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Jürgen Giesl, René Thiemann, Peter Schneider-Kamp

LuFG Informatik II, RWTH Aachen, Ahornstr. 55, 52074 Aachen, Germany
{giesl|thiemann|psk}@informatik.rwth-aachen.de

Abstract. The dependency pair technique is a powerful modular method
for automated termination proofs of term rewrite systems (TRSs). We
present two important extensions of this technique: First, we show how
to prove termination of higher-order functions using dependency pairs.
To this end, the dependency pair technique is extended to handle (un-
typed) applicative TRSs. Second, we introduce a method to prove non-
termination with dependency pairs, while up to now dependency pairs
were only used to verify termination. Our results lead to a framework
for combining termination and non-termination techniques for first- and
higher-order functions in a very flexible way. We implemented and eval-
uated our results in the automated termination prover AProVE.

1 Introduction

One of the most powerful techniques to prove termination or innermost termi-
nation of TRSs automatically is the dependency pair approach [4, 12, 13]. In [16],
we recently showed that dependency pairs can be used as a general framework
to combine arbitrary techniques for termination analysis in a modular way. The
general idea of this framework is to solve termination problems by repeatedly
decomposing them into sub-problems. We call this new concept the “dependency
pair framework” (“DP framework”) to distinguish it from the old “dependency
pair approach”. In particular, this framework also facilitates the development of
new methods for termination analysis. After recapitulating the basics of the DP
framework in Sect. 2, we present two new significant improvements: in Sect. 3 we
extend the framework in order to handle higher-order functions and in Sect. 4
we show how to use the DP framework to prove non-termination. Sect. 5 sum-
marizes our results and describes their empirical evaluation with the system
AProVE. All proofs can be found in [17].

2 The Dependency Pair Framework

We refer to [5] for the basics of rewriting and to [4, 13, 16] for motivations and
details on dependency pairs. We only regard finite signatures and TRSs. T (F ,V)
is the set of terms over the signature F and the infinite set of variables V =
{x, y, z, . . . , α, β, . . .}. R is a TRS over F if l, r ∈ T (F ,V) for all rules l → r ∈ R.

⋆ Supported by the Deutsche Forschungsgemeinschaft DFG under grant GI 274/5-1.
Appeared in the Proceedings of the 5th International Workshop on Frontiers of Com-
bining Systems (FroCoS ’05), Vienna, Austria, LNAI 3717, 2005.



We will present a method for termination analysis of untyped higher-order
functions which do not use λ-abstraction. Due to the absence of λ, such functions
can be represented in curried form as applicative first-order TRSs (cf. e.g., [22]).
A signature F is applicative if it only contains nullary function symbols and a
binary symbol ′ for function application. Moreover, any TRS R over F is called
applicative. So instead of a term map(α, x) we write ′ ( ′ (map, α), x). To ease
readability, we use ′ as an infix-symbol and we let ′ associate to the left. Then
this term can be written as map ′ α ′ x. This is very similar to the usual notation
of higher-order functions where application is just denoted by juxtaposition (i.e.,
here one would write map α x instead of map ′ α ′ x).

Example 1. The function map is used to apply a function to all elements in a
list. Instead of the higher-order rules map(α, nil) → nil and map(α, cons(x, xs)) →
cons(α(x), map(α, xs)), we encode it by the following first-order TRS.

map ′ α ′ nil → nil (1)

map ′ α ′ (cons ′ x ′ xs) → cons ′ (α ′ x) ′ (map ′ α ′ xs) (2)

A TRS is terminating if all reductions are finite, i.e., if all applications of
functions encoded in the TRS terminate. So intuitively, the TRS {(1), (2)} is
terminating iff map terminates whenever its arguments are terminating terms.

For a TRS R over F , the defined symbols are D = {root(l) | l → r ∈ R} and
the constructors are C = F \ D. For every f ∈ F let f♯ be a fresh tuple symbol
with the same arity as f, where we often write F for f♯. The set of tuple symbols
is denoted by F ♯. If t=g(t1, . . . , tm) with g∈D, we let t♯ denote g♯(t1, . . . , tm).

Definition 2 (Dependency Pair). The set of dependency pairs for a TRS
R is DP (R) = {l♯ → t♯ | l → r ∈ R, t is a subterm of r, root(t) ∈ D}.

Example 3. In the TRS of Ex. 1, the only defined symbol is ′ and map, cons,
and nil are constructors. Let AP denote the tuple symbol for ′ . Then we have
the following dependency pairs where s is the term AP(map ′ α, cons ′ x ′ xs).

s → AP(cons
′ (α ′

x), map
′
α

′
xs) (3)

s → AP(cons, α
′
x) (4)

s → AP(α, x) (5)

s → AP(map
′
α, xs) (6)

s → AP(map, α) (7)

For termination, we try to prove that there are no infinite chains of depen-
dency pairs. Intuitively, a dependency pair corresponds to a function call and a
chain represents a possible sequence of calls that can occur during a reduction.
We always assume that different occurrences of dependency pairs are variable
disjoint and consider substitutions whose domains may be infinite. In the fol-
lowing definition, P is usually a set of dependency pairs.

Definition 4 (Chain). Let P,R be TRSs. A (possibly infinite) sequence of pairs
s1 → t1, s2 → t2, . . . from P is a (P ,R)-chain iff there is a substitution σ with
tiσ →∗

R si+1σ for all i. It is an innermost (P ,R)-chain iff tiσ
i→∗
R si+1σ and siσ

is in normal form w.r.t. R for all i. Here, “ i→R” denotes innermost reductions.

Example 5. “(6), (6)” is a chain: an instance of (6)’s right-hand side AP(map ′ α1,
xs1) can reduce to an instance of its left-hand side AP(map ′ α2, cons ′ x2

′ xs2).
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Theorem 6 (Termination Criterion [4]). A TRS R is (innermost) termi-
nating iff there is no infinite (innermost) (DP (R),R)-chain.

The idea of the DP framework [16] is to treat a set of dependency pairs P
together with the TRS R and to prove absence of infinite (P ,R)-chains instead of
examining →R. Formally, a dependency pair problem (“DP problem”)1 consists
of two TRSs P and R (where initially, P = DP (R)) and a flag e ∈ {t, i} standing
for “termination” or “innermost termination”. Instead of “(P ,R)-chains” we
also speak of “(P ,R, t)-chains” and instead of “innermost (P ,R)-chains” we
speak of “(P ,R, i)-chains”. Our goal is to show that there is no infinite (P ,R, e)-
chain. In this case, we call the problem finite.

A DP problem (P ,R, e) that is not finite is called infinite. But in addition,
(P ,R, t) is already infinite whenever R is not terminating and (P ,R, i) is al-
ready infinite whenever R is not innermost terminating. Thus, there can be
DP problems which are both finite and infinite. For example, the DP problem
(P ,R, t) with P = {F(f(x)) → F(x)} and R = {f(f(x)) → f(x), a → a} is finite
since there is no infinite (P ,R, t)-chain, but also infinite since R is not termi-
nating. Such DP problems do not cause any difficulties, cf. [16]. If one detects an
infinite problem during a termination proof attempt, one can abort the proof,
since termination has been disproved (if all proof steps were “complete”, i.e., if
they preserved the termination behavior).

A DP problem (P ,R, e) is applicative iff R is a TRS over an applicative
signature F , and for all s → t ∈ P , we have t /∈ V , {root(s), root(t)} ⊆ F ♯, and
all function symbols below the root of s or t are from F . We also say that such
a problem is an applicative DP problem over F . Thus, in an applicative DP
problem (P ,R, e), the pairs s → t of P must have a shape which is similar to
the original dependency pairs (i.e., the roots of s and t are tuple symbols which
do not occur below the root). This requirement is needed in Sect. 3.3 in order
to transform applicative terms back to ordinary functional form.

Termination techniques should now operate on DP problems instead of TRSs.
We refer to such techniques as dependency pair processors (“DP processors”).
Formally, a DP processor is a function Proc which takes a DP problem as input
and returns a new set of DP problems which then have to be solved instead.
Alternatively, it can also return “no”. A DP processor Proc is sound if for all
DP problems d, d is finite whenever Proc(d) is not “no” and all DP problems
in Proc(d) are finite. Proc is complete if for all DP problems d, d is infinite
whenever Proc(d) is “no” or when Proc(d) contains an infinite DP problem.

Soundness of a DP processor Proc is required to prove termination (in partic-
ular, to conclude that d is finite if Proc(d) = ∅). Completeness is needed to prove
non-termination (in particular, to conclude that d is infinite if Proc(d) = no).

So termination proofs in the DP framework start with the initial DP problem
(DP (R),R, e), where e depends on whether one wants to prove termination or
innermost termination. Then this problem is transformed repeatedly by sound
DP processors. If the final processors return empty sets of DP problems, then

1 To ease readability we use a simpler definition of DP problems than [16], since this
simple definition suffices for the new results of this paper.
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termination is proved. If one of the processors returns “no” and all processors
used before were complete, then one has disproved termination of the TRS R.

Example 7. If d0 is the initial DP problem (DP (R),R, e) and there are sound
processors Proc0, Proc1, Proc2 with Proc0(d0) = {d1, d2}, Proc1(d1) = ∅, and
Proc2(d2) = ∅, then one can conclude termination. But if Proc1(d1) = no, and
both Proc0 and Proc1 are complete, then one can conclude non-termination.

3 DP Processors for Higher-Order Functions

Since we represent higher-order functions by first-order applicative TRSs, all
existing techniques and DP processors for first-order TRSs can also be used for
higher-order functions. However, most termination techniques rely on the outer-
most function symbol when comparing terms. This is also true for dependency
pairs and standard reduction orders. Therefore, they usually fail for applicative
TRSs since here, all terms except variables and constants have the same root
symbol ′ . For example, a direct termination proof of Ex. 1 is impossible with
standard reduction orders and difficult2 with dependency pairs.

Therefore, in Sect. 3.1 and Sect. 3.2 we improve the most important proces-
sors of the DP framework in order to be successful on applicative TRSs. More-
over, we introduce a new processor in Sect. 3.3 which removes the symbol ′ and
transforms applicative TRSs and DP problems into ordinary (functional) form
again. Sect. 5 shows that these contributions indeed yield a powerful termination
technique for higher-order functions. Sect. 3.4 is a comparison with related work.

3.1 A DP Processor Based on the Dependency Graph

The dependency graph determines which pairs can follow each other in chains.

Definition 8 (Dependency Graph). Let (P ,R, e) be a DP problem. The
nodes of the (P ,R, e)-dependency graph are the pairs of P and there is an
arc from s → t to u → v iff s → t, u → v is an (P ,R, e)-chain.

Example 9. For Ex. 1, we obtain the following (P ,R, e)-dependency graph for
both e = t and e = i. The reason is that the right-hand sides of (3), (4), and
(7) have cons ′ (α ′ x), cons, or map as their first arguments. No instance of these
terms reduces to an instance of map ′ α (which is the first argument of s).

s→AP(cons ′ (α ′ x), map ′ α ′ xs) (3) s→AP(cons, α ′ x) (4)

s→AP(α, x) (5) s→AP(map ′ α, xs) (6)s→AP(map, α) (7)

A set P ′ 6= ∅ of dependency pairs is a cycle iff for all s → t and u → v in P ′,
there is a path from s → t to u → v traversing only pairs of P ′. A cycle P ′ is a

2 It needs complex DP processors or base orders (e.g., non-linear polynomial orders).
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strongly connected component (SCC) if P ′ is not a proper subset of another cycle.
As absence of infinite chains can be proved separately for each SCC, termination
proofs can be modularized by decomposing a DP problem into sub-problems.

Theorem 10 (Dependency Graph Processor [16]). For a DP problem
(P ,R, e), let Proc return {(P1,R, e), . . . , (Pn,R, e)}, where P1, . . . ,Pn are the
SCCs of the (P ,R, e)-dependency graph. Then Proc is sound and complete.

For Ex. 1, we start with the initial DP problem (P ,R, e), where P = {(3), . . . ,
(7)}. The only SCC of the dependency graph is {(5), (6)}. So the above processor
transforms (P ,R, e) into ({(5), (6)},R, e), i.e., (3), (4), and (7) are deleted.

Unfortunately, the dependency graph is not computable. Therefore, for au-
tomation one constructs an estimated graph containing at least all arcs of the
real graph. The existing estimations that are used for automation [4, 18] assume
that all subterms with defined root could possibly be evaluated. Therefore, they
use a function cap, where cap(t) results from replacing all subterms of t with
defined root symbol by different fresh variables. To estimate whether s → t and
u → v form a chain, one checks whether cap(t) unifies with u (after renaming
their variables). Moreover, if one regards termination instead of innermost ter-
mination, one first has to linearize cap(t), i.e., multiple occurrences of the same
variable in cap(t) are renamed apart. Further refinements of this estimation can
be found in [18]; however, they rely on the same function cap.

These estimations are not suitable for applicative TRSs. The problem is that
there, all subterms except variables and constants have the defined root symbol ′

and are thus replaced by variables when estimating the arcs of the dependency
graph. So for Ex. 1, the estimations assume that (3) could be followed by any
dependency pair in chains. The reason is that the right-hand side of (3) is
AP(cons ′ (α ′ x), map ′ α ′ xs) and cap replaces both arguments of AP by fresh
variables, since their root symbol ′ is defined. The resulting term AP(y, z) uni-
fies with the left-hand side of every dependency pair. Therefore, the estimated
dependency graph contains additional arcs from (3) to every dependency pair.

The problem is that these estimations do not check whether subterms with
defined root can really be reduced further when being instantiated. For example,
the first argument cons ′ (α ′ x) of (3)’s right-hand side can never become a redex
for any instantiation. The reason is that all left-hand sides of the TRS have the
form map ′ t1

′ t2. Thus, one should not replace cons ′ (α ′ x) by a fresh variable.
Therefore, we now refine cap’s definition. If a subterm can clearly never be-

come a redex, then it is not replaced by a variable anymore. Here, icap is used for
innermost termination proofs and tcap differs from icap by renaming multiple
occurrences of variables, which is required when proving full termination.

Definition 11 (icap, tcap). Let R be a TRS over F , let f ∈ F ∪ F ♯.

(i) icap(x) = x for all x ∈ V
(ii) icap(f(t1, . . . , tn)) = f(icap(t1), . . . , icap(tn)) iff f(icap(t1), ..., icap(tn))

does not unify with any left-hand side of a rule from R
(iii) icap(f(t1, . . . , tn)) is a fresh variable, otherwise

We define tcap like icap but in (i), tcap(x) is a different fresh variable for
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every occurrence of x. Moreover in (ii), we use tcap(ti) instead of icap(ti).

Now one can detect that (3) should not be connected to any pair in the de-
pendency graph, since icap(AP(cons ′ (α ′ x), map ′ α ′ xs)) = AP(cons ′ y, z) does
not unify with left-hand sides of dependency pairs. Similar remarks hold for
tcap. This leads to the following improved estimation.3

Definition 12 (Improved Estimated Dependency Graph). In the esti-
mated (P ,R, t)-dependency graph there is an arc from s → t to u → v iff
tcap(t) and u are unifiable. In the estimated (P ,R, i)-dependency graph there
is an arc from s → t to u → v iff icap(t) and u are unifiable by an mgu µ (after
renaming their variables) such that sµ and uµ are in normal form w.r.t. R.

Now the estimated graph is identical to the real dependency graph in Ex. 9.

Theorem 13 (Soundness of the Improved Estimation). The dependency
graph is a subgraph of the estimated dependency graph.

Of course, the new estimation of dependency graphs from Def. 12 is also useful
for non-applicative TRSs and DP problems. The benefits of our improvements
(also for ordinary TRSs) is demonstrated by our experiments in Sect. 5.

3.2 DP Processors Based on Orders and on Usable Rules

Classical techniques for automated termination proofs try to find a reduction
order ≻ such that l ≻ r holds for all rules l → r. In practice, most orders are
simplification orders [10]. However, termination of many important TRSs cannot
be proved with such orders directly. Therefore, the following processor allows us
to use such orders in the DP framework instead. It generates constraints which
should be satisfied by a reduction pair [23] (%,≻) where % is reflexive, transitive,
monotonic, and stable and ≻ is a stable well-founded order compatible with %
(i.e., % ◦ ≻ ⊆ ≻ and ≻ ◦ % ⊆ ≻). Now one can use existing techniques to search
for suitable relations % and ≻, and in this way, classical simplification orders
can prove termination of TRSs where they would have failed otherwise.

For a problem (P ,R, e), the constraints require that at least one rule in P is
strictly decreasing (w.r.t. ≻) and all remaining rules in P and R are weakly de-
creasing (w.r.t. %). Requiring l % r for l → r ∈ R ensures that in chains s1 →
t1, s2→t2, . . . with tiσ→∗

R si+1σ, we have tiσ % si+1σ. Hence, if a reduction pair
satisfies these constraints, then the strictly decreasing pairs of P cannot occur
infinitely often in chains. Thus, the following processor deletes these pairs from
P . For any TRS P and any relation ≻, let P≻ = {s → t ∈ P | s ≻ t}.

Theorem 14 (Reduction Pair Processor [16]). Let (%,≻) be a reduction
pair. Then the following DP processor Proc is sound and complete. For a DP
problem (P ,R, e), Proc returns

• {(P \ P≻,R, e)}, if P≻ ∪ P% = P and R% = R
• {(P ,R, e)}, otherwise

3 Moreover, tcap and icap can also be combined with further refinements to approx-
imate dependency graphs [4, 18].
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DP problems (P ,R, i) for innermost termination can be simplified by re-
placing the second component R by those rules from R that are usable for
P (i.e., by the usable rules of P). Then by Thm. 14, a weak decrease l % r
is not required for all rules but only for the usable rules. As defined in [4],
the usable rules of a term t contain all f-rules for all function symbols f oc-
curring in t. Moreover, if f’s rules are usable and there is a rule f(. . .) →
r in R whose right-hand side r contains a symbol g, then g is usable, too.
The usable rules of a TRS P are defined as the usable rules of its right-hand sides.

For instance, after applying the dependency graph processor to Ex. 1, we have
the remaining dependency pairs (5) and (6) with the right-hand sides AP(α, x)
and AP(map ′ α, xs). While AP(α, x) has no usable rules, AP(map ′ α, xs) con-
tains the defined function symbol ′ and therefore, all ′ -rules are usable.

This indicates that the definition of usable rules has to be improved to handle
applicative TRSs successfully. Otherwise, whenever ′ occurs in the right-hand
side of a dependency pair, then all rules (except rules of the form f → . . .) would
be usable. The problem is that the current definition of “usable rules” assumes
that all ′ -rules can be applied to any subterm with the root symbol ′ .

Thus, we refine the definition of usable rules. Now a subterm starting with ′

only influences the computation of the usable rules if some suitable instantiation
of this subterm would start new reductions. To detect this, we again use the
function icap from Def. 11. For example, map ′ α can never be reduced if α is
instantiated by a normal form, since map ′ α does not unify with the left-hand
side of any rule. Therefore, the right-hand side AP(map ′ α, xs) of (6) should not
have any usable rules.4

Definition 15 (Improved Usable Rules). For a DP problem (P ,R, i), we de-
fine the usable rules U(P)=

⋃
s→t∈P

U(t). Here U(t)⊆R is the smallest set with:

• If t = f(t1, . . . , tn), f ∈ F ∪ F ♯, and f(icap(t1), . . . , icap(tn)) unifies with
a left-hand side l of a rule l → r ∈ R, then l → r ∈ U(t).

• If l → r ∈ U(t), then U(r) ⊆ U(t).
• If t′ is a subterm of t, then U(t′) ⊆ U(t).

Theorem 16 (Usable Rule Processor). For a DP problem (P ,R, e), let Proc
return { (P ,U(P), i) } if e = i and { (P ,R, e) } otherwise. Then Proc is sound.5

Example 17. In Ex. 1, now the dependency pairs in the remaining DP problem
({(5), (6)},R, i) have no usable rules. Thus, Thm. 16 transforms this DP prob-
lem into ({(5), (6)}, ∅, i). Then with the processor of Thm. 14 we try to find a
reduction pair such that (5) and (6) are decreasing. Any simplification order ≻
(even the embedding order) makes both pairs strictly decreasing: s ≻ AP(α, x)
and s ≻ AP(map ′ α, xs) for s = AP(map ′ α, cons ′ x ′ xs). Thus, both depen-
dency pairs are removed and the resulting DP problem (∅,R, i) is transformed

4 Our new definition of usable rules can also be combined with other techniques to
reduce the set of usable rules [14] and it can also be applied for dependency graph
estimations or other DP processors that rely on usable rules [16, 18].

5 Incompleteness is due to our simplified definition of “DP problems”. With the full
definition of “DP problems” from [16], the processor is complete [16, Lemma 12].
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into the empty set by the dependency graph processor of Thm. 10. So innermost
termination of the map-TRS from Ex. 1 can now easily be proved automatically.
Note that this TRS is non-overlapping and thus, it belongs to a well-known class
where innermost termination implies termination.

Similar to the improved estimation of dependency graphs in the previous
section, the new improved definition of usable rules from Def. 15 is also beneficial
for ordinary non-applicative TRSs, cf. Sect. 5.

In [32], we showed that under certain conditions, the usable rules of [4] can
also be used to prove full instead of just innermost termination (for arbitrary
TRSs). Then, even for termination, it is enough to require l % r just for the
usable rules in Thm. 14. This result also holds for the new improved usable rules
of Def. 15, provided that one uses tcap instead of icap in their definition.

3.3 A DP Processor to Transform Applicative to Functional Form

Some applicative DP problems can be transformed (back) to ordinary functional
form. In particular, this holds for problems resulting from first-order functions
(encoded by currying). This transformation is advantageous: e.g., the processor
in Thm. 14 is significantly more powerful for DP problems in functional form,
since standard reduction orders focus on the root symbol when comparing terms.

Example 18. We extend the map-TRS by the following rules for minus and div.
Note that a direct termination proof with simplification orders is impossible.

minus
′
x

′
0 → x (8)

minus
′(s ′

x) ′(s ′
y) → minus

′
x

′
y (9)

div
′
0

′(s ′
y) → 0 (10)

div
′(s ′

x) ′(s ′
y) → s

′(div
′(minus

′
x

′
y) ′(s ′

y)) (11)

While map is really a higher-order function, minus and div correspond to first-
order functions. It again suffices to verify innermost termination, since this TRS
R is non-overlapping. The improved estimated dependency graph has three SCCs
corresponding to map, minus, and div. Thus, by the dependency graph and the
usable rule processors (Thm. 10 and 16), the initial DP problem (DP (R),R, i)
is transformed into three new problems. The first problem ({(5), (6)}, ∅, i) for
map can be solved as before. The DP problems for minus and div are:

({AP(minus ′ (s ′ x), s ′ y) → AP(minus ′ x, y)}, ∅, i) (12)

({AP(div ′ (s ′ x), s ′ y) → AP(div ′ (minus ′ x ′ y), s ′ y)}, {(8), (9)}, i) (13)

Since (12) and (13) do not contain map anymore, one would like to change
them back to conventional functional form. Then they could be replaced by the
following DP problems. Here, every (new) function symbol is labelled by its arity.

({MINUS2(s1(x), s1(y)) → MINUS2(x, y)}, ∅, i) (14)

({DIV2(s1(x), s1(y)) → DIV2(minus2(x, y), s1(y))},

{minus2(x, 00) → x, minus2(s1(x), s1(y)) → minus2(x, y)}, i) (15)

These DP problems are easy to solve: for example, the constraints of the re-
duction pair processor (Thm. 14) are satisfied by the polynomial order which
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maps s1(x) to x + 1, minus2(x, y) to x, and every other symbol to the sum of its
arguments. Thus, termination could immediately be proved automatically.

Now we characterize those applicative TRSs which correspond to first-order
functions and can be translated into functional form. In these TRSs, for any
function symbol f there is a number n (called its arity) such that f only occurs
in terms of the form f ′ t1

′ . . . ′ tn. So there are no applications with too few or
too many arguments. Moreover, there are no terms x ′ t where the first argument
of ′ is a variable. Def. 19 extends this idea from TRSs to DP problems.

Definition 19 (Arity and Proper Terms). Let (P ,R, e) be an applicative
DP problem over F . For each f ∈ F \{ ′ } let arity(f) = max{n | f ′ t1

′ . . . ′ tn or
(f ′ t1

′ . . . ′ tn)♯ occurs in P∪R}. A term t is proper iff t ∈ V or t = f ′ t1
′ . . . ′ tn

or t = (f ′ t1
′ . . . ′ tn)♯ where in the last two cases, arity(f) = n and all ti are

proper. Moreover, (P ,R, e) is proper iff all terms in P ∪R are proper.

The DP problems (12) and (13) for minus and div are proper. Here, minus and
div have arity 2, s has arity 1, and 0 has arity 0. But the problem ({(5), (6)}, ∅, i)
for map is not proper as (5) contains the subterm AP(α, x) with α ∈ V .

The following transformation translates proper terms from applicative to
functional form. To this end, f ′ t1

′ . . . ′ tn is replaced by fn(. . .), where n is f’s
arity (as defined in Def. 19) and fn is a new n-ary function symbol. In this way,
(12) and (13) were transformed into (14) and (15) in Ex. 18.

Definition 20 (Transformation A). A maps every proper term from T (F ∪
F ♯,V) to a term from T ({fn, Fn | f ∈ F \ { ′ }, arity(f) = n}, V):

• A(x) = x for all x ∈ V
• A(f ′ t1

′ . . . ′ tn) = fn(A(t1), . . . ,A(tn)) for all f ∈ F \ { ′ }
• A((f ′ t1

′ . . . ′ tn)♯) = Fn(A(t1), . . . ,A(tn)) for all f ∈ F \ { ′ }

For any TRS R with only proper terms, let A(R) = {A(l) → A(r) | l → r ∈ R}.

We now define a DP processor which replaces proper DP problems (P ,R, e)
by (A(P),A(R), e). Its soundness is due to the fact that every (P ,R, e)-chain re-
sults in an (A(P),A(R), e)-chain, i.e., that tiσ →∗

R si+1σ implies A(ti)σ
′ →∗

A(R)

A(si+1)σ
′ for some substitution σ′. The reason is that ti and si+1 are proper and

while σ may introduce non-proper terms, every chain can also be constructed
with a substitution σ where all σ(x) are proper. Thus, while soundness and
completeness of the following processor might seem intuitive, the formal proof
including this construction is quite involved and can be found in [17].

Theorem 21 (DP Processor for Transformation in Functional Form).
For any DP problem (P ,R, e), let Proc return {(A(P),A(R), e)} if (P ,R, e) is
proper and {(P ,R, e)} otherwise. Then Proc is sound and complete.

With the processor of Thm. 21 and our new improved estimation of depen-
dency graphs (Def. 12), it does not matter anymore for the termination proof
whether first-order functions are represented in ordinary functional or in applica-
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tive form: in the latter case, dependency pairs with non-proper right-hand sides
are not in SCCs of the improved estimated dependency graph. Hence, after ap-
plying the dependency graph processor of Thm. 10, all remaining DP problems
are proper and can be transformed into functional form by Thm. 21.

As an alternative to the processor of Thm. 21, one can also couple the trans-
formation A with the reduction pair processor from Thm. 14. Then a DP problem
(P ,R, e) is transformed into {(P \ {s → t | A(s) ≻ A(t)},R, e)} if (P ,R, e) is
proper, if A(P)≻ ∪ A(P)% = A(P), and if A(R)% = A(R) holds for some re-
duction pair (%,≻). An advantage of this alternative processor is that it can
be combined with our results from [32] on applying usable rules for termination
instead of innermost termination proofs, cf. Sect. 3.2.

3.4 Comparison with Related Work

Most approaches for higher-order functions in term rewriting use higher-order
TRSs. While there exist powerful termination criteria for higher-order TRSs
(e.g., [7, 29]), the main automated termination techniques for such TRSs are
simplification orders (e.g., [20]) which fail on functions like div in Ex. 18.

Exceptions are the monotonic higher-order semantic path order [8] and the
existing variants of dependency pairs for higher-order TRSs. However, these vari-
ants require considerable restrictions (e.g., on the TRSs [31] or on the orders that
may be used [3, 24, 30].) So in contrast to our results, they are less powerful than
the original dependency pair technique when applied to first-order functions.

Termination techniques for higher-order TRSs often handle a richer language
than our results. But these approaches are usually difficult to automate (there
are hardly any implementations of these techniques available). In contrast, it is
very easy to integrate our results into existing termination provers for ordinary
first-order TRSs using dependency pairs (and first-order reduction orders).

Other approaches represent higher-order functions by first-order TRSs [1, 2,
19, 25, 33], similar to us. However, they mostly use monomorphic types (this re-
striction is also imposed in some approaches for higher-order TRSs [8]). In other
words, there the types are only built from basic types and type constructors like
→ or ×, but there are no type variables, i.e., no polymorphic types. Then terms
like “map ′ minus ′ xs” and “map ′ (minus ′ x) ′ xs” cannot both be well typed, but
one needs different map-symbols for arguments of different types. In contrast,
our approach uses untyped term rewriting. Hence, it can be applied for termi-
nation analysis of polymorphic or untyped functional languages. Moreover, [25]
and [33] only consider extensions of the lexicographic path order, whereas we
can also handle non-simply terminating TRSs like Ex. 18.

4 A DP Processor for Proving Non-Termination

Almost all techniques for automated termination analysis try to prove termina-
tion and there are hardly any methods to prove non-termination. But detecting
non-termination automatically would be very helpful when debugging programs.

We show that the DP framework is particularly suitable for combining both

10



termination and non-termination analysis. We introduce a DP processor which
tries to detect infinite DP problems in order to answer “no”. Then, if all previ-
ous processors were complete, we can conclude non-termination of the original
TRS. As shown by our experiments in Sect. 5, our new processor also success-
fully handles non-terminating higher-order functions if they are represented by
first-order TRSs. An important advantage of the DP framework is that it can
couple the search for a proof and a disproof of termination: Processors which
try to prove termination are also helpful for the non-termination proof because
they transform the initial DP problem into sub-problems, where most of them
can easily be proved finite. So they detect those sub-problems which could cause
non-termination. Therefore, the non-termination processors should only operate
on these sub-problems and thus, they only have to regard a subset of the rules
when searching for non-termination. On the other hand, processors that try to
disprove termination are also helpful for the termination proof, even if some of
the previous processors were incomplete. The reason is that there are many in-
determinisms in a termination proof attempt, since usually many DP processors
can be applied to a DP problem. Thus, if one can find out that a DP problem
is infinite, one knows that one has reached a “dead end” and should backtrack.

To prove non-termination within the DP framework, in Sect. 4.1 we introduce
looping DP problems and in Sect. 4.2 we show how to detect such DP problems
automatically. Finally, Sect. 4.3 is a comparison with related work.

4.1 A DP Processor Based on Looping DP Problems

An obvious approach to find infinite reductions is to search for a term s which
evaluates to a term C[sµ] containing an instance of s. A TRS with such reduc-
tions is called looping. Clearly, a naive search for looping terms is very costly.

In contrast to “looping TRSs”, when adapting the concept of loopingness to
DP problems, we only have to consider terms s occurring in dependency pairs
and we do not have to regard any contexts C. The reason is that such contexts
are already removed by the construction of dependency pairs. Thm. 23 shows
that in this way one can indeed detect all looping TRSs.

Definition 22 (Looping DP Problems). A DP problem (P ,R, t) is looping
iff there is a (P ,R)-chain s1 → t1, s2 → t2, . . . with tiσ →∗

R si+1σ for all i such
that s1σ matches skσ for some k > 1 (i.e., s1σµ = skσ for a substitution µ).

Theorem 23. A TRS R is looping iff the DP problem (DP (R),R, t) is looping.

Example 24. Consider Toyama’s example R = {f(0, 1, x) → f(x, x, x), g(y, z) →
y, g(y, z) → z} and P = DP (R) = {F(0, 1, x) → F(x, x, x)}. We have the (P ,R)-
chain F(0, 1, x1) → F(x1, x1, x1), F(0, 1, x2) → F(x2, x2, x2), since F(x1, x1, x1)σ
→∗

R F(0, 1, x2)σ for σ(x1) = σ(x2) = g(0, 1). As the term F(0, 1, x1)σ matches
F(0, 1, x2)σ (they are even identical), the DP problem (P ,R, t) is looping.

Our goal is to detect looping DP problems. In the termination case, every
looping DP problem is infinite and hence, if all preceding DP processors were
complete, then termination is disproved. However, the definition of “looping”
from Def. 22 cannot be used for innermost termination: in Ex. 24, (DP (R),R, t)
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is looping, but (DP (R),R, i) is finite and R is innermost terminating.6

Nevertheless, for non-overlapping DP problems, (P ,R, i) is infinite whenever
(P ,R, t) is infinite. So here loopingness of (P ,R, t) indeed implies that (P ,R, i)
is infinite. We call (P ,R, e) non-overlapping if R is non-overlapping and no
left-hand side of R unifies with a non-variable subterm of a left-hand side of P .

Lemma 25 (Looping and Infinite DP Problems).

(a) If (P ,R, t) is looping, then (P ,R, t) is infinite.
(b) If (P ,R, t) is infinite and non-overlapping, then (P ,R, i) is infinite.

Now we can define the DP processor for proving non-termination.

Theorem 26 (Non-Termination Processor). The following DP processor
Proc is sound and complete. For a DP problem (P ,R, e), Proc returns

• “no”, if (P ,R, t) is looping and ( e = t or (P ,R, e) is non-overlapping )
• {(P ,R, e)}, otherwise

4.2 Detecting Looping DP Problems

Our criteria to detect looping DP problems automatically use narrowing.

Definition 27 (Narrowing). Let R be a TRS which may also have rules l → r
with V(r) 6⊆ V(l) or l ∈ V. A term t narrows to s, denoted t R,δ,p s, iff there is a
substitution δ, a (variable-renamed) rule l → r ∈ R and a non-variable position p
of t where δ = mgu(t|p, l) and s = t[r]pδ. Let  R,δ be the relation which permits
narrowing steps on all positions p. Let  (P,R),δ denote  P,δ,ε ∪  R,δ, where
ε is the root position. Moreover,  ∗

(P,R),δ is the smallest relation containing
 (P,R),δ1

◦ . . . ◦ (P,R),δn
for all n ≥ 0 and all substitutions where δ = δ1 . . . δn.

Example 28. Let R = {f(x, y, z) → g(x, y, z), g(s(x), y, z) → f(z, s(y), z)} and
P = DP (R) = {F(x, y, z) → G(x, y, z), G(s(x), y, z) → F(z, s(y), z)}. The term
G(x, y, z) can only be narrowed by the rule G(s(x′), y′, z′) → F(z′, s(y′), z′) on the
root position and hence, we obtain G(x, y, z) P,[x/s(x′), y′/y, z′/z],ε F(z, s(y), z).

To find loops, we narrow the right-hand side t of a dependency pair s → t until
one reaches a term s′ such that sδ semi-unifies with s′ (i.e., sδµ1µ2 = s′µ1 for
some substitutions µ1 and µ2). Here, δ is the substitution used for narrowing.
Then we indeed have a loop as in Def. 22 by defining σ = δµ1 and µ = µ2.
Semi-unification encompasses both matching and unification and algorithms for
semi-unification can for example be found in [21, 27].

Theorem 29 (Loop Detection by Forward Narrowing). Let (P ,R, e) be a
DP problem. If there is an s → t ∈ P such that t ∗

(P,R),δ s′ and sδ semi-unifies

with s′, then (P ,R, t) is looping.

6 One can adapt “loopingness” to the innermost case: (P ,R, i) is looping iff there
is an innermost (P ,R)-chain s1 → t1, s2 → t2, . . . such that tiσµn i→∗

R si+1σµn,
s1σµ = skσ, and siσµn is in normal form for all i and all n ≥ 0. Then looping-
ness implies that the DP problem is infinite, but now one has to examine infinitely
many instantiations siσµn and tiσµn. Nevertheless, one can also formulate sufficient
conditions for loopingness in the innermost case which are amenable to automation.
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Example 30. We continue with Ex. 28. We had G(x, y, z)  (P,R),δ F(z, s(y), z)
where δ = [x/s(x′), y′/y, z′/z]. Applying δ to the left-hand side s = F(x, y, z)
of the first dependency pair yields F(s(x′), y, z). Now F(s(x′), y, z) semi-unifies
with F(z, s(y), z), since F(s(x′), y, z)µ1µ2 = F(z, s(y), z)µ1 for the substitutions
µ1 = [z/s(x′)] and µ2 = [y/s(y)]. (However, the first term does not match or
unify with the second.) Thus, (P ,R, t) is looping and R does not terminate.

However, while the DP problem of Toyama’s example (Ex. 24) is looping, this
is not detected by Thm. 29. The reason is that the right-hand side F(x, x, x) of the
only dependency pair cannot be narrowed. Therefore, we now introduce a “back-
ward” variant7 of the above criterion which narrows with the reversed TRSs P−1

and R−1. Of course, in general P−1 and R−1 may also have rules l → r with
V(r) 6⊆ V(l) or l ∈ V . However, the usual definition of narrowing can immediately
be extended to such TRSs, cf. Def. 27.

Theorem 31 (Loop Detection by Backward Narrowing). Let (P ,R, e)
be a DP problem. If there is an s → t ∈ P such that s  ∗

(P−1,R−1),δ t′ and t′

semi-unifies with tδ, then (P ,R, t) is looping.

Example 32. To detect that Toyama’s example (Ex. 24) is looping, we start with
the left-hand side s = F(0, 1, x) and narrow 0 to g(0, z) using y → g(y, z) ∈ R−1.
Then we narrow 1 to g(y′, 1) by z′ → g(y′, z′). Therefore we obtain F(0, 1, x)
 ∗

(P−1,R−1),[y/0, z′/1] F(g(0, z), g(y, 1), x). Now t′ = F(g(0, z), g(y, 1), x) (semi-)

unifies with the corresponding right-hand side t = F(x, x, x) using µ1 =[x/g(0, 1),
y/0, z/1]. Thus, (DP (R),R, t) is looping and the TRS is not terminating.

However, there are also TRSs where backward narrowing fails and forward
narrowing succeeds.8 Note that Ex. 24 where forward narrowing fails is not
right-linear and that the example in Footnote 8 where backward narrowing fails
is not left-linear. In fact, our experiments show that most looping DP problems
(P ,R, t) can be detected by forward narrowing if P ∪ R is right-linear and by
backward narrowing if P∪R is left-linear. Therefore, we use the non-termination
processor of Thm. 26 with the following heuristic in our system AProVE [15]:

• If P ∪R is right- and not left-linear, then use forward narrowing (Thm. 29).
• Otherwise, we use backward narrowing (Thm. 31). If P∪R is not left-linear,

then moreover we also permit narrowing steps in variables (i.e., t|p ∈ V is
permitted in Def. 27). The reason is that then there are looping DP problems
which otherwise cannot be detected by forward or backward narrowing.9

• Moreover, to obtain a finite search space, we use an upper bound on the
number of times that a rule from P ∪R can be used for narrowing.

7 Thus, non-termination can be investigated both by forward and by backward analy-
sis. In that sense, non-termination is similar to several other properties of programs
for which both forward and backward analysis techniques are used. A well-known
such property is strictness in lazy functional languages. Here, classical forward and
backward analysis techniques are [26] and [35], respectively.

8 An example is R={f(x, x)→ f(0, 1), 0→a, 1→a}, P=DP (R)={F(x,x)→F(0, 1)}.
9 An example is the well-known TRS of Drosten [11]. Nevertheless, then there are also

looping DP problems which cannot even be found when narrowing into variables.
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4.3 Comparison with Related Work

We use narrowing to identify looping DP problems. This is related to the concept
of forward closures of a TRS R [10]. However, our approach differs from forward
closures by starting from the rules of another TRS P and by also allowing narrow-
ings with P ’s rules on root level. (The reason is that we prove non-termination
within the DP framework.) Moreover, we also regard backward narrowing.

There are only few papers on automatically proving non-termination of
TRSs. An early work is [28] which detects TRSs that are not simply terminating
(but they may still terminate). Recently, [36, 37] presented methods for proving
non-termination of string rewrite systems (i.e., TRSs where all function symbols
have arity 1). Similar to our approach, [36] uses (forward) narrowing and [37]
uses ancestor graphs which correspond to (backward) narrowing. However, our
approach differs substantially from [36, 37]: our technique works within the DP
framework, whereas [36, 37] operate on the whole set of rules. Therefore, we can
benefit from all previous DP processors which decompose the initial DP prob-
lem into smaller sub-problems and identify those parts which could cause non-
termination. Moreover, we regard full term rewriting instead of string rewriting.
Therefore, we use semi-unification to detect loops, whereas for string rewriting,
matching is sufficient. Finally, we also presented a condition to disprove inner-
most termination, whereas [36, 37] only try to disprove full termination.

5 Experiments and Conclusion

The DP framework is a general concept for combining termination techniques
in a modular way. We presented two important improvements: First, we ex-
tended the framework in order to handle higher-order functions, represented as
applicative first-order TRSs. To this end, we developed three new contributions:
a refined approximation of dependency graphs, an improved definition of usable
rules, and a new processor to transform applicative DP problems into functional
form. The advantages of our approach, also compared to related work, are the
following: it is simple and very easy to integrate into any termination prover
based on dependency pairs (e.g., AProVE [15], CiME [9], TTT [19]). Moreover,
it encompasses the original DP framework, e.g., it is at least as successful on
ordinary first-order functions as the original dependency pair technique. Finally,
our approach treats untyped higher-order functions, i.e., it can be used for ter-
mination analysis of polymorphic and untyped functional languages.

As a second extension within the DP framework, we introduced a new pro-
cessor for disproving termination automatically (an important problem which
was hardly tackled up to now). A major advantage of our approach is that it
combines techniques for proving and for disproving termination in the DP frame-
work, which is beneficial for both termination and non-termination analysis.

We implemented all these contributions in the newest version of our termi-
nation prover AProVE [15]. Due to the results of this paper, AProVE 1.2 was the
most powerful tool for both termination and non-termination proofs of TRSs at
the Annual International Competition of Termination Tools 2005 [34]. In the fol-
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lowing table, we compare AProVE 1.2 with its predecessor AProVE 1.1d-γ, which
was the winning tool for TRSs at the competition in 2004. While AProVE 1.1d-γ
already contained our results on non-termination analysis, the contributions on
handling applicative TRSs from Sect. 3 were missing. For the experiments, we
used the same setting as in the competition with a timeout of 60 seconds for
each example (where however most proofs take less than two seconds).

higher-order (61 TRSs) non-term (90 TRSs) TPDB (838 TRSs)
t n t n t n

AProVE 1.2 43 8 25 61 639 95

AProVE 1.1d-γ 13 7 24 60 486 92

Here, “higher-order” is a collection of untyped versions of typical higher-order
functions from [2, 3, 6, 24, 25, 33] and “non-term” contains particularly many
non-terminating examples. “TPDB” is the Termination Problem Data Base
used in the annual termination competition [34]. It consists of 838 (innermost)
termination problems for TRSs from different sources. In the tables, t and n are
the numbers of TRSs where termination resp. non-termination could be proved.

AProVE 1.2 solves the vast majority of the examples in the “higher-order”-
and the “non-term”-collection. This shows that our results for higher-order func-
tions and non-termination are indeed successful in practice. In contrast, the first
column demonstrates that previous techniques for automated termination proofs
often fail on applicative TRSs representing higher-order functions. Finally, the
last two columns show that our contributions also increase power substantially
on ordinary non-applicative TRSs (which constitute most of the TPDB). For fur-
ther details on our experiments and to download AProVE, the reader is referred
to http://www-i2.informatik.rwth-aachen.de/AProVE/.
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