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Abstract. We present a new procedure to infer size bounds for integer
programs automatically. Size bounds are important for the deduction of
bounds on the runtime complexity or in general, for the resource analysis
of programs. We show that our technique is complete (i.e., it always com-
putes finite size bounds) for a subclass of loops, possibly with non-linear
arithmetic. Moreover, we present a novel approach to combine and inte-
grate this complete technique into an incomplete approach to infer size and
runtime bounds of general integer programs. We prove completeness of our
integration for an important subclass of integer programs. We implemen-
ted our new algorithm in the automated complexity analysis tool KoAT to
evaluate its power, in particular on programs with non-linear arithmetic.

1 Introduction

There are numerous incomplete approaches for automatic resource analysis of
programs, e.g., [1, 2, 5, 8, 10, 15, 19, 21, 29, 33]. However, also many complete
techniques to decide termination, analyze runtime complexity, or study memory
consumption for certain classes of programs have been developed, e.g., [3, 4, 6,
7, 16, 17, 20, 22, 27, 34, 36]. In this paper, we present a procedure to compute
size bounds which indicate how large the absolute value of an integer variable
may become. In contrast to other complete procedures for the inference of size
bounds which are based on fixpoint computations [3, 6], our technique can also
handle (possibly negative) constants and exponential size bounds. Similar to
our earlier paper [27], we embed a procedure which is complete for a subclass of
loops (i.e., it computes finite size bounds for all loops from this subclass) into an
incomplete approach for general integer programs [8, 19]. In this way, the power
of the incomplete approach is increased significantly, in particular for programs
with non-linear arithmetic. However, in the current paper we tackle a completely
different problem than in [27] (and thus, the actual new contributions are also
completely different), because in [27] we embedded a complete technique in order
to infer runtime bounds, whereas now we integrate a novel technique in order to
infer size bounds. As an example, we want to determine bounds on the absolute
values of the variables during (and after) the execution of the following loop.

while (x3 > 0) do (x1, x2, x3, x4)←(3·x1+2·x2,−5·x1−3·x2, x3−1, x4+x2
3) (1)
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We introduce a technique to compute size bounds for loops which admit a
closed form, i.e., an expression which corresponds to applying the loop’s update
n times. Then we over-approximate the closed form to obtain a non-negative,
weakly monotonically increasing function. For instance, a closed form for x3 in our
example is x3 − n, since the value of x3 is decreased by n after n iterations. The
(absolute value of this) closed form can be over-approximated by x3 + n, which is
monotonically increasing in all variables. Finally, each occurrence of n is substi-
tuted by a runtime bound for the loop. Clearly, (1) terminates after at most x3

iterations. So if we substitute n by the runtime bound x3 in the over-approximated
closed form x3+n, then we infer the linear bound 2·x3 on the size of x3. Due to the
restriction to weakly monotonically increasing over-approximations, we can plug in
any over-approximation of the runtime and do not necessarily need exact bounds.

Structure We introduce our technique to compute size bounds by closed forms in
Sect. 2 and show that it is complete for a subclass of loops in Sect. 3. Afterwards in
Sect. 4, we incorporate our novel technique into the incomplete setting of general
integer programs. In Sect. 5 we demonstrate how size bounds are used in automatic
complexity analysis and study completeness for classes of general programs. In
Sect. 6, we conclude with an experimental evaluation of our implementation in
the tool KoAT and discuss related work. All proofs can be found in [28].

2 Size Bounds by Closed Forms

In this section, we present our novel technique to compute size bounds for loops
by closed forms in Thm. 7. We start by introducing the required preliminaries. Let
V = {x1, . . . , xd} be a set of variables. F(V) is the set of all formulas built from
inequations p > 0 for polynomials p ∈ Q[V ], ∧, and ∨. A loop (φ, η) consists of a
guard φ ∈ F(V) and an update η : V → Z[V] mapping variables to polynomials.
A closed form clxi (formally defined in Def. 1 below) is an expression in n and
in the (initial values of the) variables x1, . . . , xd which corresponds to the value
of xi after iterating the loop n times. For our purpose we only need closed forms
which hold for all n ≥ n0 for some fixed n0 ∈ N. Moreover, we restrict ourselves
to closed forms which are so-called normalized poly-exponential expressions
[16]. Nonetheless, our procedure works for any closed form expression with a
finite number of arithmetic operations (i.e., the number of operations must be
independent of n). We extend the application of functions like η : V → Z[V]
also to polynomials, vectors, and formulas, etc., by replacing each variable v in
the expression by η(v). So in particular, (η2 ◦ η1)(x) = η2(η1(x)) stands for the
polynomial η1(x) in which every variable v is replaced by η2(v). Moreover, ηn

denotes the n-fold application of η.
We call a function σ : V → Z a state. By σ(exp) or σ(φ) we denote the

number resp. Boolean value which results from replacing every variable v by the
number σ(v) in the arithmetic expression exp or the formula φ.

Definition 1 (Closed Forms). For a loop (φ, η), an arithmetic expression
clxi is a closed form for xi with start value n0 ∈ N if clxi =

∑
1≤j≤ℓ αj ·naj · bnj
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with ℓ, aj ∈ N, bj ∈ A,1 αj ∈ A[V ], and for all σ : V∪{n} → Z with σ(n) ≥ n0 we
have σ(clxi) = σ(ηn(xi)). Similarly, we call cl = (clx1 , . . . , clxd) a closed form
of the update η (resp. for the loop (φ, η)) with start value n0 if for all 1 ≤ i ≤ d,
clxi are closed forms for xi with start value n0.

Example 2. In Sect. 3 we will show that for the loop (1), a closed form for x1

(with start value 0) is clx1 = 1
2 ·α · (−i)

n+ 1
2 ·α · i

n where α = (1+3i) ·x1+2i ·x2.
Here, α denotes the complex conjugate of α, i.e., the sign of those monomials is
flipped where the coefficient is a multiple of the imaginary unit i. A closed form

for x4 (also with start value 0) is clx4 = x4 + n · ( 16 + x3 + x2
3 − x3 · n− n

2 + n2

3 ).

Our aim is to compute bounds on the sizes of variables and on the runtime.
As in [8, 19], we only consider bounds which are weakly monotonically increasing
in all occurring variables. Their advantage is that we can compose them easily
(i.e., if f and g increase monotonically, then so does f ◦ g).

Definition 3 (Bounds). The set of bounds B is the smallest set with N =
N ∪ {ω} ⊆ B, V ⊆ B, and {b1 + b2, b1 · b2, kb1} ⊆ B for all k ∈ N and b1, b2 ∈ B.

Size bounds should be bounds on the values of variables up to the point where
the loop guard is not satisfied anymore for the first time. To define size bounds,
we introduce the runtime complexity of a loop (whereas we considered the runtime
complexity of arbitrary integer programs in [8, 19, 27]). Let Σ denote the set of
all states σ : V → Z and let |σ| be the state with |σ|(x) = |σ(x)| for all x ∈ V.

Definition 4 (Runtime Complexity for Loops). The runtime complexity of
a loop (φ, η) is rc : Σ → N with rc(σ) = inf{n ∈ N | σ(ηn(¬φ))}, where inf ∅
= ω. An expression r ∈ B is a runtime bound if |σ|(r) ≥ rc(σ) for all σ ∈ Σ.

Example 5. The runtime complexity of the loop (1) is rc(σ) = max(0, σ(x3)). For
example, x3 is a runtime bound, as |σ|(x3) ≥ max(0, σ(x3)) for all states σ ∈ Σ.

A size bound on a variable x is a bound on the absolute value of x after n
iterations of the update η, where n is bounded by the runtime complexity. In
contrast to the definition of size bounds for transitions in integer programs from
[8], Def. 6 requires that size bounds also hold before evaluating the loop.

Definition 6 (Size Bounds for Loops). SB : V → B is a size bound for (φ, η)
if for all x ∈ V and all σ ∈ Σ, we have |σ|(SB(x)) ≥ sup{|σ(ηn(x))| | n ≤ rc(σ)}.

For any algebraic number c ∈ A, as usual ⌈|c|⌉ is the smallest natural number
which is greater or equal to c’s absolute value. Similarly, for any poly-exponential
expression p =

∑
j(
∑

i ci,j ·βi,j)·naj ·bnj where ci,j ∈ A and the βi,j are normalized

monomials of the form xe1
1 ·. . .·x

ed
d , ⌈|p|⌉ denotes

∑
j (
∑

i⌈|ci,j |⌉ · βi,j)·naj ·⌈|bj |⌉n.
We now determine size bounds by over-approximating the closed form clx

by the non-negative, weakly monotonically increasing function ⌈|clx|⌉. Then we
substitute n by a runtime bound r (denoted by “[n/r]”). Due to the monotonicity,

1 A is the set of algebraic numbers, i.e., the field of all roots of polynomials in Z[x].
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this results in a bound on the size of x not only at the end of the loop, but
also during the iterations of the loop. Since the closed form is only valid for n
iterations with n ≥ n0, we ensure that our size bound is also correct for less than
n0 iterations by symbolically evaluating the update, where we over-approximate
maxima by sums. As mentioned, see [28] for the proofs of all new results.

Theorem 7 (Size Bounds for Loops with Closed Forms). Let cl be a
closed form for the loop (φ, η) with start value n0 and let r ∈ B be a runtime bound.
Then the (absolute) size of x ∈ V is bounded by sbx=⌈|clx|⌉[n/r] +

∑
0≤i<n0

|ηi(x)|.
Hence, the function SB with SB(x) = sbx for all x ∈ V is a size bound for (φ, η).

Example 8. As mentioned, for the loop (1), a closed form for x1 with start value
0 is clx1 = 1

2 ·α · (−i)
n+ 1

2 ·α · i
n where α = (1+3i) ·x1+2i ·x2. Hence, ⌈|clx1 |⌉ =⌈

| 12 · α · (−i)
n + 1

2 · α · i
n|
⌉
= (

⌈
| 1+3i

2 |
⌉
· x1 + ⌈|i|⌉ · x2) · ⌈| − i|⌉n + (

⌈
| 1−3i

2 |
⌉
· x1 +

⌈| − i|⌉ ·x2) · ⌈|i|⌉n = 4 ·x1+2 ·x2, as
⌈
| 1+3i

2 |
⌉
=

⌈
| 1−3i

2 |
⌉
=

⌈√
10
2

⌉
= 2 and ⌈|i|⌉ =

⌈| − i|⌉ = 1. So our approach infers linear size bounds for x1 and x2 (the similar
computations for x2 are omitted) while [8] only infers exponential size bounds.

As this over-approximation does not depend on n, it directly yields a size
bound, i.e., sbx1 = ⌈|clx1 |⌉. In contrast, in the over-approximation ⌈|clx4 |⌉ =
x4 + n

(
1 + x3 + x2

3 + x3 · n+ n+ n2
)
, we have to replace n by a runtime bound

like x3. Thus, we obtain the overall size bound sbx4 = x4 + 3 · x3
3 + 2 · x2

3 + x3.

Although this section focused on closed forms which are poly-exponential
expressions, our technique is applicable to all loops where we can compute over-
approximating bounds for the closed form and the runtime complexity. For exam-
ple, the update η(x) = x2 has the closed form x(2n), but it does not admit a poly-
exponential closed form due to x’s super-exponential growth. However, by instan-
tiating n by a runtime bound, we can still compute a size bound for this update.
The reason for focusing on poly-exponential expressions is that we can compute
such a closed form for all so-called solvable loops automatically, see Sect. 3.

3 Size and Runtime Bounds for Solvable Loops

In this section, we present a class of loops where our technique of Thm. 7 is
“complete”. The technique relies on the computation of suitable closed forms and
of runtime bounds. In Sect. 3.1, we show that poly-exponential closed forms
can be computed for all solvable loops [17, 23, 25, 26, 32, 36]. Then we prove in
Sect. 3.2 that finite runtime bounds are computable for all terminating solvable
loops with only periodic rational eigenvalues.

A loop (φ, η) is solvable if η is a solvable update (see Def. 9 below for a formal
definition), which partitions V into blocks S1, . . . ,Sm (and loop guards φ are not
relevant for closed forms). Each block allows updates with cyclic dependencies
between its variables and non-linear dependencies on variables in blocks with
lower indices.
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Definition 9 (Solvable Update [17, 23, 25, 26, 32, 36]). An update η :
V → Z[V] is solvable if there exists a partition S1, . . . ,Sm of {x1, . . . , xd} such
that for all 1 ≤ i ≤ m we have η⃗Si = ASi · x⃗Si + p⃗Si for an ASi ∈ Z|Si|×|Si| and
a p⃗Si ∈ Z[

⋃
j<i Sj ]|Si|, where η⃗Si is the vector of all η(xj) and x⃗Si is the vector

of all xj with j ∈ Si. The eigenvalues of a solvable loop are defined as the union

of the eigenvalues of all matrices ASi
. The loop is homogeneous if p⃗Si

= 0⃗ for
all 1 ≤ i ≤ m.

Example 10. The loop (1) is an example for a solvable loop using the partition
S1 = {x1, x2}, S2 = {x3}, and S3 = {x4}.

The crucial idea for our results in Sect. 3.1 and 3.2 is to reduce the problem of
finding closed forms and runtime bounds from solvable loops to triangular weakly
non-linear loops (twn-loops) [16, 17, 20]. A twn-update is a solvable update where
each block Sj has cardinality one. Thus, a twn-update is triangular, i.e., the update
of a variable does not depend on variables with higher indices. Furthermore, the
update is weakly non-linear, i.e., a variable does not occur non-linear in its own
update. We are mainly interested in loops over Z, but to handle solvable updates,
we will transform them into twn-updates with coefficients from A.

Definition 11 (TWN-Update [16, 17, 20]). An update η : V → A[V] is
twn if for all 1 ≤ i ≤ d we have η(xi) = ci · xi + pi for some ci ∈ A and some
polynomial pi ∈ A[x1, . . . , xi−1]. A loop with a twn-update is called a twn-loop.

Clearly, (1) is not a twn-loop due to the cyclic dependency between x1 and x2.

3.1 Closed Forms for Solvable Loops

Lemma 12 (which extends [17, Thm. 16] from solvable updates with real eigenval-
ues to arbitrary solvable updates) illustrates that one can transform any solvable
update ηs into a twn-update ηt by an automorphism ϑ. Here, ϑ is induced by
the change-of-basis matrix of the Jordan normal form of each block of ηs. Note
that the Jordan normal form is always computable in polynomial time (see [9]).

Lemma 12 (Transforming Solvable Updates (see [17, Thm. 16])). Let
ηs be a solvable update. Then ϑ : V → A[V] is an automorphism, where ϑ is
defined by ϑ(S) = P · x⃗S for each block S, where J(AS) = P · AS · P−1 is the
Jordan normal form of AS . Furthermore, ηt = ϑ−1 ◦ ηs ◦ ϑ is a twn-update.

Example 13. To illustrate Lemma 12, we transform the solvable update ηs of (1)
into a twn-update ηt. As the blocks S2 = {x3} and S3 = {x4} have cardinality
one, we only have to consider S1 = {x1, x2}. The restriction of ηs to S1 is(x1
x2

)
← AS1 ·

(x1
x2

)
with AS1 =

( 3 2
−5 −3

)
. So we get the Jordan normal form J(AS1) =

P ·AS1
· P−1 =

(−i 0
0 i

)
where P =

(
− 5

2 i
1
2 (1−3i)

5
2 i

1
2 (1+3i)

)
and P−1 =

(
1
5 (i−3) − 1

5 (i+3)
1 1

)
.

Thus, we have the following automorphism ϑ and its inverse ϑ−1:

ϑ
(
x1
x2

)
= P ·

(
x1
x2

)
=

(
− 5

2 i · x1 + 1
2 (1 − 3i) · x2

5
2 i · x1 + 1

2 (1 + 3i) · x2

)
, ϑ

(
x3
x4

)
=

(
x3
x4

)
ϑ−1

(
x1
x2

)
= P−1 ·

(
x1
x2

)
=

(
1
5 (i − 3) · x1 − 1

5 (i + 3) · x2
x1 + x2

)
, ϑ−1

(
x3
x4

)
=

(
x3
x4

)
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Hence, ηt = ϑ−1 ◦ ηs ◦ ϑ is the following twn-update:
ηt(x1) = −i · x1, ηt(x2) = i · x2, ηt(x3) = x3 − 1, ηt(x4) = x4 + x2

3

The reason for transforming solvable updates to twn-updates is that for the
latter, we can re-use our previous algorithm from [16] to compute poly-exponential
closed forms. While [16] only considered updates with linear arithmetic over Z,
it can directly be extended to twn-updates over A.

Lemma 14 (Closed Forms for TWN-Updates (see [16])). Let η be a
twn-update. Then a (poly-exponential) closed form is computable for η.

Example 15. For ηt from Ex. 13, we obtain the following closed form (with start

value 0): clt = ((−i)n · x1, i
n · x2, x3 − n, x4 + n( 16 + x3 + x2

3 − x3 · n− n
2 + n2

3 )).

So to obtain a closed form of a solvable update ηs, we first transform it into
a twn-update ηt via Lemma 12, and then compute the closed form clt of ηt
(Lemma 14). We now show how to obtain a closed form for ηs from clt.

Theorem 16 (Closed Forms for Solvable Updates). Let ηs be a solvable
update and ϑ be an automorphism as in Lemma 12 such that ηt = ϑ−1 ◦ηs ◦ϑ is a
twn-update. If clt is a closed form of ηt with start value n0, then cls = ϑ◦clt◦ϑ−1

is a closed form of ηs with start value n0.

Example 17. In Ex. 13 we transformed ηs into the twn-update ηt via an auto-
morphism ϑ and in Ex. 15, we gave a closed form clt of ηt. Thus, by Thm. 16,
we can infer a closed form cls = ϑ ◦ clt ◦ ϑ−1 of ηs. For example, we compute a
closed form for x1 with start value 0 (clx2

s can be inferred in a similar way):

clx1
s =

(
1
5 (i− 3) · x1 − 1

5 (i + 3) · x2

)
[v/clvt | v ∈ V] [v/ϑ(v) | v ∈ V]

=
(
1
5 (i− 3) · (−i)n · x1 − 1

5 (i + 3) · in · x2

)
[v/ϑ(v) | v ∈ V]

= 1
2 ((1 + 3i) · x1 + 2i · x2︸ ︷︷ ︸

α

) · (−i)n + 1
2 ((1− 3i) · x1 − 2i · x2︸ ︷︷ ︸

α

) · in.

3.2 Periodic Rational Solvable Loops

In Sect. 3.1, we discussed how to compute closed forms for solvable updates (by
transforming them to twn-updates). However to compute size bounds, we have
to instantiate the variable n in the closed forms by runtime bounds (Thm. 7). In
[20], it was shown that (polynomial) runtime bounds can always be computed
for terminating twn-loops over the integers. However, in general, transforming
solvable loops via Lemma 12 yields twn-updates which may contain algebraic
(complex) numbers. We now show that for the subclass of terminating periodic
rational solvable loops, our approach is “complete” (i.e., finite runtime bounds
and thus, also finite size bounds are always computable).

Definition 18 (Periodic Rational [25]). A number λ ∈ A is periodic rational
if λp ∈ Q for some p ∈ N with p > 0. The period of λ is the smallest such p with
λp ∈ Q. A solvable loop is periodic rational (i.e., it is a prs loop) with period p
if all its eigenvalues λ are periodic rational and p is the least common multiple of
all their periods. A prs loop is a unit prs loop if |λ| ≤ 1 for all its eigenvalues λ.
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So i, −i, and
√
2 · i are periodic rational with period 2, while

√
2+i is not periodic

rational. The following lemma from [25] gives a bound on the period of prs loops
and thus yields an algorithm to detect prs loops and to compute their period.

Lemma 19 (Bound on the Period [25]). Let A ∈ Zn×n. If λ is a periodic
rational eigenvalue of A with period p, then p ≤ n3.

Now we show that by chaining (i.e., by performing p iterations of a prs loop
with period p in a single step), one can transform any prs loop into a solvable
loop with only integer eigenvalues. Then, our previous results on twn-loops [17,
20] can be used to infer runtime bounds for these loops.

Definition 20 (Chaining Loops). Let L = (φ, η) be a loop and p ∈ N \ {0}.
Then Lp = (φp, ηp) results from iterating L p times, i.e., φp = φ ∧ η(φ) ∧
η(η(φ)) ∧ . . . ∧ ηp−1(φ) and ηp(v) = ηp(v) for all v ∈ V.

Example 21. The eigenvalues ±i of (1) have period 2. Chaining yields (φ∧η(φ), η2):

while (x3>0 ∧ x3>1) do (x1, x2, x3, x4)← (−x1,−x2, x3−2, x4+(x3−1)2+x23) (2)

Due to Lemma 12 we can transform every solvable update into a twn-update
by a (linear) automorphism ϑ. For prs loops, ϑ’s range can be restricted to Q[V ],
i.e., one does not need algebraic numbers. So, we first chain the prs loop L and
then compute a Q-automorphism ϑ transforming the chained loop Lp into a
twn-loop Lt via Lemma 12. Then we can infer a runtime bound for Lt as in [20].
The reason is that all factors ci in the update of Lt are integers and thus, we can
compute a closed form

∑
j αj ·naj ·bnj such that αj ∈ Q[V ] and bj ∈ Z. Afterwards,

the runtime bound for Lt can be lifted to a runtime bound for the original loop
by reconsidering the automorphism ϑ. Similarly, in order to prove termination of
the prs loop L, we analyze termination of Lt on ϑ(Zd) = {ϑ(x⃗) | x⃗ ∈ Zd}.2

Lemma 22 (Runtime Bounds for PRS Loops). Let L be a prs loop with
period p and let Lp = (φp, ηp) result from chaining as in Def. 20. From ηp, one
can compute a linear automorphism ϑ : V → Q[V] as in Lemma 12, such that:

(a) Lp is solvable and only has integer eigenvalues.
(b) (ϑ−1 ◦ ηp ◦ ϑ) : V → Q[V] is a twn-update as in Def. 11 such that all ci ∈ Z.
(c) Lt = (φt, ηt) with φt = ϑ−1(φp) and ηt = ϑ−1 ◦ηp ◦ϑ is a twn-loop. Moreover,

the following holds:

� L terminates on Zd iff
� Lp terminates on Zd iff
� Lt terminates on ϑ(Zd) = {ϑ(x⃗) | x⃗ ∈ Zd}.

(d) If r is a runtime bound3 for Lt, then p·⌈|ϑ(r)|⌉+p−1 is a runtime bound for L.

2 By [17], termination of Lt on ϑ(Zd) is reducible to invalidity of a formula ∃x⃗ ∈ Qd.
ψϑ(Zd) ∧ ξLt . Here, ψϑ(Zd) holds iff x⃗ ∈ ϑ(Zd) and ξLt holds iff Lt does not terminate
on x⃗. As shown in [17], non-termination of linear twn-loops with integer eigenvalues
is NP-complete and it is semi-decidable for twn-loops with non-linear arithmetic.

3 More precisely, |σ|(r) ≥ inf{n ∈ N | σ(ηnt (¬φt))} must hold for all σ : V → ϑ(Zd).
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Runtime
Bound:

prs loop L
p · ⌈|ϑ(r)|⌉ + p − 1

Lp

⌈|ϑ(r)|⌉
Lt with ηt : V → Q[V]

r by [17, 20]

Size Bound:
solvable loop L

cls

L′
t with η′

t : V → A[V]
clt by [16]

chaining

Lemma 22 (a)

ϑ : V → Q[V]

Lemma 22 (b)

Lemma 22 (c) & (d) Lemma 22 (c) & (d)
Thm. 7

Lemma 12 by ϑ′ : V → A[V]

Thm. 16

Fig. 1: Illustration of Runtime and Size Bound Computations

Since we can detect prs loops and their periods by Lemma 19, Lemma 22
allows us to compute runtime bounds for all terminating prs loops. This is
illustrated in Fig. 1: For runtime bounds, L is transformed to Lp by chaining
and Lp is transformed further to Lt by an automorphism ϑ. The runtime bound
r for Lt can then be transformed into a runtime bound for Lp and further into a
runtime bound for L. For size bounds, L is directly transformed to a twn-loop L′

t

by an automorphism ϑ′. The closed form clt obtained for L′
t is transformed via

the automorphism ϑ′ into a closed form cls for L. Then the runtime bound for L
is inserted into this closed form to yield a size bound for L. So in Fig. 1, standard
arrows denote transformations of loops and wavy arrows denote transformations
of runtime bounds or closed forms.

Theorem 23 (Completeness of Size and Runtime Bound Computation
for Terminating PRS Loops). For all terminating prs loops, polynomial
runtime bounds and finite size bounds are computable. For terminating unit prs
loops, all these size bounds are polynomial as well.

Example 24. For the loop L from (1), we computed Lp for p = 2 in (2), see Ex. 21.
As Lp is already a twn-loop, we can use the technique of [20] (implemented in our
tool KoAT) to obtain the runtime bound x3 for Lp. Lemma 22 yields the runtime
bound 2 ·x3+1 for the original loop (1). Of course, here one could also use (incom-
plete) approaches based on linear ranking functions (also implemented in KoAT,
see, e.g., [8, 19]) to directly infer the tighter runtime bound x3 for the loop (1).

4 Size Bounds for Integer Programs

Up to now, we focused on isolated loops. In the following, we incorporate our
complete approach from Sect. 2 and 3 into the setting of general integer programs
where most questions regarding termination or complexity are undecidable.
Formally, an integer program is a tuple (V,L, ℓ0, T ) with a finite set of variables
V, a finite set of locations L, a fixed initial location ℓ0 ∈ L, and a finite set of
transitions T . A transition is a 4-tuple (ℓ, φ, η, ℓ′) with a start location ℓ ∈ L,
target location ℓ′ ∈ L\{ℓ0}, guard φ ∈ F(V), and update η : V → Z[V ]. To simplify
the presentation, we do not consider “temporary” variables (whose update is non-
deterministic), but the approach can easily be extended accordingly. Transitions
(ℓ0, , , ) are called initial and T0 denotes the set of all initial transitions.
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ℓ0 ℓ1 ℓ2

t0 : φ = (x3 > 0 ∧ x5 > 0)

t3 : φ = (x5 > 1)
η(x1) = 2 · x5 η(x2) = 3 · x5

η(x3) = x5 η(x4) = x3

η(x5) = x5 − 1

t1 : φ = (x3 > 0)
η(x1) = 3 · x1 + 2 · x2

η(x2) = −5 · x1 − 3 · x2

η(x3) = x3 − 1
η(x4) = x4 + x2

3

t4 : φ = (x1 > 0)

η(x1) = x1 − 1
t2

Fig. 2: An Integer Program with Non-Linear Size Bounds

Example 25. In the integer program of Fig. 2, we omitted identity updates η(v) =
v and guards where φ is true. Here, V = {x1, . . . , x5} and L = {ℓ0, ℓ1, ℓ2}, where
ℓ0 is the initial location. Note that the loop in (1) corresponds to transition t1.

Definition 26 (Correspondence between Loops and Transitions). Let
t = (ℓ, φ, η, ℓ) be a transition with φ ∈ F(V ′) for some variables V ′ ⊆ V such that
η(x) = x for all x ∈ V \ V ′ and η(x) ∈ Z[V ′] for all x ∈ V ′. A loop (φ′, η′) with
φ′ ∈ F({x1, . . . , xd}) and η′ : {x1, . . . , xd} → Z[{x1, . . . , xd}] corresponds to the
transition t via the variable renaming π : {x1, . . . , xd} → V ′ if φ is π(φ′) and for
all 1 ≤ i ≤ d we have η(π(xi)) = π(η′(xi)).

To define the semantics of integer programs, an evaluation step moves from
one configuration (ℓ, σ) ∈ L×Σ to another configuration (ℓ′, σ′) via a transition
(ℓ, φ, η, ℓ′) where σ(φ) holds. Here, σ′ is obtained by applying the update η on σ.
From now on, we fix an integer program P = (V,L, ℓ0, T ).

Definition 27 (Evaluation of Programs). For configurations (ℓ, σ), (ℓ′, σ′)
and t = (ℓt, φ, η, ℓ

′
t) ∈ T , (ℓ, σ)→t (ℓ

′, σ′) is an evaluation step if ℓ = ℓt, ℓ
′ = ℓ′t,

σ(φ) = true, and σ(η(v)) = σ′(v) for all v ∈ V. Let →T =
⋃

t∈T →t, where we

also write → instead of →t or →T . Let (ℓ0, σ0) →k (ℓk, σk) abbreviate (ℓ0, σ0)
→ . . .→ (ℓk, σk) and let (ℓ, σ)→∗ (ℓ′, σ′) if (ℓ, σ)→k (ℓ′, σ′) for some k ≥ 0.

Example 28. If we encode states as tuples (σ(x1), . . . , σ(x5)) ∈ Z5, then (−6,−8,
2, 1, 1)→t0 (−6,−8, 2, 1, 1)→2

t1 (6, 8, 0, 6, 1)→t2 (6, 8, 0, 6, 1)→6
t4 (0, 8, 0, 6, 1).

Now we define size bounds for variables v after evaluating a transition t:
SB(t, v) is a size bound for v w.r.t. t if for any run starting in σ0 ∈ Σ, |σ0|(SB(t, v))
is greater or equal to the largest absolute value of v after evaluating t.

Definition 29 (Size Bounds [8, 19]). A function SB : (T × V) → B is a
(global) size bound for the program P if for all (t, x) ∈ T ×V and all states σ0 ∈ Σ
we have |σ0|(SB(t, x)) ≥ sup{|σ′(x)| | ∃ ℓ′ ∈ L. (ℓ0, σ0) (→∗ ◦ →t) (ℓ

′, σ′)}.

Later in Lemma 35, we will compare the notion of size bounds for transitions
in a program from Def. 29 to our earlier notion of size bounds for loops from
Def. 6.

Example 30. As an example, we give size bounds for the transitions t0 and t3 in
Fig. 2. Since t0 does not change any variables, a size bound is SB(t0, xi) = xi for
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all 1 ≤ i ≤ 5. Note that the value of x5 is never increased and is bounded from
below by 0 in any run through the program. Thus, SB(t3, x3) = x5 = SB(t3, x5).
Similarly, we have SB(t3, x1) = 2 · x5, SB(t3, x2) = 3 · x5, and SB(t3, x4) = x3.

To infer size bounds for transitions as in Def. 29 automatically, we lift local
size bounds (i.e., size bounds which only hold for a subprogram with transitions
T ′ ⊆ T \T0) to global size bounds for the complete program. For the subprogram,
one considers runs which start after evaluating an entry transition of T ′.

Definition 31 (Entry Transitions [8]). Let ∅ ̸= T ′ ⊆ T \ T0. The entry
transitions of T ′ are ET ′ = {t | t=( , , , ℓ)∈T \T ′ and there is a (ℓ, , , )∈T ′}.

Example 32. For the program in Fig. 2, we have E{t1} = {t0, t3} and E{t4} = {t2}.

Definition 33 (Local Size Bounds). Let ∅ ̸= T ′ ⊆ T \ T0 and t′ ∈ T ′.
SBt′ : V → B is a local size bound for t′ w.r.t. T ′ if for all x ∈ V and all σ ∈ Σ:4

|σ|(SBt′(x)) ≥ sup{|σ′(x)| | ∃ℓ′ ∈ L, ( , , , ℓ) ∈ ET ′ . (ℓ, σ) (→∗
T ′ ◦ →t′) (ℓ

′, σ′)}.

Thm. 34 below yields a novel modular procedure to infer (global) size bounds
from previously computed local size bounds. A local size bound for a transition
t′ w.r.t. a subprogram T ′ ⊆ T \ T0 is lifted by inserting size bounds for all entry
transitions. Again, this is possible because we only use weakly monotonically
increasing functions as bounds. Here, “b [v/pv | v ∈ V]” denotes the bound which
results from replacing every variable v by pv in the bound b.

Theorem 34 (Lifting Local Size Bounds). Let ∅ ≠ T ′ ⊆ T \ T0, let SBt′
be a local size bound for a transition t′ w.r.t. T ′ and let SB : (T × V) → B
be a size bound for P. Let SB′(t′, x) =

∑
r∈ET ′ SBt′(x) [v/SB(r, v) | v ∈ V] and

SB′(t, x) = SB(t, x) for all t′ ̸= t. Then SB′ is also a size bound for P.

To obtain local size bounds which can then be lifted via Thm. 34, we look for
transitions tL that correspond to a loop L and then we compute a size bound for
L as in Sect. 2 and 3. The following lemma shows that size bounds for loops as
in Def. 6 indeed yield local size bounds for the corresponding transitions.5

Lemma 35 (Local Size Bounds via Loops). Let SBL be a size bound for a
loop L (as in Def. 6) which corresponds to a transition tL via a variable renaming
π. Then π ◦ SBL ◦ π−1 is a local size bound for tL w.r.t. {tL} (as in Def. 33).

Example 36. SBL(x4) = x4+3 ·x3
3+2 ·x2

3+x3 is a size bound for x4 in the loop
(1), see Ex. 8. This loop corresponds to transition t1 in the program of Fig. 2.
Since E{t1} = {t0, t3} by Ex. 32, Thm. 34 yields the following (non-linear) size
bound for x4 in the full program of Fig. 2 (see Ex. 30 for SB(t0, v) and SB(t3, v)):

SB(t1, x4) = SBL(x4) [v/SB(t0, v) | v ∈ V] + SBL(x4) [v/SB(t3, v) | v ∈ V]
4 To simplify the formalism, in this definition, we consider every possible configuration
(ℓ, σ) and not only configurations which are reachable from the initial location ℓ0.

5 Local or global size bounds for transitions only have to hold if the transition is indeed
taken. In contrast, size bounds for loops also have to hold if there is no loop iteration.
This will be needed in Thm. 38 to compute local size bounds for simple cycles.



Targeting Completeness: Using Closed Forms for Size Bounds 11

= (x4 + 3 · x3
3 + 2 · x2

3 + x3) + (x3 + 3 · x3
5 + 2 · x2

5 + x5)

= 2 · x3 + 2 · x2
3 + 3 · x3

3 + x4 + x5 + 2 · x2
5 + 3 · x3

5

Analogously, we infer the remaining size bounds SB(t1, xi), e.g., SB(t1, x1)=(4·x1

+2·x2) [v/SB(t0, v) | v∈V]+(4·x1+2·x2) [v/SB(t3, v) | v∈V] = 4·x1+2·x2+14·x5.

Our approach alternates between improving size and runtime bounds for indi-
vidual transitions. We start with SB(t0, x) = |η(x)| for initial transitions t0 ∈ T0
where η is t0’s update, and SB(t, ) = ω for t ∈ T \ T0. Here, similar to the
notion ⌈|p|⌉ in Sect. 2, for every polynomial p =

∑
j cj · βj with normalized

monomials βj , |p| is the polynomial
∑

j |cj | · βj . To improve the size bounds
of transitions that correspond to (possibly non-linear) solvable loops, we can use
closed forms (Thm. 7) and the lifting via Thm. 34. Otherwise, we use an existing in-
complete technique [8] to improve size bounds (where [8] essentially only succeeds
for updates without non-linear arithmetic). In this way, we can automatically
compute polynomial size bounds for all remaining transitions and variables in the
program of Fig. 2 (e.g., we obtain SB(t2, x1) = SB(t1, x1) = 4 ·x1+2 ·x2+14 ·x5).

Both the technique from [8] and our approach from Thm. 7 rely on runtime
bounds to compute size bounds. On the other hand, as shown in [8, 19, 27], size
bounds for “previous” transitions are needed to infer (global) runtime bounds
for transitions in a program. For that reason, the alternated computation resp.
improvement of global size and runtime bounds for the transitions is repeated
until all bounds are finite. We will illustrate this in more detail in Sect. 5.

In Def. 26 and Lemma 35 we considered transitions with the same start and
target location that directly correspond to loops. To increase the applicability of
our approach, as in [27] now we consider so-called simple cycles, where iterations
through the cycle can only be done in a unique way. So the cycle must not
have subcycles and there must not be any indeterminisms concerning the next
transition to be taken. Formally, C = {t1, . . . , tn} ⊆ T is a simple cycle if there are
pairwise different locations ℓ1, . . . , ℓn such that ti = (ℓi, , , ℓi+1) for 1 ≤ i ≤ n−1
and tn = (ℓn, , , ℓ1). To handle simple cycles, we chain transitions.6

Definition 37 (Chaining (see, e.g., [27])). Let t1, . . . , tn ∈ T where ti = (ℓi,
φi, ηi, ℓi+1) for all 1 ≤ i ≤ n−1. Then the transition t1 ⋆ . . . ⋆ tn = (ℓ1, φ, η, ℓn+1)
results from chaining t1, . . . , tn where

φ = φ1 ∧ η1(φ2) ∧ η2(η1(φ3)) ∧ . . . ∧ ηn−1(. . . η1(φn) . . .)
η(v) = ηn(. . . η1(v) . . .) for all v ∈ V, i.e., η = ηn ◦ . . . ◦ η1.

Now we want to compute a local size bound for the transition tn w.r.t. a simple
cycle C = {t1, . . . , tn} where a loop L corresponds to t1 ⋆. . .⋆tn via π. Then a size
bound SBL for the loop L yields the size bound π ◦ SBL ◦ π−1 for tn regarding
runs through C starting in t1. However, to obtain a local size bound SBtn w.r.t. C,
we have to consider runs starting after any entry transition ( , , , ℓi) ∈ EC . Hence,
6 The chaining of a loop L in Def. 20 corresponds to p− 1 chaining steps of a transition
tL via Def. 37, i.e., to tL ⋆ . . . ⋆ tL.
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we use | ηn(. . . ηi(π(SBL(π−1(x)))) . . .) | for any ( , , , ℓi) ∈ EC . In this way, we
also capture evaluations starting in ℓi, i.e., without evaluating the complete cycle.

Theorem 38 (Local Size Bounds for Simple Cycles). Let C = {t1, . . . , tn}
⊆ T be a simple cycle and let SBL be a size bound for a loop L which corresponds
to t1 ⋆ . . . ⋆ tn via a variable renaming π. Then a local size bound SBtn for tn
w.r.t. C is SBtn(x) =

∑
1≤i≤n,( , , ,ℓi)∈EC

| ηn(. . . ηi(π(SBL(π−1(x)))) . . .) |.

Example 39. As an example, in the program of Fig. 2 we replace t1 = (ℓ1, x3 > 0,
η1, ℓ1) by t1a = (ℓ1, true, η1a, ℓ

′
1) and t1b = (ℓ′1, x3 > 0, η1b, ℓ1) with a new

location ℓ′1, where η1a(v) = η1(v) for v ∈ {x1, x2}, η1b(v) = η1(v) for v ∈ {x3, x4},
and η1a resp. η1b are the identity on the remaining variables. Then {t1a, t1b} forms
a simple cycle and Thm. 38 allows us to compute local size bounds SBt1b and
SBt1a w.r.t. {t1a, t1b}, because the chained transitions t1a ⋆ t1b = t1 and t1b ⋆ t1a
both correspond to the loop (1). They can then be lifted to global size bounds as
in Ex. 36 using size bounds for the entry transitions E{t1a,t1b} = {t0, t3}.

This shows how we choose t′ and T ′ when lifting local size bounds to global
ones with Thm. 34: For a transition t′ we search for a simple cycle T ′ such that
chaining the cycle results in a twn- or suitable solvable loop and the size bounds
of ET ′ are finite. For all other transitions, we compute size bounds as in [8].

5 Completeness of Size and Runtime Analysis for Programs

For individual loops, we showed in Thm. 23 that polynomial runtime bounds and
finite size bounds are computable for all terminating prs loops. In this section,
we discuss completeness of the size bound technique from the previous section
and of termination and runtime complexity analysis for general integer programs.
We show that for a large class of programs consisting of consecutive prs loops, in
case of termination we can always infer finite runtime and size bounds.

To this end, we briefly recapitulate how size bounds are used to compute
runtime bounds for general integer programs, and show that our new technique
to infer size bounds also results in better runtime bounds. We call RB : T → B a
(global) runtime bound if for every transition t ∈ T and state σ0 ∈ Σ, |σ0|(RB(t))
over-approximates the number of evaluations of t in any run starting in (ℓ0, σ0).

Definition 40 (Runtime Bound [8, 19]). A function RB : T → B is
a (global) runtime bound if for all t ∈ T and all states σ0 ∈ Σ, we have
|σ0|(RB(t)) ≥ sup{n ∈ N | ∃ (ℓ′, σ′). (ℓ0, σ0) (→∗

T ◦ →t)
n (ℓ′, σ′)}.

For our example in Fig. 2, a global runtime bound for t0, t2, and t3 is RB(t0)
= 1 and RB(t2) = RB(t3) = x5, as x5 is bounded from below by t3’s guard
x5 > 1 and the value of x5 decreases by 1 in t3, and no transition increases x5.

To infer global runtime bounds automatically, similar as for size bounds, we
first consider a smaller subprogram T ′ ⊆ T and compute local runtime bounds
for non-empty subsets T ′

> ⊆ T ′. A local runtime bound measures how often
a transition t ∈ T ′

> can occur in a run through T ′ that starts after an entry
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transition r ∈ ET ′ . Thus, local runtime bounds do not consider how many T ′-runs
take place in a global run and they do not consider the sizes of the variables
before starting a T ′-run. We lift these local bounds to global runtime bounds for
the complete program afterwards.

Definition 41 (Local Runtime Bound [27]). Let ∅ ̸= T ′
> ⊆ T ′ ⊆ T .

RBT ′
>
∈ B is a local runtime bound for T ′

> w.r.t. T ′ if for all t ∈ T ′
>, all

r ∈ ET ′ with r = (ℓ, , , ), and all σ ∈ Σ, we have |σ|(RBT ′
>
) ≥ sup{n ∈ N |

∃σ0, (ℓ
′, σ′). (ℓ0, σ0)→∗

T ◦ →r (ℓ, σ) (→∗
T ′ ◦ →t)

n (ℓ′, σ′)}.

Example 42. In Fig. 2, local runtime bounds for T ′
> = T ′ = {t1} and for T ′

> =
T ′ = {t4} are RB{t1} = x3 and RB{t4} = x1. Local runtime bounds can often
be inferred automatically by approaches based on ranking functions (see, e.g.,
[8]) or by the complete technique for terminating prs loops (see Thm. 23).

If we have a local runtime bound RBT ′
>

w.r.t. T ′, then setting RB(t) to∑
r∈ET ′ RB(r) · (RBT ′

>
[v/SB(r, v) | v∈V]) for all t ∈ T ′

> yields a global runtime

bound [27]. Here, we over-approximate the number of local T ′-runs which are star-
ted by an entry transition r ∈ ET ′ by an already computed global runtime bound
RB(r). Moreover, we instantiate each v ∈ V by a size bound SB(r, v) to consider
the size of v before a local T ′-run is started. So as mentioned in Sect. 4, we need
runtime bounds to infer size bounds (see Thm. 7 and the inference of global size
bounds in [8]), and on the other hand we need size bounds to compute runtime
bounds. Thus, our implementation alternates between size bound and runtime
bound computations (see [8, 27] for a more detailed description of this alternation).

Example 43. Based on the local runtime bounds in Ex. 42, we can compute the
remaining global runtime bounds for our example. We obtain RB(t1) = RB(t0) ·
(x3 [v/SB(t0, v) | v ∈ V]) + RB(t3) · (x3 [v/SB(t3, v) | v ∈ V]) = x3 + x2

5 and
RB(t4) = RB(t2) · (x1 [v/SB(t2, v) | v ∈ V]) = x5 · (4 · x1 +2 · x2 +14 · x5). Thus,
overall we have a quadratic runtime bound

∑
1≤i≤5RB(ti). Note that it is due to

our new size bound technique from Sect. 2–4 that we obtain polynomial runtime
bounds in this example. In contrast, to the best of our knowledge, all other
state-of-the-art tools fail to infer polynomial size or runtime bounds for this
example. Similarly, if one modifies t4 such that instead of x1, x4 is decreased
as long as x4 > 0 holds, then our approach again yields a polynomial runtime
bound, whereas none of the other tools can infer finite runtime bounds.

Finally, we state our completeness results for integer programs. For a set C ⊆ T
and ℓ, ℓ′ ∈ L, let ℓ⇝C ℓ′ hold iff there is a transition (ℓ, , , ℓ′) ∈ C. We say that
C is a component if we have ℓ⇝+

C ℓ′ for all locations ℓ, ℓ′ occurring in C, where
⇝+

C is the transitive closure of ⇝C . So in particular, we must also have ℓ⇝+
C ℓ

for all locations ℓ in the transitions of C. We call an integer program simple if
every component is a simple cycle that is “reachable” from any initial state.

Definition 44 (Simple Integer Program). An integer program (V,L, ℓ0, T )
is simple if every component C ⊆ T is a simple cycle, and for every entry tran-
sition ( , , , ℓ) ∈ EC and every σ0 ∈ Σ, there is an evaluation (ℓ0, σ0)→∗

T (ℓ, σ0).
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In Fig. 2, T \{t0} is a component that is no simple cycle. However, if we remove
t3 and replace t0’s guard by true, then the resulting program P ′ is simple (but not
linear). A simple program terminates iff each of its isolated simple cycles termi-
nates. Thus, if we can prove termination for every simple cycle, then the overall
program terminates. Hence, if after chaining, every simple cycle corresponds to a
linear, unit prs loop, then we can decide termination and infer polynomial
runtime and size bounds for the overall integer program. For terminating, non-
unit prs loops, runtime bounds are still polynomial but size bounds can be
exponential. Hence, then the global runtime bounds can be exponential as well.
Note that in the example program P ′ above, the eigenvalues of the update
matrices of t1 and t4 have absolute value 1, i.e., t1 and t4 correspond to unit prs
loops. Hence, by Thm. 45 we obtain polynomial runtime and size bounds for P ′.

Theorem 45 (Completeness Results for Integer Programs).

(a) Termination is decidable for all simple linear integer programs where after
chaining, all simple cycles correspond to prs loops.

(b) Finite runtime and size bounds are computable for all simple integer programs
where after chaining, all simple cycles correspond to terminating prs loops.

(c) If in addition to (b), all simple cycles correspond to unit prs loops, then the
runtime and size bounds are polynomial.

In the definition of simple integer programs (Def. 44), we required that for
every component C and every entry transition ( , , , ℓ) ∈ EC , there is an evaluation
(ℓ0, σ0) →∗

T (ℓ, σ0) for every σ0 ∈ Σ. If one strengthens this by requiring that
one can reach ℓ from ℓ0 using only transitions whose guard is true and whose
update is the identity, then the class of programs in Thm. 45 (a) is decidable
(there are only n ways to chain a simple cycle with n transitions and checking
whether a loop is a prs loop is decidable by Lemma 19).

6 Conclusion and Evaluation

Conclusion In this paper, we developed techniques to infer size bounds automat-
ically and to use them in order to obtain bounds on the runtime complexity of
programs. This yields a complete procedure to prove termination and to infer
runtime and size bounds for a large class of integer programs. Moreover, we
showed how to integrate the complete technique into an (incomplete) modular
technique for general integer programs. To sum up, we presented the following
new contributions in this paper:

(a) We showed how to use closed forms in order to infer size bounds for loops
with possibly non-linear arithmetic in Thm. 7.

(b) We proved completeness of our novel approach for terminating prs loops (see
Thm. 23) in Sect. 3.

(c) We embedded our approach for loops into the setting of general integer
programs in Sect. 4 and showed completeness of our approach for simple
integer programs with only prs loops in Sect. 5.
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(d) Finally, we implemented a prototype of our procedure in our re-implementa-
tion of the tool KoAT, written in OCaml. It integrates the computation of size
bounds via closed forms for twn-loops and homogeneous (and thus linear)
solvable loops into the complexity analysis for general integer programs.7

To infer local runtime bounds as in Def. 41, KoAT first applies multiphase-
linear ranking functions (see [5, 19]), which can be done very efficiently. For twn-
loops where no finite bound was found, it then uses the computability of runtime
bounds for terminating twn-loops (see [17, 20, 27]). When computing size bounds,
KoAT first applies the technique of [8] for reasons of efficiency and in case of
exponential or infinite size bounds, it tries to compute size bounds via closed forms
as in the current paper. Here, SymPy [30] is used to compute Jordan normal forms
for the transformation to twn-loops. Moreover, KoAT applies a local control-flow
refinement technique [19] (using the tool iRankFinder [13]) and preprocesses
the program in the beginning, e.g., by extending the guards of transitions with
invariants inferred by Apron [24]. For all SMT problems, KoAT uses Z3 [31]. In the
future, we plan to extend the runtime bound inference of KoAT to prs loops and
to extend our size bound computations also to suitable non-linear non-twn-loops.

Evaluation To evaluate our new technique, we tested KoAT on the 504 bench-
marks for Complexity of C Integer Programs (CINT) from the Termination
Problems Data Base [35] which is used in the annual Termination and Complex-
ity Competition (TermComp) [18]. Here, all variables are interpreted as integers
over Z (i.e., without overflows). To distinguish the original version of KoAT [8]
from our re-implementation, we refer to them as KoAT1 resp. KoAT2. We used
the following configurations of KoAT2, which apply different techniques to infer
size bounds.

• KoAT2orig uses the original technique from [8] to infer size bounds.
• KoAT2+SIZE additionally uses our novel approach with Thm. 7, 34, and 38.

The CINT collection contains almost only examples with linear arithmetic and
the existing tools can already solve most of its benchmarks which are not known
to be non-terminating.8 While most complexity analyzers are essentially restricted
to programs with linear arithmetic, our new approach also succeeds on programs
with non-linear arithmetic. Some programs with non-linear arithmetic could
already be handled by KoAT due to our integration of the complete technique
for the inference of local runtime bounds in [27]. But the approach from the
current paper increases KoAT’s power substantially for programs (possibly with
non-linear arithmetic) where the values of variables computed in “earlier” loops
influence the runtime of “later” loops (e.g., the modification of our example from
Fig. 2 where t4 decreases x4 instead of x1, see the end of Ex. 43).

Therefore, we extended CINT by 15 new typical benchmarks including the
programs in (1), Fig. 2, and the modification of Fig. 2 discussed above, as well

7 For a homogeneous solvable loop, the closed form of the twn-loop over A that results
from its transformation is particularly easy to compute.

8 iRankFinder [13] proves non-termination for 119 programs in CINT. KoAT2orig already
infers finite runtimes for 343 of the remaining 504− 119 = 386 examples in CINT.



16 Nils Lommen and Jürgen Giesl

O(1) O(n) O(n2) O(n>2) O(EXP) < ω AVG+(s) AVG(s)

KoAT2+SIZE 26 233 (2) 71 (1) 25 (9) 3 (2) 358 (14) 9.97 22.88

KoAT2orig 26 232 (1) 70 15 5 (4) 348 (5) 8.29 21.52

MaxCore 23 220 (4) 67 (1) 7 0 317 (5) 1.96 5.25

CoFloCo 22 197 (1) 66 5 0 290 (1) 0.59 2.68

KoAT1 25 170 (1) 74 12 8 (3) 289 (4) 0.96 3.49

Loopus 17 171 (1) 50 (1) 6 (1) 0 244 (3) 0.40 0.40

Table 1: Evaluation on the Collection CINT+

as several benchmarks from the literature (e.g., [3, 6]), resulting in the collection
CINT+. For KoAT2 and KoAT1, we used Clang [11] and llvm2kittel [14] to transform
C into integer programs as in Sect. 4. We compare KoAT2 with KoAT1 [8] and
the tools CoFloCo [15], MaxCore [2] with CoFloCo in the backend, and Loopus [33].
These tools also rely on variants of size bounds: CoFloCo uses a set of constraints
to measure the size of variables w.r.t. their initial and final values, MaxCore’s size
bound computations build upon [12], and Loopus considers suitable bounding
invariants to infer size bounds.

Table 1 gives the results of our evaluation, where as in TermComp, we used a
timeout of 5 minutes per example. The first entry in every cell denotes the number
of benchmarks from CINT+ for which the tool inferred the respective bound. The
number in brackets only considers the 15 new examples. The runtime bounds
computed by the tools are compared asymptotically as functions which depend
on the largest initial absolute value n of all program variables. So for example,
KoAT2+SIZE proved a linear runtime bound for 231 + 2 = 233 benchmarks,
i.e., rc(σ) ∈ O(n) holds for all initial states where |σ(v)| ≤ n for all v ∈ V.
Overall, this configuration succeeds on 358 examples, i.e., “< ω” is the number
of examples where a finite bound on the runtime complexity could be computed
by the tool within the time limit. “AVG+(s)” denotes the average runtime of
successful runs in seconds, whereas “AVG(s)” is the average runtime of all runs.

Already on the original benchmarks CINT, integrating our novel technique
for the inference of size bounds leads to the most powerful approach for runtime
complexity analysis. The effect of the new size bound technique becomes even
clearer when also considering our new examples which contain non-linear arith-
metic and loops whose runtime depends on the results of earlier loops in the
program. Thus, the new contributions of the paper are crucial in order to extend
automated complexity analysis to larger programs with non-linear arithmetic.

KoAT’s source code, a binary, and a Docker image are available at https://
koat.verify.rwth-aachen.de/size. This website also has details on our experiments,
a list and description of the new examples, and web interfaces to run KoAT’s
configurations directly online.

https://koat.verify.rwth-aachen.de/size
https://koat.verify.rwth-aachen.de/size


Targeting Completeness: Using Closed Forms for Size Bounds 17

References

[1] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. “Cost
Analysis of Object-Oriented Bytecode Programs”. In: Theoretical Computer
Science 413 (2012), pp. 142–159. doi: 10.1016/j.tcs.2011.07.009.

[2] E. Albert, M. Bofill, C. Borralleras, E. Mart́ın-Mart́ın, and A. Rubio.
“Resource Analysis Driven by (Conditional) Termination Proofs”. In: Theory
and Practice of Logic Programming 19 (2019), pp. 722–739. doi: 10.1017/
S1471068419000152.

[3] A. M. Ben-Amram, N. D. Jones, and L. Kristiansen. “Linear, Polynomial or
Exponential? Complexity Inference in Polynomial Time”. In: Proc. CiE ’08.
LNCS 5028. 2008, pp. 67–76. doi: 10.1007/978-3-540-69407-6 7.

[4] A. M. Ben-Amram and A. Pineles. “Flowchart Programs, Regular Expres-
sions, and Decidability of Polynomial Growth-Rate”. In: Proc. VPT ’16.
EPTCS 216. 2016, pp. 24–49. doi: 10.4204/EPTCS.216.2.

[5] A. M. Ben-Amram and S. Genaim. “On Multiphase-Linear Ranking Func-
tions”. In: Proc. CAV ’17. LNCS 10427. 2017, pp. 601–620. doi: 10.1007/
978-3-319-63390-9 32.

[6] A. M. Ben-Amram and G. W. Hamilton. “Tight Worst-Case Bounds for
Polynomial Loop Programs”. In: Proc. FoSSaCS ’19. LNCS 11425. 2019,
pp. 80–97. doi: 10.1007/978-3-030-17127-8 5.

[7] M. Braverman. “Termination of Integer Linear Programs”. In: Proc. CAV
’06. LNCS 4144. 2006, pp. 372–385. doi: 10.1007/11817963 34.

[8] M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, and J. Giesl. “Analyzing
Runtime and Size Complexity of Integer Programs”. In: ACM Transactions
on Programming Languages and Systems 38 (2016). doi: 10.1145/2866575.

[9] J.-Y. Cai. “Computing Jordan Normal Forms Exactly for Commuting Matri-
ces in Polynomial Time”. In: International Journal of Foundations of Com-
puter Science 5.3/4 (1994), pp. 293–302. doi: 10.1142/S0129054194000165.

[10] Q. Carbonneaux, J. Hoffmann, and Z. Shao. “Compositional Certified
Resource Bounds”. In: Proc. PLDI ’15. 2015, pp. 467–478. doi: 10.1145/
2737924.2737955.

[11] Clang Compiler. url: https://clang.llvm.org/.
[12] P. Cousot and N. Halbwachs. “Automatic Discovery of Linear Restraints

Among Variables of a Program”. In: Proc. POPL ’78. 1978, pp. 84–96. doi:
10.1145/512760.512770.
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