
Termination of Triangular Integer Loops is
Decidable?

Florian Frohn1 and Jürgen Giesl2

1 Max Planck Institute for Informatics, Saarbrücken, Germany
2 LuFG Informatik 2, RWTH Aachen University, Germany

Abstract. We consider the problem whether termination of affine inte-
ger loops is decidable. Since Tiwari conjectured decidability in 2004 [15],
only special cases have been solved [3, 4, 14]. We complement this work
by proving decidability for the case that the update matrix is triangular.

1 Introduction

We consider affine integer loops of the form

while ϕ do x← Ax+ a. (1)

Here, A ∈ Zd×d for some dimension d ≥ 1, x is a column vector of pairwise
different variables x1, . . . , xd, a ∈ Zd, and ϕ is a conjunction of inequalities of
the form α > 0 where α ∈ Af[x] is an affine expression with rational coefficients3

over x (i.e., Af[x] = {cT x+ c | c ∈ Qd, c ∈ Q}). So ϕ has the form B x+ b > 0
where 0 is the vector containing k zeros, B ∈ Qk×d, and b ∈ Qk for some k ∈ N.
Def. 1 formalizes the intuitive notion of termination for such loops.

Definition 1 (Termination). Let f : Zd → Zd with f(x) = Ax+ a. If

∃c ∈ Zd. ∀n ∈ N. ϕ[x/fn(c)],

then (1) is non-terminating and c is a witness for non-termination. Otherwise,
(1) terminates.

Here, fn denotes the n-fold application of f , i.e., we have f0(c) = c and
fn+1(c) = f(fn(c)). We call f the update of (1). Moreover, for any entity s,
s[x/t] denotes the entity that results from s by replacing all occurrences of x by

t. Similarly, if x =

[x1.
.
.
xm

]
and t =

[t1.
.
.
tm

]
, then s[x/t] denotes the entity resulting

from s by replacing all occurrences of xi by ti for each 1 ≤ i ≤ m.

? funded by DFG grant 389792660 as part of TRR 248 and by DFG grant GI 274/6
3 Note that multiplying with the least common multiple of all denominators yields

an equivalent constraint with integer coefficients, i.e., allowing rational instead of
integer coefficients does not extend the considered class of loops.

https://perspicuous-computing.science

Example 2. Consider the loop

while y + z > 0 do

wx
y
z

←
 2

x + 1
−w − 2 · y

x


where the update of all variables is executed simultaneously. This program be-
longs to our class of affine loops, because it can be written equivalently as follows.

while y + z > 0 do

wx
y
z

←
 0 0 0 0

0 1 0 0
−1 0 −2 0

0 1 0 0

wx
y
z

+

2
1
0
0


While termination of affine loops is known to be decidable if the variables

range over the real [15] or the rational numbers [4], the integer case is a well-
known open problem [2, 3, 4, 14, 15].4 However, certain special cases have been
solved: Braverman [4] showed that termination of linear loops is decidable (i.e.,
loops of the form (1) where a is 0 and ϕ is of the form B x > 0). Bozga et al. [3]
showed decidability for the case that the update matrix A in (1) has the finite
monoid property, i.e., if there is an n > 0 such that An is diagonalizable and all
eigenvalues of An are in {0, 1}. Ouaknine et al. [14] proved decidability for the
case d ≤ 4 and for the case that A is diagonalizable.

Ben-Amram et al. [2] showed undecidability of termination for certain ex-
tensions of affine integer loops, e.g., for loops where the body is of the form
if x > 0 then x← Ax else x← A′ x where A,A′ ∈ Zd×d and x ∈ x.

In this paper, we present another substantial step towards the solution of
the open problem whether termination of affine integer loops is decidable. We
show that termination is decidable for triangular loops (1) where A is a trian-
gular matrix (i.e., all entries of A below or above the main diagonal are zero).
Clearly, the order of the variables is irrelevant, i.e., our results also cover the
case that A can be transformed into a triangular matrix by reordering A, x, and
a accordingly.5 So essentially, triangularity means that the program variables
x1, . . . , xd can be ordered such that in each loop iteration, the new value of xi
only depends on the previous values of x1, . . . , xi−1, xi. Hence, this excludes pro-
grams with “cyclic dependencies” of variables (e.g., where the new values of x
and y both depend on the old values of both x and y). While triangular loops
are a very restricted subclass of general integer programs, integer programs often
contain such loops. Hence, tools for termination analysis of such programs (e.g.,
[5, 6, 7, 8, 11, 12, 13]) could benefit from integrating our decision procedure and
applying it whenever a sub-program is an affine triangular loop.

Note that triangularity and diagonalizability of matrices do not imply each
other. As we consider loops with arbitrary dimension, this means that the class

4 The proofs for real or rational numbers do not carry over to the integers since [15]
uses Brouwer’s Fixed Point Theorem which is not applicable if the variables range
over Z and [4] relies on the density of Q in R.

5 Similarly, one could of course also use other termination-preserving pre-processings
and try to transform a given program into a triangular loop.

2

of loops considered in this paper is not covered by [3, 14]. Since we consider
affine instead of linear loops, it is also orthogonal to [4].

To see the difference between our and previous results, note that a trian-
gular matrix A where c1, . . . , ck are the distinct entries on the diagonal is di-
agonalizable iff (A − c1I) . . . (A − ckI) is the zero matrix.6 Here, I is the iden-
tity matrix. So an easy example for a triangular loop where the update ma-
trix is not diagonalizable is the following well-known program (see, e.g., [2]):

while x > 0 do x← x+ y; y ← y − 1

It terminates as y eventually becomes negative and then x decreases in each

iteration. In matrix notation, the loop body is
[
x
y

]
←
[
1 1
0 1

] [
x
y

]
+
[

0
−1

]
, i.e.,

the update matrix is triangular. Thus, this program is in our class of programs
where we show that termination is decidable. However, the only entry on the

diagonal of the update matrix A is c = 1 and A − c I =
[
0 1
0 0

]
is not the zero

matrix. So A (and in fact each An where n ∈ N) is not diagonalizable. Hence,
extensions of this example to a dimension greater than 4 where the loop is still
triangular are not covered by any of the previous results.7

Our proof that termination is decidable for triangular loops proceeds in three
steps. We first prove that termination of triangular loops is decidable iff termi-
nation of non-negative triangular loops (nnt-loops) is decidable, cf. Sect. 2. A
loop is non-negative if the diagonal of A does not contain negative entries. Sec-
ond, we show how to compute closed forms for nnt-loops, i.e., vectors q of d
expressions over the variables x and n such that q[n/c] = f c(x) for all c ≥ 0, see
Sect. 3. Here, triangularity of the matrix A allows us to treat the variables step
by step. So for any 1 ≤ i ≤ d, we already know the closed forms for x1, . . . , xi−1
when computing the closed form for xi. The idea of computing closed forms for
the repeated updates of loops was inspired by our previous work on inferring
lower bounds on the runtime of integer programs [9]. But in contrast to [9], here
the computation of the closed form always succeeds due to the restricted shape
of the programs. Finally, we explain how to decide termination of nnt-loops by
reasoning about their closed forms in Sect. 4. While our technique does not yield
witnesses for non-termination, we show that it yields witnesses for eventual non-
termination, i.e., vectors c such that fn(c) witnesses non-termination for some
n ∈ N. Detailed proofs for all lemmas and theorems can be found in [10].

2 From Triangular to Non-Negative Triangular Loops

To transform triangular loops into nnt-loops, we define how to chain loops.
Intuitively, chaining yields a new loop where a single iteration is equivalent to
two iterations of the original loop. Then we show that chaining a triangular loop
always yields an nnt-loop and that chaining is equivalent w.r.t. termination.

6 The reason is that in this case, (x − c1) . . . (x − ck) is the minimal polynomial of
A and diagonalizability is equivalent to the fact that the minimal polynomial is a
product of distinct linear factors.

7 For instance, consider while x > 0 do x← x + y + z1 + z2 + z3; y ← y − 1

3

Definition 3 (Chaining). Chaining the loop (1) yields:

while ϕ ∧ ϕ[x/Ax+ a] do x← A2 x+Aa+ a (2)

Example 4. Chaining Ex. 2 yields

while y + z > 0 ∧ −w − 2 · y + x > 0 dowx
y
z

←
 0 0 0 0

0 1 0 0
−1 0 −2 0

0 1 0 0

2 wx
y
z

+

 0 0 0 0
0 1 0 0
−1 0 −2 0

0 1 0 0

2
1
0
0

+

2
1
0
0


which simplifies to the following nnt-loop:

while y+ z > 0∧−w− 2 · y+ x > 0 do

wx
y
z

←
0 0 0 0

0 1 0 0
2 0 4 0
0 1 0 0

wx
y
z

+

 2
2
−2

1


Lemma 5 is needed to prove that (2) is an nnt-loop if (1) is triangular.

Lemma 5 (Squares of Triangular Matrices). For every triangular matrix
A, A2 is a triangular matrix whose diagonal entries are non-negative.

Corollary 6 (Chaining Loops). If (1) is triangular, then (2) is an nnt-loop.

Proof. Immediate consequence of Def. 3 and Lemma 5.

Lemma 7 (Equivalence of Chaining). (1) terminates ⇐⇒ (2) terminates.

Proof. By Def. 1, (1) does not terminate iff

∃c ∈ Zd. ∀n ∈ N. ϕ[x/fn(c)]

⇐⇒ ∃c ∈ Zd. ∀n ∈ N. ϕ[x/f2·n(c)] ∧ ϕ[x/f2·n+1(c)]

⇐⇒ ∃c ∈ Zd. ∀n ∈ N. ϕ[x/f2·n(c)] ∧ ϕ[x/Af2·n(c) + a] (by Def. of f),

i.e., iff (2) does not terminate as f2(x) = A2 x+Aa+a is the update of (2).

Theorem 8 (Reducing Termination to nnt-Loops). Termination of tri-
angular loops is decidable iff termination of nnt-loops is decidable.

Proof. Immediate consequence of Cor. 6 and Lemma 7.

Thus, from now on we restrict our attention to nnt-loops.

3 Computing Closed Forms

The next step towards our decidability proof is to show that fn(x) is equivalent
to a vector of poly-exponential expressions for each nnt-loop, i.e., the closed form
of each nnt-loop can be represented by such expressions. Here, equivalence means
that two expressions evaluate to the same result for all variable assignments.

Poly-exponential expressions are sums of arithmetic terms where it is always
clear which addend determines the asymptotic growth of the whole expression
when increasing a designated variable n. This is crucial for our decidability
proof in Sect. 4. Let N≥1 = {b ∈ N | b ≥ 1} (and Q>0, N>1, etc. are defined
analogously). Moreover, Af[x] is again the set of all affine expressions over x.

4

Definition 9 (Poly-Exponential Expressions). Let C be the set of all finite
conjunctions over the literals n = c, n 6= c where n is a designated variable and
c ∈ N. Moreover for each formula ψ over n, let JψK be the characteristic function
of ψ, i.e., JψK (c) = 1 if ψ[n/c] is valid and JψK (c) = 0, otherwise. The set of all
poly-exponential expressions over x is

PE[x] =

∑̀
j=1

JψjK · αj · naj · bnj

∣∣∣∣∣∣ `, aj ∈ N, ψj ∈ C, αj ∈ Af[x], bj ∈ N≥1

 .

As n ranges over N, we use Jn > cK as syntactic sugar for J
∧c
i=0 n 6= iK. So

an example for a poly-exponential expression is

Jn > 2K · (2 · x+ 3 · y − 1) · n3 · 3n + Jn = 2K · (x− y).

Moreover, note that if ψ contains a positive literal (i.e., a literal of the form
“n = c” for some number c ∈ N), then JψK is equivalent to either 0 or Jn = cK.

The crux of the proof that poly-exponential expressions can represent closed
forms is to show that certain sums over products of exponential and poly-ex-
ponential expressions can be represented by poly-exponential expressions, cf.
Lemma 12. To construct these expressions, we use a variant of [1, Lemma 3.5].
As usual, Q[x] is the set of all polynomials over x with rational coefficients.

Lemma 10 (Expressing Polynomials by Differences [1]). If q ∈ Q[n] and
c ∈ Q, then there is an r ∈ Q[n] such that q = r − c · r[n/n− 1] for all n ∈ N.

So Lemma 10 expresses a polynomial q via the difference of another polyno-
mial r at the positions n and n− 1, where the additional factor c can be chosen
freely. The proof of Lemma 10 is by induction on the degree of q and its struc-
ture resembles the structure of the following algorithm to compute r. Using the
Binomial Theorem, one can verify that q− s+ c · s[n/n− 1] has a smaller degree
than q, which is crucial for the proof of Lemma 10 and termination of Alg. 1.

Algorithm 1: compute r

Input: q =
∑d
i=0 ci · ni ∈ Q[n], c ∈ Q

Result: r ∈ Q[n] such that q = r − c · r[n/n− 1]
if d = 0 then

if c = 1 then return c0 · n else return c0
1−c

else

if c = 1 then s← cd·nd+1

d+1 else s← cd·nd

1−c
return s+ compute r(q − s+ c · s[n/n− 1], c)

Example 11. As an example, consider q = 1 (i.e., c0 = 1) and c = 4. Then
we search for an r such that q = r − c · r[n/n − 1], i.e., 1 = r − 4 · r[n/n − 1].
According to Alg. 1, the solution is r = c0

1−c = − 1
3 .

Lemma 12 (Closure of PE under Sums of Products and Exponentials).
If m ∈ N and p ∈ PE[x], then one can compute a q ∈ PE[x] which is equivalent
to
∑n
i=1m

n−i · p[n/i− 1].

5

Proof. Let p =
∑`
j=1 JψjK · αj · naj · bnj . We have:

n∑
i=1

mn−i · p[n/i− 1] =
∑̀
j=1

n∑
i=1

JψjK (i− 1) ·mn−i · αj · (i− 1)aj · bi−1j (3)

As PE[x] is closed under addition, it suffices to show that we can compute an
equivalent poly-exponential expression for any expression of the form∑n

i=1 JψK (i− 1) ·mn−i · α · (i− 1)a · bi−1. (4)

We first regard the case m = 0. Here, the expression (4) can be simplified to

Jn 6= 0K · Jψ[n/n− 1]K · α · (n− 1)a · bn−1. (5)

Clearly, there is a ψ′ ∈ C such that Jψ′K is equivalent to Jn 6= 0K · Jψ[n/n− 1]K.
Moreover, α·bn−1 = α

b ·b
n where α

b ∈ Af[x]. Hence, due to the Binomial Theorem

Jn 6= 0K ·Jψ[n/n− 1]K ·α ·(n−1)a ·bn−1 =
∑a
i=0 Jψ′K · αb ·

(
a
i

)
·(−1)i ·na−i ·bn (6)

which is a poly-exponential expression as α
b ·
(
a
i

)
· (−1)i ∈ Af[x].

From now on, let m ≥ 1. If ψ contains a positive literal n = c, then we get∑n
i=1 JψK (i− 1) ·mn−i · α · (i− 1)a · bi−1

=
∑n
i=1 Jn > i− 1K · JψK (i− 1) ·mn−i · α · (i− 1)a · bi−1 (†)

= Jn > cK · JψK (c) ·mn−c−1 · α · ca · bc (††)

=

0, if JψK (c) = 0

Jn > cK · 1
mc+1 · α · ca · bc ·mn, if JψK (c) = 1

∈ PE[x] (since 1
mc+1 · α · ca · bc ∈ Af[x]).


(7)

The step marked with (†) holds as we have Jn > i− 1K = 1 for all i ∈ {1, . . . , n}
and the step marked with (††) holds since i 6= c + 1 implies JψK (i − 1) = 0. If
ψ does not contain a positive literal, then let c be the maximal constant that
occurs in ψ or −1 if ψ is empty. We get:∑n

i=1 JψK (i− 1) ·mn−i · α · (i− 1)a · bi−1

=
∑n
i=1 Jn > i− 1K · JψK (i− 1) ·mn−i · α · (i− 1)a · bi−1 (†)

=
∑c+1
i=1 Jn > i− 1K · JψK (i− 1) ·mn−i · α · (i− 1)a · bi−1

+
∑n
i=c+2m

n−i · α · (i− 1)a · bi−1


(8)

Again, the step marked with (†) holds since we have Jn > i− 1K = 1 for all
i ∈ {1, . . . , n}. The last step holds as i ≥ c+ 2 implies JψK (i− 1) = 1. Similar to
the case where ψ contains a positive literal, we can compute a poly-exponential
expression which is equivalent to the first addend. We have∑c+1

i=1 Jn > i− 1K · JψK (i− 1) ·mn−i · α · (i− 1)a · bi−1

=
∑

1≤i≤c+1
JψK(i−1)=1

Jn > i− 1K · 1
mi · α · (i− 1)a · bi−1 ·mn (9)

6

which is a poly-exponential expression as 1
mi · α · (i− 1)a · bi−1 ∈ Af[x]. For the

second addend, we have:∑n
i=c+2m

n−i · α · (i− 1)a · bi−1

= α
b ·m

n ·
∑n
i=c+2(i− 1)a ·

(
b
m

)i
= α

b ·m
n ·
∑n
i=c+2(r[n/i]− m

b · r[n/i− 1]) ·
(
b
m

)i
(Lemma 10 with c = m

b)

= α
b ·m

n ·
(∑n

i=c+2 r[n/i] ·
(
b
m

)i −∑n
i=c+2

m
b · r[n/i− 1] ·

(
b
m

)i)
= α

b ·m
n ·
(∑n

i=c+2 r[n/i] ·
(
b
m

)i −∑n−1
i=c+1 r[n/i] ·

(
b
m

)i)
= α

b ·m
n · Jn > c+ 1K · (r ·

(
b
m

)n − r[n/c+ 1] ·
(
b
m

)c+1
)

= Jn > c+ 1K · αb · r · b
n − Jn > c+ 1K · r[n/c+ 1] ·

(
b
m

)c+1 · αb ·m
n



(10)

Lemma 10 ensures r ∈ Q[n], i.e., we have r =
∑dr
i=0mi · ni for some dr ∈ N and

mi ∈ Q. Thus, r[n/c+1]·
(
b
m

)c+1 · αb ∈ Af[x] which implies Jn > c+ 1K·r[n/c+1]·(
b
m

)c+1 · αb ·m
n ∈ PE[x]. It remains to show that the addend Jn > c+ 1K · αb ·r ·b

n

is equivalent to a poly-exponential expression. As α
b ·mi ∈ Af[x], we have

Jn > c+ 1K · αb · r · b
n =

∑dr
i=0 Jn > c+ 1K · αb ·mi · ni · bn ∈ PE[x]. (11)

The proof of Lemma 12 gives rise to a corresponding algorithm.

Algorithm 2: symbolic sum

Input: m ∈ N, p ∈ PE[x]
Result: q ∈ PE[x] which is equivalent to

∑n
i=1m

n−i · p[n/i− 1]

rearrange
∑n
i=1m

n−i · p[n/i− 1] to
∑`
j=1 pj as in (3)

foreach pj ∈ {p1, . . . , p`} do
if m = 0 then compute qj as in (5) and (6)
else if pj = J. . . ∧ n = c ∧ . . .K · . . . then compute qj as in (7)
else

• split pj into two sums pj,1 and pj,2 as in (8)
• compute qj,1 from pj,1 as in (9)
• compute qj,2 from pj,2 as in (10) and (11) using Alg. 1
• qj ← qj,1 + qj,2

return
∑`
j=1 qj

Example 13. We compute an equivalent poly-exponential expression for∑n
i=1 4n−i · (Jn = 0K · 2 · w + Jn 6= 0K · 4 − 2) [n/i− 1] (12)

where w is a variable. (It will later on be needed to compute a closed form for
Ex. 4, see Ex. 18.) According to Alg. 2 and (3), we get∑n

i=1 4n−i · (Jn = 0K · 2 · w + Jn 6= 0K · 4 − 2) [n/i− 1]

=
∑n
i=1 4n−i · (Ji− 1 = 0K · 2 · w + Ji− 1 6= 0K · 4 − 2)

= p1 + p2 + p3

7

with p1 =
∑n
i=1 Ji− 1 = 0K · 4n−i · 2 · w, p2 =

∑n
i=1 Ji− 1 6= 0K · 4n−i · 4, and

p3 =
∑n
i=1 4n−i · (−2). We search for q1, q2, q3 ∈ PE[w] that are equivalent to

p1, p2, p3, i.e., q1 + q2 + q3 is equivalent to (12). We only show how to compute
q2 (and omit the computation of q1 = Jn 6= 0K · 12 · w · 4

n and q3 = 2
3 −

2
3 · 4

n).
Analogously to (8), we get:∑n

i=1 Ji− 1 6= 0K · 4n−i · 4
=
∑n
i=1 Jn > i− 1K · Ji− 1 6= 0K · 4n−i · 4

=
∑1
i=1 Jn > i− 1K · Ji− 1 6= 0K · 4n−1 · 4 +

∑n
i=2 4n−i · 4

The next step is to rearrange the first sum as in (9). In our example, it directly
simplifies to 0 and hence we obtain∑1

i=1 Jn > i− 1K · Ji− 1 6= 0K · 4n−1 · 4 +
∑n
i=2 4n−i · 4 =

∑n
i=2 4n−i · 4.

Finally, by applying the steps from (10) we get:∑n
i=2 4n−i · 4

= 4 · 4n ·
∑n
i=2

(
1
4

)i
= 4 · 4n ·

∑n
i=2

(
− 1

3 − 4 ·
(
− 1

3

))
·
(
1
4

)i
(†)

= 4 · 4n ·
(∑n

i=2

(
− 1

3

)
·
(
1
4

)i − ∑n
i=2 4 ·

(
− 1

3

)
·
(
1
4

)i)
= 4 · 4n ·

(∑n
i=2

(
− 1

3

)
·
(
1
4

)i − ∑n−1
i=1

(
− 1

3

)
·
(
1
4

)i)
= 4 · 4n · Jn > 1K ·

((
− 1

3

)
·
(
1
4

)n − (
− 1

3

)
· 14
)

= Jn > 1K ·
(
− 4

3

)
+ Jn > 1K · 13 · 4

n

= q2

The step marked with (†) holds by Lemma 10 with q = 1 and c = 4. Thus, we
have r = − 1

3 , cf. Ex. 11.

Recall that our goal is to compute closed forms for loops. As a first step,
instead of the n-fold update function h(n, x) = fn(x) of (1) where f is the
update of (1), we consider a recursive update function for a single variable x ∈ x:

g(0, x) = x and g(n, x) = m · g(n− 1, x) + p[n/n− 1] for all n > 0

Here, m ∈ N and p ∈ PE[x]. Using Lemma 12, it is easy to show that g can be
represented by a poly-exponential expression.

Lemma 14 (Closed Form for Single Variables). If x ∈ x, m ∈ N, and
p ∈ PE[x], then one can compute a q ∈ PE[x] which satisfies

q [n/0] = x and q = (m · q + p) [n/n− 1] for all n > 0.

Proof. It suffices to find a q ∈ PE[x] that satisfies

q = mn · x+
∑n
i=1m

n−i · p[n/i− 1]. (13)

To see why (13) is sufficient, note that (13) implies

q[n/0] = m0 · x+
∑0
i=1m

0−i · p[n/i− 1] = x

and for n > 0, (13) implies

8

q = mn · x+
∑n
i=1m

n−i · p[n/i− 1]

= mn · x+
(∑n−1

i=1 m
n−i · p[n/i− 1]

)
+ p[n/n− 1]

= m ·
(
mn−1 · x+

∑n−1
i=1 m

n−i−1 · p[n/i− 1]
)

+ p[n/n− 1]

= m · q[n/n− 1] + p[n/n− 1]

= (m · q + p)[n/n− 1].

By Lemma 12, we can compute a q′ ∈ PE[x] such that

mn · x+
∑n
i=1m

n−i · p[n/i− 1] = mn · x+ q′.

Moreover,
if m = 0, then mn · x = Jn = 0K · x ∈ PE[x] and (14)

if m > 0, then mn · x ∈ PE[x]. (15)

So both addends are equivalent to poly-exponential expressions.

Example 15. We show how to compute the closed forms for the variables w and
x from Ex. 4. We first consider the assignment w ← 2, i.e., we want to compute
a qw ∈ PE[w, x, y, z] with qw[n/0] = w and qw = (mw · qw + pw) [n/n − 1] for
n > 0, where mw = 0 and pw = 2. According to (13) and (14), qw is

mn
w ·w+

∑n
i=1m

n−i
w ·pw[n/i−1] = 0n ·w+

∑n
i=1 0n−i ·2 = Jn = 0K·w+Jn 6= 0K·2.

For the assignment x ← x + 2, we search for a qx such that qx[n/0] = x and
qx = (mx · qx + px) [n/n− 1] for n > 0, where mx = 1 and px = 2. By (13), qx is

mn
x · x+

∑n
i=1m

n−i
x · px[n/i− 1] = 1n · x+

∑n
i=1 1n−i · 2 = x+ 2 · n.

The restriction to triangular matrices now allows us to generalize Lemma 14
to vectors of variables. The reason is that due to triangularity, the update of
each program variable xi only depends on the previous values of x1, . . . , xi. So
when regarding xi, we can assume that we already know the closed forms for
x1, . . . , xi−1. This allows us to find closed forms for one variable after the other
by applying Lemma 14 repeatedly. In other words, it allows us to find a vector
q of poly-exponential expressions that satisfies

q [n/0] = x and q = Aq[n/n− 1] + a for all n > 0.

To prove this claim, we show the more general Lemma 16. For all i1, . . . , ik ∈
{1, . . . ,m}, we define [z1, . . . , zm]i1,...,ik = [zi1 , . . . , zik] (and the notation yi1,...,ik
for column vectors is defined analogously). Moreover, for a matrix A, Ai is A’s
ith row and Ai1,...,in;j1,...,jk is the matrix with rows (Ai1)j1,...,jk , . . . , (Ain)j1,...,jk .

So for A =

[
a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

]
, we have A1,2;1,3 =

[
a1,1 a1,3

a2,1 a2,3

]
.

Lemma 16 (Closed Forms for Vectors of Variables). If x is a vector of
at least d ≥ 1 pairwise different variables, A ∈ Zd×d is triangular with Ai;i ≥ 0
for all 1 ≤ i ≤ d, and p ∈ PE[x]d, then one can compute q ∈ PE[x]d such that:

q [n/0] = x1,...,d and (16)

q = (Aq + p) [n/n− 1] for all n > 0 (17)

Proof. Assume that A is lower triangular (the case that A is upper triangular

9

works analogously). We use induction on d. For any d ≥ 1 we have:

q = (Aq + p) [n/n− 1]

⇐⇒ qj = (Aj · q + pj) [n/n− 1] for all 1 ≤ j ≤ d
⇐⇒ qj = (Aj;2,...,d · q2,...,d +Aj;1 · q1 + pj) [n/n− 1] for all 1 ≤ j ≤ d
⇐⇒ q1 = (A1;2,...,d · q2,...,d +A1;1 · q1 + p1) [n/n− 1] ∧

qj = (Aj;2,...,d · q2,...,d +Aj;1 · q1 + pj) [n/n− 1] for all 1 < j ≤ d
⇐⇒ q1 = (A1;1 · q1 + p1) [n/n− 1] ∧

qj = (Aj;2,...,d · q2,...,d +Aj;1 · q1 + pj) [n/n− 1] for all 1 < j ≤ d
The last step holds as A is lower triangular. By Lemma 14, we can compute a
q1 ∈ PE[x] that satisfies

q1[n/0] = x1 and q1 = (A1;1 · q1 + p1) [n/n− 1] for all n > 0.

In the induction base (d = 1), there is no j with 1 < j ≤ d. In the induction
step (d > 1), it remains to show that we can compute q2,...,d such that

qj [n/0] = xj and qj = (Aj;2,...,d · q2,...,d +Aj;1 · q1 + pj) [n/n− 1]

for all n > 0 and all 1 < j ≤ d, which is equivalent to

q2,...,d[n/0] = x2,...,d and

q2,...,d = (A2,...,d;2,...,d · q2,...,d +

A2;1

...
Ad;1

 · q1 + p2,...,d) [n/n− 1]

for all n > 0. As Aj;1 · q1 + pj ∈ PE[x] for each 2 ≤ j ≤ d, the claim follows from
the induction hypothesis.

Together, Lemmas 14 and 16 and their proofs give rise to the following al-
gorithm to compute a solution for (16) and (17). It computes a closed form q1
for x1 as in the proof of Lemma 14, constructs the argument p for the recursive
call based on A, q1, and the current value of p as in the proof of Lemma 16, and
then determines the closed form for x2,...,d recursively.

Algorithm 3: closed form

Input: x1,...,d, A ∈ Zd×d where Ai;i ≥ 0 for all 1 ≤ i ≤ d, p ∈ PE[x]d

Result: q ∈ PE[x]d which satisfies (16) & (17) for the given x,A, and p
q ← symbolic sum(A1;1, p1) (cf. Alg. 2)
if A1;1 = 0 then q1 ← Jn = 0K · x1 + q else q1 ← An1;1 · x1 + q (cf.

(13–15))
if d > 1 then

q2,...,d ← closed form(x2,...,d, A2,...,d;2,...,d,

A2;1

...
Ad;1

 · q1 + p2,...,d)

return q

We can now prove the main theorem of this section.

Theorem 17 (Closed Forms for nnt-Loops). One can compute a closed
form for every nnt-loop. In other words, if f : Zd → Zd is the update function of

10

an nnt-loop with the variables x, then one can compute a q ∈ PE[x]d such that
q[n/c] = f c(x) for all c ∈ N.

Proof. Consider an nnt-loop of the form (1). By Lemma 16, we can compute a
q ⊆ PE[x]d that satisfies

q[n/0] = x and q = (Aq + a) [n/n− 1] for all n > 0.

We prove f c(x) = q[n/c] by induction on c ∈ N. If c = 0, we get

f c(x) = f0(x) = x = q[n/0] = q[n/c].

If c > 0, we get: f c(x) = Af c−1(x) + a by definition of f

= Aq[n/c− 1] + a by the induction hypothesis

= (Aq + a) [n/c− 1] as a ∈ Zd does not contain n

= q[n/c]

So invoking Alg. 3 on x,A, and a yields the closed form of an nnt-loop (1).

Example 18. We show how to compute the closed form for Ex. 4. For

y ← 2 · w + 4 · y − 2,

we obtain

qy = (4 · qy + 2 · qw − 2) [n/n− 1]

= 4n · y +
∑n
i=1 4n−i · (2 · qw − 2) [n/i− 1] (by (13))

= y · 4n +
∑n
i=1 4n−i · (Jn = 0K · 2 · w + Jn 6= 0K · 4− 2) [n/i− 1] (see Ex. 15)

= q0 + q1 + q2 + q3 (see Ex. 13)

where q0 = y · 4n. For z ← x+ 1, we get

qz = (qx + 1) [n/n− 1]

= 0n · z +
∑n
i=1 0n−i · (qx + 1) [n/i− 1] (by (13))

= Jn = 0K · z + Jn 6= 0K · (qx[n/n− 1] + 1)

= Jn = 0K · z + Jn 6= 0K · ((x+ 2 · n) [n/n− 1] + 1) (see Ex. 15)

= Jn = 0K · z + Jn 6= 0K · (x− 1) + Jn 6= 0K · 2 · n.
So the closed form of Ex. 4 for the values of the variables after n iterations is:qwqx

qy
qz

 =

 Jn = 0K · w + Jn 6= 0K · 2
x + 2 · n

q0 + q1 + q2 + q3
Jn = 0K · z + Jn 6= 0K · (x− 1) + Jn 6= 0K · 2 · n


4 Deciding Non-Termination of nnt-Loops

Our proof uses the notion of eventual non-termination [4, 14]. Here, the idea is
to disregard the condition of the loop during a finite prefix of the program run.

Definition 19 (Eventual Non-Termination). A vector c ∈ Zd witnesses
eventual non-termination of (1) if

11

∃n0 ∈ N. ∀n ∈ N>n0
. ϕ[x/fn(c)].

If there is such a witness, then (1) is eventually non-terminating.

Clearly, (1) is non-terminating iff (1) is eventually non-terminating [14]. Now
Thm. 17 gives rise to an alternative characterization of eventual non-termination
in terms of the closed form q instead of fn(c).

Corollary 20 (Expressing Non-Termination with PE). If q is the closed
form of (1), then c ∈ Zd witnesses eventual non-termination iff

∃n0 ∈ N. ∀n ∈ N>n0 . ϕ[x/q][x/c]. (18)

Proof. Immediate, as q is equivalent to fn(x).

So to prove that termination of nnt-loops is decidable, we will use Cor. 20 to
show that the existence of a witness for eventual non-termination is decidable.
To do so, we first eliminate the factors JψK from the closed form q. Assume that
q has at least one factor JψK where ψ is non-empty (otherwise, all factors JψK are
equivalent to 1) and let c be the maximal constant that occurs in such a factor.
Then all addends JψK ·α ·na ·bn where ψ contains a positive literal become 0 and
all other addends become α · na · bn if n > c. Thus, as we can assume n0 > c in
(18) without loss of generality, all factors JψK can be eliminated when checking
eventual non-termination.

Corollary 21 (Removing JψK from PEs). Let q be the closed form of an
nnt-loop (1). Let qnorm result from q by removing all addends JψK · α · na · bn
where ψ contains a positive literal and by replacing all addends JψK · α · na · bn
where ψ does not contain a positive literal by α ·na · bn. Then c ∈ Zd is a witness
for eventual non-termination iff

∃n0 ∈ N. ∀n ∈ N>n0
. ϕ[x/qnorm][x/c]. (19)

By removing the factors JψK from the closed form q of an nnt-loop, we obtain
normalized poly-exponential expressions.

Definition 22 (Normalized PEs). We call p ∈ PE[x] normalized if it is in

NPE[x] =
{∑`

j=1 αj · naj · bnj
∣∣∣ `, aj ∈ N, αj ∈ Af[x], bj ∈ N≥1

}
.

W.l.o.g., we always assume (bi, ai) 6= (bj , aj) for all i, j ∈ {1, . . . , `} with i 6= j.
We define NPE = NPE[∅], i.e., we have p ∈ NPE if αj ∈ Q for all 1 ≤ j ≤ `.

Example 23. We continue Ex. 18. By omitting the factors JψK,

qw = Jn = 0K · w + Jn 6= 0K · 2 becomes 2,

qz = Jn = 0K · z + Jn 6= 0K · (x− 1) + Jn 6= 0K · 2 · n becomes x− 1 + 2 · n,

and qx = x+ 2 · n, q0 = y · 4n, and q3 = 2
3 −

2
3 · 4

n remain unchanged. Moreover,

q1 = Jn 6= 0K · 12 · w · 4
n becomes 1

2 · w · 4
n and

q2 = Jn > 1K ·
(
− 4

3

)
+ Jn > 1K · 13 · 4

n becomes
(
− 4

3

)
+ 1

3 · 4
n.

12

Thus, qy = q0 + q1 + q2 + q3 becomes

y · 4n + 1
2 · w · 4

n − 4
3 + 1

3 · 4
n + 2

3 −
2
3 · 4

n = 4n ·
(
y − 1

3 + 1
2 · w

)
− 2

3 .

Let σ =
[
w/2, x/x+ 2 · n, y/4n ·

(
y − 1

3 + 1
2 · w

)
− 2

3 , z/x− 1 + 2 · n
]
. Then we

get that Ex. 2 is non-terminating iff there are w, x, y, z ∈ Z, n0 ∈ N such that

(y + z) σ > 0 ∧ (−w − 2 · y + x) σ > 0 ⇐⇒
4n ·

(
y − 1

3 + 1
2 · w

)
− 2

3 + x− 1 + 2 · n > 0 ∧
−2− 2 ·

(
4n ·

(
y − 1

3 + 1
2 · w

)
− 2

3

)
+ x+ 2·n > 0 ⇐⇒

pϕ1 > 0 ∧ pϕ2 > 0

holds for all n > n0 where

pϕ1 = 4n ·
(
y − 1

3 + 1
2 · w

)
+ 2 · n+ x− 5

3 and

pϕ2 = 4n ·
(
2
3 − 2 · y − w

)
+ 2 · n+ x− 2

3 .

Recall that the loop condition ϕ is a conjunction of inequalities of the form
α > 0 where α ∈ Af[x]. Thus, ϕ[x/qnorm] is a conjunction of inequalities p > 0
where p ∈ NPE[x] and we need to decide if there is an instantiation of these in-
equalities that is valid “for large enough n”. To do so, we order the coefficients αj
of the addends αj ·naj · bnj of normalized poly-exponential expressions according
to the addend’s asymptotic growth when increasing n. Lemma 24 shows that
α2 ·na2 · bn2 grows faster than α1 ·na1 · bn1 iff b2 > b1 or both b2 = b1 and a2 > a1.

Lemma 24 (Asymptotic Growth). Let b1, b2 ∈ N≥1 and a1, a2 ∈ N. If
(b2, a2) >lex (b1, a1), then O(na1 ·bn1) (O(na2 ·bn2). Here, >lex is the lexicographic
order, i.e., (b2, a2) >lex (b1, a1) iff b2 > b1 or b2 = b1 ∧ a2 > a1.

Proof. By considering the cases b2 > b1 and b2 = b1 separately, the claim can
easily be deduced from the definition of O.

Definition 25 (Ordering Coefficients). Marked coefficients are of the form
α(b,a) where α ∈ Af[x], b ∈ N≥1, and a ∈ N. We define unmark(α(b,a)) = α and

α
(b2,a2)
2 � α(b1,a1)

1 if (b2, a2) >lex (b1, a1). Let

p =
∑`
j=1 αj · naj · bnj ∈ NPE[x],

where αj 6= 0 for all 1 ≤ j ≤ `. The marked coefficients of p are

coeffs(p) =

{{
0(1,0)

}
, if ` = 0{

α
(bj ,aj)
j

∣∣∣ 0 ≤ j ≤ `
}
, otherwise.

Example 26. In Ex. 23 we saw that the loop from Ex. 2 is non-terminating iff
there are w, x, y, z ∈ Z, n0 ∈ N such that pϕ1 > 0∧ pϕ2 > 0 for all n > n0. We get:

coeffs (pϕ1) =
{(
y − 1

3 + 1
2 · w

)(4,0)
, 2(1,1),

(
x− 5

3

)(1,0)}
coeffs (pϕ2) =

{(
2
3 − 2 · y − w

)(4,0)
, 2(1,1),

(
x− 2

3

)(1,0)}
Now it is easy to see that the asymptotic growth of a normalized poly-

exponential expression is solely determined by its �-maximal addend.

13

Corollary 27 (Maximal Addend Determines Asymptotic Growth). Let
p ∈ NPE and let max�(coeffs(p)) = c(b,a). Then O(p) = O(c · na · bn).

Proof. Clear, as c · na · bn is the asymptotically dominating addend of p.

Note that Cor. 27 would be incorrect for the case c = 0 if we replaced
O(p) = O(c · na · bn) with O(p) = O(na · bn) as O(0) 6= O(1). Building upon
Cor. 27, we now show that, for large n, the sign of a normalized poly-exponential
expression is solely determined by its �-maximal coefficient. Here, we define
sign(c) = −1 if c ∈ Q<0 ∪{−∞}, sign(0) = 0, and sign(c) = 1 if c ∈ Q>0 ∪{∞}.

Lemma 28 (Sign of NPEs). Let p ∈ NPE. Then limn 7→∞ p ∈ Q iff p ∈ Q and
otherwise, limn 7→∞ p ∈ {∞,−∞}. Moreover, we have

sign (limn 7→∞ p) = sign(unmark(max�(coeffs(p)))).

Proof. If p /∈ Q, then the limit of each addend of p is in {−∞,∞} by definition
of NPE. As the asymptotically dominating addend determines limn 7→∞ p and
unmark(max�(coeffs(p))) determines the sign of the asymptotically dominating
addend, the claim follows.

Lemma 29 shows the connection between the limit of a normalized poly-expo-
nential expression p and the question whether p is positive for large enough n.
The latter corresponds to the existence of a witness for eventual non-termination
by Cor. 21 as ϕ[x/qnorm] is a conjunction of inequalities p > 0 where p ∈ NPE[x].

Lemma 29 (Limits and Positivity of NPEs). Let p ∈ NPE. Then

∃n0 ∈ N. ∀n ∈ N>n0
. p > 0 ⇐⇒ limn7→∞ p > 0.

Proof. By case analysis over limn7→∞ p.

Now we show that Cor. 21 allows us to decide eventual non-termination by
examining the coefficients of normalized poly-exponential expressions. As these
coefficients are in Af[x], the required reasoning is decidable.

Lemma 30 (Deciding Eventual Positiveness of NPEs). Validity of

∃c ∈ Zd, n0 ∈ N. ∀n ∈ N>n0
.
∧k
i=1 pi[x/c] > 0 (20)

where p1, . . . , pk ∈ NPE[x] is decidable.

Proof. For any pi with 1 ≤ i ≤ k and any c ∈ Zd, we have pi[x/c] ∈ NPE. Hence:

∃n0 ∈ N. ∀n ∈ N>n0 .
∧k
i=1 pi[x/c] > 0

⇐⇒
∧k
i=1 ∃n0 ∈ N. ∀n ∈ N>n0

. pi[x/c] > 0

⇐⇒
∧k
i=1 limn 7→∞ pi[x/c] > 0 (by Lemma 29)

⇐⇒
∧k
i=1 unmark(max�(coeffs(pi[x/c]))) > 0 (by Lemma 28)

Let p ∈ NPE[x] with coeffs(p) =
{
α
(b1,a1)
1 , . . . , α

(b`,a`)
`

}
where α

(bi,ai)
i � α

(bj ,aj)
j

for all 1 ≤ i < j ≤ `. If p[x/c] = 0 holds, then coeffs(p[x/c]) = {0(1,0)} and

14

thus unmark(max�(coeffs(p[x/c]))) = 0. Otherwise, there is an 1 ≤ j ≤ `
with unmark(max�(coeffs(p[x/c]))) = αj [x/c] 6= 0 and we have αi[x/c] = 0
for all 1 ≤ i ≤ j − 1. Hence, unmark(max�(coeffs(p[x/c]))) > 0 holds iff∨`
j=1

(
αj [x/c] > 0 ∧

∧j−1
i=0 αi[x/c] = 0

)
holds, i.e., iff [x/c] is a model for

max coeff pos(p) =
∨`
j=1

(
αj > 0 ∧

∧j−1
i=0 αi = 0

)
. (21)

Hence by the considerations above, (20) is valid iff

∃c ∈ Zd.
∧k
i=1 max coeff pos(pi)[x/c] (22)

is valid. By multiplying each (in-)equality in (22) with the least common multiple
of all denominators, one obtains a first order formula over the theory of linear
integer arithmetic. It is well known that validity of such formulas is decidable.

Note that (22) is valid iff
∧k
i=1 max coeff pos(pi) is satisfiable. So to implement

our decision procedure, one can use integer programming or SMT solvers to
check satisfiability of

∧k
i=1 max coeff pos(pi). Lemma 30 allows us to prove our

main theorem.

Theorem 31. Termination of triangular loops is decidable.

Proof. By Thm. 8, termination of triangular loops is decidable iff termination
of nnt-loops is decidable. For an nnt-loop (1) we obtain a qnorm ∈ NPE[x]d (see
Thm. 17 and Cor. 21) such that (1) is non-terminating iff

∃c ∈ Zd, n0 ∈ N. ∀n ∈ N>n0
. ϕ[x/qnorm][x/c], (20)

where ϕ is a conjunction of inequalities of the form α > 0, α ∈ Af[x]. Hence,

ϕ[x/qnorm][x/c] =
∧k
i=1 pi[x/c] > 0

where p1, . . . , pk ∈ NPE[x]. Thus, by Lemma 30, validity of (20) is decidable.

The following algorithm summarizes our decision procedure.

Algorithm 4: Deciding Termination of Triangular Loops

Input: a triangular loop (1)
Result: > if (1) terminates, ⊥ otherwise
• apply Def. 3 to (1), i.e.,

ϕ← ϕ ∧ ϕ[x/Ax+ a]
A← A2

a← Aa+ a

• q ← closed form(x,A, a) (cf. Alg. 3)
• compute qnorm as in Cor. 21

• compute ϕ[x/qnorm] =
∧k
i=1 pi > 0

• compute φ =
∧k
i=1 max coeff pos(pi) (cf. (21))

• if φ is satisfiable then return ⊥ else return >

15

Example 32. In Ex. 26 we showed that Ex. 2 is non-terminating iff

∃w, x, y, z ∈ Z, n0 ∈ N. ∀n ∈ N>n0
. pϕ1 > 0 ∧ pϕ2 > 0

is valid. This is the case iff max coeff pos(p1) ∧max coeff pos(p2), i.e.,

y − 1
3 + 1

2 ·w > 0 ∨ 2 > 0 ∧ y − 1
3 + 1

2 ·w = 0 ∨ x− 5
3 > 0 ∧ 2 = 0 ∧ y − 1

3 + 1
2 ·w = 0

∧
2
3 − 2·y − w > 0 ∨ 2 > 0 ∧ 2

3 − 2·y − w = 0 ∨ x− 2
3 > 0 ∧ 2 = 0 ∧ 2

3 − 2·y − w = 0

is satisfiable. This formula is equivalent to 6 · y − 2 + 3 · w = 0 which does not
have any integer solutions. Hence, the loop of Ex. 2 terminates.

Ex. 33 shows that our technique does not yield witnesses for non-termination,
but it only proves the existence of a witness for eventual non-termination. While
such a witness can be transformed into a witness for non-termination by applying
the loop several times, it is unclear how often the loop needs to be applied.

Example 33. Consider the following non-terminating loop:

while x > 0 do
[
x
y

]
←
[
x + y

1

]
(23)

The closed form of x is q = Jn = 0K ·x+Jn 6= 0K ·(x+y+n−1). Replacing x with
qnorm in x > 0 yields x + y + n − 1 > 0. The maximal marked coefficient of
x+ y + n− 1 is 1(1,1). So by Alg. 4, (23) does not terminate if ∃x, y ∈ Z. 1 > 0
is valid. While 1 > 0 is a tautology, (23) terminates if x ≤ 0 or x ≤ −y.

However, the final formula constructed by Alg. 4 precisely describes all wit-
nesses for eventual non-termination.

Lemma 34 (Witnessing Eventual Non-Termination). Let (1) be a trian-
gular loop, let qnorm be the normalized closed form of (2), and let

(ϕ ∧ ϕ[x/Ax+ a]) [x/qnorm] =
∧k
i=1 pi > 0.

Then c ∈ Zd witnesses eventual non-termination of (1) iff [x/c] is a model for∧k
i=1 max coeff pos(pi).

5 Conclusion

We presented a decision procedure for termination of affine integer loops with
triangular update matrices. In this way, we contribute to the ongoing challenge
of proving the 15 years old conjecture by Tiwari [15] that termination of affine
integer loops is decidable. After linear loops [4], loops with at most 4 variables
[14], and loops with diagonalizable update matrices [3, 14], triangular loops are
the fourth important special case where decidability could be proven.

The key idea of our decision procedure is to compute closed forms for the
values of the program variables after a symbolic number of iterations n. While
these closed forms are rather complex, it turns out that reasoning about first-
order formulas over the theory of linear integer arithmetic suffices to analyze
their behavior for large n. This allows us to reduce (non-)termination of tri-
angular loops to integer programming. In future work, we plan to investigate
generalizations of our approach to other classes of integer loops.

16

References

[1] R. Bagnara, A. Zaccagnini, and T. Zolo. The Automatic Solution of Re-
currence Relations. I. Linear Recurrences of Finite Order with Constant
Coefficients. Technical Report. Quaderno 334. Available at http://www.

cs.unipr.it/Publications/. Dipartimento di Matematica, Università
di Parma, Italy, 2003.

[2] A. M. Ben-Amram, S. Genaim, and A. N. Masud. “On the Termination
of Integer Loops”. In: ACM Transactions on Programming Languages and
Systems 34.4 (2012), 16:1–16:24. doi: 10.1145/2400676.2400679.

[3] M. Bozga, R. Iosif, and F. Konecný. “Deciding Conditional Termination”.
In: Logical Methods in Computer Science 10.3 (2014). doi: 10.2168/LMCS-
10(3:8)2014.

[4] M. Braverman. “Termination of Integer Linear Programs”. In: Computer
Aided Verification (CAV ’06), Proceedings. LNCS 4144. 2006, pp. 372–385.
doi: 10.1007/11817963_34.

[5] M. Brockschmidt, B. Cook, S. Ishtiaq, H. Khlaaf, and N. Piterman. “T2:
Temporal Property Verification”. In: Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS ’16), Proceedings. LNCS 9636.
2016, pp. 387–393. doi: 10.1007/978-3-662-49674-9_22.

[6] H.-Y. Chen, C. David, D. Kroening, P. Schrammel, and B. Wachter. “Bit-
Precise Procedure-Modular Termination Analysis”. In: ACM Transactions
on Programming Languages and Systems 40.1 (2018), 1:1–1:38. doi: 10.
1145/3121136.

[7] Y.-F. Chen, M. Heizmann, O. Lengál, Y. Li, M.-H. Tsai, A. Turrini, and L.
Zhang. “Advanced Automata-Based Algorithms for Program Termination
Checking”. In: Programming Language Design and Implementation (PLDI
’18), Proceedings. 2018, pp. 135–150. doi: 10.1145/3192366.3192405.

[8] V. D’Silva and C. Urban. “Conflict-Driven Conditional Termination”. In:
Computer Aided Verification (CAV ’15), Proceedings. LNCS 9207. 2015,
pp. 271–286. doi: 10.1007/978-3-319-21668-3_16.

[9] F. Frohn, M. Naaf, J. Hensel, M. Brockschmidt, and J. Giesl. “Lower
Runtime Bounds for Integer Programs”. In: Automated Reasoning (IJCAR
’16), Proceedings. LNCS 9706. 2016, pp. 550–567. doi: 10.1007/978-3-
319-40229-1_37.

[10] F. Frohn and J. Giesl. “Termination of Triangular Integer Loops is Decid-
able”. In: CoRR abs/1905.08664 (2019). url: https://arxiv.org/abs/
1905.08664.

[11] J. Giesl, C. Aschermann, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs,
J. Hensel, C. Otto, M. Plücker, P. Schneider-Kamp, T. Ströder, S. Swi-
derski, and R. Thiemann. “Analyzing Program Termination and Complex-
ity Automatically with AProVE”. In: Journal of Automated Reasoning 58.1
(2017), pp. 3–31. doi: 10.1007/s10817-016-9388-y.

[12] D. Larraz, A. Oliveras, E. Rodŕıguez-Carbonell, and A. Rubio. “Proving
Termination of Imperative Programs using Max-SMT”. In: Formal Meth-

17

http://www.cs.unipr.it/Publications/
http://www.cs.unipr.it/Publications/
https://doi.org/10.1145/2400676.2400679
https://doi.org/10.2168/LMCS-10(3:8)2014
https://doi.org/10.2168/LMCS-10(3:8)2014
https://doi.org/10.1007/11817963_34
https://doi.org/10.1007/978-3-662-49674-9_22
https://doi.org/10.1145/3121136
https://doi.org/10.1145/3121136
https://doi.org/10.1145/3192366.3192405
https://doi.org/10.1007/978-3-319-21668-3_16
https://doi.org/10.1007/978-3-319-40229-1_37
https://doi.org/10.1007/978-3-319-40229-1_37
https://arxiv.org/abs/1905.08664
https://arxiv.org/abs/1905.08664
https://doi.org/10.1007/s10817-016-9388-y

ods in Computer-Aided Design (FMCAD ’13), Proceedings. 2013, pp. 218–
225. doi: 10.1109/FMCAD.2013.6679413.

[13] T. C. Le, S. Qin, and W.-N. Chin. “Termination and Non-Termination
Specification Inference”. In: Programming Language Design and Imple-
mentation (PLDI ’15), Proceedings. 2015, pp. 489–498. doi: 10.1145/

2737924.2737993.
[14] J. Ouaknine, J. S. Pinto, and J. Worrell. “On Termination of Integer Linear

Loops”. In: Symposium on Discrete Algorithms (SODA ’15), Proceedings.
2015, pp. 957–969. doi: 10.1137/1.9781611973730.65.

[15] A. Tiwari. “Termination of Linear Programs”. In: Computer Aided Ver-
ification (CAV ’04), Proceedings. LNCS 3114. 2004, pp. 70–82. doi: 10.
1007/978-3-540-27813-9_6.

18

https://doi.org/10.1109/FMCAD.2013.6679413
https://doi.org/10.1145/2737924.2737993
https://doi.org/10.1145/2737924.2737993
https://doi.org/10.1137/1.9781611973730.65
https://doi.org/10.1007/978-3-540-27813-9_6
https://doi.org/10.1007/978-3-540-27813-9_6

	Termination of Triangular Integer Loops is Decidable

