sect. 3.4) that only block steps that
are covered by learned relations, the fact that tp does not yield over-approxima-
tions does not affect soundness. However, it may cause divergence (Remark 23).

Recall that our SMT encoding forces
(i)

xid to be the identifier of the relation
that is used for the ith step (Line 1). To exploit transitivity of tp, we add the

constraint
(b)

xid
.
= 1∨

(b)

xid ̸
.
=

(b−1)

xid in Line 1, so that learned relations (with index > 1)
are not used several times in a row, since this is unnecessary for transitive relations.

3.4 Blocking Clauses

In Line 1, we are guaranteed to find a learned relation π which is consistent
with σloop: If our sufficient criterion for non-redundancy in Line 1 failed, then the
existence of π is guaranteed. Otherwise, we learned a new relation π in Line 1
which is consistent with σloop ⊆ σ ◦ µs,ℓ by definition of tp. Thus, we can use π
and a model σ ⊇ σloop of π to record a blocking clause in Line 1.

Definition 18 (Blocking Clauses). Consider a relational formula π, and let
σ be a model of π. We define:

blocking clause(s, ℓ, π, σ) :=

{
µs,ℓ(¬cvp(π, σ)) ∨

(s)

xid > 1, if ℓ = 1

µs,ℓ(¬cvp(π, σ)), if ℓ > 1

Here, s and ℓ are natural numbers such that [τi]
s+ℓ−1
i=s is a (possibly) redundant

loop on the trace. Blocking clauses exclude models that correspond to runs

v1 →τ1 . . .→τs−1
vs →τs . . .→τs+ℓ−1

vs+ℓ (5)

where vs →π vs+ℓ. Intuitively, if ℓ = 1 then blocking clause(s, ℓ, π, σ) states that
one may still evaluate vs to vs+ℓ, but one has to use a learned transition. If ℓ > 1,
then blocking clause(s, ℓ, π, σ) states that one may still evaluate vs to vs+ℓ, but
not in ℓ steps. More precisely, blocking clauses take into account that

v1 →τ1 . . .→τs+ℓ−2
vs+ℓ−1 (6) and v1 →τ1 . . .→τs−1

vs →π vs+ℓ (7)

must not be blocked to ensure that v2, . . . ,vs+ℓ remain reachable. For the former,
note that blocking clauses affect the suffix vs →τs . . . →τs+ℓ−1

vs+ℓ of (5) (as
they contain µs,ℓ(¬cvp(π, σ))), but not (6), so v2, . . . ,vs+ℓ−1 remain reachable.

Regarding (7), note that (5) corresponds to one unrolling of the loop (without
using the newly learned relation π). In contrast, (7) simulates one unrolling of
the loop using the new relation π. To see that our blocking clauses prevent the
sequence (5), but not the sequence (7), first consider the case ℓ > 1. Then (7) is
not affected by the blocking clause, as it requires less than s+ ℓ steps. If ℓ = 1,
then the loop that needs to be blocked is a single original transition (i.e., a

transition that results from applying cvp to τ) due to Remark 10. So
(s)

xid > 1 is
falsified by (5), as τs is an original transition, i.e., using it for the sth step implies
(s)

xid
.
= 1. However,

(s)

xid > 1 is satisfied by (7), as π is a learned transition, so using

it implies
(s)

xid > 1.
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Remark 19 (Extra Variables and Negation). In Def. 18, cvp is used to project π
according to the model σ. In this way, negation has the intended effect, i.e.,

[x/v,x′/v′] |= ¬cvp(. . .) iff v ̸→cvp(...) v
′,

as cvp(. . .) has no extra variables. To see why this is important here, consider the
relation τ := n > 0 ∧ x′ .= x+ n, where n is an extra variable. Then 0 →τ 1, but

¬τ [x/0, x′/1] = (n ≤ 0 ∨ x′ ̸ .= x+ n)[x/0, x′/1] = n ≤ 0 ∨ 1 ̸ .= n

is satisfiable, so ¬τ is not a suitable characterization of ̸→τ . The reason is that
n is implicitly existentially quantified in τ . So to characterize ̸→τ , we have to
negate ∃n. τ instead of τ , resulting in ∀n. n ≤ 0 ∨ x′ ̸ .= x+ n. Then, as desired,

(∀n. n ≤ 0 ∨ x′ ̸ .= x+ n)[x/0, x′/1] = ∀n. n ≤ 0 ∨ 1 ̸ .= n

is invalid. To avoid quantifiers, we eliminate extra variables via cvp instead.

In Line 1, a pair consisting of s+ ℓ− 1 and the blocking clause is added to
blocked. The first component means that the blocking clause has to be added
to the SMT encoding when the transition relation is unrolled for the (s+ ℓ− 1)th

time, i.e., when b = s+ ℓ− 1. So blocking clauses are added to the SMT encoding
“on demand” (in Line 1) to block loops that have been found on the trace at some
point. Afterwards, TRL backtracks to the last step before the loop in Line 1.

Remark 20 (Adding Blocking Clauses). To see why blocking clauses must only be
added to the SMT encoding in the (s+ ℓ− 1)th unrolling, assume π ≡ ⊤. Then,
e.g., blocking clause(1, 2, π, σ) ≡ ⊥. This means that unrolling the transition
relation twice is superfluous, as every state can be reached in a single step with π,
so the diameter is 1. But after learning π when b = 2 and backtracking to b = 0,
adding such a blocking clause too early (e.g., before the first unrolling of the
transition relation) would immediately result in an unsatisfiable SMT problem.

Example 21 (Blocking Redundant Loops). Consider the model

σ := [
(1)

w/
(1)

x/
(1)

y /0,
(1)

xid/2,
(2)

w/0,
(2)

x/
(2)

y /2,
(2)

xid/1,
(3)

x/
(3)

y /3]

and assume that TRL has already learned the relation τ+inc (i.e., π = [τ, τ+inc]).
Moreover, assume that the trace is [τ+inc, τinc], so that TRL detects the loop τinc.
To check for non-redundancy, we instantiate the pre- and post-variables in τ+inc
according to σ, taking the renaming µ2 into account (note that here s = 2, ℓ = 1,
and µs,ℓ = µ2,1 = µ2):

σ(µ2(τ
+
inc)) = τ+inc[w/0, x/y/2, x

′/y′/3] ≡ ⊤.
So our sufficient criterion for non-redundancy fails, as τinc is indeed redundant
w.r.t. τ+inc. Thus, TRL records that the following blocking clause has to be added
for the second unrolling (i.e., when b = s+ ℓ− 1 = 2).

µs,ℓ(¬cvp(τ+inc, σ)) ∨
(s)

xid > 1 = µs,ℓ(¬τ+inc) ∨
(s)

xid > 1 (as τ+inc is a transition)

= µ2(¬(w
.
= 0 ∧ x′ > x ∧ x′ − x

.
= y′ − y)) ∨

(2)

xid > 1

≡ (w ̸ .= 0 ∨ x′ ≤ x ∨ x′ − x ̸ .= y′ − y)[w/
(2)

w, x/
(2)

x , y/
(2)

y , x′/
(3)

x , y′/
(3)

y ] ∨
(2)

xid > 1

=
(2)

w ̸ .= 0 ∨ (3)

x ≤ (2)

x ∨ (3)

x − (2)

x ̸ .= (3)

y − (2)

y ∨
(2)

xid > 1
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As this blocking clause is falsified by σ, it prevents TRL from finding the same
model again after backtracking in Line 1, so that TRL makes progress.

The following theorem states that our approach is sound.

Theorem 22. If TRL(T ) returns safe, then T is safe.

Proof (Sketch). The key idea of the proof, which works by induction over the
length of runs, is to show that blocking clauses do not prevent us from reaching
all reachable states. See [20] for the full proof.

Remark 23 (Termination). In general, Alg. 1 does not terminate, since tp de-
composes the relation into finitely many cases and approximates their transitive
closures independently, but →+

τloop
⊆

⋃
σ|=τloop

→tp(τloop,σ) is not guaranteed (Re-

mark 16). To see why this may prevent termination, consider a loop τloop and
assume that there are reachable states v,v′ with v →+

τloop
v′, but v ̸→tp(τloop,σ) v

′

for all models σ of τloop. Then TRL may find a model that corresponds to a run
from v to v′. Unless v can be evaluated to v′ with another learned transition
π /∈ {tp(τloop, σ) | σ |= τloop} by coincidence, this loop cannot be blocked and
TRL learns a new relation. Thus, TRL may keep learning new relations as long
as there are loops whose transitive closure is not yet covered by learned relations.

As the elements of {tp(τ, σ) | σ |= τ} are independent of each other, a more
“global” view may help to enforce convergence. We leave that to future work.

Example 24 (Ex. 1 Finished). After learning τ+dec and τ
+
inc, the underlying SMT

problem becomes unsatisfiable when b = 3 after adding appropriate blocking
clauses, so that τ+dec and τ

+
inc are preferred over τdec and τinc. The reason is that

τ+dec and τ+inc must not be used twice in a row due to Line 1 of Alg. 1, and τ+inc
cannot be used after τ+dec, as it requires w

.
= 0, but τ+dec sets w to 1. Thus, Alg. 1

returns safe. See [20] for a detailed run of Alg. 1 on Ex. 1.

4 Implementing tp for Linear Integer Arithmetic

We now explain how to compute transitive projections for quantifier-free linear
integer arithmetic via recurrence analysis. As in SMT-LIB [2], in our setting
linear integer arithmetic also features (in)divisibility predicates of the form e|t
(or e̸ |t) where e ∈ N+ and t is an integer-valued term. Then we have σ |= e|t iff
σ(t) is a multiple of e, and σ |= e̸ |t, otherwise.

The technique that we use is inspired by the recurrence analysis from [14].
However, there are some important differences. The approach from [14] computes
convex hulls to over-approximate disjunctions by conjunctions, and it relies on
polyhedral projections. In our setting, we always have a suitable model at hand,
so that we can use cvp instead. Hence, our recurrence analysis can be implemented
more efficiently.4 Additionally, our recurrence analysis can handle divisibility
predicates, which are not covered in [14].

4 The double description method, which is popular for computing polyhedral projections
and convex hulls, and other state-of-the-art approaches have exponential complexity
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On the other hand, [14] yields an over-approximation of the transitive closure
of the given relation, whereas our approach performs an implicit case analysis
(via cvp) and only yields an over-approximation of the transitive closure of one
out of finitely many cases.

Moreover, the recurrence analysis from [14] also discovers non-linear relations,
and then uses linearization techniques to eliminate them. For simplicity, our
recurrence analysis only derives linear relations so far. However, just like [14], we
could also derive non-linear relations and linearize them afterwards. Apart from
these differences, our technique is analogous to [14].

In the sequel, let τ and σ |= τ be fixed. Our implementation of tp(τ, σ) first
searches for recurrent literals, i.e., literals of the form5

t ▷◁ 0 or e|t where t =
∑
x∈x

cx ·(x′−x)+c, ▷◁ ∈ {≤,≥, <,>, .=}, and cx, c ∈ Z.

Hence, these literals provide information about the change of values of variables.
To find such literals, we introduce a fresh variable xδ for each x ∈ x, and we
conjoin xδ

.
= x′ − x to τ , i.e., we compute

τ∧δ := τ ∧
∧
x∈x

xδ
.
= x′ − x.

So the value of xδ corresponds to the change of x when applying τ . Next, we use
cvp to eliminate all variables but {xδ | x ∈ x} from τ∧δ, resulting in τδ. More
precisely, we have

τδ := cvp(τ∧δ, σ ⊎ [xδ/σ(x
′ − x) | x ∈ x], {xδ | x ∈ x}).

Finally, to obtain a formula where all literals are recurrent, we replace each xδ
by its definition, i.e., we compute

τrec := τδ[xδ/x
′ − x | x ∈ x].

Example 25 (Finding Recurrent Literals). Consider the transition τdec. We first
construct the formula

τ∧δ := τdec ∧ wδ
.
= w′ − w ∧ xδ

.
= x′ − x ∧ yδ

.
= y′ − y.

Then for any model σ |= τdec, we get6

τδ := cvp(τ∧δ, σ ⊎ [wδ/0, xδ/−1, yδ/−1], {wδ, xδ, yδ})
= wδ

.
= 0 ∧ xδ

.
= −1 ∧ yδ

.
= −1.

[7, 39]. See [23] for an easily accessible discussion of the complexity of the double
description method. In contrast, combining the model based projection from [29]
with syntactic implicant projection [18] yields a polynomial time algorithm for cvp.

5 W.l.o.g., we assume that literals are never negated, as we can negate the corre-
sponding (in)equalities or divisibility predicates directly instead. Furthermore, in our
implementation, we replace disequalities s ̸ .= t with s > t ∨ s < t and eliminate the
resulting disjunction via cvp to obtain a transition without disequalities.

6 In the case of τdec, we obtain the same formula τδ for every model σ |= τdec, as
variables can simply be eliminated by propagating equalities.
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Next, replacing wδ, xδ, and yδ with their definition results in

τrec := w′ − w
.
= 0 ∧ x′ − x

.
= −1 ∧ y′ − y

.
= −1

≡ w′ − w
.
= 0 ∧ x′ − x+ 1

.
= 0 ∧ y′ − y + 1

.
= 0.

Then the construction of tp(τ, σ) proceeds as follows:

– tp(τ, σ) contains the literal n > 0, where n ∈ V is a fresh extra variable
– for each literal

∑
x∈x cx · (x′ − x) + c ▷◁ 0 of τrec, tp(τ, σ) contains the literal∑

x∈x cx · (x′ − x) + n · c ▷◁ 0
– for each literal e|

∑
x∈x cx · (x′ − x) + c of τrec, tp(τ, σ) contains the literal

e|
∑

x∈x cx · (x′ − x) + n · c
Intuitively, the extra variable n can be thought of as a “loop counter”, i.e., when
n is instantiated with some constant k, then the literals above approximate the
change of variables when →τ is applied k times.

Example 26 (Computing tp (1)). Continuing Ex. 25, tp(τdec, σ) contains the
literals

n > 0 ∧ w′ − w + n · 0 .
= 0 ∧ x′ − x+ n · 1 .

= 0 ∧ y′ − y + n · 1 .
= 0

≡ n > 0 ∧ w′ .= w ∧ x′ .= x− n ∧ y′ .= y − n

for any model σ |= τdec. Note that in our example, this formula precisely char-
acterizes the change of the variables after n iterations of →τdec . To simplify the
formula above, we can propagate the equality n = x− x′, resulting in:

x− x′ > 0 ∧ w′ .= w ∧ y′ .= y − x+ x′

≡ w′ .= w ∧ x′ < x ∧ x′ − x
.
= y′ − y (8)

Compared to τ+dec, (8) lacks the literal w
.
= 1. To incorporate information about

the pre- and post-variables (but not about their relation) we conjoin cvp(τ, σ,x)
and cvp(τ, σ,x′) to tp(τ, σ).

Example 27 (Computing tp (2)). We finish Ex. 26 by conjoining

cvp(τdec, σ, {w, x, y}) = w
.
= 1 and cvp(τdec, σ, {w′, x′, y′}) = w′ .= 1

to (8), resulting in:

w′ .= w ∧ x′ < x ∧ x′ − x
.
= y′ − y ∧ w .

= 1 ∧ w′ .= 1 ≡ τ+dec

Example 28 (Divisibility). To see how tp can handle divisibility predicates, con-
sider the transition

τ := 2|x ∧ 3|x′ − x+ 1.
Then our approach identifies the recurrent literal τrec = 3|x′ − x + 1, so that
tp(τ, σ) contains the literal 3|x′ − x + n. To see why we conjoin this literal to
tp(τ, σ), note that 3|x′ − x+ 1 and 3|x′ − x+ n are equivalent to x′ − x+ 1 ≡3 0
and x′ − x + n ≡3 0, respectively, where “≡3” denotes congruence modulo 3.
So e →n

τ e
′ implies e′ − e+ n ≡3 0, just like e →n

π e
′ implies e′ − e+ n = 0 for

π := x′ − x+ 1
.
= 0. Moreover, we have cvp(τ, σ,x) = 2|x, and thus

tp(τ, σ) = n > 0 ∧ 3|x′ − x+ n ∧ 2|x.
We refer to [20] for the straightforward proof of the following theorem:

Theorem 29 (Correctness of tp). The function tp as defined above is a
transitive projection.
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5 Related Work and Experiments

Related Work For reasons of space, we only discuss the most important related
work and refer to [20] for more details. Most state-of-the-art infinite state model
checking algorithms use interpolation [8, 26, 27, 29, 31, 34,35, 42]. As discussed in
Sect. 1, these techniques are very powerful, but also fragile. In contrast, robustness
of TRL depends on the underlying transitive projection. Our implementation for
linear integer arithmetic is a variation of the recurrence analysis from [14], which
is very robust in our experience. In particular, our recurrence analysis does not
require an SMT solver.

Currently, the most powerful model checking algorithm is Spacer with global
guidance (GSpacer). In GSpacer, interpolation is optional, and thus it is more
robust than Spacer (without global guidance) and other interpolation-based
techniques. GSpacer is part of the IC3/PDR family of model checking algorithms
[6], which differ fundamentally from BMC-based approaches like TRL: The latter
unroll the transition relation, whereas GSpacer and other variants of IC3/PDR for
infinite state systems prove global properties by combining local reasoning about
a single step with techniques like induction, interpolation, or global guidance.

Many techniques for program verification use transition invariants or related
concepts like loop summarization or acceleration [1, 5, 14, 18, 19, 32, 33, 37, 41]. All
of them rely on over- or under-approximations, whereas TRL can use both.

TRL has been inspired by ABMC [19], which is also restricted to under-ap-
proximations and thus weaker for proving safety. However, ABMC is currently one
of the most powerful techniques for proving unsafety. Other important conceptual
differences include TRL’s use of: blocking clauses on demand; model based
projection, which cannot be used by ABMC, as acceleration yields formulas in
theories without quantifier elimination; backtracking, which is useful for proving
safety as it keeps the SMT problem small, but it would slow down the discovery
of counterexamples in ABMC.

Our tool LoAT also implements ADCL [18], which embeds acceleration into
a depth-first search for counterexamples (whereas ABMC and TRL perform
breadth-first search). Thus, TRL is conceptually closer to ABMC, and for proving
unsafety, ABMC is superior to ADCL (see [19]). However, as witnessed by the
results of the annual Termination Competition [24], ADCL is currently the most
powerful technique for proving non-termination of transition systems (see [17]).

Experiments We implemented TRL in our tool LoAT [16], which is available on
Github [22] and uses the SMT solvers Yices [12] and Z3 [36]. We evaluated it on
all linear CHCs from the CHC competitions ’23 and ’24 [9] (excluding duplicates),
resulting in 626 problems from applications like verification of C, Rust, and Java.

We compared 14 techniques of leading CHC solvers:

LoAT’s implementations of TRL (LoAT TRL), ABMC [19], and k-induction [40].

Z3 4.13.3 [36] Z3’s implementations of the Spacer [29] (Z3 Spacer) and GSpacer
[31] (Z3 GSpacer) algorithms, and of BMC.

Golem 0.6.2 [4] Golem’s implementations of transition power abstraction [8],

https://github.com/chc-comp/hcai-bench
https://github.com/chc-comp/rust-horn
https://github.com/chc-comp/jayhorn-benchmarks
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interpolation based model checking [34] (Golem IMC), lazy abstraction with
interpolants [35], predicate abstraction/CEGAR [10, 25], property directed
k-induction [27] (Golem PDKIND), Spacer (Golem Spacer), and BMC.

Eldarica 2.1 [26] Eldarica’s implementation of predicate abstraction/CEGAR.

We ran our experiments on CLAIX-2023-HPC nodes of the RWTH Universi-
ty High Performance Computing Cluster with a memory limit of 10560 MiB
(≈ 11GB) and a timeout of 300 s per example. Here, we report on the results of
the seven best configurations, and we refer to [20, 21] for more details. Note that
our implementation can also prove unsafety, by using the acceleration technique
from [15] instead of transitive projections, see [20] for details.

✓
safe unsafe

✓ ! ✓ !

LoAT TRL 386 267 24 119 22

Z3 GSpacer 373 287 18 86 4

Golem Spacer 340 231 – 109 –

Z3 Spacer 339 236 – 103 –

Golem IMC 318 215 2 103 2

Golem PDKIND 315 224 2 91 2

Eldarica 298 219 8 79 0
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In the table above, the first column marked with ✓contains the number of solved
instances (i.e., all remaining instances could not be solved by the respective
configuration), and the columns with ! show the number of examples that could
only be solved by the corresponding configuration. Such a comparison only makes
sense if just one implementation of each algorithm is considered, so here we
disregarded Z3 Spacer and Golem Spacer (as GSpacer is a variant of Spacer).

The table shows that TRL is highly competitive: Overall, it solves the most
instances, and only GSpacer can prove safety more often. More importantly,
TRL finds many unique proofs, i.e., it is orthogonal to existing model checking
algorithms, and hence it improves the state of the art.

The plot on the right shows how many instances were solved within 300 s. It
shows that TRL is also highly competitive in terms of runtime.

Conclusion We presented Transitive Relation Learning (TRL), a powerful
model checking algorithm for infinite state systems. TRL adds transitive relations
to the analyzed system until its diameter (the number of steps that is required
to cover all reachable states) becomes finite, which facilitates a safety proof. As
it does not search for invariants, TRL does not need interpolation, which is in
contrast to most state-of-the-art techniques. Nevertheless, our evaluation shows
that TRL is highly competitive. Moreover, not using interpolation allows us to
avoid the well-known fragility of interpolation-based approaches.

In future work, we plan to support other theories like reals, bitvectors, and
arrays, and we will investigate an extension to temporal verification.

https://help.itc.rwth-aachen.de/service/rhr4fjjutttf/article/fbd107191cf14c4b8307f44f545cf68a/
https://help.itc.rwth-aachen.de/service/rhr4fjjutttf/
https://help.itc.rwth-aachen.de/service/rhr4fjjutttf/
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25. Graf, S., Säıdi, H.: Construction of abstract state graphs with PVS. In: CAV ’97.
pp. 72–83. LNCS 1254 (1997). https://doi.org/10.1007/3-540-63166-6 10
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