
A Complete Dependency Pair Framework for
Almost-Sure Innermost Termination of

Probabilistic Term Rewriting⋆

Jan-Christoph Kassing(B) , Stefan Dollase , and Jürgen Giesl(B)

LuFG Informatik 2, RWTH Aachen University, Aachen, Germany

Abstract. Recently, we adapted the well-known dependency pair (DP)
framework to a dependency tuple framework in order to prove almost-
sure innermost termination (iAST) of probabilistic term rewrite systems.
While this approach was incomplete, in this paper, we improve it into a
complete criterion for iAST by presenting a new, more elegant definition
of DPs for probabilistic term rewriting. Based on this, we extend the
probabilistic DP framework by new transformations. Our implementation
in the tool AProVE shows that they increase its power considerably.

1 Introduction

Termination of term rewrite systems (TRSs) has been studied for decades and
TRSs are used for automated termination analysis of many programming langua-
ges. One of the most powerful techniques integrated in essentially all current termi-
nation tools for TRSs is the dependency pair (DP) framework [2, 15, 16, 21] which
allows modular proofs that apply different techniques in different sub-proofs.

In [8, 9], term rewriting was extended to the probabilistic setting. Probabilistic
programs describe randomized algorithms and probability distributions, with
applications in many areas. In the probabilistic setting, there are several notions
of “termination”. A program is almost-surely terminating (AST) if the probability
of termination is 1. A strictly stronger notion is positive AST (PAST), which
requires that the expected runtime is finite. While numerous techniques exist to
prove (P)AST of imperative programs on numbers (e.g., [1, 4, 10, 14, 19, 22–24,
30–33]), there are only few automatic approaches for programs with complex
non-tail recursive structure [7, 11, 12]. The approaches that are also suitable
for algorithms on recursive data structures [6, 29, 35] are mostly specialized
for specific data structures and cannot easily be adjusted to other (possibly
user-defined) ones, or are not yet fully automated. In contrast, our goal is a fully
automatic termination analysis for (arbitrary) probabilistic TRSs (PTRSs).

Up to now, only two approaches for automatic termination analysis of PTRSs
were developed [3, 25]. In [3], orderings based on interpretations were adapted
to prove PAST. However, already for non-probabilistic TRSs such a direct
application of orderings is limited in power. To obtain a powerful approach, one
should combine such orderings in a modular way, as in the DP framework.

⋆ funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
- 235950644 (Project GI 274/6-2) and DFG Research Training Group 2236 UnRAVeL

mailto:kassing@cs.rwth-aachen.de
http://orcid.org/0009-0001-9972-2470
http://orcid.org/0009-0006-2150-2554
mailto:giesl@informatik.rwth-aachen.de
http://orcid.org/0000-0003-0283-8520

2 J.-C. Kassing, S. Dollase, J. Giesl

Indeed, in [25], we adapted the DP framework to the probabilistic setting in
order to prove innermost AST (iAST), i.e., AST for rewrite sequences which follow
the innermost evaluation strategy. However, in contrast to the DP framework
for ordinary TRSs, the probabilistic dependency tuple (DT) framework in [25]
is incomplete, i.e., there are PTRSs which are iAST but where this cannot be
proved with DTs. In this paper, we introduce a new concept of probabilistic
DPs and a corresponding new rewrite relation. In this way, we obtain a novel
complete criterion for iAST via DPs while maintaining soundness for all processors
that were developed in the probabilistic DT framework of [25]. Moreover, our
improvement allows us to introduce additional more powerful “transformational”
probabilistic DP processors which were not possible in the framework of [25].

We recapitulate the DP framework for non-probabilistic TRSs in Sect. 2. Then,
we present our novel ADPs (annotated dependency pairs) for probabilistic TRSs in
Sect. 3. In Sect. 4, we show how to adapt the processors from the framework of [25]
to our probabilistic ADP framework. In addition, our framework allows for the
definition of new processors which transform ADPs. As an example, in Sect. 5
we adapt the rewriting processor to the probabilistic setting, which benefits from
our new, more precise rewrite relation. The implementation of our approach in
the tool AProVE is evaluated in Sect. 6. We refer to [26] for all proofs.

2 The DP Framework

We assume familiarity with term rewriting [5] and recapitulate the DP framework
with its core processors (see e.g., [2, 15, 16, 21] for details). We regard finite
TRSs R over a finite signature Σ and let T (Σ,V) denote the set of terms over
Σ and a set of variables V. We decompose Σ = D ⊎ C such that f ∈ D if f =
root(ℓ) for some ℓ → r ∈ R. The symbols in D are called defined symbols. For
every f ∈ D, we introduce a fresh annotated symbol f# of the same arity.1 Let
D# be the set of all annotated symbols and Σ# = D# ⊎ Σ. For any t = f(t1,
. . . , tn) ∈ T (Σ,V) with f ∈ D, let t# = f#(t1, . . . , tn). For every rule ℓ → r and
every (not necessarily proper) subterm t of r with defined root symbol, one obtains
a dependency pair (DP) ℓ# → t#. DP(R) denotes the set of all dependency
pairs of R. As an example, consider Rex = {(1), (2)} with its dependency pairs
DP(Rex) = {(3), (4)}. To ease readability, we often write F instead of f#, etc.

f(s(x))→c(f(g(x))) (1)

g(x)→s(x) (2)

F(s(x))→F(g(x)) (3)

F(s(x))→G(x) (4)

The DP framework uses DP problems (P,R) where P is a (finite) set of DPs
and R is a TRS. A (possibly infinite) sequence t0, t1, t2, . . . with ti

i→P,R ◦ i→∗
R

ti+1 for all i is an (innermost) (P,R)-chain which represents subsequent “function
calls” in evaluations. Here, “◦” denotes composition and steps with

i→P,R are
called p-steps, where

i→P,R is the restriction of →P to rewrite steps where the
used redex is in NFR (the set of normal forms w.r.t.R). Steps with

i→∗
R are called r-

1 The symbols f# were called tuple symbols in the original DP framework [16] and also
in [25], as they represent the tuple of arguments of the original defined symbol f .

A Complete DP Framework for iAST of PTRSs 3

steps and are used to evaluate the arguments of an annotated function symbol. So
an infinite chain consists of an infinite number of p-steps with a finite number of r-
steps between consecutive p-steps. For example, F(s(x)),F(s(x)), . . . is an infinite
(DP(Rex),Rex)-chain, as F(s(x))

i→DP(Rex),Rex
F(g(x)) i→∗

Rex
F(s(x)). Throughout

the paper, we restrict ourselves to innermost rewriting (“
i→R”), because our

adaption of DPs to the probabilistic setting relies on this evaluation strategy.2

A DP problem (P,R) is called innermost terminating (iTerm) if there is no
infinite innermost (P,R)-chain. The main result on DPs is the chain criterion
which states that there is no infinite sequence t1

i→R t2
i→R . . ., i.e., R is iTerm,

iff (DP(R),R) is iTerm. The DP framework is a divide-and-conquer approach,
which applies DP processors to transform DP problems into simpler sub-problems.
A DP processor Proc has the form Proc(P,R) = {(P1,R1), . . . , (Pn,Rn)}, where
P,P1, . . . ,Pn are sets of DPs and R,R1, . . . ,Rn are TRSs. A processor Proc
is sound if (P,R) is iTerm whenever (Pi,Ri) is iTerm for all 1 ≤ i ≤ n. It is
complete if (Pi,Ri) is iTerm for all 1 ≤ i ≤ n whenever (P,R) is iTerm.

So given a TRS R, one starts with the initial DP problem (DP(R),R) and
applies sound (and preferably complete) DP processors repeatedly until all sub-
problems are “solved” (i.e., sound processors transform them to the empty set).
This yields a modular framework for termination proofs, as different techniques
can be used for different sub-problems (Pi,Ri). The following three theorems
recapitulate the three most important processors of the DP framework.

The (innermost) (P,R)-dependency graph is a control flow graph that in-
dicates which DPs can be used after each other in a chain. Its set of nodes is
P and there is an edge from ℓ#1 → t#1 to ℓ#2 → t#2 if there exist substitutions

σ1, σ2 such that t#1 σ1
i→∗
R ℓ#2 σ2 and ℓ#1 σ1, ℓ

#
2 σ2 ∈ NFR. Any infinite (P,R)-chain

corresponds to an infinite path in the dependency graph, and since the graph is
finite, this infinite path must end in some strongly connected component (SCC).3

Hence, it suffices to consider the SCCs of this graph independently.

Theorem 1 (Dep. Graph Processor). For the SCCs P1, . . . ,Pn of the (P,R)-
dependency graph, ProcDG(P,R) = {(P1,R), . . . , (Pn,R)} is sound and complete.

Example 2 (Dependency Graph). Consider the TRS Rffg={(5)} with DP(Rffg)=
{(6), (7), (8)}. The (DP(Rffg),Rffg)-dependency graph is on the right.

f(f(g(x)))→ f(g(f(g(f(x))))) (5)

F(f(g(x)))→F(g(f(g(f(x))))) (6)

F(f(g(x)))→F(g(f(x))) (7)

F(f(g(x)))→F(x) (8)

(6)

(7)

(8)

2 Moreover, already in the non-probabilistic setting, the restriction to innermost rewrit-
ing makes termination analysis with DPs substantially more powerful, e.g., by allowing
the application of additional techniques like usable rules and rewriting of DPs [15, 16].
Indeed, we also adapt these techniques in our novel ADP framework for probabilistic
rewriting. Nevertheless, we conjecture that ADPs are also suitable for an adaption to
analyze full instead of innermost AST, and we will investigate that in future work.

3 Here, a set P ′ of DPs is an SCC if it is a maximal cycle, i.e., it is a maximal set such
that for any ℓ#1 → t#1 and ℓ#2 → t#2 in P ′ there is a non-empty path from ℓ#1 → t#1
to ℓ#2 → t#2 which only traverses nodes from P ′.

4 J.-C. Kassing, S. Dollase, J. Giesl

While the exact dependency graph is not computable in general, there exist
several techniques to over-approximate it automatically, see, e.g., [2, 16, 21]. In
our example, ProcDG(DP(Rffg),Rffg) yields the DP problem ({(8)},Rffg).

The next processor removes rules that cannot be used for right-hand sides of
dependency pairs when their variables are instantiated with normal forms.

Theorem 3 (Usable Rules Processor). Let R be a TRS. For every f ∈Σ# let
RulesR(f) = {ℓ → r ∈ R | root(ℓ) = f}. For any t ∈ T

(
Σ#,V

)
, its usable rules

UR(t) are the smallest set such that UR(x) = ∅ for all x ∈ V and UR(f(t1, . . . , tn))
= RulesR(f) ∪

⋃n
i=1 UR(ti) ∪

⋃
ℓ→r∈RulesR(f) UR(r). The usable rules for the

DP problem (P,R) are U(P,R) =
⋃

ℓ#→t#∈P UR(t#). Then ProcUR(P,R) =
{(P,U(P,R))} is sound but not complete.4

ProcUR
(
{(8)},Rffg

)
yields the problem ({(8)},∅), i.e., it removes all rules,

because the right-hand side of (8) does not contain the defined symbol f.
A polynomial interpretation Pol is a Σ-algebra which maps every function

symbol f ∈ Σ to a polynomial fPol ∈ N[V] over the variables V with coefficients
from N, see [28]. Pol(t) denotes the interpretation of a term t by the Σ-algebra Pol.
An arithmetic inequation like Pol(t1) > Pol(t2) holds if it is true for all instantia-
tions of its variables by natural numbers. The reduction pair processor5 allows us
to use weakly monotonic polynomial interpretations that do not have to depend
on all of their arguments, i.e., x ≥ y implies fPol(. . . , x, . . .) ≥ fPol(. . . , y, . . .) for
all f ∈ Σ#. The processor requires that all rules and DPs are weakly decreasing
and it removes those DPs that are strictly decreasing.

Theorem 4 (Reduction Pair Processor). Let Pol : T
(
Σ#,V

)
→ N[V] be

a weakly monotonic polynomial interpretation. Let P = P≥ ⊎ P> with P> ̸= ∅
such that:

(1) For every ℓ → r ∈ R, we have Pol(ℓ) ≥ Pol(r).
(2) For every ℓ# → t# ∈ P, we have Pol(ℓ#) ≥ Pol(t#).
(3) For every ℓ# → t# ∈ P>, we have Pol(ℓ#) > Pol(t#).

Then ProcRP(P,R) = {(P≥,R)} is sound and complete.

For ({(8)},∅), one can use the reduction pair processor with the polynomial
interpretation that maps f(x) to x + 1 and both F(x) and g(x) to x. Then,
ProcRP

(
{(8)},∅

)
= {

(
∅,∅

)
}. As ProcDG(∅, . . .) = ∅ and all processors used are

sound, this means that there is no infinite innermost chain for the initial DP
problem (DP(Rffg),Rffg) and thus, Rffg is innermost terminating.

3 Probabilistic Annotated Dependency Pairs

In this section we present our novel adaption of DPs to the probabilistic setting.

4 See [15] for a complete version of this processor. It extends DP problems by an
additional set to store the left-hand sides of all rules (including the non-usable ones)
to determine whether a rewrite step is innermost. We omit this here for readability.

5 In this paper, we only regard the reduction pair processor with polynomial interpre-
tations, because for most other classical orderings it is not clear how to extend them
to probabilistic TRSs, where one has to consider “expected values of terms”.

A Complete DP Framework for iAST of PTRSs 5

As in [3, 9, 13, 25], the rules of a probabilistic TRS have finite multi-distributions
on the right-hand sides. A finite multi-distribution µ on a set A ̸= ∅ is a finite
multiset of pairs (p : a), where 0 < p ≤ 1 is a probability and a ∈ A, with∑

(p:a)∈µ p = 1. FDist(A) is the set of all finite multi-distributions on A. For

µ ∈ FDist(A), its support is the multiset Supp(µ)={a | (p :a)∈µ for some p}.
A pair ℓ → µ ∈ T (Σ,V)× FDist(T (Σ,V)) such that ℓ ̸∈ V and V(r) ⊆ V(ℓ)

for every r ∈ Supp(µ) is a probabilistic rewrite rule. A probabilistic TRS (PTRS)
is a finite set of probabilistic rewrite rules. As an example, consider the PTRS Rrw

with the rule g(x)→{1/2 : g(g(x)), 1/2 : x}, which corresponds to a symmetric
random walk. Let g2(x) abbreviate g(g(x)), etc.

A PTRS R induces a rewrite relation →R ⊆ T (Σ,V) × FDist(T (Σ,V))
where s →R {p1 : t1, . . . , pk : tk} if there is a position π of s, a rule ℓ → {p1 :
r1, . . . , pk : rk} ∈ R, and a substitution σ such that s|π = ℓσ and tj = s[rjσ]π
for all 1 ≤ j ≤ k. We call s →R µ an innermost rewrite step (denoted s

i→R µ)
if ℓσ ∈ ANFR, where ANFR is the set of all terms in argument normal form w.r.t.
R, i.e., t ∈ ANFR iff t′ ∈ NFR for all proper subterms t′ of t.

To track all possible rewrite sequences (up to non-determinism) with their
probabilities, we lift

i→R to (innermost) rewrite sequence trees (RSTs). An
(innermost) R-RST is a tree whose nodes v are labeled by pairs (pv, tv) of a
probability pv and a term tv such that the edge relation represents a probabilistic
innermost rewrite step. More precisely, T=(V,E, L) is an (innermost) R-RST if
(1) (V,E) is a (possibly infinite) directed tree with nodes V ≠ ∅ and directed
edges E ⊆ V × V where vE = {w | (v, w) ∈ E} is finite for every v ∈ V , (2)
L : V → (0, 1] × T (Σ,V) labels every node v by a probability pv and a term
tv where pv = 1 for the root v ∈ V of the tree, and (3) for all v ∈ V : if vE =
{w1, . . . , wk} ≠ ∅, then tv

i→R {pw1

pv
: tw1

, . . . ,
pwk

pv
: twk

}. For any innermost R-

RST T we define |T|Leaf =
∑

v∈Leaf pv, where Leaf is the set of T’s leaves. An RST
T is innermost almost-surely terminating (iAST) if |T|Leaf = 1. Similarly, a PTRS
R is iAST if all innermost R-RSTs are iAST. While |T|Leaf = 1 holds for every
finite RST T, for infinite RSTs T we may have |T|Leaf < 1, and even |T|Leaf = 0
if T has no leaf at all. This notion is equivalent to the notions of AST in [3, 25],
where one uses a lifting to multisets instead of trees. For example, the infinite

1 g(x)

1/2 g2(x) 1/2 x

1/4 g3(x) 1/4 g(x)

.

Rrw-RST T on the side has |T|Leaf = 1. In fact,
Rrw is iAST, because |T|Leaf = 1 holds for all
innermost Rrw-RSTs T.

As shown in [25], to adapt the DP framework
in order to prove iAST of PTRSs, one has to
regard all DPs resulting from the same rule at
once. Otherwise, one would not be able to distinguish between the DPs of
the TRS with the rule a → {1/2 : b, 1/2 : c(a, a)} which is iAST and the rule
a → {1/2 : b, 1/2 : c(a, a, a)}, which is not iAST. For that reason, in the adaption
of the DP framework to PTRSs in [25], one constructs dependency tuples (DTs)
whose right-hand sides combine the right-hand sides of all dependency pairs
resulting from one rule. However, a drawback of this approach is that the resulting
chain criterion is not complete, i.e., it allows for chains that do not correspond
to any rewrite sequence of the original PTRS R.

6 J.-C. Kassing, S. Dollase, J. Giesl

Example 5. Consider the PTRS Rincpl with the rules

a → {1 : f(h(g), g)} (9)

g → {1/2 : b1, 1/2 : b2} (10)

h(b1) → {1 : a} (11)

f(x, b2) → {1 : a} (12)

and the Rincpl-RST below. So a can be rewritten to the normal form f(h(b2), b1)

1 a

1 f(h(g), g)

1/2 f(h(g), b1) 1/2 f(h(g), b2)

1/4 f(h(b1), b1) 1/4 f(h(b2), b1)

normal form

1/4 f(h(b1), b2) 1/4 f(h(b2), b2)

1/4 f(a, b1) 1/4 f(a, b2) 1/4 a

.

with probability 1/4
and to the terms
f(a, b1) and a that
contain the redex a
with a probability
of 1/4 + 1/4 = 1/2.
In the term f(a, b2),
one can rewrite the
subterm a, and if that ends in a normal form, one can still rewrite the outer f which
will yield a again. So to over-approximate the probability of non-termination,
one could consider the term f(a, b2) as if one had two occurrences of a. Then this
would correspond to a random walk where the number of a symbols is decreased
by 1 with probability 1/4, increased by 1 with probability 1/4, and kept the same
with probability 1/2. Such a random walk is AST, and since a similar observation
holds for all Rincpl-RSTs, Rincpl is iAST (we will prove iAST of Rincpl with our
new ADP framework in Sect. 4 and 5).

In contrast, the DT framework from [25] fails on this example. As mentioned,
the right-hand sides of DTs combine the right-hand sides of all dependency pairs
resulting from one rule. So the right-hand side of the DT for (9) contains the term
com4(F(h(g), g),H(g),G,G), where com4 is a special compound symbol of arity 4.
However, here it is no longer clear which occurrence of the annotated symbol G cor-
responds to which occurrences of g. Therefore, when rewriting an occurrence of G,
in the “chains” of [25] one may also rewrite arbitrary occurrences of g simulta-
neously. (For that reason, in [25] one also couples the DT together with its original
rule.) In particular, [25] also allows a simultaneous rewrite step of all underlined
symbols in com(F(h(g), g),H(g),G,G) even though the underlined G cannot cor-
respond to both underlined g symbols. As shown in [26], this leads to a chain
that is not iAST and that does not correspond to any Rincpl-rewrite sequence.
To avoid this problem, one would have to keep track of the connections between
annotated symbols and the corresponding original subterms. However, such an
improvement would become very complicated in the formalization of [25].

Therefore, in contrast to [25], in our new notion of DPs, we annotate defined
symbols directly in the original rewrite rule instead of extracting annotated
subterms from its right-hand side. This makes the definition easier, more elegant,
and more readable, and allows us to solve the incompleteness problem of [25].

Definition 7 (Annotations). Let t ∈ T
(
Σ#,V

)
be an annotated term and for

Σ′ ⊆ Σ#, let posΣ′(t) be all positions of t with symbols from Σ′. For a set of
positions Φ ⊆ posD∪D#(t), let #Φ(t) be the variant of t where the symbols at
positions from Φ in t are annotated and all other annotations are removed. Thus,
posD#(#Φ(t)) = Φ, and #∅(t) removes all annotations from t, where we often
write ♭(t) instead of #∅(t). We extend ♭ to multi-distributions, rules, and sets of

A Complete DP Framework for iAST of PTRSs 7

rules by removing the annotations of all occurring terms. We write #D(t) instead
of #posD(t)(t) to annotate all defined symbols in t, and #ε(t) instead of #{ε}(t)

to annotate just the root symbol of t. Moreover, let ♭↑π(t) result from removing
all annotations from t that are strictly above the position π. Finally, we write
t ⊴# s if there is a π ∈ posD#(s) and t = ♭(s|π), i.e., t results from a subterm
of s with annotated root symbol by removing its annotation.

Example 8. So if g ∈ D, then we have #{1}(g(g(x))) = #{1}(G(G(x))) = g(G(x)),
#D(g(g(x))) = #{ε,1}(g(g(x))) = G(G(x)), and ♭(G(G(x))) = g(g(x)). Moreover,

♭↑1(G(G(x))) = g(G(x)) and g(x) ⊴# g(G(x)).

Next, we define the canonical annotated dependency pairs for a given PTRS.

Definition 9 (Canonical Annotated Dependency Pairs). For a rule ℓ →
µ = {p1 : r1, . . . , pk : rk}, its canonical annotated dependency pair (ADP) is

DP(ℓ → µ) = ℓ → {p1 : #D(r1), . . . , pk : #D(rk)}true

The canonical ADPs of a PTRS R are DP(R) = {DP(ℓ → µ) | ℓ → µ ∈ R}.
Example 10. For Rrw, the canonical ADP for g(x) → {1/2 : g(g(x))), 1/2 : x} is
g(x) → {1/2 : G(G(x)), 1/2 : x}true instead of the (complicated) DT from [25]:

DT (Rrw) = {⟨G(x), g(x)⟩ → {1/2 : ⟨com2(G(g(x)),G(x)), g
2(x)⟩, 1/2 : ⟨com0, x⟩}}

So the left-hand side of an ADP is just the left-hand side of the original rule.
The right-hand side of the ADP results from the right-hand side of the original
rule by replacing all f ∈ D with f#. Moreover, every ADP has a flag m ∈ {true,
false} to indicate whether this ADP may be used for an r-step at a position below
the next p-step. (This flag will later be modified by our usable rules processor.)
In general, we work with the following rewrite systems in our new framework.

Definition 11 (Annotated Dependency Pairs,
i
↪→P). An ADP has the form

ℓ −→ {p1 : r1, . . . , pk : rk}m, where ℓ ∈ T (Σ,V) with ℓ /∈ V, m ∈ {true, false},
and for all 1 ≤ j ≤ k we have rj ∈T

(
Σ#,V

)
with V(rj) ⊆ V(ℓ).

Let P be a finite set of ADPs (a so-called ADP problem). An annotated term
s ∈ T

(
Σ#,V

)
rewrites with P to µ = {p1 : t1, . . . , pk : tk} (denoted s

i
↪→P µ) if

there is a rule ℓ −→ {p1 : r1, . . . , pk : rk}m ∈ P, a substitution σ, and a position
π ∈ posD∪D#(s) such that ♭(s|π) = ℓσ ∈ ANFP , and for all 1 ≤ j ≤ k we have

tj = s[rjσ]π if π ∈ posD#(s) and m = true (pr)
tj = ♭↑π(s[rjσ]π) if π ∈ posD#(s) and m = false (p)
tj = s[♭(rj)σ]π if π ̸∈ posD#(s) and m = true (r)
tj = ♭↑π(s[♭(rj)σ]π) if π ̸∈ posD#(s) and m = false (irr)

To highlight the position π of the redex, we also write s
i
↪→P,π t. Again, ANFP is

the set of all terms in argument normal form w.r.t. P.

Rewriting with P can be seen as ordinary term rewriting while considering and
modifying annotations. In the ADP framework, we represent all DPs resulting
from a rule as well as the original rule by just one ADP. So for example, the
ADP g(x) → {1/2 : G(G(x)), 1/2 : x}true for the rule g(x) → {1/2 : g(g(x)), 1/2 : x}
represents both DPs resulting from the two occurrences of g on the right-hand

8 J.-C. Kassing, S. Dollase, J. Giesl

side, and the rule itself (by simply disregarding all annotations of the ADP).

As in the classical DP framework, our goal is to track specific reduction
sequences where (1) there are p-steps where the root symbol of the redex is
annotated and a DP is applied, and (2) between two p-steps there can be several
r-steps where rules are applied below the position of the next p-step.

A step of the form (pr) in Def. 11 can represent both p- and r-steps. All
annotations are kept during this step except for annotations of the subterms that
correspond to variables of the applied rule. These subterms are always in normal
form due to the innermost evaluation strategy and we erase their annotations in
order to handle rewriting with non-left-linear rules correctly. A (pr)-step at posi-
tion π plays the role of an r-step for terms in multi-distributions where one later
rewrites an annotated symbol at a position above π, and for all other terms it plays
the role of a p-step. As an example, for a PTRS Rex2 with the rules g(x, x) → {1 :
f(x)} and f(a) → {1 : f(b)}, we have the canonical ADPs g(x, x) → {1 : F(x)}true
and f(a) → {1 : F(b)}true, and we can rewrite G(F(b), f(b))

i
↪→DP(Rex2)

{1 : F(f(b))}
using the first ADP. Here, we have π = ε, ♭(s|ε) = g(f(b), f(b)) = ℓσ where σ
instantiates x with the normal form f(b), and r1 = F(x).

A step of the form (r) rewrites at the position of a non-annotated defined
symbol. So this represents an r-step and thus, we remove all annotations from
the right-hand side rj . As an example, we have G(F(b), f(a))

i
↪→DP(Rex2)

{1 :

G(F(b), f(b))} using the ADP f(a) → {1 : F(b)}true.
A step of the form (p) represents a p-step. Thus, we remove all annotations

above the position π, because no p-steps are possible above π. So if P contains
f(a) → {1 : F(b)}false, then G(F(b),F(a))

i
↪→P {1 : g(F(b),F(b))}.

Finally, a step of the form (irr) is an r-step that is irrelevant for proving
iAST, because due to m = false, afterwards there cannot be a p-step at a position
above. For example, if P again contains f(a) → {1 : F(b)}false, then G(F(b), f(a))
i
↪→P {1 : g(F(b), f(b))}. Such (irr)-steps are needed to ensure that all rewrite steps
with R are also possible with the ADP problems P that result from DP(R) when
applying ADP processors. So for all these ADP problems P , we have ♭(t) ∈ ANFR
iff t ∈ ANFP for all t ∈ T

(
Σ#,V

)
, i.e., the innermost evaluation strategy is not

affected by the application of ADP processors. This is different from the classical
DP framework, where the usable rules processor reduces the number of rules.
This may result in new redexes that are allowed for innermost rewriting. Thus,
the usable rules processor in our new ADP framework is complete, whereas in
[15], one has to extend DP problems by an additional component to achieve
completeness of this processor (see Footnote 4).

Now, s
i→R {p1 : t1, . . . , pk : tk} essentially6 implies #D(s)

i
↪→DP(R) {p1 :

#D(t1), . . . , pk : #D(tk)}, and we got rid of any ambiguities in the rewrite relation

6 We have #D(s)
i
↪→DP(R) {p1 : t′1, . . . , pk : t′k} where t′j and #D(tj) are the same up

to some annotations of subterms that are DP(R)-normal forms. The reason is that
as mentioned above, annotations of the subterms (in normal form) that correspond to
variables of the rule are erased. So for example, rewriting G(F(b),F(b)) with DP(Rex2)
yields {1 : F(f(b))} and not {1 : F(F(b))}.

A Complete DP Framework for iAST of PTRSs 9

that led to incompleteness in [25]. While our ADPs are much simpler than the
DTs of [25], due to their annotations they still contain all information that is
needed to define the required DP processors.

Instead of chains of DPs, in the probabilistic setting one works with chain
trees [25], where p- and r-steps are indicated by P - and R-nodes in the tree.
Chain trees are defined analogously to RSTs, but the crucial requirement is that
every infinite path of the tree must contain infinitely many steps of the forms
(pr) or (p). Thus, in our setting T = (V,E, L, P) is a P-chain tree (CT) if

1. (V,E) is a (possibly infinite) directed tree with nodes V ≠ ∅ and directed
edges E ⊆ V × V where vE = {w | (v, w) ∈ E} is finite for every v ∈ V .

2. L : V → (0, 1] × T
(
Σ#,V

)
labels every node v by a probability pv and a

term tv. For the root v ∈ V of the tree, we have pv = 1.
3. P ⊆ V \ Leaf (where Leaf are all leaves) is a subset of the inner nodes

to indicate whether we use (pr) or (p) for the next rewrite step. R =
V \ (Leaf ∪ P) are all inner nodes that are not in P , i.e., where we rewrite
using (r) or (irr).

4. For all v ∈ P : if vE = {w1, . . . , wk}, then tv
i
↪→P {pw1

pv
: tw1

, . . . ,
pwk

pv
: twk

}
using Case (pr) or (p).

5. For all v ∈ R: if vE = {w1, . . . , wk}, then tv
i
↪→P {pw1

pv
: tw1

, . . . ,
pwk

pv
: twk

}
using Case (r) or (irr).

6. Every infinite path in T contains infinitely many nodes from P .

Let |T|Leaf =
∑

v∈Leaf pv. We define that P is iAST if |T|Leaf = 1 for all P-CTs
T. So Conditions 1–5 ensure that the chain tree corresponds to an RST and
Condition 6 requires that one may only use finitely many r-steps before the next
p-step. This yields a chain criterion as in the non-probabilistic setting, where (in
contrast to the chain criterion of [25]) we again have “iff” instead of “if”.

Theorem 12 (Chain Criterion). R is iAST iff DP(R) is iAST.

Our chain criterion is complete (“only if”), because ADPs only add annotations
to rules. Hence, every DP(R)-CT can be turned into an R-RST by omitting all
annotations. So in contrast to [25], the step from the original PTRS to ADPs does
not affect the “potential power” of the approach. Moreover, in the future this
may also allow the development of techniques to disprove iAST within the ADP
framework. To prove soundness (“if”), one has to show that every R-RST can
be simulated by a DP(R)-CT. As mentioned, all proofs can be found in [26].

4 The ADP Framework

Our new (probabilistic) ADP framework again applies processors to transform an
ADP problem into simpler sub-problems. An ADP processor Proc has the form
Proc(P) = {P1, . . . ,Pn}, where P,P1, . . . ,Pn are ADP problems. Proc is sound if
P is iAST whenever Pi is iAST for all 1 ≤ i ≤ n. It is complete if Pi is iAST for
all 1 ≤ i ≤ n whenever P is iAST. For a PTRS R, one starts with the canonical
ADP problem DP(R) and applies sound (and preferably complete) ADP proces-
sors repeatedly until the ADPs contain no annotations anymore. Such an ADP
problem is trivially iAST. The framework again allows for modular termination

10 J.-C. Kassing, S. Dollase, J. Giesl

proofs, since different techniques can be applied on each sub-problem Pi.
We now adapt the processors from [25] to our new framework. The (innermost)

P-dependency graph is a control flow graph between ADPs from P, indicating
whether an ADP α may lead to an application of another ADP α′ on an annotated
subterm introduced by α. This possibility is not related to the probabilities.
Hence, we can use the non-probabilistic variant np(P) = {ℓ → ♭(rj) | ℓ → {p1 :
r1, . . . , pk : rk}true ∈ P, 1 ≤ j ≤ k}, which is an ordinary TRS over the signature
Σ. Note that for np(P) we only need to consider rules with the flag true, since
only such rules can be used at a position below the next p-step.

Definition 13 (Dependency Graph). The P-dependency graph has the nodes
P and there is an edge from ℓ1 −→ {p1 : r1, . . . , pk : rk}m to ℓ2 → . . . if there are

substitutions σ1, σ2 and a t ⊴# rj for some 1 ≤ j ≤ k such that t#σ1
i→∗
np(P) ℓ

#
2 σ2

and both ℓ1σ1 and ℓ2σ2 are in ANFP .

So there is an edge from an ADP α to an ADP α′ if after a step of the form
(pr) or (p) with α at position π there may eventually come another step of the
form (pr) or (p) with α′ on or below π. Hence, for every path in a P-CT from a
P -node where an annotated subterm f#(. . .) is introduced to the next P -node
where the subterm f#(. . .) at this position is rewritten, there is a corresponding
edge in the P-dependency graph. Since every infinite path in a CT contains
infinitely many nodes from P , every such path traverses a cycle of the dependency
graph infinitely often. Thus, it suffices to consider the SCCs of the dependency
graph separately. In our framework, this means that we remove the annotations
from all rules except those that are in the SCC that we want to analyze. As
in [25], to automate the following two processors, the same over-approximation
techniques as for the non-probabilistic dependency graph can be used.

Theorem 14 (Probabilistic Dependency Graph Processor). For the SCCs
P1, . . . ,Pn of the P-dependency graph, ProcDG(P) = {P1 ∪ ♭(P \ P1), . . . ,Pn ∪
♭(P \ Pn)} is sound and complete.

Example 15. Consider the PTRS Rincpl from Ex. 5 with the canonical ADPs

a → {1 : F(H(G),G)}true (13)

g → {1/2 : b1, 1/2 : b2}true (14)

h(b1) → {1 : A}true (15)

f(x, b2) → {1 : A}true (16)

(13) (14)

(15) (16)
The DP(Rincpl)-dependency graph can be seen on the right. As (14)
is not contained in the only SCC, we can remove all annotations from
(14). However, since (14) already does not contain any annotations,
here the dependency graph processor does not change DP(Rincpl).

To remove the annotations of non-usable terms like G in (13) that lead out of
the SCCs of the dependency graph, one can apply the usable terms processor.

Theorem 16 (Usable Terms Processor). Let ℓ1 ∈ T (Σ,V) and P be an
ADP problem. We call t ∈ T

(
Σ#,V

)
with root(t) ∈ D# usable w.r.t. ℓ1 and P if

there are substitutions σ1, σ2 and an ℓ2 −→ µ2 ∈ P where µ2 contains an annotated

symbol, such that #ε(t)σ1
i→∗
np(P) ℓ

#
2 σ2 and both ℓ1σ1 and ℓ2σ2 are in ANFP . Let

♭ℓ,P(s) result from s by removing the annotations from the roots of all its subterms
that are not usable w.r.t. ℓ and P, i.e., posD#(♭ℓ,P(s)) = {π ∈ posD#(s) | s|π is

A Complete DP Framework for iAST of PTRSs 11

usable w.r.t. ℓ1 and P }. The transformation that removes the annotations from
the roots of all non-usable terms in the right-hand sides of ADPs is TUT(P) =
{ℓ→{p1 : ♭ℓ,P(r1), . . . , pk : ♭ℓ,P(rk)}m | ℓ→{p1 : r1, . . . , pk : rk}m ∈P}. Then
ProcUT(P) = {TUT(P)} is sound and complete.

So for DP(Rincpl), ProcUT replaces (13) by a → {1 : F(H(g), g)}true (13′).
As in Thm. 3 of the ordinary DP framework, the idea of the usable rules proces-

sor remains to find rules that cannot be used below steps at annotations in right-
hand sides of ADPs when their variables are instantiated with normal forms.

Theorem 17 (Prob. Usable Rules Processor). For an ADP problem P and
f ∈Σ#, let RulesP(f) = {ℓ → µtrue ∈ P | root(ℓ) = f}. For any t∈T

(
Σ#,V

)
, its

usable rules UP(t) are the smallest set with UP(x) = ∅ for all x ∈ V and UP(f(t1,
. . . , tn)) = RulesP(f) ∪

⋃n
i=1 UP(ti) ∪

⋃
ℓ→µtrue∈RulesP(f),r∈Supp(µ) UP(♭(r)), oth-

erwise. The usable rules for P are U(P) =
⋃

ℓ→µm∈P,r∈Supp(µ),t⊴#r UP(t
#). Then

ProcUR(P) = {U(P) ∪ {ℓ → µfalse | ℓ → µm ∈ P \ U(P)}} is sound and complete,
i.e., we turn the flag of all non-usable rules to false.

Example 18. For our ADP problem {(13′), (14), (15), (16)}, (16) is not usable
because neither f nor F occur below annotated symbols on right-hand sides.
Hence, ProcUR replaces (16) by f(x, b2) → {1 : A}false (16′). As discussed after
Def. 11, in contrast to the processor of Thm. 3, our usable rules processor is
complete since we do not remove non-usable rules but only set their flag to false.

Finally, we adapt the reduction pair processor. Here, (1) for every rule with
the flag true (which can therefore be used for r-steps), the expected value must
be weakly decreasing when removing the annotations. Since rules can also be
used for p-steps, (2) we also require a weak decrease when comparing the
annotated left-hand side with the expected value of all annotated subterms in
the right-hand side. Since we sum up the values of the annotated subterms of
each right-hand side, we can again use weakly monotonic interpretations. As
in [3, 25], to ensure “monotonicity” w.r.t. expected values we have to restrict
ourselves to interpretations with multilinear polynomials, where all monomials
have the form c · xe1

1 · . . . · xen
n with c ∈ N and e1, . . . , en ∈ {0, 1}. The processor

then removes the annotations from those ADPs where (3) in addition there is at
least one right-hand side rj whose annotated subterms are strictly decreasing.7

Theorem 19 (Probabilistic Reduction Pair Processor). Let Pol : T (Σ#,
V) → N[V] be a weakly monotonic, multilinear polynomial interpretation. Let
P = P≥ ⊎ P> with P> ̸= ∅ such that:

7 In addition, the corresponding non-annotated right-hand side ♭(rj) must be at least
weakly decreasing. The reason is that in contrast to the original DP framework, we
may now have nested annotated symbols and thus, we have to ensure that they behave
“monotonically”. So we have to ensure that Pol(A) > Pol(B) also implies that the
measure of F (A) is greater than F (B). Every term r is “measured” as

∑
t⊴#r Pol(t

#),

i.e., F (A) is measured as Pol(F (a)) +Pol(A). Hence, in this example we must ensure
that Pol(A) > Pol(B) implies Pol(F (a)) + Pol(A) > Pol(F (b)) + Pol(B). For that
reason, we also have to require Pol(a) ≥ Pol(b).

12 J.-C. Kassing, S. Dollase, J. Giesl

(1) For every ℓ −→ {p1 : r1, . . . , pk : rk}true ∈ P, we have
Pol(ℓ) ≥

∑
1≤j≤k pj · Pol(♭(rj)).

(2) For every ℓ −→ {p1 : r1, . . . , pk : rk}m ∈ P, we have
Pol(ℓ#) ≥

∑
1≤j≤k pj ·

∑
t⊴#rj

Pol(t#).

(3) For every ℓ −→ {p1 : r1, . . . , pk : rk}m ∈ P>, there exists a 1 ≤ j ≤ k with
Pol(ℓ#) >

∑
t⊴#rj

Pol(t#).

If m = true, then we additionally have Pol(ℓ) ≥ Pol(♭(rj)).

Then ProcRP(P) = {P≥ ∪ ♭(P>)} is sound and complete.

Example 20. In Sect. 5, we will present a new rewriting processor and show how
the ADP (13′) can be transformed into

a → {1/4 : f(H(b1), b1), 1/4 : f(h(b2), b1), 1/4 : F(H(b1), b2), 1/4 : F(h(b2), b2)}true (13′′)

For the resulting ADP problem {(13′′), (14), (15), (16′)} with

g → {1/2 : b1, 1/2 : b2}true (14) h(b1) → {1 : A}true (15) f(x, b2) → {1 : A}false (16′)

we use the reduction pair processor with the polynomial interpretation that maps
A, F, and H to 1 and all other symbols to 0, to remove all annotations from the
a-ADP (13′′), because it contains the right-hand side f(h(b2), b1) without annota-
tions and thus, Pol(A) = 1 >

∑
t⊴#f(h(b2),b1)

Pol(t#) = 0. Another application of

the usable terms processor removes the remaining A-annotations from (15) and
(16′). Since there are no more annotations left, this proves iAST of Rincpl.

Finally, in proofs with the ADP framework, one may obtain ADP problems P
that have a non-probabilistic structure, i.e., every ADP has the form ℓ → {1 : r}m.
Then the probability removal processor allows us to switch to ordinary DPs.

Theorem 21 (Probability Removal Processor). Let P be an ADP problem
where every ADP in P has the form ℓ → {1 : r}m. Let dp(P) = {ℓ# → t# |
ℓ → {1: r}m ∈ P, t ⊴# r}. Then P is iAST iff the non-probabilistic DP problem
(dp(P),np(P)) is iTerm. So the processor ProcPR(P) = ∅ is sound and complete
iff (dp(P),np(P)) is iTerm.

5 Transforming ADPs

Compared to the DT framework for PTRSs in [25], our new ADP framework is
not only easier, more elegant, and yields a complete chain criterion, but it also
has important practical advantages, because every processor that performs a
rewrite step benefits from our novel definition of rewriting with ADPs (whereas
the rewrite relation with DTs in [25] was an “incomplete over-approximation” of
the rewrite relation of the original TRS). To illustrate this, we adapt the rewriting
processor from the original DP framework [16] to the probabilistic setting, which
allows us to prove iAST of Rincpl from Ex. 5. Such transformational processors
had not been adapted in the probabilistic DT framework of [25]. While one
could also adapt the rewriting processor to the setting of [25], then it would be
substantially weaker, and we would fail in proving iAST of Rincpl. We refer to [26]
for our adaption of the remaining transformational processors from [16] (based on

A Complete DP Framework for iAST of PTRSs 13

instantiation, forward instantiation, and narrowing) to the probabilistic setting.
In the non-probabilistic setting, the rewriting processor may rewrite a redex in

the right-hand side of a DP if this does not affect the construction of chains. To
ensure that, the usable rules for this redex must be non-overlapping (NO). If the
DP occurs in a chain, then this redex is weakly innermost terminating, hence by
NO also terminating and confluent, and thus, it has a unique normal form [20].

In the probabilistic setting, to ensure that the probabilities for the normal
forms stay the same, in addition to NO we require that the rule used for the rewrite
step is linear (L) (i.e., every variable occurs at most once in the left-hand side and
in each term of the multi-distribution µ on the right-hand side) and non-erasing
(NE) (i.e., each variable of the left-hand side occurs in each term of Supp(µ)).

Definition 22 (Rewriting Processor). Let P be an ADP problem with P =
P ′ ⊎ {ℓ → {p1 : r1, . . . , pk : rk}m}. Let τ ∈ posD(rj) for some 1 ≤ j ≤ k such
that rj |τ ∈ T (Σ,V), i.e., there is no annotation below or at the position τ . If
rj ↪−→true

P,τ {q1 :e1, . . . , qh :eh}, where ↪−→true
P,τ is defined like

i
↪→P,τ but the used redex

rj |τ does not have to be in ANFP and the applied rule from P must have the flag
m = true, then we define

Procr(P) =
{
P ′ ∪ { ℓ → {p1 : ♭(r1), . . . , pk : ♭(rk)}m,

ℓ → {p1 : r1, . . . , pk : rk} \ {pj : rj}
∪ {pj · q1 : e1, . . . , pj · qh : eh}m }

}
In the non-probabilistic DP framework, one only transforms the DPs by

rewriting, but the rules are left unchanged. But since our ADPs represent both
DPs and rules, when rewriting an ADP, we add a copy of the original ADP
without any annotations (i.e., this corresponds to the original rule which can
now only be used for (r)-steps). Another change to the rewriting processor in the
classic DP framework is the requirement that there exists no annotation below
τ . Otherwise, rewriting would potentially remove annotations from rj . For the
soundness of the processor, we have to ensure that this cannot happen.

Theorem 23 (Soundness8 of the Rewriting Processor). Procr as in Def. 22
is sound if one of the following cases holds:

1. UP(rj |τ) is NO, and the rule used for rewriting rj |τ is L and NE.
2. UP(rj |τ) is NO, and all its rules have the form ℓ′ → {1 : r′}true.
3. UP(rj |τ) is NO, rj |τ is a ground term, and rj

i
↪→P,τ {q1 : e1, . . . , qh : eh} is

an innermost step.

We refer to [26] for a discussion on the requirements L and NE in the first case.
The second case corresponds to the original rewrite processor where all usable
rules of rj |τ are non-probabilistic. In the last case, for any instantiation only a
single innermost rewrite step is possible for rj |τ . The restriction to innermost
rewrite steps is only useful if rj |τ is ground. Otherwise, an innermost step on

8 For completeness in the non-probabilistic setting [16], one uses a different definition
of “non-terminating” (or “infinite”) DP problems. In future work, we will examine if
such a definition would also yield completeness of Procr in the probabilistic case.

14 J.-C. Kassing, S. Dollase, J. Giesl

rj |τ might become a non-innermost step when instantiating rj |τ ’s variables.
The rewriting processor benefits from our ADP framework, because it applies

the rewrite relation ↪−→P . In contrast, a rewriting processor in the DT framework
of [25] would have to replace a DT by multiple new DTs, due to the ambiguities
in their rewrite relation. Such a rewriting processor would fail for Rincpl whereas
with the processor of Thm. 23 we can now prove that Rincpl is iAST.

Example 24. After applying the usable terms and the usable rules processor to
DP(Rincpl), we obtained:

a → {1 : F(H(g), g)}true (13′)

g → {1/2 : b1, 1/2 : b2}true (14)

h(b1) → {1 : A}true (15)

f(x, b2) → {1 : A}false (16′)

Now we can apply the rewriting processor on (13′) repeatedly until all gs are
rewritten and replace it by the ADP a → {1/4 : F(H(b1), b1), 1/4 : F(H(b2), b1), 1/4 :
F(H(b1), b2), 1/4 : F(H(b2), b2)}true as well as several resulting ADPs a → . . . without
annotations. Now in the subterms F(. . . , b1) and H(b2), the annotations are
removed from the roots by the usable terms processor, as these subterms cannot
rewrite to annotated instances of left-hand sides of ADPs. So the a-ADP is changed
to a → {1/4 : f(H(b1), b1), 1/4 : f(h(b2), b1), 1/4 : F(H(b1), b2), 1/4 : F(h(b2), b2)}true (13′′).
Then we use the reduction pair processor as in Ex. 20 to prove iAST for Rincpl.

6 Conclusion and Evaluation

We developed a new ADP framework, which advances our work in [25] into a
complete criterion for almost-sure innermost termination by using annotated DPs
instead of dependency tuples, which also simplifies the framework substantially.
Moreover, we adapted the rewriting processor of the classic DP framework to the
probabilistic setting. We also adapted the other transformational processors of the
non-probabilistic DP framework, see [26]. The soundness proofs for the adapted
processors are much more involved than in the non-probabilistic setting, due to
the more complex structure of chain trees. However, the processors themselves
are analogous to their non-probabilistic counterparts, and thus, existing imple-
mentations of the processors can easily be adapted to their probabilistic versions.

We implemented our new contributions in our termination prover AProVE [17]
and compared the new probabilistic ADP framework with transformational proces-
sors (ADP) to the DT framework from [25] (DT) and to AProVE’s techniques for or-
dinary non-probabilistic TRSs (AProVE-NP), which include many additional pro-
cessors and which benefit from using separate dependency pairs instead of ADPs
or DTs. For the processors in Sect. 4, we could re-use the existing implementation
of [25] for our ADP framework. The main goal for probabilistic termination analy-
sis is to become as powerful as termination analysis in the non-probabilistic setting.
Therefore, in our first experiment, we considered the non-probabilistic TRSs of
the TPDB [34] (the benchmark set used in the annual Termination and Com-
plexity Competition (TermComp) [18]) and compared ADP and DT with AProVE-
NP, because at the current TermComp, AProVE-NP was the most powerful tool
for termination of ordinary non-probabilistic TRSs. Clearly, a TRS can be repre-
sented as a PTRS with trivial probabilities, and then (innermost) AST is the

A Complete DP Framework for iAST of PTRSs 15

same as (innermost) termination. While both ADP and DT have a probability
removal processor to switch to the classical DP framework for such problems, we
disabled that processor in this experiment. Since ADP and DT can only deal with
innermost evaluation, we used the benchmarks from the “TRS Innermost” and
“TRS Standard” categories of the TPDB, but only considered innermost evalua-
tion for all examples. We used a timeout of 300 seconds for each example. The
“TRS Innermost” category contains 366 benchmarks, where AProVE-NP proves
innermost termination for 293, DT is able to prove it for 133 (45% of AProVE-NP),
and for ADP this number rises to 159 (54%). For the 1512 benchmarks from the
“TRS Standard” category, AProVE-NP can prove innermost termination for 1114,
DT for 611 (55% of AProVE-NP), and ADP for 723 (65%). This shows that the
transformations are very important for automatic termination proofs as we get
around 10% closer to AProVE-NP’s results in both categories.

As a second experiment, we extended the PTRS benchmark set from [25] by 33
new PTRSs for typical probabilistic programs, including some examples with
complicated probabilistic structure. For instance, we added the following PTRS
Rqsrt for probabilistic quicksort. Here, we write r instead of {1 : r} for readability.

rotate(cons(x, xs)) → {1/2 : cons(x, xs), 1/2 : rotate(app(xs, cons(x, nil)))}
qsrt(xs) → if(empty(xs), low(hd(xs), tl(xs)), hd(xs), high(hd(xs), tl(xs)))

if(true, xs, x, ys) → nil empty(nil) → true empty(cons(x, xs)) → false
if(false, xs, x, ys) → app(qsrt(rotate(xs)), cons(x, qsrt(rotate(ys))))
hd(cons(x, xs)) → x tl(cons(x, xs)) → xs

The rotate-rules rotate a list randomly often (they are AST, but not termina-
ting). Thus, by choosing the first element of the resulting list, one obtains random
pivot elements for the recursive calls of qsrt in the second if-rule. In addition to
the rules above, Rqsrt contains rules for list concatenation (app), and rules such
that low(x, xs) (high(x, xs)) returns all elements of the list xs that are smaller
(greater or equal) than x, see [26]. In contrast to the quicksort example in [25],
proving iAST of the above rules requires transformational processors to instantiate
and rewrite the empty-, hd-, and tl-subterms in the right-hand side of the qsrt-rule.
So while DT fails for this example, ADP can prove iAST of Rqsrt.

90 of the 100 PTRSs in our set are iAST, and DT succeeds for 54 of them (60 %)
with the technique of [25] that does not use transformational processors. Adding
the new processors in ADP increases this number to 77 (86 %), which demonstrates
their power for PTRSs with non-trivial probabilities. For details on our experi-
ments and for instructions on how to run our implementation in AProVE via its web
interface or locally, see: https://aprove-developers.github.io/ProbabilisticADPs

On this website, we also performed experiments where we disabled individual
transformational processors of the ADP framework, which shows the usefulness
of each new processor. In addition to the ADP and DT framework, an alter-
native technique to analyze PTRSs via a direct application of interpretations
was presented in [3]. However, [3] analyzes PAST (or rather strong AST), and a
comparison between the DT framework and their technique can be found in [25]. In
future work, we will adapt more processors of the DP framework to the proba-
bilistic setting. Moreover, we work on analyzing AST also for full instead of inner-
most rewriting and already developed criteria when iAST implies full AST [27].

https://aprove-developers.github.io/ProbabilisticADPs

16 J.-C. Kassing, S. Dollase, J. Giesl

References

[1] S. Agrawal, K. Chatterjee, and P. Novotný. “Lexicographic Ranking Su-
permartingales: An Efficient Approach to Termination of Probabilistic
Programs”. In: Proc. ACM Program. Lang. 2.POPL (2017). doi: 10.1145/
3158122.

[2] T. Arts and J. Giesl. “Termination of Term Rewriting Using Dependency
Pairs”. In: Theor. Comput. Sc. 236.1-2 (2000), pp. 133–178. doi: 10.1016/
S0304-3975(99)00207-8.

[3] M. Avanzini, U. Dal Lago, and A. Yamada. “On Probabilistic Term Rewrit-
ing”. In: Sci. Comput. Program. 185 (2020). doi: 10.1016/j.scico.2019.
102338.

[4] M. Avanzini, G. Moser, and M. Schaper. “A Modular Cost Analysis for
Probabilistic Programs”. In: Proc. ACM Program. Lang. 4.OOPSLA (2020).
doi: 10.1145/3428240.

[5] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998. doi: 10.1017/CBO9781139172752.

[6] K. Batz, B. L. Kaminski, J.-P. Katoen, C. Matheja, and L. Verscht. “A
Calculus for Amortized Expected Runtimes”. In: Proc. ACM Program.
Lang. 7.POPL (2023). doi: 10.1145/3571260.

[7] R. Beutner and L. Ong. “On Probabilistic Termination of Functional Pro-
grams with Continuous Distributions”. In: Proc. PLDI ’21. 2021, pp. 1312–
1326. doi: 10.1145/3453483.3454111.

[8] O. Bournez and C. Kirchner. “Probabilistic Rewrite Strategies. Applications
to ELAN”. In: Proc. RTA ’02. LNCS 2378. 2002, pp. 252–266. doi: 10.1007/3-
540-45610-4 18.

[9] O. Bournez and F. Garnier. “Proving Positive Almost-Sure Termination”.
In: Proc. RTA ’05. LNCS 3467. 2005, pp. 323–337. doi: 10.1007/978-3-540-
32033-3 24.

[10] K. Chatterjee, H. Fu, and P. Novotný. “Termination Analysis of Prob-
abilistic Programs with Martingales”. In: Foundations of Probabilistic
Programming. Ed. by G. Barthe, J.-P. Katoen, and A. Silva. Cambridge
University Press, 2020, 221–258. doi: 10.1017/9781108770750.008.

[11] U. Dal Lago and C. Grellois. “Probabilistic Termination by Monadic Affine
Sized Typing”. In: Proc. ESOP ’17. LNCS 10201. 2017, pp. 393–419. doi:
10.1007/978-3-662-54434-1 15.

[12] U. Dal Lago, C. Faggian, and S. R. Della Rocca. “Intersection Types
and (Positive) Almost-Sure Termination”. In: Proc. ACM Program. Lang.
5.POPL (2021). doi: 10.1145/3434313.

[13] C. Faggian. “Probabilistic Rewriting and Asymptotic Behaviour: On Ter-
mination and Unique Normal Forms”. In: Log. Methods in Comput. Sci.
18.2 (2022). doi: 10.46298/lmcs-18(2:5)2022.

[14] L. M. Ferrer Fioriti and H. Hermanns. “Probabilistic Termination: Sound-
ness, Completeness, and Compositionality”. In: Proc. POPL ’15. 2015,
pp. 489–501. doi: 10.1145/2676726.2677001.

https://doi.org/10.1145/3158122
https://doi.org/10.1145/3158122
https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.1016/j.scico.2019.102338
https://doi.org/10.1016/j.scico.2019.102338
https://doi.org/10.1145/3428240
https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.1145/3571260
https://doi.org/10.1145/3453483.3454111
https://doi.org/10.1007/3-540-45610-4_18
https://doi.org/10.1007/3-540-45610-4_18
https://doi.org/10.1007/978-3-540-32033-3_24
https://doi.org/10.1007/978-3-540-32033-3_24
https://doi.org/10.1017/9781108770750.008
https://doi.org/10.1007/978-3-662-54434-1_15
https://doi.org/10.1145/3434313
https://doi.org/10.46298/lmcs-18(2:5)2022
https://doi.org/10.1145/2676726.2677001

A Complete DP Framework for iAST of PTRSs 17

[15] J. Giesl, R. Thiemann, and P. Schneider-Kamp. “The Dependency Pair
Framework: Combining Techniques for Automated Termination Proofs”.
In: Proc. LPAR ’04. LNCS 3452. 2004, pp. 301–331. doi: 10.1007/978-3-
540-32275-7 21.

[16] J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. “Mechanizing
and Improving Dependency Pairs”. In: J. Autom. Reason. 37.3 (2006),
pp. 155–203. doi: 10.1007/s10817-006-9057-7.

[17] J. Giesl, C. Aschermann, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs,
J. Hensel, C. Otto, M. Plücker, P. Schneider-Kamp, T. Ströder, S. Swider-
ski, and R. Thiemann. “Analyzing Program Termination and Complexity
Automatically with AProVE”. In: J. Autom. Reason. 58.1 (2017), pp. 3–31.
doi: 10.1007/s10817-016-9388-y.

[18] J. Giesl, A. Rubio, C. Sternagel, J. Waldmann, and A. Yamada. “The
Termination and Complexity Competition”. In: Proc. TACAS ’19. LNCS
11429. 2019, pp. 156–166. doi: 10.1007/978-3-030-17502-3 10.

[19] J. Giesl, P. Giesl, and M. Hark. “Computing Expected Runtimes for
Constant Probability Programs”. In: Proc. CADE ’19. LNCS 11716. 2019,
pp. 269–286. doi: 10.1007/978-3-030-29436-6 16.

[20] B. Gramlich. “Abstract Relations between Restricted Termination and
Confluence Properties of Rewrite Systems”. In: Fundam. Informaticae 24
(1995), pp. 2–23.

[21] N. Hirokawa and A. Middeldorp. “Automating the Dependency Pair
Method”. In: Inf. Comput. 199.1-2 (2005), pp. 172–199. doi: 10.1016/
j.ic.2004.10.004.

[22] M. Huang, H. Fu, K. Chatterjee, and A. K. Goharshady. “Modular Verifi-
cation for Almost-Sure Termination of Probabilistic Programs”. In: Proc.
ACM Program. Lang. 3.OOPSLA (2019). doi: 10.1145/3360555.

[23] B. L. Kaminski, J.-P. Katoen, C. Matheja, and F. Olmedo. “Weakest
Precondition Reasoning for Expected Runtimes of Randomized Algorithms”.
In: J. ACM 65 (2018), pp. 1–68. doi: 10.1145/3208102.

[24] B. L. Kaminski, J.-P. Katoen, and C. Matheja. “Expected Runtime Analyis
by Program Verification”. In: Foundations of Probabilistic Programming.
Ed. by G. Barthe, J.-P. Katoen, and A. Silva. Cambridge University Press,
2020, 185–220. doi: 10.1017/9781108770750.007.

[25] J.-C. Kassing and J. Giesl. “Proving Almost-Sure Innermost Termination of
Probabilistic Term Rewriting Using Dependency Pairs”. In: Proc. CADE ’23.
LNCS 14132. 2023, pp. 344–364. doi: 10.1007/978-3-031-38499-8 20.

[26] J.-C. Kassing, S. Dollase, and J. Giesl. “A Complete Dependency Pair
Framework for Almost-Sure Innermost Termination of Probabilistic Term
Rewriting”. In: CoRR abs/2309.00344 (2023). doi: 10.48550/arXiv.2309.
00344.

[27] J.-C. Kassing, F. Frohn, and J. Giesl. “From Innermost to Full Almost-
Sure Termination of Probabilistic Term Rewriting”. In: Proc. FoSSaCS ’24.
LNCS 14575. 2024. doi: 10.1007/978-3-031-57231-9 10.

https://doi.org/10.1007/978-3-540-32275-7_21
https://doi.org/10.1007/978-3-540-32275-7_21
https://doi.org/10.1007/s10817-006-9057-7
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/978-3-030-17502-3_10
https://doi.org/10.1007/978-3-030-29436-6_16
https://doi.org/10.1016/j.ic.2004.10.004
https://doi.org/10.1016/j.ic.2004.10.004
https://doi.org/10.1145/3360555
https://doi.org/10.1145/3208102
https://doi.org/10.1017/9781108770750.007
https://doi.org/10.1007/978-3-031-38499-8_20
https://doi.org/10.48550/arXiv.2309.00344
https://doi.org/10.48550/arXiv.2309.00344
https://doi.org/10.1007/978-3-031-57231-9_10

18 J.-C. Kassing, S. Dollase, J. Giesl

[28] D. S. Lankford. On Proving Term Rewriting Systems are Noetherian. Memo
MTP-3, Math. Dept., Louisiana Technical University, Ruston, LA, 1979.
url: http://www.ens- lyon. fr/LIP/REWRITING/TERMINATION/
Lankford Poly Term.pdf.

[29] L. Leutgeb, G. Moser, and F. Zuleger. “Automated Expected Amortised
Cost Analysis of Probabilistic Data Structures”. In: Proc. CAV ’22. LNCS
13372. 2022, pp. 70–91. doi: 10.1007/978-3-031-13188-2 4.

[30] A. McIver, C. Morgan, B. L. Kaminski, and J.-P. Katoen. “A New Proof
Rule for Almost-Sure Termination”. In: Proc. ACM Program. Lang. 2.POPL
(2018). doi: 10.1145/3158121.

[31] F. Meyer, M. Hark, and J. Giesl. “Inferring Expected Runtimes of Prob-
abilistic Integer Programs Using Expected Sizes”. In: Proc. TACAS ’21.
LNCS 12651. 2021, pp. 250–269. doi: 10.1007/978-3-030-72016-2 14.

[32] M. Moosbrugger, E. Bartocci, J.-P. Katoen, and L. Kovács. “Automated
Termination Analysis of Polynomial Probabilistic Programs”. In: Proc.
ESOP ’21. LNCS 12648. 2021, pp. 491–518. doi: 10.1007/978-3-030-72019-
3 18.

[33] V. C. Ngo, Q. Carbonneaux, and J. Hoffmann. “Bounded Expectations:
Resource Analysis for Probabilistic Programs”. In: Proc. PLDI ’18. 2018,
pp. 496–512. doi: 10.1145/3192366.3192394.

[34] Termination Problem Data Base. https://github.com/TermCOMP/TPDB.
[35] D. Wang, D. M. Kahn, and J. Hoffmann. “Raising Expectations: Automat-

ing Expected Cost Analysis with Types”. In: Proc. ACM Program. Lang.
4.ICFP (2020). doi: 10.1145/3408992.

http://www.ens-lyon.fr/LIP/REWRITING/TERMINATION/Lankford_Poly_Term.pdf
http://www.ens-lyon.fr/LIP/REWRITING/TERMINATION/Lankford_Poly_Term.pdf
https://doi.org/10.1007/978-3-031-13188-2_4
https://doi.org/10.1145/3158121
https://doi.org/10.1007/978-3-030-72016-2_14
https://doi.org/10.1007/978-3-030-72019-3_18
https://doi.org/10.1007/978-3-030-72019-3_18
https://doi.org/10.1145/3192366.3192394
https://github.com/TermCOMP/TPDB
https://doi.org/10.1145/3408992

	A Complete Dependency Pair Framework forAlmost-Sure Innermost Termination of Probabilistic Term Rewriting

