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Abstra
t. Semanti
 labelling is a powerful tool for proving termination

of term rewrite systems. The usefulness of the extension to equational

term rewriting des
ribed in Zantema [24℄ is however rather limited. In

this paper we introdu
e a stronger version of equational semanti
al la-

belling, parameterized by three 
hoi
es: (1) the order on the underlying

algebra (partial order vs. quasi-order), (2) the relation between the al-

gebra and the rewrite system (model vs. quasi-model), and (3) the la-

belling of the fun
tion symbols appearing in the equations (forbidden vs.

allowed). We present soundness and 
ompleteness results for the various

instantiations and analyze the relationships between them. Appli
ations

of our equational semanti
 labelling te
hnique in
lude a short proof of the

main result of Ferreira et al. [7℄|the 
orre
tness of a version of dummy

elimination for AC-rewriting whi
h 
ompletely removes the AC-axioms|

and an extension of Zantema's distribution elimination te
hnique [23℄ to

the equational setting.

1 Introdu
tion

This paper is 
on
erned with termination of equational term rewrite systems.

Termination of ordinary term rewrite systems has been extensively studied and

several powerful methods for establishing termination are available (e.g. [1, 4,

21℄). For equational term rewriting mu
h less is known, although in re
ent years

signi�
ant progress has been made with respe
t to AC-termination, i.e., termi-

nation of equational rewrite systems where the set of equations 
onsists of the

asso
iativity and 
ommutativity axioms AC(f) = ff(f(x; y); z) � f(x; f(y; z));

f(x; y) � f(y; x)g for (some of) the binary fun
tion symbols o

urring in the

rewrite rules. An early paper on termination of equational rewriting is Jouan-

naud and Mu~noz [11℄. In that paper suÆ
ient 
onditions are given for redu
ing
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termination of an equational term rewrite system to termination of its underly-

ing term rewrite system. In another early paper (Ben Cherifa and Les
anne [2℄)

a 
hara
terization of the polynomials is given that 
an be used in a polynomial

interpretation proof of AC-termination. In more re
ent papers [12, 19{21℄ syn-

ta
ti
 methods like the well-known re
ursive path order for proving termination

of rewriting are extended to AC-rewriting. Mar
h�e and Urbain [14℄ extended

the powerful dependen
y pair te
hnique of Arts and Giesl [1℄ to AC-rewriting.

In [6, 7℄ two extensions of dummy elimination ([8℄) to equational rewriting are

presented. In [15℄ the type introdu
tion te
hnique of Zantema [23℄ is extended

to equational term rewriting.

In this paper we extend another te
hnique of Zantema to equational term

rewriting. By labelling fun
tion symbols a

ording to the semanti
s of the rewrite

system, semanti
 labelling ([24℄) transforms a rewrite system into another rewrite

system with the same termination behaviour. The aim is to obtain a transformed

rewrite system where termination is easier to establish. The strength of semanti


labelling is amply illustrated in [16, 24℄. Here we present powerful extensions

of semanti
 labelling to equational rewriting and analyze their soundness and


ompleteness. Our equational semanti
 labelling yields a short 
orre
tness proof

of a version of dummy elimination for AC-rewriting. This result of Ferreira et

al. was obtained in [7℄ by 
onsiderably more 
ompli
ated arguments. Another

appli
ation of our te
hnique is the extension of some of the results of Zantema [23℄


on
erning distribution elimination to the AC 
ase.

2 Preliminaries

Familiarity with the basi
s of term rewriting ([3℄) is assumed. An equational

system (ES for short) 
onsists of a signature F and a set E of equations between

terms in T (F ;V). We write s !

E

t if there exist an equation l � r in E ,

a substitution �, and a 
ontext C su
h that s = C[l�℄ and t = C[r�℄. The

symmetri
 
losure of !

E

is denoted by à

E

and the transitive re
exive 
losure

of à

E

by �

E

. A rewrite rule is an equation l � r su
h that l is not a variable

and variables whi
h o

ur in r also o

ur in l. Rewrite rules l � r are written as

l ! r. A term rewrite system (TRS for short) is an ES with the property that

all its equations are rewrite rules. An equational term rewrite system (ETRS for

short) R=E 
onsists of a TRS R and an ES E over the same signature. We write

s!

R=E

t if there exist terms s

0

and t

0

su
h that s �

E

s

0

!

R

t

0

�

E

t. Similar to

ordinary term rewrite systems, an ETRS is 
alled terminating if there does not

exist an in�nite !

R=E

redu
tion.

Let F be a signature and A = (A; ff

A

g

f2F

) an F-algebra equipped with a

quasi-order (i.e., a re
exive and transitive relation) % on its (non-empty) 
ar-

rier A. For any variable assignment � : V ! A we de�ne the term evaluation

[�℄

A

: T (F ;V) ! A indu
tively by [�℄

A

(x) = �(x) and [�℄

A

(f(t

1

; : : : ; t

n

)) =

f

A

([�℄

A

(t

1

); : : : ; [�℄

A

(t

n

)) for x 2 V , f 2 F , and t

1

; : : : ; t

n

2 T (F ;V). If A is


lear from the 
ontext, then we often write [�℄ instead of [�℄

A

. We say that

A is monotone if the algebra operations of A are monotone with respe
t to %

2



in all 
oordinates, i.e., if f 2 F has arity n > 1 then f

A

(a

1

; : : : ; a

i

; : : : ; a

n

) %

f

A

(a

1

; : : : ; b; : : : ; a

n

) for all a

1

; : : : ; a

n

; b 2 A and i 2 f1; : : : ; ng with a

i

% b.

An ETRS R=E over a signature F is 
ompatible with a monotone F-algebra

(A;%) if l %

A

r for every rewrite rule l ! r 2 R and l �

A

r for every equation

l � r 2 E . Here the relation %

A

is de�ned by s %

A

t if [�℄

A

(s) % [�℄

A

(t) for

every assignment � and �

A

is the equivalen
e relation indu
ed by %

A

. If R=E

and (A;%) are 
ompatible, we also say that (A;%) is a quasi-model of R=E . We


all (A;%) a model of R=E if l �

A

r for all l ! r 2 R and l � r 2 E .

A TRS R is pre
eden
e terminating if there exists a well-founded order = on

its signature F su
h that root(l) = f for every rule l! r 2 R and every fun
tion

symbol f o

urring in r. Pre
eden
e terminating TRSs are terminating ([16℄).

The next lemma states that this remains true in the presen
e of AC-axioms.

Lemma 1. Let R=E be an ETRS over a signature F su
h that E =

S

f2G

AC(f)

for some subset G of F . If R is pre
eden
e terminating then R=E is terminating.

Proof. By de�nition there is a well-founded order = on F su
h that root(l) = f

for every rule l ! r 2 R and every fun
tion symbol f o

urring in r. Any

AC-
ompatible re
ursive path order indu
ed by = that is de�ned on terms with

variables (e.g. [13, 19℄) orients the rules of R from left to right. (The 
ompli
ated


ase in whi
h two terms with equal root symbols in G have to be 
ompared never

arises due to the assumption on =.) We 
on
lude that R=E is terminating. ut

3 Semanti
 Labelling for Equational Rewriting

In this se
tion we present our equational semanti
 labelling framework by appro-

priately extending the de�nitions of Zantema [24℄ for ordinary semanti
 labelling.

De�nition 1. Let F be a signature and A an F-algebra. A labelling L for F


onsists of sets of labels L

f

� A for every f 2 F . The labelled signature F

lab


onsists of n-ary fun
tion symbols f

a

for every n-ary fun
tion symbol f 2 F

and label a 2 L

f

together with all fun
tion symbols f 2 F su
h that L

f

= ?.

A labelling ` for A 
onsists of a labelling L for the signature F together with

mappings `

f

: A

n

! L

f

for every n-ary fun
tion symbol f 2 F with L

f

6= ?. If

A is equipped with a quasi-order % then the labelling is said to be monotone if

its labelling fun
tions `

f

are monotone (with respe
t to %) in all arguments.

De�nition 2. Let R=E be an ETRS over a signature F , (A;%) an F-algebra,

and ` a labelling for A. For every assignment � we indu
tively de�ne a labelling

fun
tion lab

�

from T (F ;V) to T (F

lab

;V): lab

�

(t) = t if t 2 V and lab

�

(t) =

f

`

f

([�℄(t

1

);:::;[�℄(t

n

))

(lab

�

(t

1

); : : : ; lab

�

(t

n

)) if t = f(t

1

; : : : ; t

n

). We de�ne TRSs

R

lab

, De
(F ;�) and ESs E

lab

, Eq(F ;�) over the signature F

lab

as follows:

R

lab

= f lab

�

(l)! lab

�

(r) j l! r 2 R and � : V ! Ag;

E

lab

= f lab

�

(l) � lab

�

(r) j l � r 2 E and � : V ! Ag;

De
(F ;�) = ff

a

(x

1

; : : : ; x

n

)! f

b

(x

1

; : : : ; x

n

) j f 2 F ; a; b 2 L

f

; a � bg;

Eq(F ;�) = ff

a

(x

1

; : : : ; x

n

) � f

b

(x

1

; : : : ; x

n

) j f 2 F ; a; b 2 L

f

; a � b; a 6= bg:

3



The purpose of the 
ondition a 6= b in the de�nition of Eq(F ;�) is to ex
lude

trivial equations. When the signature F and the quasi-order % 
an be inferred

from the 
ontext we just write De
 and Eq. We write R for the union of R

lab

and De
 and E for the union of E

lab

and Eq.

The next theorem states our �rst equational semanti
 labelling result.

Theorem 1. Let R=E be an ETRS over a signature F , (A;%) a monotone F-

algebra, and ` a monotone labelling for A. If A is a quasi-model of R=E and

R=E is terminating then R=E is terminating.

Proof. We show that for all terms s; t 2 T (F ;V) and assignments � we have

1. if s!

R

t then lab

�

(s) �

E

�

+

�!

R

lab

�

(t),

2. if s à

E

t then lab

�

(s) �

E

lab

�

(t).

Suppose s = C[l�℄ and t = C[r�℄ for some rewrite rule l! r 2 R, 
ontext C, and

substitution �. We show (1) by indu
tion on C. If C = � then lab

�

(s) = lab

�

(l�)

and lab

�

(t) = lab

�

(r�). De�ne the assignment � = [�℄

A

Æ � and the substitu-

tion � = lab

�

Æ � (i.e., � is applied �rst). An easy indu
tion proof (e.g. [23,

Lemma 2℄) reveals that lab

�

(l�) = lab

�

(l)� and lab

�

(r�) = lab

�

(r)� . By de�-

nition lab

�

(l)! lab

�

(r) 2 R

lab

and hen
e lab

�

(s) = lab

�

(l)� !

R

lab

lab

�

(r)� =

lab

�

(t). For the indu
tion step, let C = f(u

1

; : : : ; C

0

; : : : ; u

n

). The indu
tion hy-

pothesis yields lab

�

(C

0

[l�℄) �

E

�

+

�!

R

lab

�

(C

0

[r�℄). Be
ause A is a quasi-model

of R=E and C

0

[l�℄!

R

C

0

[r�℄, we have [�℄

A

(C

0

[l�℄) % [�℄

A

(C

0

[r�℄). Let

a = `

f

([�℄

A

(u

1

); : : : ; [�℄

A

(C

0

[l�℄); : : : ; [�℄

A

(u

n

))

and

b = `

f

([�℄

A

(u

1

); : : : ; [�℄

A

(C

0

[r�℄); : : : ; [�℄

A

(u

n

)):

Monotoni
ity of the labelling fun
tion `

f

yields a % b. We distinguish two 
ases.

If a � b then

lab

�

(s) �

E

�

+

�!

R

f

a

(lab

�

(u

1

); : : : ; lab

�

(C

0

[r�℄); : : : ; lab

�

(u

n

))

!

De


f

b

(lab

�

(u

1

); : : : ; lab

�

(C

0

[r�℄); : : : ; lab

�

(u

n

))

= lab

�

(t):

If a � b then

lab

�

(s) à

=

Eq

f

b

(lab

�

(u

1

); : : : ; lab

�

(C

0

[l�℄); : : : ; lab

�

(u

n

))

�

E

�

+

�!

R

f

b

(lab

�

(u

1

); : : : ; lab

�

(C

0

[r�℄); : : : ; lab

�

(u

n

))

= lab

�

(t):

Here à

=

Eq

denotes à

Eq

[ =. Sin
e �

E

�

+

�!

R

� !

De


� �

E

�

+

�!

R

and à

=

Eq

� �

E

�

+

�!

R

� �

E

�

+

�!

R

, in both 
ases we obtain the desired lab

�

(s) �

E

�

+

�!

R

lab

�

(t).

The proof of (2) follows along the same lines. In the indu
tion step we have

[�℄

A

(C

0

[l�℄) � [�℄

A

(C

0

[r�℄). Monotoni
ity of `

f

yields both a % b and b % a.

Hen
e a � b and thus

lab

�

(s) = f

a

(lab

�

(u

1

); : : : ; lab

�

(C

0

[l�℄); : : : ; lab

�

(u

n

))

à

=

Eq

f

b

(lab

�

(u

1

); : : : ; lab

�

(C

0

[l�℄); : : : ; lab

�

(u

n

))

�

E

f

b

(lab

�

(u

1

); : : : ; lab

�

(C

0

[r�℄); : : : ; lab

�

(u

n

))

= lab

�

(t)

4



by the de�nition of Eq and the indu
tion hypothesis.

From (1) and (2) it follows that any in�nite R=E-rewrite sequen
e gives rise

to an in�nite R=E-rewrite sequen
e. ut

The 
onverse of the above theorem does not hold. Consider the terminating

ETRS R=E with R = ? and E = ff(a) � ag. Let A be the algebra over the


arrier f0; 1g with 1 � 0 and operations f

A

(x) = x for all x 2 f0; 1g and a

A

= 1.

Note that A is a (quasi-)model of R=E . By letting `

f

be the identity fun
tion

and by 
hoosing L

a

= ?, we obtain the labelled ETRS R=E with R

lab

= ?,

De
 = ff

1

(x) ! f

0

(x)g, E

lab

= ff

1

(a) � ag, and Eq = ?. The ETRS R=E is not

terminating: a �

E

lab

f

1

(a) !

De


f

0

(a) �

E

lab

f

0

(f

1

(a)) !

De


� � � Nevertheless, in

this example there are no in�nite R=E-rewrite sequen
es that 
ontain in�nitely

many R

lab

=E-steps, whi
h is known as the relative termination (Geser [10℄) of

R

lab

=E with respe
t to De
. It is not diÆ
ult to show that under the assumptions

of Theorem 1 termination of R=E is equivalent to relative termination of R

lab

=E

with respe
t to De
.

Zantema [24℄ showed the ne
essity of the in
lusion of De
 in R for the 
or-

re
tness of Theorem 1 (with E = ?) by means of the TRS R = ff(g(x)) !

g(g(f(f(x))))g, the algebra A over the 
arrier f0; 1g with operations f

A

(x) = 1

and g

A

(x) = 0 for all x 2 f0; 1g, and the order 1 � 0. By labelling f with the value

of its argument, we obtain the TRS R

lab

= ff

0

(g(x)) ! g(g(f

1

(f

0

(x)))); f

0

(g(x))

! g(g(f

1

(f

1

(x))))g whi
h is 
ompatible with the re
ursive path order with pre
e-

den
e f

0

= f

1

; g. However, R is not terminating: f(f(g(x))) ! f(g(g(f(f(x))))) !

g(g(f(f(g(f(f(x))))))) ! � � �

The in
lusion of Eq in E is also essential for the 
orre
tness of Theorem 1.

Consider the ETRSR=E with R = ff(a; b; x)! f(x; x; x); g(x; y) ! x; g(x; y)!

yg and E = ?. Let A be the algebra over the 
arrier f0; 1g with 0 � 1 and

operations f

A

(x; y; z) = 1, g

A

(x; y) = 0, a

A

= 0, and b

A

= 1. We label fun
tion

symbol f as follows: `

f

(x; y; z) = 0 if x = y and `

f

(x; y; z) = 1 if x 6= y. Note

that A is a quasi-model for R=E and `

f

is trivially monotone. We have R

lab

=

ff

1

(a; b; x) ! f

0

(x; x; x); g(x; y) ! x; g(x; y) ! yg, De
 = ?, and E

lab

= ?.

Termination of R is easily shown. It is well-known (Toyama [22℄) that R is not

terminating. Note that in this example Eq = ff

0

(x; y; z) � f

1

(x; y; z)g and hen
e

R=E is not terminating.

Finally, both monotoni
ity requirements are essential. Consider the TRSR =

ff(g(a)) ! f(g(b)); b ! ag. Let A be the algebra over the 
arrier f0; 1g with

1 � 0 and operations f

A

(x) = 0, g

A

(x) = 1 � x, a

A

= 0, and b

A

= 1. We

have l %

A

r for both rules l ! r 2 R. If `

f

(x) = x then we obtain the TRS

R = ff

1

(g(a)) ! f

0

(g(b)); b ! a; f

1

(x) ! f

0

(x)g whi
h is 
ompatible with the

re
ursive path order with pre
eden
e f

1

= f

0

; g and f

1

= b = a. However, R is

not terminating. Note that g

A

is not monotone. Next 
onsider the algebra B

over the 
arrier f0; 1g with 1 � 0 and operations f

B

(x) = 0, g

B

(x) = x, a

B

= 0,

and b

B

= 1. If `

f

(x) = 1 � x then we obtain the same TRS R as before. Note

that now `

f

is not monotone.

If the algebra A is a model of the ETRS R=E then (similar to ordinary

semanti
 labelling [24℄) we 
an dispense with De
. Moreover, in this 
ase the

5




onverse of Theorem 1 also holds. This is expressed in the next theorem.

Theorem 2. Let R=E be an ETRS over a signature F , (A;%) a monotone

F-algebra, and ` a monotone labelling for A. If A is a model of R=E then ter-

mination of R

lab

=E is equivalent to termination of R=E.

Proof. The following statements are obtained by a straightforward modi�
ation

of the proof of Theorem 1:

1. if s!

R

t then lab

�

(s) �

E

� !

R

lab

lab

�

(t),

2. if s à

E

t then lab

�

(s) �

E

lab

�

(t).

Note that sin
e A is a model we have [�℄

A

(C

0

[l�℄) � [�℄

A

(C

0

[r�℄) and hen
e

a � b in the indu
tion step. This explains why there is no need for De
. So

termination of R

lab

=E implies termination of R=E . The 
onverse also holds;

eliminating all labels in an in�nite R

lab

=E-rewrite sequen
e yields an in�nite

R=E-rewrite sequen
e (be
ause there are in�nitely many R

lab

-steps). ut

If the quasi-model A in Theorem 1 is equipped with a partial order (i.e., a

re
exive, transitive, and anti-symmetri
 relation) � instead of a quasi-order %

then we 
an dispense with Eq.

Theorem 3. Let R=E be an ETRS over a signature F , (A;�) a monotone F-

algebra, and ` a monotone labelling for A. If A is a quasi-model of R=E and

R=E

lab

is terminating then R=E is terminating.

Proof. The proof of Theorem 1 applies; be
ause the equivalen
e asso
iated with

a partial order is the identity relation we have Eq = ?. ut

The �rst example in this se
tion shows that the 
onverse of Theorem 3 does

not hold. Combining the pre
eding two theorems yields the following result.

Corollary 1. Let R=E be an ETRS over a signature F , (A;�) a monotone

F-algebra, and ` a monotone labelling for A. If A is a model of R=E then ter-

mination of R

lab

=E

lab

is equivalent to termination of R=E. ut

Note that if the pair (A;�) is a model of R=E then so is (A;=). Sin
e in this


ase monotoni
ity of both the algebra operations and the labelling fun
tions is

trivially satis�ed, we 
an rephrase the above 
orollary as follows.

Corollary 2. Let R=E be an ETRS over a signature F , A an F-algebra, and

` a labelling for A. If A is a model of R=E then termination of R

lab

=E

lab

is

equivalent to termination of R=E. ut

Note that the unspe
i�ed quasi-order is assumed to be the identity relation,

so model here means l =

A

r for all rules l ! r 2 R and all equations l � r 2 E .

Let us 
on
lude this se
tion by illustrating the power of equational semanti


labelling on a 
on
rete example. Consider the ETRS R=E with R = fx � 0 !

x; s(x) � s(y) ! x � y; 0 � s(y) ! 0; s(x) � s(y) ! s((x � y) � s(y))g and

6



E = f(x� y)� z � (x� z)� yg. Let A be the algebra with 
arrier N, standard

order >, and operations 0

A

= 0, s

A

(x) = x+ 1, and x�

A

y = x�

A

y = x. This

algebra is a quasi-model of R=E . If `

�

(x; y) = x then we have R

lab

= fx� 0 !

x; s(x) � s(y) ! x � y; 0�

0

s(y) ! 0g [ fs(x)�

n+1

s(y) ! s((x � y)�

n

s(y)) j

n > 0g, De
 = fx �

m

y ! x �

n

y j m > ng, and E

lab

= f(x �

n

y) �

n

z �

(x �

n

z) �

n

y j n > 0g. Termination of R=E

lab


an be shown by the following

polynomial interpretation: [0℄ = 0, [s℄(x) = x + 1, x [�℄ y = x + y + 1, and

x [�

n

℄ y = x + ny + n + y for all n > 0. A

ording to Theorem 3 the original

ETRS R=E is terminating as well. Note that a dire
t termination proof with

standard te
hniques is impossible sin
e an instan
e of the last rule of R is self-

embedding. In order to make this rule non-self-embedding it is essential that we

label �. This explains why Zantema's version of equational semanti
 labelling|

presented in the next se
tion|will fail here.

4 Semanti
 Labelling Cube

The original version of equational semanti
 labelling des
ribed in Zantema [24℄

is presented below.

Theorem 4 ([24℄). Let R=E be an ETRS over a signature F , A an F-algebra,

and ` a labelling for A su
h that fun
tion symbols o

urring in E are unlabelled.

If A is a model of R=E then termination of R

lab

=E is equivalent to termination

of R=E. ut

In [24℄ it is remarked that the restri
tion that symbols in E are unlabelled is

essential. Corollary 2, of whi
h Theorem 4 is an immediate 
onsequen
e, shows

that this is not true. Zantema provides the non-terminating ETRS R=E with

R = f(x + y) + z ! x + (y + z)g and E = fx + y � y + xg, and the model A


onsisting of the positive integers N

+

with the fun
tion symbol + interpreted as

addition. By labelling + with the value of its �rst argument, we obtain R

lab

=

f(x+

i

y) +

i+j

z ! x+

i

(y +

j

z) j i; j 2 N

+

g and E

lab

= fx+

i

y � y +

j

x j i; j 2

N

+

g. A

ording to Corollary 2 the labelled ETRS R

lab

=E

lab

is not terminating

and indeed there are in�nite rewrite sequen
es, e.g.

(x+

1

x) +

2

x! x+

1

(x+

1

x) � (x+

1

x) +

2

x! � � �

In [24℄ it is remarked that R

lab

=E

0

with E

0

= fx +

i

y ! y +

i

x j i 2 N

+

g is

terminating, sin
e it is 
ompatible with the polynomial interpretation in whi
h

the fun
tion symbol +

i

is interpreted as addition plus i, for every i 2 N

+

.

However, E

0

is not a labelled version of E .

The various versions of equational semanti
 labelling presented above di�er

in three 
hoi
es: (1) the order on the algebra A (partial order vs. quasi-order),

(2) the relation between the algebra A and the ETRS R=E (model vs. quasi-

model), and (3) the labelling of the fun
tion symbols appearing in E (forbidden

vs. allowed). This naturally gives rise to the 
ube of eight versions of equational

semanti
 labelling possibilities shown in Figure 1. Every possibility is given as

7



a string of three 
hoi
es, ea
h of them indi
ated by �=+ and ordered as above,

so �++ denotes the version of equational semanti
 labelling with partial order,

quasi-model, and (possibly) labelled fun
tion symbols in E . All eight versions of

equational semanti
 labelling are sound, i.e., termination of the labelled ETRS

implies termination of the original ETRS. The versions in whi
h termination

of the labelled ETRS is equivalent to termination of the original ETRS are

indi
ated by a surrounding box.

�++ +++

��+

�
�

�
�

�
�

�

+�+

�
�

�
�

�
�

�

�+� ++�

���

�
�

�
�

�
�

�

+��

�
�

�
�

�
�

�

+++ Theorem 1

+�+ Theorem 2

�++ Theorem 3

��+ Corollary 1 (2)

��� Theorem 4

Fig. 1. Equational semanti
 labelling 
ube.

We present one more version of equational semanti
 labelling, stating that

the impli
ation of Theorem 1 be
omes an equivalen
e in the spe
ial 
ase that

E is variable preserving (i.e., every equation l � r 2 E has the property that l

and r have the same number of o

urren
es of ea
h variable), the (stri
t part

of the) quasi-order % is well founded, and fun
tion symbols o

urring in E are

unlabelled. In other words, if E is variable preserving (whi
h in parti
ular is true

for AC) and the quasi-order % is well founded then we 
an put a box around

++� in Figure 1. Before presenting the proof, we show the ne
essity of the

three 
onditions. First 
onsider the ETRS R=E with R = ? and E = ff(x; x) �

xg where the signature 
ontains a unary fun
tion symbol g in addition to the

fun
tion symbol f. Let A be the algebra over the 
arrier f0; 1g with 1 � 0 and

operations f

A

(x; y) = x and g

A

(x) = x. Note that A is a (quasi-)model of R=E .

By labelling g with the value of its argument, we obtain the ETRS R=E with

R = De
 = fg

1

(x)! g

0

(x)g and E = E . The ETRSR=E is trivially terminating,

but R=E admits the following in�nite rewrite sequen
e:

g

1

(x) � f(g

1

(x); g

1

(x))! f(g

0

(x); g

1

(x)) � f(g

0

(x); f(g

1

(x); g

1

(x))) ! � � �

Note that E is not variable preserving. The ne
essity of the well-foundedness of

the quasi-order % follows by 
onsidering the terminating TRS R=E with R =

ff(x)! g(x)g and E = ?, the algebra A over the 
arrier Z with standard order

> and operations f

A

(x) = g

A

(x) = x, and the labelling `

f

(x) = x. In this 
ase

we have R

lab

= ff

i

(x) ! g(x) j i 2 Zg and De
 = ff

i

(x) ! f

j

(x) j i > jg, so R

8



la
ks termination. Finally, the requirement that fun
tion symbols o

urring in

E must be unlabelled is justi�ed by the 
ounterexample following Theorem 1.

Theorem 5. Let R=E be an ETRS over a signature F with E variable pre-

serving, (A;%) a monotone F-algebra with % well-founded, and ` a monotone

labelling for (A;%) su
h that fun
tion symbols o

urring in E are unlabelled. If

A is a quasi-model of R=E then termination of R=E is equivalent to termination

of R=E.

Proof. First note that R=E = (R

lab

[ De
)=(E [ Eq) be
ause fun
tion symbols

o

urring in E are unlabelled. The \if" part is a 
onsequen
e of Theorem 1. For

the \only if" part we show that the ETRS De
=(E [ Eq) is terminating. For a

term t 2 T (F

lab

;V) let �(t) denote the multiset of all labels o

urring in t. The

following fa
ts are not diÆ
ult to show:

{ if s!

De


t then �(s) �

mul

�(t),

{ if s à

Eq

t then �(s) �

mul

�(t),

{ if s à

E

t then �(s) = �(t).

Here �

mul

denotes the multiset extension of � ([5℄) and �

mul

denotes the multi-

set extension of the equivalen
e relation � (whi
h 
oin
ides with the equivalen
e

relation asso
iated with the multiset extension %

mul

of %, see e.g. [17, De�ni-

tion 5.6℄). For the validity of the last observation it is essential that E is variable

preserving and that fun
tion symbols o

urring in E are unlabelled. From these

fa
ts and the well-foundedness of%

mul

we obtain the termination of De
=(E[Eq).

Now, if R=E is not terminating then it admits an in�nite rewrite sequen
e whi
h


ontains in�nitely many R

lab

-steps. Erasing all labels yields an in�nite R=E-

rewrite sequen
e, 
ontradi
ting the assumption that R=E is terminating. ut

5 Dummy Elimination for Equational Rewriting

Ferreira, Kesner, and Puel [7℄ extended dummy elimination [8℄ to AC-rewriting

by 
ompletely removing the AC-axioms. We show that their result is easily ob-

tained in our equational semanti
 labelling framework. Our de�nition of

dummy(R) is di�erent from the one in [7, 8℄, but easily seen to be equivalent.

De�nition 3. Let R be a TRS over a signature F . Let e be a distinguished

fun
tion symbol in F of arity m > 1 and let � be a fresh 
onstant. We write F

�

for (F nfeg)[f�g. The mapping 
ap: T (F ;V)! T (F

�

;V) is indu
tively de�ned

as follows: 
ap(t) = t if t 2 V, 
ap(e(t

1

; : : : ; t

m

)) = �, and 
ap(f(t

1

; : : : ; t

n

)) =

f(
ap(t

1

); : : : ; 
ap(t

n

)) if f 6= e. The mapping dummy assigns to every term in

T (F ;V) a subset of T (F

�

;V):

dummy(t) = f
ap(t)g [ f
ap(s) j s is an argument of an e symbol in tg:

Finally, we de�ne

dummy(R) = f
ap(l)! r

0

j l ! r 2 R and r

0

2 dummy(r)g:

9



Note that dummy(R) may 
ontain invalid rewrite rules be
ause 
ap(l) 
an

have fewer variables than l. In that 
ase, however, dummy(R) is not terminating

and the results presented below hold va
uously. Ferreira and Zantema [8℄ showed

that if dummy(R) is terminating then R is terminating. A simple proof of this

fa
t using self-labelling, a spe
ial 
ase of semanti
 labelling, 
an be found in

Middeldorp et al. [16℄. Two extensions of this result to equational rewriting are

known. In [6℄ Ferreira showed that termination of R=E follows from termination

of dummy(R)=E provided that E is variable preserving and does not 
ontain the

fun
tion symbol e. The extension presented in Ferreira et al. [7℄ is stated below.

Theorem 6. Let R=E be an ETRS with E = AC(e). If dummy(R) is terminat-

ing then R=E is terminating.

In other words, AC-termination ofR is redu
ed to termination of dummy(R).

Proof. We turn the set of terms T (F

�

;V) into an F-algebra A by de�ning

e

A

(t

1

; : : : ; t

n

) = � and f

A

(t

1

; : : : ; t

n

) = f(t

1

; : : : ; t

n

) for all other fun
tion sym-

bols f 2 F and terms t

1

; : : : ; t

n

2 T (F

�

;V). We equip A with the (well-founded)

partial order �=!

�

dummy(R)

. One 
an verify that A is monotone with respe
t to

�. An easy indu
tion proof shows that [�℄(t) = 
ap(t)� for all terms t 2 T (F ;V).

We show that A is a quasi-model of R=E . Let � : V ! T (F

�

;V) be an arbitrary

assignment and let l ! r 2 R. We have [�℄(l) = 
ap(l)� and [�℄(r) = 
ap(r)� by

the above property. The rewrite rule 
ap(l)! 
ap(r) belongs to dummy(R) by

de�nition and hen
e [�℄(l) � [�℄(r). For the two equations l � r 2 E we 
learly

have [�℄(l) = � = [�℄(r). Hen
e A is a quasi-model of R=E .

De�ne the (monotone) labelling ` as follows: `

f

= f

A

for all fun
tion symbols

f 2 F . A

ording to Theorem 3 it is suÆ
ient to show thatR=E

lab

is terminating.

De�ne a pre
eden
e = on F

lab

as follows: f

s

= g

t

if and only if s (� [ B)

+

t,

where B is the proper superterm relation. Note that = inherits well-foundedness

from �. We 
laim that R is pre
eden
e terminating with respe
t to =. Rewrite

rules in De
 are of the form f

s

(x

1

; : : : ; x

n

)! f

t

(x

1

; : : : ; x

n

) with s � t and thus

f

s

= f

t

. For rules in R

lab

we make use of the following property:

if t E r then 
ap(t) E r

0

for some term r

0

2 dummy(r). (�)

Now let l ! r 2 R

lab

. By de�nition there exist an assignment � : V ! T (F

�

;V)

and a rewrite rule l

0

! r

0

2 R su
h that l = lab

�

(l

0

) and r = lab

�

(r

0

). The

label of the root symbol of l is [�℄(l

0

) = 
ap(l

0

)�. Let s be the label of a fun
tion

symbol in r. By 
onstru
tion s = [�℄(t) = 
ap(t)� for some subterm t of r

0

.

A

ording to (1) we have 
ap(t) E r

00

for some r

00

2 dummy(r

0

). By de�nition


ap(l

0

) ! r

00

2 dummy(R) and hen
e 
ap(l

0

)� � r

00

� D 
ap(t)� = s. Conse-

quently, root(l) = f for every fun
tion symbol f in r. This 
ompletes the proof of

pre
eden
e termination of R. Sin
e E

lab

= AC(e

�

), termination of R=E

lab

follows

from Lemma 1. ut

The reader is invited to 
ompare our proof with the one in [7℄. For the above

simple proof we indeed needed our new powerful version of equational semanti


labelling, i.e., Zantema's restri
ted version (Theorem 4) would not have worked.
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One may wonder whether the soundness proof of the version of equational

dummy elimination presented in [6℄ 
an also be simpli�ed by equational semanti


labelling. This turns out not to be the 
ase. One reason is that fun
tion symbols

of E that also appear in R will be labelled, 
ausing E

lab

(and E) to be essentially

di�erent from E . In parti
ular, if E 
onsists of AC-axioms then E

lab


ontains

non-AC axioms and hen
e AC-
ompatible orders are not appli
able to R=E .

Moreover, Lemma 1 does not extend to arbitrary ESs E and it is un
lear how to


hange the de�nition of pre
eden
e termination su
h that it does.

Re
ently, Nakamura and Toyama [18℄ improved dummy elimination by re-

stri
ting r

0

in the de�nition of dummy(R) to terms in (dummy(r) n T (F

C

;V))[

f
ap(r)g with F

C

denoting the 
onstru
tors of R. In other words, elements

of dummy(r) n f
ap(r)g that do not 
ontain a de�ned fun
tion symbol need

not be 
onsidered when forming the right-hand sides of the rewrite rules in

dummy(R). For example, the TRS R = ff(a) ! f(b); b ! e(a)g is trans-

formed into the non-terminating TRS dummy(R) = ff(a)! f(b); b ! �; b! ag

by dummy elimination whereas the above improvement yields the terminating

TRS ff(a) ! f(b); b ! �g. Aoto

1

suggested that a further improvement is

possible by stripping o� the outermost 
onstru
tor 
ontext of every element in

dummy(r) n f
ap(r)g. For R = ff(a(x))! f(b); b ! e(a(f(
)))g this would yield

the terminating TRS ff(a(x))! f(b); b ! �; b! f(
)g whereas the transforma-

tion of [18℄ produ
es dummy(R) = ff(a(x)) ! f(b); b ! �; b ! a(f(
))g, whi
h

is 
learly not terminating.

These ideas are easily in
orporated in our de�nition of dummy elimination.

Here F

D

= F n F

C

denotes the de�ned symbols of R.

De�nition 4. Let R be a TRS over a signature F . The mapping dummy

0

as-

signs to every term in T (F ;V) a subset of T (F

�

;V), as follows:

dummy

0

(t) = 
ap(t) [

�


ap(s)

�

�

�

�

s is a maximal subterm of an argument

of e in t su
h that root(s) 2 F

D

n feg

�

:

We de�ne

dummy

0

(R) = f
ap(l)! r

0

j l ! r 2 R and r

0

2 dummy

0

(r)g:

Theorem 7. Let R=E be an ETRS with E = AC(e). If dummy

0

(R) is termi-

nating then R=E is terminating.

Proof. Very similar to the proof of Theorem 6. The di�eren
e is that we do not

label the fun
tion symbols in F

C

. In order to obtain pre
eden
e termination of

R we extend the pre
eden
e = on F

lab

by f

t

= g for every f 2 F

D

, t 2 T (F

�

;V),

and g 2 F

C

. In addition, (�) is repla
ed by the following property:

if t E r and root(t) 2 F

D

then 
ap(t) E r

0

for some term r

0

2 dummy

0

(r).

Taking these 
hanges into 
onsideration, termination of R=E is obtained as in

the proof of Theorem 6. ut

1

Remark made at the 14th Japanese Term Rewriting Meeting, Nara Institute of S
i-

en
e and Te
hnology, Mar
h 15{16, 1999.
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6 Distribution Elimination for Equational Rewriting

Next we show that our results on equational semanti
 labelling 
an also be used

to extend the distribution elimination transformation of [23℄ to the AC 
ase.

Again, for that purpose we need our powerful version of equational semanti


labelling, i.e., Theorem 4 does not suÆ
e. Let R be a TRS over a signature F

and let e 2 F be a designated fun
tion symbol whose arity is at least one. A

rewrite rule l ! r 2 R is 
alled a distribution rule for e if l = C[e(x

1

; : : : ; x

m

)℄

and r = e(C[x

1

℄; : : : ; C[x

m

℄) for some non-empty 
ontext C in whi
h e does

not o

ur and pairwise di�erent variables x

1

; : : : ; x

m

. Distribution elimination

is a te
hnique that transforms R by eliminating all distribution rules for e and

removing the symbol e from the right-hand sides of the other rules. Let F

distr

=

F n feg. We indu
tively de�ne a mapping distr that assigns to every term in

T (F ;V) a non-empty subset of T (F

distr

;V), as follows:

distr(t) =

8

>

>

>

<

>

>

>

:

ftg if t 2 V;

m

[

i=1

distr(t

i

) if t = e(t

1

; : : : ; t

m

);

ff(s

1

; : : : ; s

n

) j s

i

2 distr(t

i

)g if t = f(t

1

; : : : ; t

n

) with f 6= e:

It is extended to rewrite systems as follows:

distr(R) = fl! r

0

j l! r 2 R is no distribution rule for e and r

0

2 distr(r)g:

A rewrite system is 
alled right-linear if no right-hand side of a rule 
ontains

multiple o

urren
es of the same variable. The following theorem extends Zan-

tema's soundness result for distribution elimination to the AC 
ase.

Theorem 8. Let R=E be an ETRS with E = AC(e) su
h that e does not o

ur

in the left-hand sides of rewrite rules of R that are not distribution rules for e.

If distr(R) is terminating and right-linear then R=E is terminating.

Proof. We turn the set of �nite non-empty multisets over T (F

distr

;V) into an

F-algebra A by de�ning

f

A

(M

1

; : : : ;M

n

) =

(

ff(t

1

; : : : ; t

n

) j t

i

2M

i

for all 1 6 i 6 ng if f 6= e;

M

1

[M

2

if f = e

for all fun
tion symbols f 2 F and �nite non-empty multisets M

1

; : : : ;M

n

of

terms in T (F

distr

;V). (Note that n = 2 if f = e.) We equip A with the (well-

founded) partial order �� = �

=

mul

where � = !

+

distr(R)

. One easily shows that

(A;��) is a monotone F-algebra. It 
an be shown (
f. the nontrivial proof of

Theorem 12 in [23℄) that

1. l =

A

r for every distribution rule l! r 2 R,

2. l ��

A

r for every other rule l ! r 2 R.
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For (2) we need the right-linearity assumption of distr(R). From the de�nition of

e

A

we obtain e(x; y) =

A

e(y; x) and e(e(x; y); z) =

A

e(x; e(y; z)). Hen
e (A;��)

is a quasi-model of R=E .

De�ne the (monotone) labelling ` as follows: `

f

= f

A

for all fun
tion symbols

f 6= e. A

ording to Theorem 3 it is suÆ
ient to show that R=E

lab

is terminating.

De�ne the pre
eden
e = on F

lab

as follows: f = g if and only if either f 6= e

and g = e or f = f

0

M

and g = g

0

N

with M ((� [ B)

+

)

mul

N . Note that = is well

founded. We 
laim that R is pre
eden
e terminating with respe
t to =. Rewrite

rules in De
 are of the form f

M

(x

1

; : : : ; x

n

) ! f

N

(x

1

; : : : ; x

n

) with M �

mul

N

and thus f

M

= f

N

. For rules in R

lab

we make use of the following property,

whi
h is not diÆ
ult to prove:

3. if t C r then [�℄(r) B

mul

[�℄(t) for every assignment �.

Now let l ! r 2 R

lab

. By de�nition there is an assignment � : V ! T (F

distr

;V)

and a rewrite rule l

0

! r

0

2 R su
h that l = lab

�

(l

0

) and r = lab

�

(r

0

). Sin
e

root(l

0

) 6= e, the label of the root symbol of l is [�℄(l

0

). If e o

urs in r

0

then

root(l) = e by de�nition. Let M be the label of a fun
tion symbol in r. By


onstru
tionM = [�℄(t) for some subterm t of r

0

. We distinguish two 
ases. First


onsider the 
ase that l

0

! r

0

2 R is a distribution rule. Be
ause root(r

0

) = e, t is

a proper subterm of r

0

. Property (3) yields [�℄(r

0

) B

mul

[�℄(t). We have [�℄(l

0

) =

[�℄(r

0

) by (1). Hen
e [�℄(l

0

) ((� [ B)

+

)

mul

M as required. Next let l

0

! r

0

2 R

be a non-distribution rule. From (3) we infer that [�℄(r

0

) D

mul

[�℄(t) (if t = r

0

then [�℄(r

0

) = [�℄(t) holds). A

ording to (2) we have [�℄(l

0

) �

mul

[�℄(r

0

). Hen
e

also in this 
ase we obtain [�℄(l

0

) ((� [ B)

+

)

mul

M . This 
ompletes the proof

of pre
eden
e termination of R. Sin
e E

lab

= E = AC(e), termination of R=E

lab

follows from Lemma 1. ut

Next we show that the right-linearity requirement in the pre
eding theorem


an be dropped if termination is strengthened to total termination. A TRS is


alled totally terminating if it is 
ompatible with a well-founded monotone al-

gebra in whi
h the underlying order is total. Sin
e adding a 
onstant to the

signature does not a�e
t total termination, from now on we assume that the

set of ground terms is non-empty. Total termination is equivalent (see [9, The-

orem 13℄) to 
ompatibility with a well-founded monotone total order on ground

terms. Here, \
ompatibility" means that l� � r� holds for all rules l ! r 2 R

and all substitutions su
h that l� is a ground term. It should be noted that

standard termination te
hniques like polynomial interpretations, re
ursive path

order, and Knuth-Bendix order all yield total termination.

Theorem 9. Let R=E be an ETRS with E = AC(e) su
h that e does not o

ur

in the left-hand sides of rewrite rules of R that are not distribution rules for e.

If distr(R) is totally terminating then R=E is terminating.

Proof. There is a well-founded monotone total order � on T (F

distr

) whi
h is


ompatible with distr(R). We turn T (F

distr

) into an F-algebra A by de�ning

f

A

(t

1

; : : : ; t

n

) = f(t

1

; : : : ; t

n

) if f 6= e and f

A

(t

1

; : : : ; t

n

) = max ft

1

; t

2

g if f =

13



e for all symbols f 2 F and terms t

1

; : : : ; t

n

in T (F

distr

). We equip A with

the (well-founded) partial order �. One 
an show that (A;�) is a monotone

F-algebra. It is not diÆ
ult to verify that l =

A

r for every distribution rule

l ! r 2 R and the two equations l � r 2 E . An easy indu
tion proof shows that

1. for all terms r 2 T (F ;V) and assignments � there exists a term s 2 distr(r)

su
h that [�℄(r) = [�℄(s).

Using this property, we obtain (by indu
tion on r) that l �

A

r for every non-

distribution rule l! r 2 R. Hen
e (A;�) is a quasi-model of R=E .

De�ne the (monotone) labelling ` as follows: `

f

= f

A

for all fun
tion symbols

f 6= e. A

ording to Theorem 3 it is suÆ
ient to show that R=E

lab

is terminating.

De�ne the pre
eden
e = on F

lab

as follows: f = g if and only if either f 6= e and

g = e or f = f

0

s

and g = g

0

t

with s (� [ B)

+

t. Note that = is well founded. The

following property is not diÆ
ult to prove:

2. if t C r then [�℄(r) D [�℄(t) for every assignment �.

However, [�℄(r) B [�℄(t) need not hold (
onsider e.g. t C e(t; t)) and as a 
on-

sequen
e the labelled distribution rules in R are not pre
eden
e terminating

with respe
t to =. Nevertheless, the pre
eden
e termination of the labelled non-

distribution rules in R

lab

as well as the rules in De
 is obtained as in the proof of

Theorem 8. Hen
e any AC-
ompatible re
ursive path order =

AC

rpo

indu
ed by the

pre
eden
e = that is de�ned on terms with variables (
f. the proof of Lemma 1)

will orient these rules from left to right. Let l = C[e(x; y)℄ ! e(C[x℄; C[y℄) = r

be a distribution rule in R and let � be an arbitrary assignment. We 
laim that

lab

�

(l) =

AC

rpo

lab

�

(r). Sin
e C 6= �, root(lab

�

(l)) = e = root(lab

�

(r)) by de�ni-

tion. It suÆ
es to show that lab

�

(l) =

AC

rpo

lab

�

(C[x℄) and lab

�

(l) =

AC

rpo

lab

�

(C[y℄).

We have lab

�

(C[x℄) = C

1

[x℄, lab

�

(C[y℄) = C

2

[y℄ for some labelled 
ontexts C

1

and C

2

, and lab

�

(l) = C

1

[e(x; y)℄ if �(x) � �(y) and lab

�

(l) = C

2

[e(x; y)℄ other-

wise. We 
onsider only the 
ase �(x) � �(y) here. We have C

1

[e(x; y)℄ =

AC

rpo

C

1

[x℄

by the subterm property of =

AC

rpo

. If �(x) = �(y) then C

2

[y℄ = C

1

[y℄ and

thus also C

1

[e(x; y)℄ =

AC

rpo

C

2

[y℄ by the subterm property. If �(x) � �(y) then

C

1

[e(x; y)℄ =

AC

rpo

C

2

[y℄ be
ause the rewrite rule C

1

[e(x; y)℄ ! C

2

[y℄ is pre
e-

den
e terminating. This 
an be seen as follows. The label of the root symbol

of C

1

[e(x; y)℄ is [�℄(C[x℄). Let q be the label of a fun
tion symbol in C

2

[y℄.

By 
onstru
tion q = [�℄(t) for some subterm t of C[y℄. We obtain [�℄(C[y℄) D

[�℄(t) = q from (2). The monotoni
ity of A yields [�℄(C[x℄) � [�℄(C[y℄). Hen
e

[�℄(C[x℄) (� [ B)

+

q as desired. We 
on
lude that R=E

lab

is terminating. The-

orem 3 yields the termination of R=E . ut

The above theorem extends a similar result for TRSs in Zantema [23℄. A
-

tually, in [23℄ it is shown that R is totally terminating if distr(R) is totally

terminating. Our semanti
 labelling proof does not give total termination of

R=E . Nevertheless, the more 
ompli
ated proof in [23℄ 
an be extended to deal

with AC(e), so R=E is in fa
t totally terminating.

In Middeldorp et al. [16℄ it is shown that for E = ? the right-linearity re-

quirement in Theorem 8 
an be dropped if there are no distribution rules in R.

14



It remains to be seen whether this result is also true if E = AC(e). We note

that the semanti
 labelling proof in [16℄ does not extend to R=E be
ause the in-

terpretation of e de�ned there, an arbitrary proje
tion fun
tion, is in
onsistent

with the 
ommutativity of e.
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