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Abstract
Motivated by an application where we try to make proofs for Description Logic inferences smaller
by rewriting, we consider the following decision problem, which we call the small term reachability
problem: given a term rewriting system R, a term s, and a natural number n, decide whether there
is a term t of size ≤ n reachable from s using the rules of R. We investigate the complexity of
this problem depending on how termination of R can be established. We show that the problem is
NP-complete for length-reducing term rewriting systems. Its complexity increases to N2ExpTime-
complete (NExpTime-complete) if termination is proved using a (linear) polynomial order and to
PSpace-complete for systems whose termination can be shown using a restricted class of Knuth-
Bendix orders. Confluence reduces the complexity to P for the length-reducing case, but has no
effect on the worst-case complexity in the other two cases.
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1 Introduction

Term rewriting [7, 28] is a well-investigated formalism, which can be used both for computation
and deduction. A term rewriting system R consists of rules, which describe how a term s

can be transformed into a new term t, in which case one writes s →R t. In the computation
setting, where term rewriting is akin to functional programming [12], a given term (the input)
is iteratively rewritten into a normal form (the output), which is a term that cannot be
further rewritten. Termination of R prevents infinite rewrite chains, and thus ensures that a
normal form can always be reached, whereas confluence guarantees that the output is unique,
despite the nondeterminism inherent to the rewriting process (which rule to apply when
and where). In the deduction setting, which is, e.g., relevant for first-order theorem proving
with equality [25], one is interested in whether a term s can be rewritten into a term t by
iteratively applying the rules of R in both directions. If R is confluent and terminating, this
problem can be solved by computing normal forms of s and t, and then checking whether
they are equal. In the present paper, we want to employ rewriting for a different purpose:
given a term s, we are interested in finding a term t of minimal size that can be reached from
s by rewriting (written s

∗→R t), but this term need not be in normal form. To assess the
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13:2 The Small Term Reachability Problem

R1 A ⊑ B B ⊑ C

A ⊑ C
R2 A ⊑ B

∃r.A ⊑ ∃r.B
R3 A ⊑ ∃r.A1 A1 ⊑ B1 ∃r.B1 ⊑ B

A ⊑ B

Figure 1 Three proof rules for EL.

complexity of this computation problem, we investigate the corresponding decision problem:
given a term rewriting system R, a term s, and a natural number n, decide whether there is
a term t of size ≤ n such that s

∗→R t. We call this the small term reachability problem.
Our interest in this problem stems from the work on finding small proofs [3, 4] for

Description Logic (DL) inferences [6], which are then visualized in an interactive explanation
tool [2]. For the DL EL [5], we employ the highly-efficient reasoner ELK [20] to compute
proofs. However, the proof calculus employed by ELK is rather fine-grained, and thus
produces relatively large proofs. Our idea was thus to generate smaller proofs by rewriting
several proof steps into a single step. As a (simplified) example, consider the three proof rules
in Figure 1. It is easy to see that one needs one application of R2 followed by two of R1 to
produce the same consequence as a single application of R3. Thus, if one looks for patterns in
a proof that use R1 and R2 in this way, and replaces them by the corresponding applications
of R3, then one can reduce the size of a given proof. Given finitely many such proof rewriting
rules and a proof, the question is then how to use the rules to rewrite the given proof into
one of minimal size. Since tree-shaped proofs as well as DL concept descriptions can be
represented as terms, this question can be seen as an instance of the small term reachability
problem introduced above.

In this paper, we investigate the complexity of the small term reachability problem on the
general level of term rewriting systems (TRSs). It turns out that this complexity depends on
how termination of the given TRS can be shown. The paper contains the following main
contributions:

1. Small term reachability for length-reducing TRSs

If the introduced rewrite rules are length-reducing, i.e., each rewrite step decreases the size of
the term (proof), like the rule in our example, then termination of all rewrite sequences is
guaranteed. In general, it may nevertheless be the case that one can generate two normal
forms of different sizes. Confluence prevents this situation, i.e., then it is sufficient to generate
only one rewrite sequence to produce a term (proof) of minimal size. In Section 4 we
show that the small term reachability problem for length-reducing term rewriting systems is
NP-complete in general, but becomes solvable in polynomial time if we restrict ourselves to
confluent systems.

2. Small term reachability for TRSs whose termination is shown by polynomial orders

It also makes sense to consider sets of rules where not every rule is length-reducing, e.g., if
one first needs to reshape a proof before a length-reducing rule can be applied, or if one
translates between different proof calculi. In this extended setting, termination is no longer
trivially given, and thus one first needs to show that the introduced set of rules is terminating,
which can be achieved with the help of a reduction order [7, 28]. We show in this paper that
the complexity of the small term reachability problem depends on which reduction order is
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used for this purpose. More precisely, in Section 5 we consider term rewriting systems that
can be proved terminating using a polynomial order [22], and show that in this case the small
term reachability problem is N2ExpTime-complete, both in the general and the confluent
case. If the definition of the polynomial order employs only linear polynomials, then the
complexity of the problem is reduced to NExpTime, where again hardness already holds
for confluent systems. Here, as usual, NExpTime (N2ExpTime) is the class of all decision
problems solvable by a nondeterministic Turing machine in O(2p(n)) (O(22p(n))) steps, where
n is the size of the problem and p(n) is a polynomial in n.

3. Small term reachability for TRSs whose termination is shown by KBO

In Section 6, we investigate the impact that using a Knuth-Bendix order (KBO) [21] for
the termination proof has on the complexity of the small term reachability problem. In the
restricted setting without unary function symbols of weight zero, the problem is PSpace-
complete, again both in the general and the confluent case. The complexity class PSpace
consists of all decision problems solvable by a deterministic Turing machine in O(p(n)) space,
where n is the size of the problem and p(n) is a polynomial in n.

Our proofs of the results mentioned above strongly depend on work on the derivational
complexity of term rewriting systems, which links the reduction order employed for the
termination proof with the maximal length of reduction sequences as a function of the
size of the start term (see e.g., [14, 15, 16, 23]). To obtain reasonable complexity classes,
we restricted ourselves to reduction orders where the resulting bound on the derivational
complexity is not “too high”. In particular, we use the results of the seminal paper by
Hofbauer and Lautemann [16], which show that termination proofs with a (linear) polynomial
order yield a double-exponential (exponential) upper bound on the length of derivation
sequences whereas termination proofs with a KBO without unary function symbols of weight
zero yield an exponential such bound. We also make use of the term rewriting systems
employed in the proofs showing that these bounds are tight. A connection between the
derivational complexity of term rewriting systems and complexity classes has been established
in [9] for polynomial orders and in [10] for Knuth-Bendix orders. While this work considers a
different problem since it views term rewriting systems as devices for computing functions by
generating a normal form, and uses them to characterize complexity classes, the constructions
utilized in the proofs in [9, 10] are similar to the ones we use in our hardness proofs. A
notable difference between the two problems is the impact that confluence has on the obtained
complexity class: while in our setting confluence only reduces the complexity in the case of
length-reducing systems, in [9] it also reduces the complexity (from the nondeterministic to
the respective deterministic class) for the case of systems shown terminating with a (linear)
polynomial order.

In the next section, we briefly recall basic notions from term rewriting, including the
definitions of polynomial and Knuth-Bendix orders. In Section 3, we introduce the small term
reachability problem and show that it is undecidable in general, but decidable for terminating
systems. Sections 4, 5, and 6 respectively consider the length-reducing, polynomial order,
and Knuth-Bendix order case. We conclude with a brief discussion of possible future work.

2 Preliminaries

We assume that the reader is familiar with basic notions and results regarding term rewriting.
In this section, we briefly recall the relevant notions, but refer the reader to [7, 28] for details.

FSCD 2024
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Given a finite set of function symbols with associated arities (called the signature) and a
disjoint set of variables, terms are built in the usual way. Function symbols of arity 0 are
also called constant symbols. For example, if x, y are variables, c is a constant symbol, and f

a binary function symbol, then c, f(x, c), f(f(x, c), c) are terms. The size |t| of a term t is
the number of occurrences of functions symbols and variables in t (e.g., |f(f(x, c), c)| = 5).
If f is a function symbol or variable, then |t|f counts the number of occurrences of f in t

(e.g., |f(f(x, c), c)|f = 2). As usual, nested applications of unary function symbols are often
written as words. For example, g(g(h(h(g(x))))) is written as gghhg(x) or g2h2g(x).

A rewrite rule (or simply rule) is of the form l → r where l, r are terms such that l is not
a variable and every variable occurring in r also occurs in l. In this paper, a term rewriting
system (TRS) is a finite set of rewrite rules, and thus we do not mention finiteness explicitly
when formulating our complexity results. A given TRS R induces the binary relation →R

on terms. Basically, we have s →R t if there is a rule l → r in R such that s contains
a substitution instance σ(l) of l as subterm, and t is obtained from s by replacing this
subterm with σ(r). Recall that a substitution is a mapping from variables to terms, which is
homomorphically extended to a mapping from terms to terms. For example, if R contains
the rule hh(x) → g(x), then f(hhh(c), c) →R f(gh(c), c) and f(hhh(c), c) →R f(hg(c), c).
The reflexive and transitive closure of →R is denoted as ∗→R, i.e., s

∗→R t holds if there are
n ≥ 1 terms t1, . . . , tn such that s = t1, t = tn, and ti →R ti+1 for i = 1, . . . , n − 1.

Two terms s1, s2 are joinable with R if there is a term t such that si
∗→R t holds for i = 1, 2.

The relation →R is confluent if s
∗→R si for i = 1, 2 implies that s1 and s2 are joinable

with R. It is terminating if there is no infinite reduction chain t0 →R t1 →R t2 →R . . .. If
→R is confluent (terminating), then we also call R confluent (terminating). The term t is
irreducible if there is no term t′ such that t →R t′. If s

∗→R t and t is irreducible, then we
call t a normal form of s. If R is confluent and terminating, then every term has a unique
normal form. If R is terminating, then its confluence is decidable [21]. Termination can be
proved using a reduction order, which is a well-founded order ≻ on terms such that l ≻ r for
all l → r ∈ R implies s ≻ t for all terms s, t with s →R t. Since ≻ is well-founded, this then
implies termination of R. If l ≻ r holds for all l → r ∈ R, then we say that R can be shown
terminating with the reduction order ≻. The following is a simple reduction order.

▶ Example 1. If we define s ≻ t if |s| > |t| and |s|x ≥ |t|x for all variables x, then ≻ is
a reduction order (see Exercise 5.5 in [7]). For example, hh(x) ≻ g(x), and thus the TRS
R = {hh(x) → g(x)} is terminating. As illustrated in Example 5.2.2 in [7], the condition on
variables is needed to obtain a reduction order.

This order can only show termination of length-reducing TRSs R, i.e., where s →R t implies
|s| > |t|. We now recapitulate the definitions of more powerful reduction orders [7, 28].

Polynomial orders

To define a polynomial order, one assigns to every n-ary function symbol f a polynomial Pf

with coefficients in the natural numbers N and n indeterminates such that Pf depends on all
these indeterminates. To ensure that this implies (strong) monotonicity of the polynomial
order, we require that constant symbols c must be assigned a polynomial of degree 0 whose
coefficient is > 0. Such an assignment also yields an assignment of polynomials Pt to terms t.

▶ Example 2. Assume that + is binary, s, d, q are unary, and 0 is a constant. We assign
the polynomial P+ = x + 2y + 1 to +, Ps = x + 2 to s, Pd = 3x + 1 to d, Pq = 3x2 + 3x + 1
to q, and P0 = 3 to 0. For the terms l = q(s(x)) and r = q(x) + s(d(x)) we then
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obtain the associated polynomials Pl = 3(x + 2)2 + 3(x + 2) + 1 = 3x2 + 15x + 19 and
Pr = 3x2 + 3x + 1 + 2(3x + 1 + 2) + 1 = 3x2 + 9x + 8.

The polynomial order induced by such an assignment is defined as follows: t ≻ t′ if
Pt evaluates to a larger natural number than Pt′ for every assignment of natural numbers
> 0 to the indeterminates of Pt and Pt′ . In our example, the evaluation of Pl is obviously
always larger than the evaluation of Pr, and thus l ≻ r. As shown, e.g., in Section 5.3 of [7],
polynomial orders are reduction orders, and thus can be used to prove termination of TRSs.

Knuth-Bendix orders

To define a Knuth-Bendix order (KBO), one must assign a weight w(f) to all function
symbols and variables, and define a strict order > on the function symbols (called precedence)
such that the following is satisfied:

All weights w(f) are non-negative real numbers, and there is a weight w0 > 0 such that
w(x) = w0 for all variables x and w(c) ≥ w0 for all constant symbols c.
If there is a unary function symbol h with w(h) = 0, then h is the greatest element w.r.t.
>, i.e., h > f for all function symbols f ̸= h. Such a unary function symbol h is then
called a special symbol. Obviously, there can be at most one special symbol.

Since in this paper we only consider KBOs without special symbol, we restrict our definition
of KBOs to this case. A given weight function w and strict order > without special symbol
induces the following KBO ≻: s ≻ t if |s|x ≥ |t|x for all variables x and

w(s) > w(t), where w(u) :=
∑

f occurs in u w(f)·|u|f for all terms u, or
w(s) = w(t) and one of the following two conditions is satisfied:

s = f(s1, . . . , sm), t = g(t1, . . . , tn), and f > g.
s = f(s1, . . . , sm), t = f(t1, . . . , tm), and there is i, 1 ≤ i ≤ m, such that
s1 = t1, . . . , si−1 = ti−1, and si ≻ ti.

A proof of the fact that KBOs are reduction orders can, e.g., be found in Section 5.4.4 of [7].

▶ Example 3. Let 0, 1, 1′ be unary function symbols and c a constant symbol, and consider
the following TRS, which is similar to the one introduced in the proof of Lemma 7 in [10]:

R = {1(c) → 0(c), 0(c) → 1′(c), 0(1′(x)) → 1′(1(x)), 1(1′(x)) → 0(1(x))}.

Basically, this TRS realizes a binary down counter, and thus it is easy to see that, starting
with the binary representation 10n(c) of the number 2n, the TRS R can make ≥ 2n reduction
steps to arrive at the term 0n+1(c). For example, 100(c) →R 101′(c) →R 11′1(c) →R

011(c) →R 010(c) →R 011′(c) →R 001(c) →R 000(c). Termination of R can be shown using
the following KBO: assign weight 1 to all function symbols and variables, and use the
precedence order 1 > 0 > 1′.

3 Problem definition and (un)decidability results

In this paper, we investigate the complexity of the following decision problem.

▶ Definition 4. Given a TRS R, a term s, and a natural number n, the small term reachability
problem asks whether there exists a term t such that s

∗→R t and |t| ≤ n.

The name “small term reachability problem” is motivated by the fact that we want to use the
TRS R to turn a given term s into a term whose size is as small as possible. The introduced
problem is the decision variant of this computation problem. A solution to the computation
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problem, which computes a term t of minimal size reachable with R from s, of course also
solves the decision variant of the problem. Thus, complexity lower bounds for the decision
problem transfer to the computation problem.

It is easy to see that this problem is in general undecidable, but decidable for terminating
TRSs. For non-terminating systems, confluence is not sufficient to obtain decidability.

▶ Proposition 5. The small term reachability problem is in general undecidable for confluent
TRSs, but is decidable for systems that are terminating.

Proof. Undecidability in the general case follows, e.g., from the fact that TRSs can simulate
Turing machines (TMs) [17]. (We will also use Turing machines for the proofs of the
hardness results in the remainder of the paper.) More precisely, the reduction introduced in
Section 5.1.1 of [7] transforms a given TM M into a TRS RM such that (among other things)
the following holds: there is an infinite run of M on the empty input iff there is an infinite
reduction sequence of RM starting with the term s0 that encodes the initial configuration
of M for the empty input. In addition, if M is deterministic, then RM is confluent. We
can now add rules to RM that apply to all terms encoding a halting configuration of M,
and trigger further rules that reduce such a term to one of size 1. Since the term s0 has size
larger than one and the rules of RM never decrease the size of a term, this yields a reduction
of the (undecidable) halting problem for deterministic TMs to the small term reachability
problem for confluent TRSs.

Given a terminating TRS R and a term s, we can systematically generate all terms
reachable from s by iteratively applying →R. Since R is finite, →R is finitely branching.
Together with termination, this means (by König’s Lemma) that there are only finitely many
terms reachable with R from s (see Lemma 2.2.4 in [7]). We can then check whether, among
them, there is a term of size at most n. ◀

In the following, we study the complexity of the small term reachability problem for
terminating TRSs, depending on how their termination can be shown.

4 Length-reducing term rewriting systems

In this section, we investigate the complexity of the small term reachability problem for
length-reducing TRSs, i.e., TRSs where each rewrite step decreases the size of the term.

We start with showing an NP upper bound. Let R, s, n be an instance of the small term
reachability problem, where R is assumed to be length-reducing. This assumption implies
that the length k of any rewrite sequence s →R s1 →R s2 →R . . . →R sk issuing from s is
bounded by |s|. In addition, for each term si there are only polynomially many terms s′ (in
the size of s and R) such that si →R s′. Thus, the following yields an NP procedure for
deciding the small term reachability problem:

guess a rewrite sequence s →R s1 →R s2 →R . . . →R sk of length k ≤ |s|;
check whether |sk| ≤ n holds. If the answer is “yes” then accept, and reject otherwise.

▶ Lemma 6. The small term reachability problem is in NP for length-reducing TRSs.

If the length-reducing system R is confluent, then it is sufficient to generate an arbitrary
terminating (i.e., maximal) rewrite sequence starting in s, i.e., a sequence s →R s1 →R

s2 →R . . . →R sk such that sk is irreducible. Obviously, we have k ≤ |s|, and thus such a
sequence can be generated in polynomial time. We claim that there is a term t of size ≤ n

reachable from s iff |sk| ≤ n. Otherwise, the smallest term t reachable from s is different
from sk. But then t and sk are both reachable from s, and thus must be joinable due to the
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confluence of R. As sk is irreducible, this implies t →∗
R sk and thus, |t| ≥ |sk|, i.e., t is not

smaller than sk.

▶ Proposition 7. For confluent length-reducing TRSs, the small term reachability problem
can be decided in deterministic polynomial time.

In general, however, the problem is NP-hard. We prove NP-hardness by showing that
any polynomially time bounded nondeterministic Turing machine can be simulated by a
length-reducing TRS. Thus, assume that M is such a TM and that its time-bound is given
by the polynomial p. As in [7] we assume that in every step M either moves to the left or to
the right, where the tape of the TM is infinite in both directions. In addition, we assume
without loss of generality that M has exactly one accepting state q̂. We view the tape
symbols of M as unary function symbols and the states of M as binary function symbols.
We assume that q0 is the initial state of M and that b is the blank symbol. Furthermore, let
# be a constant symbol and f be a unary function symbol different from the tape symbols.

Given an input word w = a1 . . . aℓ for M, we construct the term

t(w) := bp(ℓ)(q0(a1 . . . aℓb
p(ℓ)−ℓ(#), fp(ℓ)(#))).

Intuitively, the starting b symbols together with the first argument of q0 in t(w) provide a
tape that is large enough for a p(ℓ)-time bounded TM to run on for the given input w of
length ℓ. The first argument of a state symbol represents the part of the tape that starts at
the position of the head. Thus, in t(w), a1 is the tape symbol at the position of the head
and a2 . . . aℓ are the symbols to the right of it. The second argument of a state symbol is
a unary down counter from which one f is removed in every step that M makes. This is
needed to ensure that the constructed TRS is length-reducing. This counter is large enough
to allow M to make the maximal possible number of p(ℓ) steps.

Basically, we now express the transitions of M as usual by rewrite rules (as, e.g., done in
Definition 5.1.3 of [7]), but with three differences:

since the term t(w) provides enough tape for a TM that can make at most p(ℓ) steps, the
special cases that treat a situation where the end of the represented tape is reached and
one has to add a blank are not needed;
since we fix as start term t(w) a configuration term (i.e., a term that encodes a configur-
ation of the TM), the additional effort expended in [7] to deal with non-configuration
terms (by using copies of symbols with arrows to the left or right) is not needed;
we have the additional counter in the second argument, which removes one f in every
step, and thus ensures that rule application is length-reducing.

The TRS RM that simulates M has the following rewriting rules:
For each transition (q, a, q′, a′, r) of M it has the rule q(a(x), f(y)) → a′(q′(x, y)). Thus,
the tape symbol a is replaced by a′ and the head of the TM is now at the position to the
right of it.
For each transition (q, a, q′, a′, l) of M it has the rule c(q(a(x), f(y))) → q′(ca′(x), y) for
every tape symbol c of M. Thus, a is replaced by a′ and the head of the TM is now at
the position to the left of it.

Note that the blank symbol b is also considered as a tape symbol of M.
In addition, we add rules to RM that can be used to generate the term #, which has

size 1, whenever q̂ is reached:
a(q̂(x, y)) → q̂(x, y) for every tape symbol a of M,
q̂(x, y) → #.

The following is now easy to see.

FSCD 2024



13:8 The Small Term Reachability Problem

▶ Lemma 8. The term t(w) can be rewritten with RM to a term of size 1 iff M accepts the
word w.

Proof. It is easy to see that RM simulates M in the sense that there is a run of M on input
w = a1 . . . aℓ that reaches the accepting state q̂ iff there is a rewrite sequence of RM starting
with t(w) that reaches a term of the form u(q̂(t, t′)), where u is a word over the tape symbols
of M and t, t′ are terms. Note that the assumption that M is p(ℓ)-time bounded together
with the construction of t(w) ensures that there is enough tape space and the counter is
large enough for the simulation of M to run through completely.

Thus, if M accepts w = a1 . . . aℓ, then we can rewrite t(w) with RM into a term of the
form u(q̂(t, t′)), and this term can then be further rewritten into #, which has size 1. If M
does not accept w = a1 . . . aℓ, then the state q̂ cannot be reached by any run of M starting
with this word. Thus, all terms reachable from t(w) with the rules of RM that simulate M
are of the form u(q(t, t′)) for states q different from q̂. The rules of RM of the second kind
are thus not applicable, and the terms of the form u(q(t, t′)) clearly have size > 1. ◀

We are now ready to show the corresponding complexity lower bound.

▶ Lemma 9. The small term reachability problem for length-reducing TRSs is NP-hard.

Proof. We show that every problem Π in NP can be reduced in polynomial time to our
problem. Let M be the nondeterministic Turing machine that is an NP decision procedure
for Π, and let p be the polynomial that bounds the length of runs of M. We can construct the
length-reducing TRS RM as described above. Given a word w = a1 . . . aℓ, we can compute
the term t(w) in polynomial time, and Lemma 8 implies that this yields a reduction function
from Π to the small term reachability problem for the length-reducing TRS RM. ◀

Combining the obtained upper and lower bounds, we thus have determined the exact
complexity of the problem under consideration.

▶ Theorem 10. The small term reachability problem is NP-complete for length-reducing
TRSs.

To show that a given TRS R is length-reducing, one can, for example, use the reduction
order of Example 1. This order also applies to the TRS RM introduced above.

5 Term rewriting systems shown terminating with a polynomial order

An interesting question is whether similar results can be obtained for TRSs whose termination
can be shown using a reduction order from a class of such orders that provides an upper
bound on the length of reduction sequences. For example, it is known that a proof of
termination using a polynomial order yields a double-exponential upper bound on the length
of reduction sequences [16]. One possible conjecture could now be that, for TRSs whose
termination can be shown using a polynomial order, the small term reachability problem is
N2ExpTime-complete.

The upper bound is easy to show since, again, one just needs to guess a reduction sequence,
but now of double-exponential length, and then check the size of the obtained term. This
yields a nondeterministic double-exponential time procedure for solving the small term
reachability problem for TRSs whose termination can be shown using a polynomial order.

▶ Lemma 11. The small term reachability problem is in N2ExpTime for TRSs whose
termination can be shown using a polynomial order.
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Regarding the lower bound, the idea is now to use basically the same approach as employed
in Section 4, but generate a double-exponentially large tape and a double-exponentially large
counter with the help of a TRS whose termination can be shown using a polynomial order.
For this, we want to re-use the original system introduced by Hofbauer and Lautemann
showing that the double-exponential upper bound is tight (see Example 5.3.12 in [7]).

▶ Example 12. Let RHL be the TRS consisting of the following rules:

x + 0 → x, x + s(y) → s(x + y), d(0) → 0, d(s(x)) → s(s(d(x))),
q(0) → 0, q(s(x)) → q(x) + s(d(x)).

The TRS RHL intuitively defines the arithmetic functions addition (+), double (d), and
square (q) on non-negative integers. Thus, it is easy to see that the term tn := qn(s2(0)) can
be reduced to s22n

(0). The polynomial order in Example 2 shows termination of RHL.

Now, assume that M is a double-exponentially time bounded nondeterministic TM and
that its time-bound is 22p(ℓ) for a polynomial p, where ℓ is the length of the input word.
Given an input word w = a1 . . . aℓ for M, we construct the term

t(w) := q
p(ℓ)
1 (bb(q0(a1 . . . aℓq

p(ℓ)
2 (bb(#)), q

p(ℓ)
3 (ff(#))))).

The idea underlying this definition is that the term q
p(ℓ)
1 (bb(q0(·)) can be used to generate

a tape segment before the read-write head of the TM (marked by the state q0) with 22p(ℓ)

blanks using the following modified version of RHL:

R1 := { q0(y1, y2) +1 q0(z1, z2) → q0(y1, y2), b(x) +1 q0(z1, z2) → b(x), x +1 b(y) → b(x +1 y),
d1(q0(z1, z2)) → q0(z1, z2), d1(b(x)) → b(b(d1(x))),
q1(q0(z1, z2)) → q0(z1, z2), q1(b(x)) → q1(x) +1 b(d1(x))}.

Here b plays the rôle of the successor function s in RHL, terms of the form q0(·) play the rôle
of the zero 0 in RHL, and +1, d1, and q1 correspond to addition, double, and square. Instead
of the rule x +1 q0(z1, z2) → x we considered two rules for the case where x is built with q0
or with b, respectively. The reason will become clear later when we consider the restriction
to confluent TRSs. Lemma 13 is an easy consequence of our observations regarding RHL.

▶ Lemma 13. For any two terms t1, t2, we can rewrite the term q
p(ℓ)
1 (bb(q0(t1, t2))) with R1

into the term b22p(ℓ)

(q0(t1, t2)).

Next, we define a copy of RHL that allows us to create a tape segment with 22p(n) blanks
to the right of the input word:

R2 := {# +2 # → #, b(y) +2 # → b(y), x +2 b(y) → b(x +2 y),
d2(#) → #, d2(b(x)) → b(b(d2(x))),
q2(#) → # q2(b(x)) → q2(x) +2 b(d2(x))}.

▶ Lemma 14. The term q
p(ℓ)
2 (bb(#)) rewrites with R2 to the term b22p(ℓ)

(#).

The double-exponentially large counter can be generated by the following copy of RHL:

R3 := {# +3 # → #, f(y) +3 # → f(y), x +3 f(y) → f(x +3 y),
d3(#) → #, d3(f(x)) → f(f(d3(x))),
q3(#) → # q3(f(x)) → q3(x) +3 f(d3(x))}.

▶ Lemma 15. The term q
p(ℓ)
3 (ff(#)) rewrites with R3 to the term f22p(ℓ)

(#).
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We now add to these three TRSs the system RM, which can simulate M and then make
the term small in case the accepting state q̂ is reached. For the following lemma we assume,
as before, that q̂ is the only accepting state. In addition, we assume without loss of generality
that the initial state q0 is not reachable, i.e., as soon as the machine has made a transition,
it is in a state different from q0 and cannot reach state q0 again.

▶ Lemma 16. The term t(w) can be rewritten with RM ∪ R1 ∪ R2 ∪ R3 to a term of size 1
iff M accepts the word w.

Proof. First, assume that M accepts the word w. Then there is a run of M on input w

such that the accepting state q̂ is reached. We can simulate this run, starting with t(w) by
first using R1 ∪ R2 ∪ R3 to generate the term

b22p(ℓ)

(q0(a1 . . . aℓb
22p(ℓ)

(#), f22p(ℓ)

(#))).

Since the tape and counter generated this way are large enough, RM can then simulate the
accepting run of M, and the last two rules of RM can be used to generate the term #, which
has size 1.

For the other direction, we first note that a term of size 1 can only be reached from
t(w) using RM ∪ R1 ∪ R2 ∪ R3 if a term is reached that contains q̂. This function symbol
can only be generated by performing transitions of M, starting with the input w. In fact,
while the simulation of M can start before the system R1 ∪ R2 ∪ R3 has generated the tape
and the counter in full size, rules of RM can only be applied if the TM locally sees a legal
tape configuration. This means that blanks generated by R1 and R2 can be used even if the
application of these systems has not terminated yet. But if one of the auxiliary symbols
employed by these systems is encountered, then no rule simulating a transition of M is
applicable. These systems cannot generate tape symbols other than blanks, and these blanks
are also available to M in its run. Thus, RM ∪ R1 ∪ R2 ∪ R3 can only generate a term
containing q̂ if there is a run of M on input w that reaches q̂. ◀

To conclude from this lemma that the small term reachability problem is N2ExpTime-hard
for TRSs whose termination can be shown using a polynomial order, it is enough to prove
the following result.

▶ Lemma 17. Termination of RM ∪ R1 ∪ R2 ∪ R3 can be shown using a polynomial order.

Proof. Termination of RM ∪ R1 ∪ R2 ∪ R3 can be shown using the following polynomial
interpretation of the function symbols:

a(x) is mapped to x + 2, for all tape symbols a of the TM (where a can also be the blank
symbol b),
# is mapped to 3,
q(x, y) is mapped to x + y + 3, for all states q of the TM, in particular also for q0 and q̂,
f(x) is mapped to x + 2,
+1(x, y), +2(x, y), and +3(x, y) are mapped to x + 2y + 1,
d1(x), d2(x), and d3(x) are mapped to 3x + 1,
q1(x), q2(x), and q3(x) are mapped to 3x2 + 3x + 1.

It remains to show that the polynomial order ≻ induced by this polynomial interpretation
satisfies g ≻ d for all rules g → d of RM ∪ R1 ∪ R2 ∪ R3. First, we consider RM:

for the rule q̂(x, y) → #, the left-hand side is mapped to x + y + 3, and the right-hand
side to 3, which is smaller that x + y + 3 for all instantiations of x, y with numbers > 0,
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for rules of the form a(q̂(x, y)) → q̂(x, y), the left-hand side is mapped to x + y + 5, and
the right-hand side to x + y + 3,
for all rules of RM of the form q(a(x), f(y)) → a′(q′(x, y)), the left-hand side is mapped to
(x+2)+(y+2)+3 = x+y+7, and the right-hand side is mapped to (x+y+3)+2 = x+y+5,
for all rules of RM of the form c(q(a(x), f(y))) → q′(ca′(x), y), the left-hand side is
mapped to ((x + 2) + (y + 2) + 3) + 2 = x + y + 9, and the right-hand side is mapped to
((x + 2) + 2) + y + 3 = x + y + 7.

Next, we consider R1:
for the rule q0(y1, y2) +1 q0(z1, z2) → q0(y1, y2) of R1, the left-hand side is mapped to
y1 + y2 + 3 + 2(z1 + z2 + 3) + 1 = y1 + y2 + 2z1 + 2z2 + 10, and the right-hand side to
y1 + y2 + 3,
for the rule b(y) +1 q0(z1, z2) → b(y) of R1, the left-hand side is mapped to y + 2 + 2(z1 +
z2 + 3) + 1 = y + 2z1 + 2z2 + 9, and the right-hand side to y + 2,
for the rule x +1 b(y) → b(x +1 y) of R1, the left-hand side is mapped to x + 2(y + 2) + 1 =
x + 2y + 5, and the right-hand side to (x + 2y + 1) + 2 = x + 2y + 3,
for the rule d1(q0(z1, z2)) → q0(z1, z2) of R1, the left-hand side is mapped to 3(z1 + z2 +
3) + 1 = 3z1 + 3z2 + 10, and the right-hand side to z1 + z2 + 3,
for the rule d1(b(x)) → b(b(d1(x))) of R1, the left-hand side is mapped to 3(x + 2) + 1 =
3x + 7, and the right-hand side to (3x + 1 + 2) + 2 = 3x + 5,
for the rule q1(q0(z1, z2)) → q0(z1, z2) of R1, the left-hand side is mapped to 3(z1 + z2 +
3)2 + 3(z1 + z2 + 3) + 1, and the right-hand side to z1 + z2 + 3,
for the rule q1(b(x)) → q1(x)+1 b(d1(x)) of R1, the left-hand side is mapped to 3(x+2)2 +
3(x+2)+1 = 3x2 +15x+19, and the right-hand side to 3x2 +3x+1+2(3x+1+2)+1 =
3x2 + 9x + 8, as in Example 2.

The rules of R2 and R3 can be treated in a similar way. ◀

Combining the results obtained so far in this section, we thus have determined the exact
complexity of the small term reachability problem for the class of TRSs considered here.

▶ Theorem 18. The small term reachability problem for TRSs whose termination can be
shown with a polynomial order is N2ExpTime-complete.

In the setting considered in this section, restricting the attention to confluent TRSs does
not reduce the complexity. Regarding the upper bound, the argument used in the proof of
Proposition 7 does not apply since it is no longer the case that normal forms are of smallest
size. Thus, one cannot reduce the complexity from N2ExpTime to 2ExpTime by only looking
at a single rewrite sequence that ends in a normal form. However, our N2ExpTime-hardness
proof does not directly work for confluent TRSs whose termination can be shown with a
polynomial order. The reason is that, for a given nondeterministic Turing machine M, the
rewrite system RM ∪ R1 ∪ R2 ∪ R3 need not be confluent. In fact, for a given input word,
there may be terminating runs of the TM that reach the accepting state q̂, but also ones
that do not reach this state. Using the former runs, our rewrite system can then generate
the term #, whereas this is not possible if we use one of the latter runs.

We can, however, modify the system RM ∪ R1 ∪ R2 ∪ R3 such that it becomes confluent.
To this end, we introduce two new function symbols #1 and #0 of arity 1 and 0, respectively.
Moreover, we add the following rules Rc:

g(x1, . . . , xn) → #1(#0) for all function symbols g of arity > 0 except #1,

#1(#1(#0)) → #1(#0),
# → #1(#0).
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Clearly, RM ∪ R1 ∪ R2 ∪ R3 ∪ Rc is confluent, because any term that is not in normal form
(i.e., any term except variables, #0, #1(#0), and terms of the form #1(x) for variables x)
has the only normal form #1(#0) of size two. (This is the reason why we could not use a
rule like x +1 q0(z1, z2) → x in R1, because then x +1 q0(z1, z2) would have the two normal
forms x and #1(#0).) However, the term # of size one is still only reachable from t(w) if
the final state of the TM is reached by a simulation of an accepting computation of M. We
extend the polynomial interpretation in the proof of Lemma 9 as follows:

#1(x) is mapped to x + 1,
#0 is mapped to 1.

Then the polynomial order induced by this polynomial interpretation also orients the rules
of Rc from left to right, i.e., termination of the resulting system can still be shown using a
polynomial order.

▶ Corollary 19. For confluent TRSs whose termination can be shown with a polynomial
order, the small term reachability problem is N2ExpTime-complete.

As shown in [16], if termination of a TRS can be shown with a linear polynomial order
(i.e., where all polynomials have degree at most 1), then this implies an exponential bound on
the lengths of reduction sequences. Again, this bound is tight and one can use the example
showing this to obtain a TRS that generates an exponentially large tape and an exponentially
large counter, similarly to what we have done in the general case.

▶ Example 20. Let Rd consist of just the two d-rules from Example 12. Then the term
dℓ(s(0)) can be reduced to s2ℓ(0).

▶ Corollary 21. The small term reachability problem is NExpTime-complete for TRSs whose
termination can be shown with a linear polynomial order. NExpTime-hardness already holds
if only confluent systems are considered.

Proof. The upper bound can be shown as before, i.e., one just needs to guess a reduction
sequence (of exponential length) and then check the size of the obtained term.

For the lower bound, we proceed as in the proof of N2ExpTime-hardness for the case
of general polynomial orders. Thus, we assume that M is an exponentially time bounded
nondeterministic TM whose time-bound is 2p(ℓ) for a polynomial p, where ℓ is the length of
the input word. Given such an input word w = a1 . . . aℓ for M, we now construct the term

t′(w) = d
p(ℓ)
1 (b(q0(a1 . . . aℓd

p(ℓ)
2 (b(#)), d

p(ℓ)
3 (f(#)))).

Instead of R1, R2, R3, we now only need their rules for d1, d2, and d3; let R′
d denote this

system of 6 rules. As above, we can show that the term t′(w) can be rewritten with RM ∪ R′
d

to a term of size 1 iff M accepts the word w. Moreover, termination of RM ∪ R′
d can be

proved by the linear polynomial order obtained from the one in the proof of Lemma 17 by
removing the (non-linear) interpretations of q1, q2, q3.

Similarly to the proof of Corollary 19, we can prove that NExpTime-hardness also holds
for confluent TRSs whose termination can be shown with a linear polynomial order. The
reason is that termination of the modified confluent TRS RM ∪ R′

d ∪ Rc can be shown by
the linear polynomial order that results from the one employed in the proof of Corollary 19
by removing the (non-linear) interpretations of q1, q2, q3. ◀
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6 Term rewriting systems shown terminating with a Knuth-Bendix
order without special symbol

Without any restriction, there is no primitive recursive bound on the length of derivation
chains for TRSs whose termination can be shown using a Knuth-Bendix order [16], but a
uniform multiple recursive upper bound is shown in [15]. Here, we restrict the attention
to KBOs without a special symbol, i.e., without a unary symbol of weight zero. For such
KBOs, an exponential upper bound on the derivation length was shown in [16].1 Given the
results proven in the previous section, one could now conjecture that in this case the small
term reachability problem is NExpTime-complete. However, we will show below that the
complexity is actually only PSpace. In fact, the TRSs yielding the lower bounds for the
derivation length considered in the previous section have not only long reduction chains
(of double-exponential or exponential length), but are also able to produce large terms (of
double-exponential or exponential size). For KBOs without special symbol, this is not the
case. The following lemma provides us with a linear bound on the sizes of reachable terms.
It will allow us to show a PSpace upper bound for the small term reachability problem.

▶ Lemma 22. Let R be a TRS whose termination can be shown using a KBO without special
symbol, and s0, s1 terms such that s0

∗→R s1. Then the size of s1 is linearly bounded by the
size of s0, i.e., there is a constant c such that that |s1| ≤ c·|s0| whenever s0

∗→R s1.

Proof. Fix a KBO with weight function w showing termination of R such that all symbols of
arity 1 have weight > 0. Let wmin be the minimal weight > 0 of a function symbol occurring
in R or a variable,2 i.e.,

wmin := min{w(f) | w(f) > 0 and f is a function symbol in R or a variable},

and let wmax be the maximal weight of a function symbol in R or a variable. As the weights
of function symbols not occurring in R have no influence on the orientation of the rules in R

with the given KBO, we can assume without loss of generality that their weight is wmin.
Let t be a term and ni(t) for i = 0, . . . , k the number of occurrences of symbols of

arity i in t, where k is the maximal arity of a symbol occurring in t.3 Note that |t| =
n0(t) + n1(t) + . . . + nk(t). The following fact, which can easily be shown by induction on
the structure of t, is stated in [21]:

n0(t) + n1(t) + . . . + nk(t) = 1 + 1·n1(t) + 2·n2(t) + . . . + k·nk(t).

In particular, this implies that n0(t) ≥ n2(t) + . . . + nk(t). Since symbols of arity 0 and 1
have weights > 0, we know that

w(t) ≥ wmin·(n0(t) + n1(t)) ≥ wmin·n0(t) ≥ wmin·(n2(t) + . . . + nk(t)).

Consequently, 2·w−1
min·w(t) ≥ n0(t) + n1(t) + . . . + nk(t) = |t|. This shows that the size of a

term is linearly bounded by its weight. Conversely, it is easy to see that the weight of a term
is linearly bounded by its size: w(t) ≤ wmax ·|t|.

Now, assume that s0
∗→R s1. Since termination of R is shown with our given KBO,

we know that w(s0) ≥ w(s1), and thus wmax ·|s0| ≥ w(s1) ≥ 1/2·wmin·|s1|. This yields
|s1| ≤ 2·w−1

min·wmax ·|s0|. ◀

1 Actually, this result was shown in [16] only for KBOs using weights in N, but it also holds for KBOs
with non-negative weights in R. This is an easy consequence of our Lemma 22.

2 Recall that all variables have the same weight w0 > 0.
3 Variables have arity 0.
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In particular, this means that the terms encountered during a rewriting sequence starting
with a term s can each be stored using only polynomial space in the size of s. Given that the
length of such a sequence is exponentially bounded, we can decide the small term reachability
problem by the following NPSpace algorithm:

guess a rewrite sequence s →R s1 →R s2 →R . . . and always store only the current term;
in each step, check whether |si| ≤ n holds. If the answer is “yes” then stop and accept.
Otherwise, guess the next rewriting step; if this is not possible since si is irreducible, then
stop and reject.

This algorithm needs only polynomial space since, by Lemma 22, the size of each term si is
linearly bounded by the size of s. It always terminates since R is terminating. If there is a
term of size ≤ n reachable from s, then the algorithm is able to guess the sequence leading
to it, and thus it has an accepting run. Otherwise, all runs are terminating and rejecting.
Since, by Savitch’s theorem [27], NPSpace = PSpace, we obtain the following complexity
upper bound.

▶ Lemma 23. The small term reachability problem is in PSpace for TRSs whose termination
can be shown with a KBO without special symbol.

It remains to prove the corresponding lower bound. Let M be a polynomial space bounded
TM, and p the polynomial that yields the space bound. Then there is a polynomial q such
that any run of M longer than 2q(ℓ) on an input word w of length ℓ is cyclic. Thus, to
check whether M accepts w, it is sufficient to consider only runs of length at most 2q(ℓ).
However, in contrast to the reduction used in the previous section, we cannot generate an
exponentially large unary down counter using a TRS whose termination can be shown with
a KBO without special symbol. Instead, we use a polynomially large binary down counter
that is decremented, starting with the binary representation 10q(ℓ) of 2q(ℓ) (see Example 3).
For example, if q(ℓ) = 3, then we represent the number 2q(ℓ) = 23 = 8 as the binary number
10q(ℓ) = 1000. The construction of the TRS RM

bin simulating M given below is very similar
to the construction given in the proof of Lemma 7 in [10].

As signature for RM
bin we again use the tape symbols of M as unary function symbols, but

now also the states are treated as unary symbols. In addition, we need the unary function
symbols 0 and 1 to represent the counter, as well as primed versions a′, q′, 1′ of the tape
symbols a, the states q, and the symbol 1. For a given input word w = a1 . . . aℓ of M, we
now construct a term that starts with the binary representation of 2q(ℓ) and is followed by
enough tape space for a p(ℓ) space bounded TM to work on:

t(w) := 10q(ℓ)(bp(ℓ)(q0(a1 . . . aℓ(bp(ℓ)−ℓ(#))))).

Clearly, t(w) can be constructed in polynomial time.
The TRS RM

bin is now constructed as follows. The first part decrements the counter (as
in Example 3) and by doing so “sends a prime” to the right:

1(a(x)) → 0(a′(x)) and 0(a(x)) → 1′(a′(x)) for all tape symbols a,
0(1′(x)) → 1′(1(x)), 1(1′(x)) → 0(1(x)).

The prime can go to the right on the tape until it reaches a state, which it then turns into
its primed version:

a′g(x) → ag′(x) for tape symbols a and tape symbols or states g.
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Only primed states can perform a transition of the TM:

q′
1(a1(x)) → a2(q2(x)) for each transition (q1, a1, q2, a2, r) of M,

c(q′
1(a1(x)) → q2(c(a2(x))) for each transition (q1, a1, q2, a2, l) of M

and tape symbol c.

Again, the blank symbol b is also considered as a tape symbol of M. Note that the rôle of
the counter is not to restrict the number of transition steps simulated by RM

bin. Instead it
produces enough primes to allow the simulation of at least 2q(ℓ) steps, while termination can
still be shown using a KBO without special symbol.

Once the unique final accepting state q̂ is reached, we remove all symbols other than #:

a(q̂(x)) → q̂(x) where a is a tape symbol or 0 or 1,

q̂(x) → #.

▶ Lemma 24. The term t(w) can be rewritten with RM
bin to a term of size 1 iff M accepts

the word w.

Proof. If M accepts the word w, then there is a run of M on input w that ends in the
state q̂, uses at most p(ℓ) space, and requires at most 2q(ℓ) steps. This run can be simulated
by RM

bin by decrementing the counter, sending a prime to the state, applying a transition,
decrementing the counter, etc. Since the counter can be decremented 2q(ℓ) times, we can use
this approach to simulate a run of length at most 2q(ℓ). Once the accepting state is reached,
we can use the last two rules to reach the term #, which has size 1.

Conversely, we can only reach a term of size one, if these cancellation rules are applied.
This is only possible if first the accepting state has been reached by simulating an accepting
run of M. ◀

To conclude from this lemma that the small term reachability problem is PSpace-hard
for TRSs whose termination can be shown using a KBO without special symbol, it is enough
to show the following result.

▶ Lemma 25. Termination of RM
bin can be shown with a KBO without special symbol.

Proof. It is easy to see that the KBO that assigns weight 1 to all function symbols and to
all variables, and uses the precedence order 1 > 0 > 1′ and q′ > a′ > a > q for states q and
tape symbols a, orients all rules of RM

bin from left to right.4 ◀

Combining the results obtained so far in this section, we thus have determined the exact
complexity of the small term reachability problem for our class of TRSs.

▶ Theorem 26. The small term reachability problem is PSpace-complete for TRSs whose
termination can be shown with a KBO without special symbol.

As in the case of the TRSs considered in the previous section, confluence does not reduce
the complexity of the small term reachability problem for TRSs shown terminating with a
KBO without special symbol. In fact, we can again extend the TRS RM

bin such that it becomes
confluent. To this purpose, we add two new function symbols #1 and #0 of respective arity
1 and 0, and two new rules:

g(x) → #1(#0) for all unary function symbols g different from #1,

# → #1(#0).

4 This KBO is similar to the one introduced in Example 10 of [10].
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With this addition, every non-variable term built using the original signature of RM
bin can be

reduced to #1(#0), which shows confluence. To show termination of the extended TRS, we
modify and extend the KBO from the proof of Lemma 25 as follows. All function symbols in
the original signature of RM

bin (including #) now get weight 2, and the symbols #1 and #0
as well as the variables get weight 1. The precedence order is extended by setting g > #1
for all function symbols g in the original signature of RM

bin. It is easy to see that the KBO
defined this way shows that the extended TRS is terminating.

▶ Corollary 27. For confluent TRSs whose termination can be shown with a KBO without
special symbol, the small term reachability problem is PSpace-complete.

7 Conclusion

The results of this paper show that the complexity of the small term reachability problem is
closely related to the derivational complexity of the class of term rewriting systems considered.
Interestingly, restricting the attention to confluent TRSs reduces the complexity only for the
class of length-reducing systems, but not for the other two classes considered in this paper.
The investigations in this paper were restricted to classes of TRSs defined by reduction orders
(restricted form of KBO and polynomial orders) that yield relatively low bounds on the
derivational complexity of the TRS. The derivational complexity of TRSs shown terminating
by KBOs with a unary function symbol of weight zero or by recursive path orders is much
higher [14, 15, 23, 24, 29]. From a theoretical point of view, it would be interesting to see
whether using such reduction orders or other more powerful techniques [13] for showing
termination also results in a very high complexity of the small term reachability problem. In
fact, as we have seen in this paper, the complexity of this problem not only depends on the
length of reduction sequences, but also on whether one can use long sequences to generate
large terms.

On the practical side, up to now we have only used length-reducing rules to shorten DL
proofs. Basically, these rules are generated by finding frequent proof patterns (currently by
hand) and replacing them by a new “macro rule”. The results of Section 4 show that, in this
case, confluence of the rewrite system is helpful. When translating between different proof
calculi, length-reducing systems will probably not be sufficient. Therefore, we will investigate
with what kinds of techniques proof rewriting systems (e.g., translating between different
proof calculi for EL) can be shown terminating. Are polynomial orders or KBOs without
unary function symbol of weight zero sufficient, or are more powerful approaches for showing
termination needed? In this context, it might also be interesting to consider rewriting modulo
equational theories [8, 18] and associated approaches for showing termination [1, 11, 19, 26].
For example, it makes sense not to distinguish between proof steps that differ only in the order
of the prerequisites. Hence, rewriting such proofs could be represented via term rewriting
modulo associativity and commutativity.
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