
Transforming Context-Sensitive Rewrite

Systems

?

J�urgen Giesl

1

and Aart Middeldorp

2

1

Dept. of Computer Science, Darmstadt University of Technology

Alexanderstr. 10, 64283 Darmstadt, Germany

giesl@informatik.tu-darmstadt.de

2

Institute of Information Sciences and Electronics

University of Tsukuba, Tsukuba 305-8573, Japan

ami@is.tsukuba.ac.jp

Abstract. We present two new transformation techniques for proving

termination of context-sensitive rewriting. Our �rst method is simple,

sound, and more powerful than previously suggested transformations.

However, it is not complete, i.e., there are terminating context-sensitive

rewrite systems that are transformed into non-terminating term rewrite

systems. The second method that we present in this paper is both sound

and complete. This latter result can be interpreted as stating that from

a termination perspective there is no reason to study context-sensitive

rewriting.

1 Introduction

In the presence of in�nite reductions in term rewriting, the search for normal

forms is usually guided by adopting a suitable reduction strategy. Consider the

following rewrite rules which form a part of a term rewrite system that im-

plements the Sieve of Eratosthenes for generating the in�nite list of all prime

numbers (we did not include the rules de�ning divides):

primes ! sieve(from(s(s(0)))) head(x : y)! x

from(x) ! x : from(s(x)) tail(x : y) ! y

if(true; x; y) ! x sieve(x : y)! x : �lter(x; sieve(y))

if(false; x; y) ! y

�lter(s(s(x)); y : z)! if(divides(s(s(x)); y); �lter(s(s(x)); z); y : �lter(s(s(x)); z))

A term like head(tail(tail(primes)))) admits a �nite reduction to the normal form

s

5

(0) (the third prime number) as well as in�nite reductions. The in�nite reduc-

tions can for instance be avoided by always contracting the leftmost-outermost

redex. Context-sensitive rewriting (Lucas [10, 11]) provides an alternative way

?

Appeared in the Proceedings of the 10th International Conference on Rewriting Tech-

niques and Applications (RTA-99), Trento, Italy, Lecture Notes in Computer Science

1631, pp. 271-285, Springer-Verlag, 1999.

of solving the non-termination problem. Rather than specifying which redexes

may be contracted, in context-sensitive rewriting for every function symbol one

indicates which arguments may not be evaluated and a contraction of a redex is

allowed only if it is does not take place in a forbidden argument of a function

symbol above it. For instance, by forbidding all contractions in the argument t

of a term of the form s : t, in�nite reductions are no longer possible while normal

forms can still be computed. This example illustrates that this restricted form

of rewriting has strong connections with lazy evaluation strategies used in func-

tional programming languages, because it allows us to deal with non-terminating

programs and in�nite data structures, cf. [11].

In this paper we are concerned with the problem of showing termination

of context-sensitive rewriting. More precisely, we consider transformations from

context-sensitive rewrite systems to ordinary term rewrite systems that are sound

with respect to termination: termination of the transformed term rewrite system

implies termination of the original context-sensitive rewrite system. The advan-

tage of such an approach is that all techniques for proving termination of term

rewriting (e.g., [3, 6, 8, 14]) can be used to infer termination of context-sensitive

rewriting. Two such transformations are reported in the literature, by Lucas [10]

and by Zantema [17]. We add two more. Our �rst transformation is simple, its

soundness is easily established, and it improves upon the transformations of

[10, 17]. To be precise, we prove that the class of terminating context-sensitive

rewrite systems for which our transformation succeeds is larger than that of

Lucas' transformation and we claim that the same holds for Zantema's trans-

formation. None of these three transformations succeeds in transforming every

terminating context-sensitive rewrite system into a terminating term rewrite

system. In other words, they all lack completeness. We analyze the failure of

completeness for our �rst transformation, resulting in a second transformation

with is both sound and complete. Hence it appears that from a termination point

of view there is no reason to study context-sensitive rewriting further. We come

back to this issue in the �nal part of the paper.

The remainder of the paper is organized as follows. In the next section we

recall the de�nition of context-sensitive rewriting as well as the previous transfor-

mations of Lucas and Zantema. In Section 3 we present our �rst transformation

and prove that it is sound. Despite being incomplete, we argue that it can handle

more systems than the transformations of Lucas and Zantema. In Section 4 we

re�ne our �rst transformation into a sound and complete one. The bulk of this

section is devoted to the completeness proof. We make some concluding remarks

in Section 5.

2 Preliminaries and Related Work

Familiarity with the basics of term rewriting ([4, 7, 9]) is assumed. Let F be

a signature. A function �:F ! P(N) is called a replacement map if 1 6 i 6

arity(f) for all f 2 F and i 2 �(f). A context-sensitive rewrite system (CSRS

for short) is a term rewrite system (TRS) R over a signature F that is equipped

2

with a replacement map �. We always assume that F contains a constant. The

context-sensitive rewrite relation !

R;�

is de�ned as the restriction of the usual

rewrite relation !

R

to contractions of redexes at active positions. A position

� in a term t is (�-)active if � = " (the root position), or t = f(t

1

; : : : ; t

n

),

� = i��

0

, i 2 �(f), and �

0

is active in t

i

. So s !

R;�

t if and only if there exist

a rewrite rule l ! r in R, a substitution �, and an active position � in s such

that sj

�

= l� and t = s[r�]

�

.

Consider the TRS of the introduction. By taking �(:) = �(if) = �(sieve) =

�(from) = �(s) = �(head) = �(tail) = f1g, and �(�lter) = �(divides) = f1; 2g

we obtain a terminating CSRS. The term 0 : from(s(0)), which has an in�nite

reduction in the TRS, is a normal form of the CSRS because the reduction step

to 0 : (s(0) : from(s(s(0)))) is no longer possible as the contracted redex occurs

at a forbidden position (2 =2 �(:)).

Context-sensitive rewriting subsumes ordinary rewriting (by taking �(f) =

f1; :::; ng for every n-ary function symbol f). The interesting case is when R

admits in�nite reductions and � is de�ned in such a way that!

R;�

is terminating

but still capable of computing (R-)normal forms. For the latter aspect we refer

to Lucas [11]; in this paper we are only concerned with termination of context-

sensitive rewriting.

Lucas [10] presented a simple transformation from CSRSs to TRSs which is

sound with respect to termination. Let (R; �) be a CSRS over a signature F .

The idea of the transformation is to replace every function symbol f 2 F by a

new function symbol f

�

where all arguments except the active ones are removed.

Thus, the arity of f

�

is j�(f)j. The transformed system R

L

�

results from R by

normalising all terms in its rewrite rules using the (terminating and con
uent)

TRS consisting of all rules

f(x

1

; : : : ; x

n

)! f

�

(x

i

1

; : : : ; x

i

k

)

such that �(f) = fi

1

; : : : ; i

k

g with i

1

< � � � < i

k

. For instance, if R is the TRS

of the introduction and � is de�ned as above, then R

L

�

consists of the following

rewrite rules:

primes

�

! sieve

�

(from

�

(s

�

(s

�

(0

�

)))) head

�

(:

�

(x)) ! x

from

�

(x) ! :

�

(x) tail

�

(:

�

(x)) ! y

sieve

�

(:

�

(x)) ! :

�

(x)

�lter

�

(s

�

(s

�

(x)); :

�

(y))! if

�

(divides

�

(s

�

(s

�

(x)); y))

if

�

(true

�

) ! x

if

�

(false

�

) ! y

Note that R

L

�

is not terminating due to the extra variables in the right-hand

sides of the rules for tail

�

and if

�

.

Zantema [17] presented a more complicated transformation in which subterms

at forbidden positions are marked rather than discarded. The transformed sys-

tem R

Z

�

consists of two parts. The �rst part results from a translation of the

rewrite rules of R, as follows. Every function symbol f occurring in a left or

right-hand side is replaced by f (a fresh function symbol of the same arity as

3

f) if it occurs in a forbidden argument of the function symbol directly above it.

These new function symbols are used to block further reductions at this position.

In addition, if a variable x occurs in a forbidden position in the left-hand

side l of a rewrite rule l ! r then all occurrences of x in r are replaced by a(x).

Here a is a new unary function symbol which is used to activate blocked function

symbols again. The second part of R

Z

�

consists of rewrite rules that are needed

for blocking and unblocking function symbols:

f(x

1

; : : : ; x

n

)! f(x

1

; : : : ; x

n

)

a(f(x

1

; : : : ; x

n

))! f(x

1

; : : : ; x

n

)

for every n-ary f for which f appears in the �rst part of R

Z

�

, together with the

rule a(x)! x. The example CSRS (R; �) is transformed into

primes ! sieve(from(s(s(0))))

from(x) ! x : from(s(x))

sieve(x : y) ! x : �lter(x; sieve(a(y)))

�lter(s(s(x)); y : z)! if(divides(s(s(x)); y); �lter(s(s(x)); a(z));

y : �lter(s(s(x)); a(z)))

if(true; x; y) ! a(x)

if(false; x; y) ! a(y) head(x : y) ! x

from(x) ! from(x) tail(x : y) ! a(y)

sieve(x) ! sieve(x) a(from(x)) ! from(x)

�lter(x; y) ! �lter(x; y) a(sieve(x)) ! sieve(x)

x : y ! x : y a(�lter(x; y))! �lter(x; y)

a(x) ! x a(x : y) ! x : y

This transformation is sound but not complete as we have the in�nite reduction

sieve(a(from(0)))!

+

R

Z

�

0 : �lter(0; sieve(a(from(s(0)))))

!

+

R

Z

�

0 : �lter(0; s(0) : �lter(s(0); sieve(a(from(s(s(0)))))))

!

+

R

Z

�

: : :

in the TRS R

Z

�

.

Zantema's method appears to be more powerful than Lucas' transformation

but actually the two methods are incomparable (cf. the TRS consisting of the

single rule c! f(g(c)) with �(f) = ? and �(g) = f1g).

3 A Sound Transformation

In this section we present our �rst transformation from CSRSs to TRSs. The

advantage of this transformation is that it is very easy and more powerful than

the transformations of Lucas and Zantema de�ned in the preceding section. In

the transformation we will extend the original signature F of the TRS by two

additional unary function symbols active and mark.

4

Essentially, the idea for the transformation is to mark the active positions

in a term on the object level, because those positions are the only ones where

context-sensitive rewriting may take place. For this purpose we use the new

function symbol active. Thus, instead of a rule l ! r the transformed TRS

should contain a rule whose left-hand side is active(l). Moreover, after rewriting

an instance of l to the corresponding instance of r, we have to mark the new

active positions in the resulting term. For that purpose we use the function

mark. So we replace every rule l ! r by active(l)! mark(r). To mark all active

positions in a term, the rules for mark must have the form

mark(f(x

1

; : : : ; x

n

))! active(f([x

1

]; : : : ; [x

n

]))

where the form of the argument [x

i

] depends on whether i is an active argument

of f : If i 2 �(f) then x

i

must also be marked active and thus [x

i

] = mark(x

i

),

otherwise the ith argument of f is not active and we de�ne [x

i

] = x

i

. Finally, we

also need a rule to deactivate terms. For example, consider the TRS consisting

of the following rewrite rules:

a! f(b)

f(b)! a

b! c

No matter how the replacement map � is de�ned, the resulting CSRS is not

terminating. Suppose �(f) = f1g. In the transformed system we would have the

rules

active(a) ! mark(f(b)) mark(a) ! active(a)

active(f(b))! mark(a) mark(b) ! active(b)

active(b) ! mark(c) mark(c) ! active(c)

mark(f(x)) ! active(f(mark(x)))

This TRS is terminating because active(a) can be reduced to active(f(active(b))),

but if we cannot deactivate the subterm active(b) then the second rule is not

applicable. Thus, we have to add the rule active(x) ! x. To summarize, we

obtain the following transformation.

De�nition 1. Let (R; �) be a CSRS over a signature F . The TRS R

1

�

over the

signature F [factive;markg consists of the following rewrite rules:

active(l)! mark(r) for all l ! r 2 R

mark(f(x

1

; : : : ; x

n

))! active(f([x

1

]

f

; : : : ; [x

n

]

f

)) for all f 2 F

active(x)! x

Here [x

i

]

f

= mark(x

i

) if i 2 �(f) and [x

i

]

f

= x

i

otherwise. The subset of R

1

�

consisting of all rules of the form

mark(f(x

1

; : : : ; x

n

))! active(f([x

1

]

f

; : : : ; [x

n

]

f

))

will be denoted by M.

5

Soundness of our transformation is an easy consequence of the following

lemma which shows how context-sensitive reduction steps are simulated in the

transformed system.

Lemma 1. Let (R; �) be a CSRS over a signature F and let s; t 2 T (F). If

s!

R;�

t then mark(s)#

M

!

+

R

1

�

mark(t)#

M

.

Proof. First note that M is con
uent and terminating, so u#

M

exists for every

term u. There exist a rewrite rule l ! r 2 R, a substitution �, and an active

position � in s such that sj

�

= l� and t = s[r�]

�

. We prove the lemma by

induction on �. If � = " then s = l� and t = r�. An easy induction on the

structure of s reveals that mark(s)#

M

!

�

R

1

�

active(s) (one just has to eliminate

all inner occurrences of active in mark(s)#

M

). Since active(s) ! mark(t) is an

instance of a rule in R

1

�

we obtain

mark(s)#

M

!

�

R

1

�

active(s)!

R

1

�

mark(t)!

+

R

1

�

mark(t)#

M

:

If � = i��

0

then we have s = f(s

1

; : : : ; s

i

; : : : ; s

n

) and t = f(s

1

; : : : ; t

i

; : : : ; s

n

)

with s

i

!

R;�

t

i

. Note that i 2 �(f) due to the de�nition of context-sensitive

rewriting. For 1 6 j 6 n de�ne s

0

j

= mark(s

j

)#

M

if j 2 �(f) and s

0

j

= s

j

if

j =2 �(f). The induction hypothesis yields s

0

i

!

+

R

1

�

mark(t

i

)#

M

. Since

mark(s)#

M

= active(f(s

0

1

; : : : ; s

0

i

; : : : ; s

0

n

))

and

mark(t)#

M

= active(f(s

0

1

; : : : ;mark(t

i

)#

M

; : : : ; s

0

n

));

the result follows. ut

Theorem 1. Let (R; �) be a CSRS over a signature F . If R

1

�

is terminating

then (R; �) is terminating.

Proof. If (R; �) is not terminating then there exists an in�nite reduction of

ground terms. Any such sequence is transformed by the previous lemma into an

in�nite reduction in R

1

�

. ut

The converse of the above theorem does not hold, i.e., the transformation is

incomplete.

Example 1. As an example of a terminating CSRS that is transformed into a

non-terminating TRS by our transformation, consider the following variant R

of a well-known example from Toyama [15]:

f(b; c; x)! f(x; x; x) d! b d! c

If we de�ne �(f) = f3g then the resulting CSRS is terminating because the

usual cyclic reduction of f(b; c; d) to f(d; d; d) and further to f(b; c; d) cannot be

6

done any more, as one would have to reduce the �rst and second argument of f.

However, the transformed TRS R

1

�

active(f(b; c; x))! mark(f(x; x; x)) mark(f(x; y; z))! active(f(x; y;mark(z)))

active(d) ! mark(b) mark(b) ! active(b)

active(d) ! mark(c) mark(c) ! active(c)

active(x) ! x mark(d) ! active(d)

is not terminating:

mark(f(b; c; d))! active(f(b; c;mark(d)))

! active(f(b; c; active(d)))

! mark(f(active(d); active(d); active(d)))

!

+

mark(f(mark(b);mark(c); d))

!

+

mark(f(active(b); active(c); d))

!

+

mark(f(b; c; d))

Note that R

L

�

:

f

�

(x)! f

�

(x) d

�

! b

�

d

�

! c

�

and R

Z

�

:

f(b; c; x)! f(x; x; x) a(b)! b

d! b a(c)! c

d! c b! b

a(x)! x c! c

also fail to be terminating (R

Z

�

admits the cycle f(b; c; d) ! f(d; d; d) !

+

f(b; c; d)!

+

f(b; c; d)).

Nevertheless, compared to the transformations of Lucas and Zantema, our

easy transformation appears to be very powerful. There are numerous CSRSs

where our transformation succeeds and which cannot be handled by the other

two transformations.

Example 2. As a simple example, consider the terminating CSRS R

g(x)! h(x)

c! d

h(d)! g(c)

with �(g) = �(h) = ? from [17]. The TRSs R

L

�

:

g

�

! h

�

c

�

! d

�

h

�

! g

�

and R

Z

�

:

g(x)! h(a(x)) a(c)! c

c! d a(d)! d

h(d)! g(c) c ! c

a(x)! x d ! d

7

are non-terminating (R

Z

�

admits the cycle g(c) ! h(a(c)) ! h(c) ! h(d) !

h(d)! g(c)). In contrast, our simple transformation generates the TRS

active(g(x)) ! mark(h(x)) mark(g(x)) ! active(g(x))

active(c) ! mark(d) mark(h(x)) ! active(h(x))

active(h(d)) ! mark(g(c)) mark(c) ! active(c)

active(x) ! x mark(d) ! active(d)

which is terminating.

1

Moreover, while the techniques of Lucas and Zantema fail for the Sieve of

Eratosthenes example from the introduction, our transformation generates a

terminating TRS. In fact, we do not know of any example where the method of

Lucas or Zantema works but our method fails. (In particular, our transformation

succeeds for all terminating CSRSs presented in [17].) This strongly suggests

that our proposal is more powerful than the previous two approaches. For the

transformation of Lucas this can indeed be proved.

Theorem 2. Let (R; �) be a CSRS over a signature F . If R

L

�

is terminating

then R

1

�

is terminating.

Proof. We prove termination of R

1

�

using the dependency pair approach of Arts

and Giesl [1{3]. The dependency pairs of R

1

�

are

hACTIVE(l);MARK(r)i for all l ! r in R (i)

hMARK(f(x

1

; : : : ; x

n

));ACTIVE(f([x

1

]

f

; : : : ; [x

n

]

f

))i for all f 2 F (ii)

hMARK(f(x

1

; : : : ; x

n

));MARK(x

i

)i for f 2 F , i 2 �(f) (iii)

To prove termination of R

1

�

we have to �nd a weakly monotonic quasi-order %

and a well-founded order � which is compatible with % (i.e., � �% � �) such

that both � and % are closed under substitution. Then it is su�cient if the

following constraints are satis�ed. Dependency pairs of kind (i) and (iii) should

be strictly decreasing and for dependency pairs of kind (ii) it is enough if they

are weakly decreasing. Moreover, all rules of R

1

�

should be weakly decreasing.

Thus, we only have to demand

ACTIVE(l) � MARK(r) for all l ! r in R

MARK(f(x

1

; : : : ; x

n

)) % ACTIVE(f([x

1

]

f

; : : : ; [x

n

]

f

)) for all f 2 F

MARK(f(x

1

; : : : ; x

n

)) � MARK(x

i

) for all f 2 F , i 2 �(f)

active(l) % mark(r) for all l ! r in R

mark(f(x

1

; : : : ; x

n

)) % active(f([x

1

]

f

; : : : ; [x

n

]

f

)) for all f 2 F

active(x) % x

1

This can be proved using the dependency pair approach ([3]): Since the pair

hACTIVE(h(d));MARK(g(c))i can occur at most once in any chain of dependency

pairs, it follows that there are no in�nite chains and hence the TRS is terminating.

8

Let A be the (con
uent and terminating) TRS consisting of the rewrite rules

ACTIVE(x)! x

MARK(x)! x

active(x)! x

mark(x)! x

f(x

1

; : : : ; x

n

)! f

�

(x

i

1

; : : : ; x

i

k

)

for all f 2 F where �(f) = fi

1

; : : : ; i

k

g with i

1

< � � � < i

k

. De�ne s � t if

and only if s#

A

(!

R

L

�

[�)

+

t#

A

. Here � denotes the proper subterm relation.

Moreover, let s % t hold if and only if s#

A

!

�

R

L

�

t#

A

. One easily veri�es that �

and % satisfy the above demands (� is well founded by the termination of R

L

�

).

Hence, due to the soundness of the dependency pair approach, the termination

of R

1

�

is established. ut

This theorem can also be proved using the self-labelling technique of [12].

4 A Sound and Complete Transformation

In this section we present a transformation of context-sensitive rewrite systems

which is not only sound but also complete with respect to termination. To ap-

preciate the non-triviality of this result, the reader may want to try to construct

a sound and complete transformation (together with a proof of completeness)

before reading any further.

Let us �rst investigate why the transformation of Sect. 3 lacks complete-

ness. Consider again the CSRS (R; �) of Example 1. The reason for the non-

termination of R

1

�

is that terms may have occurrences of active at forbidden

positions, even if we start with a \proper" term (like mark(f(b; c; d))). The

\forbidden" occurrences of active in the �rst two arguments of f (in the term

mark(f(active(d); active(d); active(d)))) lead to contractions which are impossible

in the underlying CSRS. Thus, the key to achieving a complete transformation

is to control the number of occurrences of active. We do this in a rather drastic

manner: we will work with a single occurrence of active. Of course, we cannot

forbid the existence of terms with multiple occurrences of active but we can

make sure that no new active symbols are introduced during the contraction of

an active redex.

Working with a single active occurrence entails that we have to shift it in a

non-deterministic fashion downwards to any active position. This is achieved by

the rules

active(f(x

1

; : : : ; x

i

; : : : ; x

n

))! f

0

(x

1

; : : : ; active(x

i

); : : : ; x

n

)

for every i 2 �(f). When shifting the active symbol to an argument of f , the

original function symbol f is replaced by a new function symbol f

0

. This is to

ensure that no reductions can take place above the current position of active. By

this shifting of the symbol active, our TRS implements an algorithm to search

9

for redexes subject to the constraints of the replacement map �. Once we have

shifted active to the position of the desired redex, we can apply one of the rules

active(l)! mark(r)

as in the previous transformation. The function symbol mark is used to mark

the contractum of the selected redex. In order to continue the reduction it has

to be replaced by active again. Since the next reduction step may of course take

place at a position above the previously contracted redex, we �rst have to shift

mark upwards through the term, i.e., we use rules of the form

f

0

(x

1

; : : : ;mark(x

i

); : : : ; x

n

)! mark(f(x

1

; : : : ; x

i

; : : : ; x

n

))

for every i 2 �(f). We want to replace mark by active if there are no f

0

symbols

left above it. Since the absence of f

0

symbols cannot be determined, we introduce

a new unary function symbol top to mark the position below which reductions

may take place. Thus, the reduction of a term s with respect to a CSRS is

modelled by the reduction of the term top(active(s)) in the transformed TRS.

If top(active(s)) is reduced to a term top(mark(t)), we are ready to replace mark

by active. This suggests adding the rule

top(mark(x))! top(active(x)):

However, as illustrated with the counterexample in Sect. 3, we have to avoid

making in�nite reductions with terms which contain inner occurrences of new

symbols like active and mark. For that reason we want to make sure that this rule

is only applicable to terms that do not contain any other occurrences of the new

function symbols. Thus, before reducing top(mark(t)) to top(active(t)) we check

whether the term t is proper, i.e., whether it contains only function symbols from

the original signature F . This is easily achieved by new unary function symbols

proper and ok. For any ground term t 2 T (F), proper(t) reduces to ok(t), but if

t contains one of the newly introduced function symbols then the reduction of

proper(t) is blocked. This is done by the rules

proper(c)! ok(c)

for every constant c 2 F and

proper(f(x

1

; : : : ; x

n

))! f(proper(x

1

); : : : ; proper(x

n

))

f(ok(x

1

); : : : ; ok(x

n

))! ok(f(x

1

; : : : ; x

n

))

for every function symbol f 2 F of arity n > 0. Now, instead of the rule

top(mark(x)) ! top(active(x)) we adopt the rules

top(mark(x))! top(proper(x))

top(ok(x))! top(active(x)):

This concludes our informal explanation of the new transformation, whose formal

de�nition is summarized below.

10

De�nition 2. Let (R; �) be a CSRS over a signature F . The TRS R

2

�

over the

signature F

0

= F [factive;mark; top; proper; okg[ff

0

j f 2 F is not a constantg

consists of the following rewrite rules (for all l ! r 2 R, f 2 F of arity n > 0,

i 2 �(f), and constants c 2 F):

active(l)! mark(r)

active(f(x

1

; : : : ; x

i

; : : : ; x

n

))! f

0

(x

1

; : : : ; active(x

i

); : : : ; x

n

)

f

0

(x

1

; : : : ;mark(x

i

); : : : ; x

n

)! mark(f(x

1

; : : : ; x

i

; : : : ; x

n

))

proper(c)! ok(c)

proper(f(x

1

; : : : ; x

n

))! f(proper(x

1

); : : : ; proper(x

n

))

f(ok(x

1

); : : : ; ok(x

n

))! ok(f(x

1

; : : : ; x

n

))

top(mark(x)) ! top(proper(x))

top(ok(x)) ! top(active(x))

In the remainder of this section we show that our second transformation is

both sound and complete. We start with a preliminary lemma, which states that

proper has indeed the desired e�ect.

Lemma 2. Let (R; �) be a CSRS over a signature F . Let s; t 2 T (F

0

). We have

proper(s)!

+

R

2

�

ok(t) if and only if s = t and s 2 T (F).

Proof. The \if" direction is an easy induction proof on the structure of s. The

\only if" direction can be proved by induction on the number of symbols in s.

If the root of s is a function symbol g 2 F

0

n (F [fproperg) then proper(s)

cannot be rewritten at the root. Thus, any one-step reduction of proper(s) would

yield a term of the form proper(s

0

) where s!

R

2

�

s

0

. If g 2 factive;markg [ff

0

j

f 2 F is not a constantg then the root symbol of s

0

must also be from that set.

Similarly, if g is ok or top, then the root symbol of s

0

is g as well. This implies

that no reduct of proper(s) can be reduced at the root position either. Hence

proper(s)!

+

R

2

�

ok(t) cannot hold and the claim holds vacuously.

In the remaining case the root symbol of s is from F [fproperg. Thus, s has

the form proper

m

(u) for some m > 0 where the root of u is di�erent from proper.

In order to reduce proper(s) at the root, we �rst have to reduce s = proper

m

(u)

to a term with a root symbol from F . Similar to the observations above, the

root symbol of u cannot be from F

0

nF . If u is a constant from F then the only

applicable rule is proper(u)! ok(u). Thus, proper(s) = proper

m+1

(u) is reduced

to the normal form proper

m

(ok(u)). So in this case proper(s) can only rewrite to

a term of the form ok(t) if m = 0 and thus the claim of the lemma holds trivially.

Otherwise, u = f(u

1

; : : : ; u

n

) with f 2 F of arity n > 0. The reduction from

proper(s) to ok(t) must start as follows:

proper(s) = proper(proper

m

(f(u

1

; : : : ; u

n

)))

!

�

R

2

�

proper(proper

m

(f(u

0

1

; : : : ; u

0

n

)))

!

R

2

�

proper(proper

m�1

(f(proper(u

0

1

); : : : ; proper(u

0

n

))))

!

�

R

2

�

: : :

11

!

R

2

�

proper(f(u

00

1

; : : : ; u

00

n

))

!

�

R

2

�

f(proper(u

00

1

); : : : ; proper(u

00

n

))

where proper

m

(u

i

) !

�

R

2

�

u

00

i

for all 1 6 i 6 n. (Note that the root symbol

f of u must not be rewritten to ok, for otherwise no reduction step at the

root can take place.) To reduce f(proper(u

00

1

); : : : ; proper(u

00

n

)) to a term of the

form ok(t), every argument proper(u

00

i

) must be reduced to a term of the form

ok(t

i

) and then f(ok(t

1

); : : : ; ok(t

n

)) can be reduced to ok(f(t

1

; : : : ; t

n

)). But if

proper(u

00

i

) !

�

R

2

�

ok(t

i

) then we also have proper(proper

m

(u

i

)) !

�

R

2

�

ok(t

i

). The

induction hypothesis yields proper

m

(u

i

) = t

i

and proper

m

(u

i

) 2 T (F) for all

1 6 i 6 n. So in this case we have m = 0 as well, i.e., s cannot contain any

occurrence of proper. Consequently, ok(f(t

1

; : : : ; t

n

)) is in normal form and hence

s = u = f(u

1

; : : : ; u

n

) = f(t

1

; : : : ; t

n

) = t 2 T (F). ut

The next lemma shows how context-sensitive reduction steps are simulated

by the second transformation. The \if" part is used in the completeness proof.

Lemma 3. Let (R; �) be a CSRS over a signature F and let s 2 T (F). We

have s!

R;�

t if and only if active(s)!

+

R

2

�

mark(t).

Proof. The \only if" direction is easily proved by induction on the depth of the

position of the redex contracted in s !

R;�

t. We prove here the \if" direction

by induction on s. There are two possibilities for the rewrite rule of R

2

�

that is

applied in the �rst step of the reduction from active(s) to mark(t). If a rule of

the form active(l)! mark(r) is used, then s = l� for some substitution �. Since

r� contains only symbols from F , mark(r�) is in normal form and thus t = r�.

Clearly s!

R;�

t.

Otherwise, s must have the form f(s

1

; : : : ; s

i

; : : : ; s

n

) and in the �rst reduc-

tion step active(s) is reduced to f

0

(s

1

; : : : ; active(s

i

); : : : ; s

n

) for some i 2 �(f).

Note that all reductions of the latter term to a term of the form mark(t) have

the form

f

0

(s

1

; : : : ; active(s

i

); : : : ; s

n

)!

+

R

2

�

f

0

(s

1

; : : : ;mark(t

i

); : : : ; s

n

)

!

R

2

�

mark(f(s

1

; : : : ; t

i

; : : : ; s

n

)):

Hence t = f(s

1

; : : : ; t

i

; : : : ; s

n

). The induction hypothesis yields s

i

!

R;�

t

i

and

as i 2 �(f) we also have s!

R;�

t. ut

Soundness of our second transformation is now easily shown.

Theorem 3. Let (R; �) be a CSRS over a signature F . If R

2

�

is terminating

then (R; �) is terminating.

Proof. If (R; �) is not terminating then there exists an in�nite reduction of

ground terms in T (F). Note that s !

R;�

t implies active(s) !

+

R

2

�

mark(t) by

Lemma 3. Hence it also implies

top(active(s))!

+

R

2

�

top(mark(t))!

R

2

�

top(proper(t)):

12

Moreover, by Lemma 2 we have proper(t)!

+

R

2

�

ok(t) and thus

top(proper(t))!

+

R

2

�

top(ok(t))!

R

2

�

top(active(t)):

Concatenating these two reductions shows that top(active(s))!

+

R

2

�

top(active(t))

whenever s !

R;�

t. Hence any in�nite reduction of ground terms in (R; �) is

transformed into an in�nite reduction in R

2

�

. ut

To prove that the converse of Theorem 3 holds as well, we de�ne S

2

�

as the

TRS R

2

�

without the two rewrite rules for top. The following lemma states that

we do not have to worry about S

2

�

.

Lemma 4. The TRS S

2

�

is terminating for any CSRS (R; �).

Proof. Let F be the signature of (R; �). The rewrite rules of S

2

�

are oriented

from left to right by �

rpo

, the recursive path order [5] induced by the following

precedence � on F

0

:

active � f

0

� mark � proper � f � c � ok

for every non-constant f 2 F and every constant c 2 F . Since � is well-founded,

it follows that S

2

�

is terminating. ut

Now we are ready to present the main theorem of the paper.

Theorem 4. Let (R; �) be a CSRS over a signature F . If (R; �) is terminating

then R

2

�

is terminating.

Proof. First note that the precedence used in the proof of Lemma 4 cannot be

extended to deal with the whole of R

2

�

as the second rewrite rule for top requires

ok � active. Since R

2

�

lacks collapsing rules, it is su�cient to prove termination

of any typed version of R

2

�

, cf. [16, 13]. Thus we may assume that the function

symbols of R

2

�

come from a many-sorted signature, where the only restriction

is that the left and right-hand side of any rewrite rule are well-typed and of the

same type. We use two sorts � and �, with top of type � ! � and all other

symbols of type � � : : : � � ! �. So if R

2

�

allows an in�nite reduction then

there exists an in�nite reduction of well-typed terms. Since both types contain

a ground term, we may assume for a proof by contradiction that there exists an

in�nite reduction starting from a well-typed ground term t. Terms of type � are

terminating by Lemma 4 since they cannot contain the symbol top and thus the

only applicable rules stem from S

2

�

. So t is a ground term of type �, which implies

that t = top(t

0

) with t

0

of type �. Since t

0

is terminating, the in�nite reduction

starting from t must contain a root reduction step. So t

0

reduces to mark(t

1

) or

ok(t

1

) for some term t

1

(of type �). We consider the former possibility, the latter

possibility is treated in a very similar way. The in�nite reduction starts with

t!

�

R

2

�

top(mark(t

1

))!

R

2

�

top(proper(t

1

)):

13

Since proper(t

1

) is of type � and thus terminating, after some further reduction

steps another step takes place at the root. This is only possible if proper(t

1

)

reduces to ok(t

2

) for some term t

2

. According to Lemma 2 we must have t

1

=

t

2

2 T (F). Hence the presupposed in�nite reduction continues as follows:

top(proper(t

1

))!

+

R

2

�

top(ok(t

1

))!

R

2

�

top(active(t

1

)):

Repeating this kind of reasoning reveals that the in�nite reduction must be of

the following form, where all root reduction steps between top(proper(t

1

)) and

top(mark(t

3

)) are made explicit:

t!

�

R

2

�

top(proper(t

1

))!

+

R

2

�

top(ok(t

1

))!

R

2

�

top(active(t

1

))!

+

R

2

�

top(mark(t

2

))

!

R

2

�

top(proper(t

2

))!

+

R

2

�

top(ok(t

2

))!

R

2

�

top(active(t

2

))!

+

R

2

�

top(mark(t

3

))

!

R

2

�

� � �

Hence active(t

i

)!

+

R

2

�

mark(t

i+1

) and t

i

2 T (F) for all i > 1. We obtain

t

1

!

R;�

t

2

!

R;�

t

3

!

R;�

� � �

from Lemma 3, contradicting the termination of (R; �). ut

5 Conclusion and Further Work

In this paper we presented two new transformations from CSRSs to TRSs whose

purpose is to reduce the problem of proving termination of CSRSs to the prob-

lem of proving termination of TRSs. The advantage of such an approach is that

all termination techniques for ordinary term rewriting (including future develop-

ments) become available for context-sensitive rewriting as well. So in particular,

these techniques can now also be used to analyze the termination behaviour of

lazy functional programs which may be modelled by CSRSs. Our �rst trans-

formation is simple, sound, and appears to be more powerful than previously

suggested transformations. Our second transformation is not only sound but

also complete, so it transforms every terminating CSRS into a terminating TRS.

Our transformations also form a basis for automated termination proofs of

CSRSs. Of course, a direct termination proof ofR

2

�

cannot be obtained by a path

order amenable to automation and even a powerful method like the dependency

pair approach often will not succeed in �nding a fully automated termination

proof. To a lesser extent this is already true for our �rst transformation. However,

our transformations are suitable for changes in their presentation which do not

result in any signi�cant change in their behaviour, but which ease the termination

proofs of the resulting TRSs considerably.

For instance, for the �rst transformation an obvious idea is to normalize the

right-hand sides of the active(l) ! mark(r) rules with respect to the subsystem

M. Another natural idea is to replace the single symbol active by fresh symbols

f

active

for every f 2 F . This amounts to replacing every occurrence of the pattern

14

active(f(� � �)) in the rewrite rules by f

active

(� � �) as well as expanding the rule

active(x)! x into all rules of the form f

active

(x

1

; : : : ; x

n

)! f(x

1

; : : : ; x

n

). If we

apply both ideas to the TRS R

1

�

of Example 2 we obtain the TRS

g

active

(x) ! h

active

(x) mark(g(x))! g

active

(x) g

active

(x) ! g(x)

c

active

! d

active

mark(h(x))! h

active

(x) h

active

(x)! h(x)

h

active

(d) ! g

active

(c) mark(c) ! c

active

c

active

! c

mark(d) ! d

active

d

active

! d

which is compatible with �

rpo

for the precedence mark � c

active

� d

active

� d �

c � g

active

� g � h

active

� h.

Re�nements like those mentioned above should be studied further. Termina-

tion of the TRS resulting from our �rst (incomplete) transformation is sometimes

easier to prove than termination of the TRS resulting from our second (complete)

one. Thus, we conclude by stating that while our second transformation is su-

perior to all previous incomplete ones, at present our incomplete transformation

of Sect. 3 as well as the ones of Lucas [10] and Zantema [17] may still be useful

for the purpose of automation. In addition, the latter paper contains a complete

semantic characterization of context-sensitive rewriting which can be used in a

direct termination proof attempt.

References

1. T. Arts and J. Giesl. Automatically proving termination where simpli�cation

orderings fail. In Proceedings of the 7th International Joint Conference on the

Theory and Practice of Software Development, volume 1214 of LNCS, pages 261{

273, 1997.

2. T. Arts and J. Giesl. Proving innermost normalisation automatically. In Proceed-

ings of the 8th International Conference on Rewriting Techniques and Applications,

volume 1232 of LNCS, pages 157{172, 1997.

3. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-

oretical Computer Science, 1999. To appear.

4. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University

Press, 1998.

5. N. Dershowitz. Orderings for term-rewriting systems. Theoretical Computer Sci-

ence, 17:279{301, 1982.

6. N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation, 3:69{

116, 1987.

7. N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In Handbook of Theoretical

Computer Science, volume B, pages 243{320. Elsevier, 1990.

8. B. Gramlich. Abstract relations between restricted termination and con
uence

properties of rewrite systems. Fundamenta Informaticae, 24:3{23, 1995.

9. J. W. Klop. Term rewriting systems. In Handbook of Logic in Computer Science,

Vol. 2, pages 1{116. Oxford University Press, 1992.

10. S. Lucas. Termination of context-sensitive rewriting by rewriting. In Proceedings

of the 23rd International Colloquium on Automata, Languages and Programming,

volume 1099 of LNCS, pages 122{133, 1996.

15

11. S. Lucas. Context-sensitive computations in functional and functional logic pro-

grams. Journal of Functional and Logic Programming, 1:1{61, 1998.

12. A. Middeldorp, H. Ohsaki, and H. Zantema. Transforming termination by self-

labelling. In Proceedings of the 13th International Conference on Automated De-

duction, volume 1104 of LNAI, pages 373{387, 1996.

13. H. Ohsaki and A. Middeldorp. Type introduction for equational rewriting. In

Proceedings of the 4th Symposium on Logical Foundations of Computer Science,

volume 1234 of LNCS, pages 283{293, 1997.

14. J. Steinbach. Simpli�cation orderings: History of results. Fundamenta Informati-

cae, 24:47{87, 1995.

15. Y. Toyama. Counterexamples to the termination for the direct sum of term rewrit-

ing systems. Information Processing Letters, 25:141{143, 1987.

16. H. Zantema. Termination of term rewriting: Interpretation and type elimination.

Journal of Symbolic Computation, 17:23{50, 1994.

17. H. Zantema. Termination of context-sensitive rewriting. In Proceedings of the 8th

International Conference on Rewriting Techniques and Applications, volume 1232

of LNCS, pages 172{186, 1997.

16

