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Complexity Analysis for Java with AProVE?

Florian Frohn and Jürgen Giesl

LuFG Informatik 2, RWTH Aachen University, Germany

Abstract. While AProVE is one of the most powerful tools for termi-
nation analysis of Java since many years, we now extend our approach
in order to analyze the complexity of Java programs as well. Based on
a symbolic execution of the program, we develop a novel transformation
of (possibly heap-manipulating) Java programs to integer transition sys-
tems (ITSs). This allows us to use existing complexity analyzers for ITSs
to infer runtime bounds for Java programs. We demonstrate the power
of our implementation on an established standard benchmark set.

1 Introduction

Our verifier AProVE [14] is one of the leading tools for termination analysis of
languages like Java, C, Haskell, Prolog, and term rewrite systems, as witnessed
by its success at the annual Termination Competition and the termination cat-
egory of the SV-COMP competition.1 However, in many cases one is not only
interested in termination, but in estimating the runtime of a program. Thus, au-
tomated complexity analysis has become an increasingly important subject and
there exist several tools which analyze the complexity of programs in different
languages and formalisms, e.g., [1, 3, 4, 8, 10–12,15,17,18,21,23].2

In this paper, we adapt our previous approach for termination analysis of
Java [5, 6, 22] in order to infer complexity bounds. In particular, the contribu-
tions of the current paper and their implementation in AProVE are crucial in our
joint project CAGE [9, 24] with Draper Inc. and the University of Innsbruck.
In this project, AProVE is used interactively to analyze the complexity of large
Java programs in order to detect vulnerabilities. To the best of our knowledge,
COSTA [1] is currently the only other tool which analyzes the complexity of (pos-
sibly heap manipulating) Java programs fully automatically. However, COSTA’s
notion of “size” for data structures significantly differs from ours and hence our
technique can prove bounds for many programs where COSTA is bound to fail.
See Sect. 6 for a more detailed comparison with related work.

In Sect. 2, we explain the notion of complexity that we analyze for Java and
recall symbolic execution graphs (SE graphs) [5,6,22], which represent all possi-
ble executions of the analyzed Java program. Up to now, AProVE automatically
transformed these SE graphs into term rewrite systems with built-in integers to

? Support by DFG grant GI 274/6-1 and the Air Force Research Laboratory (AFRL).
1 See http://www.termination-portal.org/wiki/Termination_Competition and
http://sv-comp.sosy-lab.org.

2 The work on worst-case execution time (WCET) for real-time systems [25] is largely
orthogonal to the inference of symbolic loop bounds.
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analyze termination. However, this transformation is not complexity preserving
for programs with non-tree shaped objects and moreover, existing techniques for
termination analysis of term rewriting with built-in integers have not yet been
adapted to complexity analysis. Therefore, in Sect. 3 we present a novel3 transfor-
mation of SE graphs to integer transition systems (ITSs), a simple representation
of integer programs suitable for complexity analysis. These ITSs are then ana-
lyzed by standard complexity analysis tools for integer programs like CoFloCo
[12] and KoAT [8]. In our implementation in AProVE, we coupled our approach
with these two tools to obtain an automatic technique which infers upper com-
plexity bounds for Java programs. So in our approach, we model a Java program
in several different ways (as Java (Bytecode), SE graphs, and ITSs), where the
reason for the new modeling of Java programs by ITSs is their suitability for
complexity analysis. Sect. 4 explains how to avoid the analysis of called auxiliary
methods by providing summaries. This allows us to use AProVE in an interactive
way and it is crucial to scale our approach to large programs within the CAGE
project. In Sect. 5, we show how our transformation to ITSs also handles Java
programs which manipulate the heap. Finally, in Sect. 6 we evaluate the power
of our implementation in AProVE by experiments with an established standard
benchmark set and compare AProVE’s performance with COSTA.

2 Complexity of Java and Symbolic Execution Graphs

Example 1 (Variant of SortCount from the Termination Problem Data Base
(TPDB)4). To illustrate our approach, consider the following program. The
method sort sorts a list l of natural numbers. To this end, it enumerates 0, . . . ,
max(l) and adds each number to the result list r if it is contained in l. Its run-
time complexity is in O(length(l) ·max(l)). In this paper, we show how AProVE
infers similar complexity bounds automatically.

1 class List{
2 private int val; private List next;
3 static boolean mem(int n,
4 List l){...}
5
6 static int max(List l) {
7 int m = 0;
8 while (l != null) {
9 if (l.val > m) {

10 m = l.val;
11 }
12 l = l.next;
13 }
14 return m;
15 }

16 static List sort(List l) {
17 int n = 0;
18 List r = null;
19 while (max(l) >= n) {
20 if (mem(n, l)) {
21 List rNew = new List ();
22 rNew.next = r;
23 rNew.val = n;
24 r = rNew;
25 }
26 n++;
27 }
28 return r;
29 } ... }

We restrict ourselves to Java programs without arrays, exceptions, static
fields, floating point numbers, class initializers, recursion, reflection, and multi-

3 We presented a preliminary extended abstract with our “size” definition at the 15th
Int. Workshop on Termination, an informal workshop without formal reviewing or
published proceedings, cf. http://cl-informatik.uibk.ac.at/events/wst-2016.

4 The TPDB is the collection of examples used for the annual Termination Competi-
tion, available from http://termination-portal.org/wiki/TPDB.
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threading to ease the presentation. However, our implementation supports full
Java except for floating point numbers, reflection, multi-threading, and recur-
sion (which is currently only supported for termination analysis). Moreover, we
abstract from the different types of integers in Java and consider unbounded
integers instead, i.e., we do not handle problems related to overflows.

Symbolic execution is a well-known technique in program verification and
transformation [19]. We recapitulate the notion of SE graphs used in AProVE
and refer to [5,6,22] for details on their automated construction. First, the Java
program is compiled to Java Bytecode (JBC) by any standard compiler.

Example 2 ( Java Bytecode for the Method max from Ex. 1).

1 iconst_0 //load 0 to opstack
2 istore_1 //store 0 to var 1 (m)
3 aload_0 //load l to opstack
4 ifnull 16 //jump if l is null
5 aload_0 //load l to opstack
6 getfield val//load l.val to opstack
7 iload_1 //load m to opstack
8 if_icmple 12// jump if l.val <= m
9 aload_0 //load l to opstack

10 getfield val //load l.val to opstack
11 istore_1 // store l.val into m
12 aload_0 //load l to opstack
13 getfield next//load l.next to opstack
14 astore_0 // store l.next into l
15 goto 3
16 iload_1 //load m to opstack
17 ireturn // return m

The SE graph is a finite graph that represents all executions of a JBC pro-
gram. Its nodes are abstract states which differ from concrete program states
by also allowing “symbolic” (unknown) values for integers and references (i.e.,
addresses in the heap). In the following, `, f etc. denote sequences, |`| is the
length of `, and `|j is the jth element of `, where `’s first element has index 0.

Definition 3 (Abstract State). Let Ref be the set of all symbolic references,
let Int be the set of all symbolic integers,5 and let Sym = Ref]Int be the set of
all symbolic variables. We write o, õ, . . . for elements of Ref, i, ĩ, . . . for elements
of Int, and x, x̃, . . . for arbitrary symbolic variables from Sym. An abstract state
has the form s = (pp, `, op, h, p) ∈ State, where pp ∈ N is the program position,
i.e., the index of the next instruction to evaluate. The sequences `, op ∈ Sym∗

represent the symbolic variables stored in the local (program) variables resp. the
entries of the operand stack. Here, `|j is the value of the jth local variable,
for all 0 ≤ j < |`|.6 Similarly, op|0 is the top entry of the operand stack. The
partial function h : Ref� Object maps symbolic references to abstract objects
(i.e., h(o) expresses information about the object at address o in the heap). An
abstract object is either null or a pair (cl, vl) of a class name cl and a function
vl : Fields(cl) → Sym that maps all fields of cl to symbolic variables. The last
component of s is a set of predicates p. Predicates specify heap shapes and are
of the form o! (“o may point to a non-tree shaped object”), o =? õ (“o and õ may

alias”), or o %$ õ (“o and õ may share”). We write o
f−→h x if h(o) = (cl, vl),

f ∈ Fields(cl), and vl(f) = x, where we omit f if it is irrelevant. For a state
s = (pp, `, op, h, p), we define Ref(s) = {o ∈ Ref | 0 ≤ j < |`|, `|j →∗h o} ∪ {o ∈
Ref | 0 ≤ j < |op|, op|j →∗h o}, where →∗h is the reflexive–transitive closure of
→h. Int(s) and Sym(s) are defined analogously.

5 As we do not regard floats, JBC represents all primitive Java types as integers.
6 For the sake of simplicity, we assume that all states are well typed throughout this

paper, i.e., local variables of type int always store symbolic integers, etc.
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3 |l:o1, m: i1 |ε2 |l:o1 | i1

1 |l:o1 |ε 4 |l:o1, m: i1 |o1
o1:null

17 |l:o1, m: i1 | i1
o1:null

3 |l:o2, m: i1 |ε

4 |l:o1, m: i1 |o1

4 |l:o1, m: i1 |o1
o1:List(value: i2, next:o2)

12 |l:o1, m: i1 |ε
o1:List(value: i2, next:o2)

12 |l:o1, m: i2 |ε
o1:List(value: i2, next:o2)

8 |l:o1, m: i1 | i1, i2
o1:List(value: i2, next:o2)

i1 = 0

i2 ≤ i1

i2 > i1

CB
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Fig. 1: SE Graph for max

Intuitively, an abstract state (pp, `, op, h, p) can be seen as a collection of in-
variants. For example, if `|0, `|1 /∈ Dom(h) (i.e., we have no concrete information
about the objects at `|0 and `|1), then the absence of the predicate `|0 %$ `|1 in
p means that the first two local variables do not share at program position pp,
i.e., there is no path from `|0 to `|1 or vice versa, and `|0 and `|1 do not have
a common successor. Let T (V) resp. F(V) be the set of all arithmetic terms
resp. quantifier-free formulas over the set of variables V (where we only consider

integer arithmetic). The edges s
ϕ−→ s̃ of an SE graph are directed and labeled

with formulas ϕ ∈ F(Int) which restrict the control flow.
Fig. 1 shows an SE graph for max. The first line “pp | ` | op” of a state in

Fig. 1 describes its first three components, where “l : o1, m : i1” means that
` is (o1, i1), l is the 0th local variable, and m is the first local variable. In the
next lines of a state, we show information about the heap, i.e., key-value pairs
“o : . . .” for each o ∈ Dom(h), and the predicates in p.

In State A, o1 points to a (tree-shaped and hence acyclic) List or null, as l
is of type List and o1 /∈ Dom(h). To express that o1 may also point to non-tree
shaped Lists, one would need the predicate o1!. Evaluating “iconst 0” at the
program position 1 pushes the constant 0 to the operand stack, resulting in State
B. This is indicated by a (solid) evaluation edge from A to B, labeled with the
condition i1 = 0 which is required to perform this evaluation step. Afterwards,
i1 is stored in the local variable m which yields State C. Evaluating “aload 0” in
Line 3 pushes o1 to the operand stack in State D. The next instruction “ifnull
16” jumps to Instruction 16 if the top operand stack entry is null. The dashed
refinement edges connecting D with J (where o1 is null) and E (where o1 points
to a List) correspond to a case analysis. Evaluating J results in K after two
more evaluation steps (we abbreviate several evaluation edges by dotted edges).
Finally, evaluating “ireturn” in Line 17 results in the end state L. In State E,
the next four evaluation steps push l.value (i2) and m (i1) to the operand stack
in order to compare them afterwards. In F , another case analysis is required.
If l.value ≤ m, the next instruction is 12 (State G). Otherwise, the instruc-
tions 9 – 11 update m to l.value (i.e., m stores i2 in State H) before reaching
Instruction 12. Note that when evaluating F , the case analysis is not modeled
by refining F , as conditions like i2 ≤ i1 cannot be expressed in States. Instead,
the edges connecting F with G and H are labeled with the corresponding condi-
tions. The only difference between G and H is that we have m = l.value in H,
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whereas m and l.value can be arbitrary in G. Hence, G is more general than H
(denoted H vG) and thus there is a (thick) generalization edge from H to G.

See App. A for a formal definition of when a state s̃ = (pp, `, op, h̃, p̃) is “more
general” than s = (pp, `, op, h, p). Essentially, s and s̃ have to be at the same
position pp and in both s and s̃, the same symbolic variables must be used for the
local variables and the operand stack. We also require that all information on the
heap of s̃ holds for s as well (i.e., we must have Ref(s̃) ⊆ Ref(s), and h(o) = h̃(o)
for all o ∈ Dom(h̃)). In addition, concrete sharing (e.g., o1 →h o3 and o2 →h o3)
and abstract sharing (as expressed by predicates like (o1 %$ o2) ∈ p) in s must
be permitted in s̃ (e.g., by the predicate (o1 %$ o2) ∈ p̃) and, similarly, concrete
and abstract non-tree shapes in s must be permitted in s̃, too. To weaken the
requirement that s and s̃ must use the same symbolic variables, we also allow
to rename the symbolic variables of the abstract state s̃. So we also have sv s̃
if there is a renaming function µ : Sym → Sym such that svµ(s̃) (where we
lift µ to abstract states in the obvious way). Then we say that µ witnesses
sv s̃. However, we only allow renaming functions µ where µ(o1) = µ(o2) implies
(o1 =? o2) ∈ p̃ for all o1, o2 ∈ Ref(s̃) with o1 6= o2. So symbolic references
o1, o2 ∈ Ref(s̃) may only be unified by µ if aliasing is explicitly allowed by a
corresponding predicate o1 =? o2 in s̃. In contrast, µ(i1) = µ(i2) is possible for
any i1, i2 ∈ Int(s̃) (since different symbolic integers could represent the same
number). If no renaming is required, then the witness of sv s̃ is the identity.

Example 4 (Generalizing States). In Fig. 1, the witness for H vG is µ = {i1 7→
i2} (i.e., µ(i1) = i2 and µ(x) = x for x ∈ {o1, o2, i2}).

... | . . . |o1
o1:List(value: i1, next:o2)

o1!, o1 =? o2

... | . . . |o1
o1:List(value: i1, next:o1)

M NTo see the effect of predi-
cates, consider the states M
and N on the side, where
N vM . Here, the predicate o1! is needed in M , as o1 is cyclic and hence non-tree
shaped in N since o1’s field next points to o1 itself. Thus, N vM is witnessed
by µ = {o2 7→ o1}. This witness function is valid, as we have o1 =? o2 in M .

In Fig. 1, I results from G by setting l to l.next (Instructions 12 – 14) and
going back to Step 3 (“goto 3” in Line 15). We draw a generalization edge from
I to C, as I is a variable-renamed version of C, i.e., I vC with witness {o1 7→ o2}.

To see the connection between JBC and SE graphs, we now define which
concrete JBC states are represented by an abstract state.

Definition 5 (Concrete State). A concrete state (c, τ) is a pair of an ab-
stract state c = (pp, `, op, h,∅) ∈ State with Ref(c) ⊆ Dom(h) and a valuation
τ : Int(c)→ Z. We say that (c, τ) is represented by a state s ∈ State if cv s.

So the heap of a concrete state has to be completely specified (Ref(c) ⊆
Dom(h)) and hence predicates are not needed for c. The additional component
τ determines the values of symbolic integers. For example, (J, {i1 7→ n}) is a
concrete state for all n ∈ Z. Since v is transitive, sv s̃ always guarantees that
all concrete states represented by a state s are also represented by the state s̃.

As shown in [5,6,22], for any JBC program P one can automatically construct
an SE graph G such that every JBC execution sequence can be embedded into
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G. This means that if (c, τ)
jbc−→P (c̃, τ̃) is a JBC execution step for two concrete

states and cv s holds for some state s in G, then G has a non-empty path from
s to a state s̃ with c̃v s̃. Hence, the paths in G are at least as long as the corre-
sponding JBC sequences and therefore, SE graphs are a suitable representation
for inferring upper bounds on the runtime complexity of JBC programs.

The complexity of a JBC program is a function from its inputs to its runtime.
Our goal is to infer a representation of this function which is intuitive and as
precise as possible. To this end, we over-approximate the complexity by a func-
tion on integers in closed form. As the inputs of a Java program can be arbitrary
objects, we need a suitable mapping from objects to integers to achieve such a
representation. Hence, we now define how we measure the size of objects.

Definition 6 (Size ‖ · ‖). For a concrete state (c, τ) with heap h and o ∈
Ref(c), let intSum(o) = 1 +

∑
f∈Fields(cl),vl(f)=i∈Int |τ(i)| if h(o) = (cl, vl) and

intSum(o) = 0 if h(o) = null. We define ‖o‖(c,τ) =
∑
o→∗hõ

intSum(õ).

So the size ‖o‖(c,τ) of the object at the address o in (c, τ) is the number of all
reachable objects õ plus the absolute values of all integers in their fields. If the
same symbolic integer i is in several fields of õ, then |τ(i)| is added several times.

In our opinion, this is the notion of “size” that is most suitable for measuring
the runtime complexity of programs. The addend “1” in the definition of intSum
covers features like the length of lists (i.e., an acyclic list is always greater than
any of its proper sub-lists) or the number of nodes of trees. But in contrast to
measures like “path length”, we also take the elements of data structures into
account (i.e., ‖·‖ is similar to “term size”, see e.g., [13]). Since the second addend
of intSum measures integer elements of data structures, we can analyze the
complexity of algorithms like sort from Ex. 1 whose runtime (also) depends on
the numbers that are stored in a list. Moreover in contrast to “path length”, our
notion of size is also suitable for cyclic objects. For example, consider a concrete
state (N, τ) for State N of Ex. 4. Here, we have ‖o1‖(N,τ) = intSum(o1) =
1 + |τ(i1)|, i.e., the size of such a cyclic list is finite.7

Now we can define the notion of complexity that we analyze. The derivation
height dhP(c, τ) of a concrete state is the length of the longest JBC execution
sequence in the program P that starts in (c, τ). This corresponds to the usual
definition of “derivation height” for other programming languages, cf. [16]. A
complexity bound for an abstract state s is an arithmetic term bP(s) over the
variables V(s) = {xo | o ∈ Ref(s)}∪ Int(s). Here, the variable xo represents the
size of the object at the symbolic reference o. Then for any valuation σ of V(s),
σ(bP(s)) should be greater or equal to the length of the longest JBC execution
sequence starting with a concrete state (c, τ) that is represented by s, where

7 With this notion of size, the transformation from objects to terms that we used for
termination analysis in [22] is unsound for complexity analysis, as it duplicates ob-
jects that can be reached by different fields: Consider a binary “tree” of n nodes where
the left and right child of each inner node are the same. The size ‖ · ‖ of this object
is linear in n, but the resulting transformed term would be exponential in n. This
problem is avoided by our new transformation to integers instead of terms in Sect. 3.
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the values of all i ∈ Int(c) and the sizes of all o ∈ Ref(c) correspond to the
valuation σ. In the following, ω > n holds for all n ∈ N and for any M ⊆ N∪{ω},
supM is the least upper bound of M , where sup∅ = 0.

Definition 7 (Derivation Height, Complexity Bound). Let P be a JBC
program. For every concrete state (c0, σ0) of P, we define its derivation height as

dhP(c0, σ0) = sup{n | ∃(c1, σ1), . . . , (cn, σn) : (c0, σ0)
jbc−→P . . .

jbc−→P (cn, σn)}.
Let s ∈ State. A term bP(s) ∈ T (V(s)) ∪ {ω} is a complexity bound for s

in P if for all valuations σ : V(s) → Z we have σ(bP(s)) ≥ dhP(c, τ) for any
concrete state (c, τ) where some function µ witnesses cv s, σ(xo) = ‖µ(o)‖(c,τ)
for all o ∈ Ref(s), and σ(i) = τ(µ(i)) for all i ∈ Int(s).

So if s is an abstract state that represents all possible concrete states at the
start of a Java method in a program P, then a complexity bound bP(s) describes
an upper bound for the runtime complexity of the Java method.

Example 8 (Runtime Complexity of max). For any state cvA where o1 is a list
of length n, we get dhP(c, τ) ≤ 13 · n + 6 ≤ 13 · ‖o1‖(c,τ) + 6 for all valuations
τ . Hence, bP(A) = 13 · xo1 + 6 is a complexity bound for A, which means that
13 · ‖l‖+ 6 is an upper bound for the runtime complexity of max(l) from Ex. 2.

3 From SE Graphs to ITSs

Now we introduce a new complexity-preserving transformation from SE graphs
to integer transition systems. This allows us to use existing tools for complexity
analysis of integer programs to infer bounds on the runtime of JBC programs.

Definition 9 (Integer Transition System). Let V be a set of variables and
let V ′ = {x′ | x ∈ V} be the corresponding post-variables. An ITS I is a directed
graph (L,R) where L is the set of nodes (or locations) and R is the set of edges
(or transitions). A transition (s, ϕ,w, s̃) ∈ R consists of a source location s ∈ L,
a condition ϕ ∈ F(V∪V ′), a weight w ∈ T (V), and a target location s̃ ∈ L. Any
valuation σ : V → Z induces a post-valuation σ′ : V ′ → Z with σ′(x′) = σ(x) for
all x ∈ V. The transition relation →I of an ITS I operates on configurations
(s, σ), where s ∈ L and σ is a valuation. For any s, s̃ ∈ L and any valuations

σ, σ̃ : V → Z, we have (s, σ)
m−→I (s̃, σ̃) if there exists a transition (s, ϕ,w, s̃) ∈ R

such that σ(w) = m and σ ∪ (σ̃)′ satisfies ϕ (i.e., ϕ is satisfied if all x ∈ V are
instantiated by σ and all x′ ∈ V ′ are instantiated according to σ̃).

For any location s, a term bI(s) ∈ T (V) ∪ {ω} is a complexity bound for s
in I if for all valuations σ : V → Z we have σ(bI(s)) ≥

∑
1≤j≤nmj whenever

(s, σ)
m1−−→I . . .

mn−−→I (s̃, σ̃) holds for some (s̃, σ̃).

O P

0 : x > 0

x : x′ = x− 1

Example 10 (ITS). Consider the ITS I on the right where each
edge (s, ϕ,w, s̃) is labeled with “w : ϕ”. It corresponds to a
loop where a counter x is decremented (transition from P to
O) as long as it is positive (transition from O to P ). Due to the weight x of the

transition from P to O, bI(O) = (x+1)·x
2 is a complexity bound for O.
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So given an initial state s, a complexity bound bI(s) is an upper bound for
the runtime complexity of I. For instance, the complexity bound bI(O) in Ex.
10 means that the runtime complexity of the ITS I is quadratic in x. We will
now show how to automatically translate the SE graph of a Java program P
into a corresponding ITS I such that any complexity bound bI(s) for I is also
a complexity bound bP(s) for P. We first consider programs that do not modify
the heap and handle heap-manipulating programs in Sect. 5.

Let G be an SE graph with the states State and the edges Edge. To trans-
form SE graphs to ITSs, we fix V =

⋃
s∈State V(s) and L = State. Essentially,

we define (s, νs,s̃(ϕ)∧ψs∧ρ, w, s̃) ∈ R iff s
ϕ−→ s̃ ∈ Edge where w = 0 if s

ϕ−→ s̃

is a refinement or generalization edge and w = 1 if s
ϕ−→ s̃ is an evaluation edge.

The substitution νs,s̃ is defined as νs,s̃(x) = x′ for x ∈ V(s̃) \ V(s) and
νs,s̃(x) = x for x ∈ V(s). Then νs,s̃(ϕ) is a condition on the values of the
symbolic integers that must be satisfied in order to use the transition from s
to s̃. For example, if the evaluated instruction is iadd (i.e., adding the two top
elements of the operand stack), the operand stack of s starts with “i1, i2”, and
the operand stack of s̃ has the fresh symbolic integer “i3” on top, then the
edge s → s̃ in the SE graph is labeled with i3 = i1 + i2 and the corresponding
transition in the ITS has the condition i′3 = i1 + i2. Thus, in the location s̃, the
value of i3 must be the sum of the values that i1 and i2 had in s.

While the semantics of arithmetic operations is captured by ϕ, the formula
ψs expresses conditions on the variables xo that represent the sizes ‖o‖ of the
objects in s. We define ψs to be the following formula, where h is the heap of s:∧

o∈Ref(s)∩Dom(h)
h(o)=null

xo = 0 ∧
∧

o∈Ref(s)∩Dom(h)
h(o) 6=null

xo ≥ 1 ∧
∧

o∈Ref(s)\Dom(h)

xo ≥ 0

While this encoding might seem rather coarse, we achieve precision by defin-
ing a suitable formula ρ which encodes the relation between the values of the
variables x ∈ V(s) and the post-variables x′ (i.e., the values of the variables in
s̃). The definition of ρ is straightforward for evaluation edges that do not modify
the heap, because here the values of the symbolic variables do not change.

Definition 11 (Encoding Evaluation Edges). Let e = s
ϕ−→ s̃ ∈ Edge be

an evaluation edge with s = (pp, `, op, h, p) such that the instruction at program
position pp is neither putfield nor new. Then the edge e is translated into the
ITS transition tr(e) = (s, νs,s̃(ϕ) ∧ ψs ∧

∧
x∈V(s)∩V(s̃) x

′ = x, 1, s̃).

Example 12 (Encoding Evaluation Edges). For Fig. 1, we have tr(C → D) =

(C, xo1 ≥ 0 ∧ x′o1 = xo1 ∧ i′1 = i1, 1, D) and tr(F
i2≤i1−−−→ G) = (F, i2 ≤ i1 ∧

xo1 ≥ 1 ∧xo2 ≥ 0 ∧ ρ, 1, G) where ρ is x′o1 = xo1 ∧ x′o2 = xo2 ∧ i′1 = i1 ∧ i′2 = i2.

When transforming refinement edges to ITS transitions, we encode our knowl-
edge about the object at the reference o that is “refined”. We exploit that, by
construction of ‖ · ‖, the size of any õ with o→∗ õ is bounded by the size of o.

Definition 13 (Encoding Refinement Edges). Let e = s→ s̃ ∈ Edge be a
refinement edge with s = (pp, `, op, h, p), s̃ = (pp, `, op, h̃, p̃), and let o ∈ Ref(s)
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CA

DL F

G

2 : i′1 = 0 ∧ xo1 ≥ 0
∧ x′o1 = xo1

1 : xo1 ≥ 0 ∧ x′o1 = xo1

∧ i′1 = i1

3 : xo1
= 0

∧ . . .
4 : xo1

≥ 1 ∧ x′o2 ≥ 0 ∧ xo1
> x′o2

∧ xo1
> i′2 > −xo1

∧ x′o1 = xo1
∧ i′1 = i1

1 : i2 ≤ i1 ∧ xo1
≥ 1 ∧ xo2

≥ 0 ∧ x′o1 = xo1

∧ x′o2 = xo2 ∧ i
′
1 = i1 ∧ i′2 = i2

4 : i2 > i1
∧ xo1

≥ 1
∧ xo2 ≥ 0
∧ x′o1 = xo1

∧ x′o2 = xo2

∧ i′1 = i2 ∧ i′2 = i2

4 : xo1
≥ 1 ∧ xo2

≥ 0
∧ x′o1 = xo2 ∧ i

′
1 = i1

Fig. 2: ITS for the SE Graph of Fig. 1

be the symbolic reference of the object that was refined. Then tr(e) = (s, νs,s̃(ψs̃)

∧ ρ, 0, s̃) where ρ is
∧
x∈V(s) x

′ = x if h̃(o) = null. Otherwise, ρ is∧
x∈V(s)

x′ = x ∧
∧

õ∈Ref(s̃), o→h̃õ

xo >
(—)

x′õ ∧
∧

i∈Int(s̃), o→h̃i

xo > i′ > −xo.

Here, “>
(—)

” is “≥” if o! ∈ p and “>” if o! /∈ p.

Note that we can encode the knowledge from the more specialized state s̃
(i.e., we use ψs̃ instead of ψs), as the transition just has to be applicable in the
case represented by s̃. The sizes of o’s successor references õ are strictly smaller
than ‖o‖ if o is guaranteed to be acyclic (i.e., if o! /∈ p), since in this case, õ
reaches less objects than o. Otherwise, there might be a path from õ to o and
hence we might have ‖õ‖ = ‖o‖. For symbolic integers i ∈ Int reachable from o,
we know that ‖o‖ > |i| holds due to the definition of ‖ · ‖. In Def. 13 we express
this without using absolute values explicitly, since they are not supported by
current complexity tools for ITSs.

Example 14 (Encoding Refinement Edges). For Fig. 1, we have tr(D → J) = (D,
xo1 = 0 ∧ x′o1 = xo1 ∧ i′1 = i1, 0, J). Transforming D → E yields (D, xo1 ≥ 1 ∧
x′o2 ≥ 0 ∧ ρ, 0, E) where ρ is x′o1 = xo1 ∧ i′1 = i1 ∧ xo1 > x′o2 ∧ xo1 > i′2 > −xo1 .

For generalization edges s → s̃ where µ witnesses sv s̃, the renaming µ
describes how the names of the symbolic variables in s and s̃ are related.

Definition 15 (Encoding Generalization Edges). Let e = s → s̃ ∈ Edge
be a generalization edge and let µ witness sv s̃. We extend µ to {xo | o ∈ Ref(s̃)}
by defining µ(xo) = xµ(o). Then tr(e) = (s, ψs ∧

∧
x∈V(s̃) x

′ = µ(x), 0, s̃).

Example 16 (Encoding Generalization Edges). The witness of H vG is {i1 7→
i2}. Hence, we get tr(H → G) = (H, xo1 ≥ 1 ∧ xo2 ≥ 0 ∧ x′o1 = xo1 ∧ x′o2 =
xo2 ∧ i′1 = i2 ∧ i′2 = i2, 0, G). Similarly, the witness of I vC is {o1 7→ o2}.
Hence, we get tr(I → C) = (I, xo2 ≥ 0 ∧ x′o1 = xo2 ∧ i′1 = i1, 0, C).

Example 17 (ITS for max). Fig. 2 shows the ITS I obtained from the SE graph in
Fig. 1 after simplifying it via chaining, i.e., subsequent transitions (s1, ϕ1, w1, s2),
(s2, ϕ2, w2, s3) are combined to a single transition that corresponds to first ap-
plying (s1, ϕ1, w1, s2) and then (s2, ϕ2, w2, s3). In our implementation, we only
chain such transitions if s2 has exactly one incoming and one outgoing transi-
tion. Further chaining changes the original control flow of the program which was
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disadvantageous in our experiments. Again, each transition (s, ϕ,w, s̃) is labeled
with “w : ϕ” in Fig. 2. State-of-the-art complexity analysis tools like CoFloCo [12]
and KoAT [8] can easily infer a complexity bound bI(A) which is linear in xo1 .
In Thm. 24 we will show that complexity bounds bI(A) for the obtained ITS I
are also upper bounds bP(A) on the complexity of the original Java program P.

Slight modifications of our transformation tr from the SE graph to ITSs allow
us to analyze different notions of complexity. For space complexity, we can simply
change the weight of all evaluation edges to 0 except those that correspond to
new instructions (i.e., in this way we infer an upper bound on the auxiliary heap
space required by the method when ignoring any deallocation of memory by the
garbage collector). Our technique can also easily analyze the size of a function’s
result. To this end, all transitions get weight 0 except evaluation edges that
correspond to ireturn or areturn (returning an integer or a reference). Their
weight is simply the top entry of the operand stack. Applying this transformation
to Fig. 1 yields an ITS I ′ like Fig. 2, but the edge from D to L has weight i1 and
all other edges have weight 0. Then complexity tools can infer an upper bound
like bI′(A) = |xo1 |. This proves that the result of max is bounded by ‖l‖.

4 Summarizing Method Calls

In [5], we extended abstract states to represent the call stack. In this way, our
implementation can analyze programs with method invocations like Ex. 1 fully
automatically. As an alternative, we now introduce the possibility to use sum-
maries, which is crucial for a modular incremental (possibly interactive) analy-
sis of large programs. Summaries approximate the effect of method calls. Thus,
AProVE can now use information about called methods without having to ana-
lyze them. Currently, such summaries have to be provided by the user as JSON
files, but they can contain information obtained by previous runs of AProVE.

Example 18 (Summarizing max). A possible summary for max looks as follows.

1 "class": "List",
2 "methods ": [{
3 "name": "max",
4 "descriptor ": "(LList ;)I",
5 "static ": true ,
6 "complexity ": {
7 "upperTime ": "13 * arg0 + 6",
8 "upperSpace ": "0"
9 },

10 "upperSize ": [{
11 "pos": "ret",
12 "bound": "arg0"
13 }],
14 "lowerSize ": [{
15 "pos": "ret",
16 "bound": "0"
17 }]
18 }]

So for a given class, each summarized method is identified by its name and
descriptor.8 Upper bounds for the method’s time and auxiliary heap space com-
plexity can be provided as polynomials over arg0, . . . , argn for static methods
resp. this, arg0, . . . , argn for non-static methods, where argi refers to the size
of the method’s ith argument if it is an object resp. the value of the ith argument

8 The descriptor specifies the argument types and return type of a method (“LList;”
stands for the argument type List and “I” stands for the result type int), see
docs.oracle.com/javase/specs/jvms/se7/html/jvms-4.html#jvms-4.3.3



Complexity Analysis for Java with AProVE 11

max |l:o1, n: i1, r:o2 |o1 iload n |l:o1, n: i1, r:o2 | i2

if icmplt |l:o1, n: i1, r:o2 | i1, i2

. . .
new List |l:o1, n: i1, r:o2 |ε

max |l:o1, n: i4, r:o3 |o1
o3:List(value: i1, next:o2)

iinc n |l:o1, n: i1, r:o3 |ε
o3:List(value: i1, next:o2)

aload rNew |l:o1, n: i1, r:o2, rNew:o3 |ε
o3:List(value: i3, next:o2)

putfield next |l:o1, n: i1, r:o2, rNew:o3 |o2, o3
o3:List(value: i3, next:o4) o4:null

i1 = 0 size condition︷ ︸︸ ︷
xo1
≥ i2 ≥ 0

13 · xo1 + 6︸ ︷︷ ︸
weight

i1 ≤ i2 i1 > i2i4 = i1 + 1

Q R

S

T

UV

W

X

Fig. 3: SE Graph for sort

if it is an integer. Similarly, one can provide bounds (upperSize and lowerSize)
on the size of the method’s result (ret).

Our summaries are not yet expressive enough to describe heap shapes (we will
improve them in future work). So for simplicity we assume that one only sum-
marizes methods which do not manipulate the heap. Moreover, the summary for
max is only correct if its argument is acyclic (otherwise, max fails to terminate).
For soundness, one has to ensure that the pre-conditions of the summary are
invariants of the respective class (e.g., that List only implements acyclic lists).

Fig. 3 shows the SE graph for sort. Here, we assume a summary for mem

where upperTime is “10 * arg1 + 4”, i.e., computing mem(n,l) takes at most
10 · ‖l‖ + 4 steps. For readability of Fig. 3, instead of program positions we
described the respective JBC instructions and omitted the case n > max(l)

(indicated by the edge S
i1>i2−−−→ . . .) and the case where mem returns false. The

summarization edge Q → R is labeled with the size condition xo1 ≥ i2 ≥ 0
restricting the size of max’s result i2 and the weight 13 ·xo1 +6 which correspond
to the summary from Ex. 18. Such summarization edges are only permitted
for methods whose summary contains a finite upper runtime bound (< ω). The
(omitted) summarization edge for mem is labeled with the weight 10 ·xo1 +4. The
SE graph clearly reflects the quadratic complexity of sort: in each iteration, i4
is set to i1 + 1 (on the path from W to X) and afterwards i4 is renamed back
to i1 (on the generalization edge X → Q), i.e., i1 is incremented. The program
terminates as soon as the value of i1 exceeds i2, where i2 is bounded by ‖o1‖. As
‖o1‖ never changes and i1 is initialized to 0, the loop cannot be executed more
than ‖o1‖ times. Since the complexity of each iteration is linear in ‖o1‖ due to
the weights of max and member, the complexity of sort is quadratic. To show how
we infer this quadratic bound for sort automatically, it remains to explain how
we transform summarization edges and evaluation edges with new and putfield

to ITS transitions. Encoding summarization edges is straightforward.

Definition 19 (Encoding Summarization Edges). Let e = s → s̃ ∈ Edge
be a summarization edge with size condition ϕ and weight w. It is transformed
into the ITS transition tr(e) = (s, νs,s̃(ϕ) ∧ ψs ∧

∧
x∈V(s)∩V(s̃) x

′ = x, w, s̃).

Example 20 (Encoding Summarization Edges). We have tr(Q→ R) = (Q, xo1≥
i′2 ≥ 0 ∧ xo1 ≥ 0 ∧ xo2 ≥ 0 ∧ x′o1 = xo1 ∧ x′o2 = xo2 ∧ i′1 = i1, 13 · xo1 + 6, R).
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5 Encoding Heap Modifications

Now we show how to encode the only instructions that modify the heap as ITS
transitions. To encode the instruction new, we simply add the constraint x′o = 1
for the newly created object o.

Example 21 (Encoding new).For the (omitted) successor T ′of T in Fig. 3 we have
tr(T→T ′)=(T, xo1≥ 0∧xo2≥ 0∧x′o1 = xo1 ∧x′o2 = xo2 ∧x′o3 = 1∧ i′1 = i1, 1, T

′).

The only instruction that changes the size of objects is putfield. Note that
putfield also changes the size of all predecessors õ of the object affected by the
write access. However, our size measure ‖ · ‖ was defined in such a way that we
can easily provide lower and upper bounds for the affected variables xõ.

Definition 22 (Encoding putfield for Object Fields). Let e = s → s̃ ∈
Edge be an evaluation edge with s = (pp, `, op, h, p), let õf and o be the two
top entries of op, and let putfield f be the instruction at program position pp

(i.e., õf ∈ Ref is written to the field f of h(o)). Moreover, let o
f−→h of (i.e., of

is the former value of h(o)’s field f) and PotPred = {õ ∈ Ref(s̃) | õ o} where
õ  o iff õ →∗h o or õ →∗h ô and (ô %$ o) ∈ p for some ô ∈ Ref.9 Then tr(e) =
(s, ψs ∧

∧
x∈V(s̃)\{xõ|õ∈PotPred} x

′ = x ∧
∧
õ∈PotPred xõ+xõf ≥ x′õ ≥ xõ−xof , 1, s̃).

So the size of all potential predecessors õ of o (captured by  ) may change, but
by definition of ‖ · ‖, the new size of õ is between ‖õ‖ − ‖of‖ and ‖õ‖+ ‖õf‖.

If an integer ĩf is written to a field by putfield, then we need to take the
signs of ĩf and of the previous value if of the field into account, since integers
contribute to ‖ · ‖ with their absolute value. To avoid case analyses, we infer
integer invariants using standard techniques which often allow us to determine
the signs of integers statically. Moreover, for simplicity we just encode the upper
bound and use xõ+ ĩf ≥ x′õ ≥ 0 if ĩf is non-negative resp. xõ− ĩf ≥ x′õ ≥ 0 if ĩf is
negative, since 0 is a trivial lower bound for ‖õ‖. Hence, our encoding yields just

one rule if the sign of ĩf can be determined statically and two rules, otherwise.

Example 23 (Encoding putfield). We have tr(U → V ) = (U, xo1 ≥ 0 ∧ xo2 ≥
0 ∧ xo3 ≥ 1 ∧ xo4 = 0 ∧ ρ, 1, V ) where ρ is x′o1 = xo1 ∧ x′o2 = xo2 ∧ i′1 =
i1 ∧ i′3 = i3 ∧ xo3 + xo2 ≥ x′o3 ≥ xo3 − xo4 .

The following theorem states that our transformation is sound for complexity
analysis. For the proof, we refer to App. B.

Theorem 24 (Soundness Theorem). Let P be a JBC program and I be
the ITS which results from the SE graph for P. Then for all s ∈ State, any
complexity bound bI(s) for s in I is also a complexity bound for s in P.

For the initial state of the ITS resulting from the SE graph in Fig. 3, CoFloCo
and KoAT infer complexity bounds in O(x2o1). By Thm. 24, this proves that the
runtime of sort(l) is quadratic in ‖l‖.
9 While s may have the predicate ô %$ o, it cannot contain ô =? o, as our symbolic

execution rules require that if a field of o is written by putfield, then predicates
of the form ô =? o first have to be removed by refinement steps, cf. [5]. Similarly,
o ∈ Dom(h) is enforced by refinements before symbolically evaluating putfield.
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6 Experiments and Conclusion

Building upon AProVE’s symbolic execution, we presented a new complexity-pre-
serving transformation from heap-manipulating Java programs with user-defined
data structures to integer transition systems. Furthermore, we explained how
we achieve modularity using summaries. In contrast to AProVE’s termination
analysis which transforms Java to term rewrite systems with built-in integers, our
new transformation allows us to apply powerful off-the-shelf solvers for integer
programs like CoFloCo [12] and KoAT [8]. In our implementation, we run CoFloCo
and KoAT in parallel to obtain complexity bounds that are as small as possible.

Clearly, our translation is also sound for termination analysis. In fact, AProVE
was not able to prove termination of Ex. 1 so far. Coupling our translation with
dedicated termination analysis tools for ITSs like T2 [7] is subject of future work.

Related approaches are presented in [1, 3, 4, 10, 15, 17, 18]. [3] analyzes the
complexity of a Java-like language, but in contrast to our technique, it requires
user-provided loop invariants. [17] analyzes ML, i.e., the considered input lan-
guage differs significantly from ours. [15] regards C programs, but requires user-
provided “quantitative functions over data structures” (which are similar to our
optional summaries, cf. Sect. 4) and hence cannot analyze programs with data
structures fully automatically. The approach in [10] also relies on user annota-
tions to handle resource bounds that depend on the contents of the heap. The
tool [4] analyzes Jinja [20], which is similar (but not equal) to a restricted subset
of Java. Therefore, transforming Java to Jinja is non-trivial and no suitable tool
to accomplish such a transformation is available.10 Similarly, [18] analyzes the
complexity of a language related to Java (RAJA), but a (possibly automated)
transformation from full Java to RAJA is not straightforward.

Hence, we compare our implementation with COSTA [1], the only other tool
for fully automated complexity analysis of Java we are aware of. Like our tech-
nique, COSTA transforms Java to an integer-based formalism (called cost rela-
tions). However, COSTA uses path length to measure the size of objects, i.e., lists
are measured by length, trees by height, etc. Thus, COSTA fails for programs like
Ex. 1 where one has to reason both about data structures and their elements, as
sort’s runtime is not bounded by the length of the input list. So both COSTA
and AProVE estimate how the number of executed instructions depends on the
size of the program input. But as the tools use different size measures, the se-
mantics of their results are incomparable. Thus, our experimental evaluation is
just meant to give a rough impression of the capabilities of the tools.

To assess the power of our approach, we ran AProVE on all 300 non-recursive
examples from the category “Java Bytecode” of the Termination Problem Data
Base (TPDB), a well-established benchmark for automated termination analysis
used at the annual Termination Competition, cf. Footnote 4. (So we did not in-
clude the 286 examples from the category “Java Bytecode Recursive”.) We omit-
ted 80 examples from two sub-collections of the TPDB which mainly consist of

10 Java2Jinja (http://pp.ipd.kit.edu/projects/quis-custodiet/Java2Jinja) gen-
erates JinjaThreads-code, which is a superset of Jinja and cannot be handled by [4].
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O(1) O(n) O(n2) O(n3) O(n>3) ?

31 102 15 1 5 58

Table 1: Results on the TPDB

non-terminating examples as well as 8 fur-
ther examples where AProVE proves non-ter-
mination and consequently fails to infer an
upper bound. The remaining 212 examples
contain 131 heap-manipulating and 81 numeric programs. AProVE finds runtime
bounds for 78 heap-manipulating and 76 numeric examples, i.e., for 154 (73%)
of all 212 examples, cf. Table 1. Here, n is the sum of the sizes of all object argu-
ments and of the absolute values of all integer arguments. On average, AProVE
needs 7.2 s to prove an upper bound and the median of the runtime is 4.6 s.

Unfortunately, we cannot compare AProVE with COSTA on the TPDB di-
rectly. The reason is that the TPDB examples simulate numeric inputs by the
lengths of the strings in the argument of the entry point main(String[] args)

of the program. As COSTA abstracts arrays to their length, it loses all informa-
tion about the elements of args and hence fails for almost all TPDB examples.

O(1) O(logn) O(n) O(n · logn) O(n2) O(n3) O(n>3) ?

AProVE 28 0 102 0 13 2 4 62

COSTA 10 4 45 3 5 0 1 143

Table 2: Comparison with COSTA

So we adap-
ted the 212 ex-
amples11 of the
TPDB such that
they do not rely
on main’s argument to simulate numeric inputs anymore. Instead, now a new
entry point method with a suitable number of integer arguments is analyzed
directly. However, this adaption is not always equivalent, as main’s argument ar-
ray can be arbitrarily long (and hence can be used to simulate arbitrarily many
numeric inputs), whereas the arity of the new entry point method is fixed. Thus,
AProVE’s results on these modified examples differ from the results on the TPDB
in some cases. Table 2 compares both tools on these examples. AProVE succeeds
in 149 cases, whereas COSTA proves an upper bound in 68 cases and infers a
smaller bound than AProVE in 4 cases. Besides our novel size abstraction, further
reasons why AProVE often yields better results are its precise symbolic execu-
tion and the use of more powerful back end tools (CoFloCo and KoAT) instead
of COSTA’s back end PUBS. On the other hand, COSTA can infer logarithmic
bounds, which are not supported by AProVE. If instead of CoFloCo and KoAT
we use COSTA’s back end PUBS to analyze the ITSs generated by AProVE, then
this modified version of AProVE still succeeds in 101 cases.

For more details on our experiments (including a selection of typical heap-
manipulating programs where AProVE succeeds, but COSTA fails), the examples
used to compare with COSTA, a web interface to access our implementation, and
to download a virtual machine image of AProVE, we refer to [2].
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12. A. Flores-Montoya and R. Hähnle. Resource analysis of complex programs with

cost equations. In Proc. APLAS ’14, LNCS 8858, pages 275–295, 2014.
13. S. Genaim, M. Codish, J. P. Gallagher, and V. Lagoon. Combining norms to prove

termination. In Proc. VMCAI ’02, LNCS 2937, pages 126–138, 2002.
14. J. Giesl, C. Aschermann, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs, J.

Hensel, C. Otto, M. Plücker, P. Schneider-Kamp, T. Ströder, S. Swiderski, and
R. Thiemann. Analyzing program termination and complexity automatically with
AProVE. Journal of Automated Reasoning, 58(1):3–31, 2017.

15. S. Gulwani, K. K. Mehra, T. M. Chilimbi. SPEED: precise and efficient static esti-
mation of program computational complexity. Proc. POPL ’09, pp. 127–139. 2009.

16. D. Hofbauer and C. Lautemann. Termination proofs and the length of derivations.
In Proc. RTA ’89, LNCS 355, pages 167–177, 1989.

17. J. Hoffmann, A. Das, and S.-C. Weng. Towards automatic resource bound analysis
for OCaml. In Proc. POPL ’17, pages 359–373, 2017.

18. M. Hofmann and D. Rodriguez. Automatic type inference for amortised heap-space
analysis. In Proc. ESOP ’13, LNCS 7792, pages 593–613, 2013.
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A Generalizing States

In Def. 25, we give a formal definition for the notion of “more general states”.
This definition is a simplified variant of [5, Def. 3] (where sv s̃ holds for even

more pairs of states s and s̃). Here, for a sequence f of fields, let o
f−→∗h x (resp.

o
f−→+
h x if |f | > 0) denote o

f |1−−→h . . .
f |n−−→h x for n = |f |.

Definition 25 (Generalizing States, v). Let s = (pp, `, op, h, p), s̃ = (pp, `,
op, h̃, p̃) ∈ State. We say that s̃ is more general than s if p ⊆ p̃, o ∈ Dom(h̃) im-
plies h(o) = h̃(o), and the following conditions (A) - (C) hold for all o1, o2, o3 ∈
Ref(s). Here, let ClosePred : Ref(s)→ 2Ref(s̃) be defined as ClosePred(o) = {o}
if o ∈ Ref(s̃) and ClosePred(o) = {õ ∈ Ref(s̃) \ Dom(h̃) | õ→∗h o}, otherwise.

(A) If o1
f−→∗h o2, o1

g−→∗h o2, o1 6
g−→∗
h̃
o2, f 6= g, and f and g do not have a

common non-empty prefix, then õ1! ∈ p̃ for all õ1 ∈ ClosePred(o1).
(B) If o1 →+

h o3, o2 →+
h o3, o1 /∈ Dom(h̃), o2 /∈ Dom(h̃), and o1 6= o2, then12

(õ1 %$ õ2) ∈ p̃ for all õ1 ∈ ClosePred(o1), õ2 ∈ ClosePred(o2) with õ1 6= õ2.
(C) If o1 →+

h o2, o1 /∈ Dom(h̃), and o1 6= o2, then (õ1 %$ õ2) ∈ p̃ for all
õ1 ∈ ClosePred(o1), õ2 ∈ ClosePred(o2) with õ1 6= õ2.

In addition, we also have sv s̃ if there is a function µ : Sym → Sym such that
svµ(s̃) (where we lift µ to abstract states in the obvious way), provided that
µ(o1) = µ(o2) implies (o1 =? o2) ∈ p̃ for all o1, o2 ∈ Ref(s̃) with o1 6= o2. We
say that µ witnesses sv s̃ (and fix µ = id if renaming symbolic variables is not
required).

For a symbolic reference o ∈ Ref(s), ClosePred(o) contains the “closest”
predecessors of o which also exist in s̃. So if o1 →h o2 →h o3 with o1, o2 ∈ Ref(s̃),
o3 /∈ Ref(s̃), o1 →h̃ o2, and o2 /∈ Dom(h̃), then both o1, o2 are predecessors of o3,

but o2 is closer (since o2 /∈ Dom(h̃)) and hence, we have ClosePred(o3) = {o2}.
According to (A), if there is a concrete non-tree shape in s (“o1

f−→∗h o2, o1
g−→∗h o2,

f 6= g”) which does not exist in s̃ (“o1 6
g−→∗
h̃
o2”), then the predicate õ1! is required

in s̃ for all closest predecessors õ1 of o1. It suffices to require this for non-tree
shapes resulting from “minimal” sequences of fields f and g (i.e., where f and g
have no common prefix). Due to (B) and (C), concrete sharing in s (“o1 →+

h o3,

o2 →+
h o3” resp. “o1 →+

h o2”) which does not exist in s̃ (“o1 /∈ Dom(h̃)”) has to
be allowed by the predicate “%$” in s̃.

B Soundness Proof

To prove Thm. 24, we introduce the following notion. Here, Sym = Ref ∪ Int
are all symbolic variables of the SE graph and V = {xo | o ∈ Ref} ∪ Int.

12 Since both “%$” and “=?” are symmetric, we do not distinguish between “õ1 %$ õ2”
and “õ2 %$ õ1” resp. between “o1 =? o2” and “o2 =? o1”.
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Definition 26 (Corresponding Valuation). Let s be an abstract state, (c, τ)
be a concrete state, and let µ witness cv s. We say that a valuation σ : V → Z
corresponds to τ w.r.t. µ if σ(i) = τ(µ(i)) for all i ∈ Int(s) and σ(xo) =
‖µ(o)‖(c,τ) for all o ∈ Ref(s). On all x ∈ Sym \ Sym(s), σ(x) can be arbitrary.

For example, consider the abstract state B in Fig. 1 and a concrete state
cvB, where c maps the local variable l to the symbolic variable ô, c’s operand
stack contains just î, and c’s heap maps ô to null. Then the witness function
for cvB is µ = {o1 7→ ô, i1 7→ î}, and for τ = {ô 7→ 0, î 7→ 0}, any valuation

σ with σ(i1) = τ(µ(i1)) = τ (̂i) = 0 and σ(xo1) = ‖µ(o1)‖(c,τ) = ‖ô‖(c,τ) = 0
corresponds to τ w.r.t. µ. However, the value of σ(i2) or σ(xo2) can be arbitrary.

The crucial observation for the proof of Thm. 24 is the following lemma which
shows that if an edge in the SE graph represents a step on concrete JBC states,
then one can also perform a corresponding step with the ITS resulting from the
SE graph.

Lemma 27 (Simulating Edges in the SE Graph by ITS Steps). Let P
be a JBC program and let I be the ITS which results from the SE graph for P.
Let (c, τ) be a concrete state, let there be a function µ which witnesses cv s for
some state s in the SE graph, and let the valuation σ correspond to τ w.r.t. µ.

(a) If there is an evaluation edge s
ϕ−→ s̃ in the SE graph where (c, τ)

jbc−−→P (c̃, τ̃),
a function µ̃ witnesses c̃v s̃, and κ(ϕ) is valid (where κ(i) = τ(µ(i)) for

i ∈ Int(s) and κ(i) = τ̃(µ̃(i)) for i ∈ Int(s̃) \ Int(s)), then (s, σ)
1−→I (s̃, σ̃)

for a valuation σ̃ which corresponds to τ̃ w.r.t. µ̃.

(b) If there is a refinement edge s −→ s̃ in the SE graph where a function µ̃

witnesses cv s̃, then (s, σ)
0−→I (s̃, σ̃) for a valuation σ̃ which corresponds to

τ w.r.t. µ̃.

(c) If there is a generalization edge s −→ s̃ in the SE graph where µ̃ witnesses

sv s̃, then µ ◦ µ̃ witnesses cv s̃ and (s, σ)
0−→I (s̃, σ̃) for a valuation σ̃ which

corresponds to τ w.r.t. µ ◦ µ̃.

(d) If there is a summarization edge s −→ s̃ in the SE graph with size condition
ϕ and weight w where the summarized method does not manipulate the heap,

(c, τ)
jbc−−→k
P (c̃, τ̃), a function µ̃ witnesses c̃v s̃, and κ(ϕ) is valid (where

κ(i) = τ(µ(i)) for i ∈ Int(s), κ(i) = τ̃(µ̃(i)) for i ∈ Int(s̃)\ Int(s), κ(xo) =
‖µ(o)‖(c,τ) for o ∈ Ref(s), and κ(xo) = ‖µ̃(o)‖(c̃,τ̃) for o ∈ Ref(s̃)\Ref(s)),

then (s, σ)
m−→I (s̃, σ̃) for a valuation σ̃ which corresponds to τ̃ w.r.t. µ̃ and

a number m ≥ k.

Proof. (a): There is an evaluation edge from s to s̃.

Let s = (pp, `, op, h, p) and let σ̃(i) = τ̃(µ̃(i)) for all i ∈ Int(s̃) and σ̃(xo) =
‖µ̃(o)‖(c̃,τ̃) for all o ∈ Ref(s̃).

Case 1 : There is no putfield or new instruction at position pp.

Then the ITS I has the transition (s, νs,s̃(ϕ) ∧ ψs ∧
∧
x∈V(s)∩V(s̃) x

′ = x, 1, s̃).
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We have to prove that the resulting transition can be used to transform (s, σ) to
(s̃, σ̃). To this end, we have to show that σ∪σ̃′ satisfies νs,s̃(ϕ)∧ψs∧

∧
x∈V(s) x

′ =
x.

Recall that νs,s̃ replaces all i ∈ Int(s̃) \ Int(s) by i′. Hence, (σ ∪ σ̃′) ◦ νs,s̃
replaces all i ∈ Int(s̃) \ Int(s) by σ̃(i) = τ̃(µ̃(i)) = κ(i) and all i ∈ Int(s)
by σ(i) = τ(µ(i)) = κ(i), since σ corresponds to τ w.r.t. µ. As κ(ϕ) is valid,
(σ ∪ σ̃′)(νs,s̃(ϕ)) is valid as well.

Since ψs does not contain variables from V ′, we have (σ ∪ σ̃′)(ψs) = σ(ψs).
As σ corresponds to τ w.r.t. µ, we obtain σ(xo) = ‖µ(o)‖(c,τ) for all o ∈ Ref(s).
If h(o) = null, then the heap of c also maps µ(o) to null, since µ witnesses
cv s. Hence, we have σ(xo) = ‖µ(o)‖(c,τ) = 0 and thus σ satisfies the formula
xo = 0. If o ∈ Dom(h) with h(o) 6= null, then the heap of c also maps µ(o) to
an abstract object different from null, as µ witnesses cv s. Therefore in (c, τ),
we have intSum(µ(o)) ≥ 1 and therefore σ(xo) = ‖µ(o)‖(c,τ) ≥ 1 which means
that σ satisfies the formula xo ≥ 1. Finally, for any o ∈ Ref(s), we also have
µ(o) ∈ Ref(c) since µ witnesses cv s and therefore, σ(xo) = ‖µ(o)‖(c,τ) ≥ 0,
i.e., σ satisfies the formula xo ≥ 0. So to summarize, σ satisfies ψs.

Finally, we have to show that σ ∪ σ̃′ satisfies x′ = x for all x ∈ V(s) ∩ V(s̃),
i.e., that we have σ̃(x) = σ(x). The requirement follows from our definition
of evaluation edges, because we use fresh symbolic variables in s̃ whenever a
new integer value is computed. So for all i ∈ Int(s) ∩ Int(s̃) we have σ(i) =
τ(µ(i)) = τ̃(µ̃(i)) = σ̃(i). Moreover, as the instruction does not modify the
heap, we have Ref(s) = Ref(s̃) and for all o ∈ Ref(s) we obtain σ(xo) =
‖µ(o)‖(c,τ) = ‖µ̃(o)‖(c̃,τ̃) = σ̃(xo). This means that σ̃(x) = σ(x) indeed holds for
all x ∈ V(s) ∩ V(s̃).

Case 2 : There is a new instruction at position pp.

Then the ITS I has a similar transition as in Case 1, but if o ∈ Ref(s̃) is the
symbolic reference for the newly created object, then in addition to the other
constraints we have the constraint x′o = 1. Clearly, σ∪ σ̃′ satisfies this constraint
since σ̃(x0) = ‖µ(o)‖(c̃,τ̃) = 1.

Case 3 : There is a putfield instruction at position pp.

We only consider the case where putfield writes a value into an object field. The
case where an integer field is written is similar. So the ITS I has the transition
(s, ψs ∧

∧
x∈V(s̃)\{xõ|õ∈PotPred} x

′ = x ∧
∧
õ∈PotPred xõ+xõf ≥ x′õ ≥ xõ−xof , 1, s̃).

As in Case 1, σ∪σ̃′ satisfies ψs and x′ = x for all x ∈ V(s̃)\{xõ | õ ∈ PotPred},
since the part of the heap that is reachable from µ(õ) in c resp. from µ̃(õ) in c̃
is not modified by the putfield instruction. For õ ∈ PotPred we have

(σ ∪ σ̃′)(x′õ) = σ̃(xõ)

= ‖µ̃(õ)‖(c̃,τ̃)
≥ ‖µ(õ)‖(c,τ) − ‖µ(of)‖(c,τ) (†)
= σ(xõ)− σ(xof)

= (σ ∪ σ̃′)(xõ − xof)
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where in the inequality (†), “≥” can be replaced by “=” if both the following
conditions hold:

• µ(õ) already reaches µ(õf) or µ(õf) is null in c
• µ̃(õ) does not reach µ̃(of) anymore or µ̃(of) is null in c̃

Similarly, we have

(σ ∪ σ̃′)(xõ + xõf) = σ(xõ) + σ(xõf)

= ‖µ(õ)‖(c,τ) + ‖µ(õf)‖(c,τ)
≥ ‖µ̃(õ)‖(c̃,τ̃) (††)
= σ̃(xõ)

= (σ ∪ σ̃′)(x′õ),

where in the inequality (††), “≥” can be replaced by “=” if both the following
conditions hold:

• µ(õ) does not yet reach µ(õf) or µ(õf) is null in c
• µ̃(õ) still reaches µ̃(of) or µ̃(of) is null in c̃

(b): There is a refinement edge from s to s̃.

Let s = (pp, `, op, h, p), s̃ = (pp, `, op, h̃, p̃) and let σ̃(i) = τ(µ̃(i)) for all i ∈
Int(s̃) and σ̃(xo) = ‖µ̃(o)‖(c̃,τ) for all o ∈ Ref(s̃). Note that for refinement
edges, we have Sym(s) ⊆ Sym(s̃).

Now the ITS I has a transition of the form (s, νs,s̃(ψs̃) ∧ ρ, 0, s̃), cf. Def. 13.
We again have to show that σ ∪ σ̃′ satisfies the condition of the transition.

First note that for all x ∈ V(s) we have σ̃(x) = σ(x). The reason is that
since both s and s̃ represent the same concrete state (c, τ) using the witness µ
resp. µ̃, we have µ(x) = µ̃(x) for all x ∈ Sym(s) and hence, σ(i) = τ(µ(i)) =
τ(µ̃(i)) = σ̃(i) for i ∈ Int(s) and σ(xo) = ‖µ(o)‖(c,τ) = ‖µ̃(o)‖(c,τ) = σ̃(xo) for
o ∈ Ref(s).

We first prove that σ ∪ σ̃′ satisfies νs,s̃(ψs̃). As in the proof of Case 1 in
(a), one can show that σ̃ satisfies ψs̃. Every constraint in ψs̃ contains a single
variable of the form xo (i.e., the constraint has one of the forms xo = 0, xo ≥ 1,
or xo ≥ 0). If o ∈ Ref(s̃) \Ref(s), then νs,s̃(xo) = x′o and hence (σ ∪ σ̃′) ◦ νs,s̃
satisfies all constraints about xo as (σ ∪ σ̃′)(νs,s̃(xo)) = σ̃(xo). If o ∈ Ref(s),
then νs,s̃(xo) = xo and hence (σ ∪ σ̃′)(νs,s̃(xo)) = σ(xo). As o ∈ Ref(s) implies
xo ∈ V(s), we have σ̃(xo) = σ(xo) due to the observation above. Thus, as
σ̃ satisfies all constraints in ψs̃, σ and hence (σ ∪ σ̃′) ◦ νs,s̃ also satisfies all
constraints about xo.

Now we show that σ ∪ σ̃′ satisfies ρ. Clearly, for all x ∈ V(s), σ ∪ σ̃′ satisfies
x′ = x due to the observation above. In the case where h̃(o) 6= null for the
symbolic reference o of the object that was refined, o→h̃ õ for õ ∈ Ref(s̃) implies
‖µ(o)‖(c,τ) = ‖µ̃(o)‖(c,τ) ≥ ‖µ̃(õ)‖(c,τ) i.e., σ ∪ σ̃′ satisfies xo ≥ x′õ. Moreover,
this inequality is strict if o! /∈ p, because then µ̃(õ) cannot reach µ(o) = µ̃(o) in
c. Similarly, o →h̃ i for i ∈ Int(s̃) implies ‖µ(o)‖(c,τ) = ‖µ̃(o)‖(c,τ) > |τ(µ̃(i))|
i.e., σ ∪ σ̃′ satisfies xo > i′ > −xo.
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(c): There is a generalization edge from s to s̃.

Due to the prerequisites, µ̃ witnesses sv s̃. As µ witnesses cv s, we immediately
obtain that µ ◦ µ̃ witnesses cv s̃. Let σ̃(i) = τ(µ(µ̃(i))) for all i ∈ Int(s̃) and
σ̃(xo) = ‖µ(µ̃(o))‖(c̃,τ) for all o ∈ Ref(s̃).

The ITS I has the transition (s, ψs∧
∧
x∈V(s̃) x

′ = µ̃(x), 0, s̃). Again, we have

to show that σ ∪ σ̃′ satisfies the condition of the transition.
As in (a), one can show that (σ∪ σ̃′)(ψs) = σ(ψs) is valid. It remains to show

that for all x ∈ V(s̃), we have (σ ∪ σ̃′)(x′) = σ̃(x) = σ(µ̃(x)) = (σ ∪ σ̃′)(µ̃(x)). If
x has the form xo for some o ∈ Ref(s̃), then we have σ̃(xo) = ‖µ(µ̃(o))‖(c̃,τ) =
σ(xµ̃(o)) = σ(µ̃(o)). Similarly, if x is some symbolic integer i ∈ Int(s̃), then
σ̃(i) = τ(µ(µ̃(i))) = σ(µ̃(i)).

(d): There is a summarization edge from s to s̃.

Let σ̃(i) = τ̃(µ̃(i)) for all i ∈ Int(s̃) and σ̃(xo) = ‖µ̃(o)‖(c̃,τ̃) for all o ∈ Ref(s̃).
The ITS I has the transition (s, νs,s̃(ϕ) ∧ ψs ∧

∧
x∈V(s)∩V(s̃) x

′ = x,w, s̃).

We have to show that σ ∪ σ̃′ satisfies the condition of the transition and that
σ(w) ≥ k.

As in the proof of (a), νs,s̃ replaces all i ∈ Int(s̃) \ Int(s) by i′. Hence,
(σ ∪ σ̃′) ◦ νs,s̃ replaces all i ∈ Int(s̃) \ Int(s) by σ̃(i) = τ̃(µ̃(i)) = κ(i) and all
i ∈ Int(s) by σ(i) = τ(µ(i)) = κ(i), since σ corresponds to τ w.r.t. µ. Moreover,
if o ∈ Ref(s̃)\Ref(s), then νs,s̃ replaces xo by x′o and hence, (σ∪σ̃′)◦νs,s̃ replaces
xo by σ̃(xo) = ‖µ̃(o)‖(c̃,τ̃) = κ(xo). Similarly, if o ∈ Ref(s), then νs,s̃(xo) = xo
and hence, (σ ∪ σ̃′) ◦ νs,s̃ replaces xo by σ(xo) = ‖µ(o)‖(c,τ) = κ(xo). As κ(ϕ) is
valid, (σ ∪ σ̃′)(νs,s̃(ϕ)) is valid as well.

The validity of (σ ∪ σ̃′)(ψs) = σ(ψs) can also be shown as in the proof for
(a). It remains to show that σ ∪ σ̃′ satisfies x′ = x for all x ∈ V(s) ∩ V(s̃),
i.e., that we have σ̃(x) = σ(x). As in the proof for (a), this requirement follows
from our definition of evaluation edges, because we use fresh symbolic variables
in s̃ whenever a new value is computed. So for all i ∈ Int(s) ∩ Int(s̃) we have
σ(i) = τ(µ(i)) = τ̃(µ̃(i)) = σ̃(i). Moreover, since we restricted ourselves to
the summarization of methods that do not manipulate the heap, for all o ∈
Ref(s) ∩ Ref(s̃) we obtain σ(xo) = ‖µ(o)‖(c,τ) = ‖µ̃(o)‖(c̃,τ̃) = σ̃(xo). This
means that σ̃(x) = σ(x) indeed holds for all x ∈ V(s) ∩ V(s̃).

Finally, σ(w) ≥ k holds because of the soundness of the weight w. ut

Based on the previous lemma, we can now show that any evaluation step
for concrete JBC states can be simulated in the resulting ITS. Here, we write

(s, σ)
m−→∗I (s̃, σ̃) if (s, σ)

m1−−→I . . .
mn−−→I (s̃, σ̃) and m = m1 + . . .+mn.

Lemma 28 (Simulating JBC Evaluation by ITS Steps). Let P be a JBC
program and let I be the ITS which results from the SE graph for P. Let (c, τ)
be a concrete state, let there be a function µ which witnesses cv s for some state
s in the SE graph, and let the valuation σ correspond to τ w.r.t. µ.

(a) If (c, τ)
jbc−−→P (c̃, τ̃) is a JBC execution step that does not correspond to a

method that was summarized in the SE graph, then there exists an abstract
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state s̃ in the SE graph where some function µ̃ witnesses c̃v s̃ and we have

(s, σ)
1−→∗I (s̃, σ̃) for a valuation σ̃ that corresponds to τ̃ w.r.t. µ̃.

(b) If (c, τ)
jbc−−→k
P (c̃, τ̃) are k JBC execution steps that correspond to the full

execution of a method that was summarized in the SE graph, then there exists
an abstract state s̃ in the SE graph where some function µ̃ witnesses c̃v s̃
and we have (s, σ)

m−→I (s̃, σ̃) for a valuation σ̃ that corresponds to τ̃ w.r.t.
µ̃ and a number m ≥ k.

Proof. For (a), we showed in [5, Thm. 10 & 11] that every such JBC execution

step can be embedded into the SE graph. So there is a path s = s0 −→ . . . −→
sn−1

ϕ−→ sn = s̃ in the SE graph, whose last edge is an evaluation edge and
whose previous n − 1 edges are refinement or generalization edges, such that
for all 0 ≤ j < n there is a witness µj for cv sj , there is a witness µ̃ for
c̃v sn = s̃, and κ(ϕ) is valid, where κ(i) = τ(µn−1(i)) for i ∈ Int(sn−1) and
κ(i) = τ̃(µ̃(i)) for i ∈ Int(sn) \ Int(sn−1). Hence, by Lemma 27 we obtain

(s, σ) = (s0, σ0)
0−→I . . .

0−→I (sn−1, σn−1)
1−→I (sn, σn) = (s̃, σ̃) where for all

0 ≤ j < n, σj corresponds to τ w.r.t. µj , and σn = σ̃ corresponds to τ̃ w.r.t. µ̃.

For (b), the concrete JBC execution (c, τ)
jbc−−→k
P (c̃, τ̃) is represented by a

summarization edge s→ s̃ in the SE graph with size condition ϕ and weight w.
Thus, there is a witness µ̃ for c̃v s̃ and κ(ϕ) is valid, where κ(i) = τ(µ(i)) for
i ∈ Int(s) and κ(i) = τ̃(µ̃(i)) for i ∈ Int(s̃) \ Int(s). By Lemma 27 we obtain

(s, σ)
m−→I (s̃, σ̃) for a valuation σ̃ that corresponds to τ̃ w.r.t. µ̃ and a number

m ≥ k. ut

Now we can prove the main soundness theorem.

Theorem 24 (Soundness Theorem). Let P be a JBC program and I be the
ITS which results from the SE graph for P. Then for all s ∈ State, any com-
plexity bound bI(s) for s in I is also a complexity bound for s in P.

Proof. Let s ∈ State be an arbitrary abstract state and let σ : V → Z be an
arbitrary valuation. Moreover, let (c, τ) be a concrete state where some function
µ witnesses cv s and σ corresponds to τ w.r.t. µ. We show that if (c, τ) starts

an JBC execution of length m with the program P (i.e., (c, τ) = (c0, τ0)
jbc−→P

(c1, τ1)
jbc−→P . . .

jbc−→P (cm, τm)), then we have σ(bI(s)) ≥ m.
W.l.o.g., the JBC execution of (c, τ) should be long enough such that (cm, τm)

is not within any method that has been summarized and is only represented by
summarization edges in the SE graph. One can always continue the JBC execu-
tion of (c, τ) until a return state of this method is reached, as summarization
edges are only permitted for methods with a finite upper runtime bound (i.e.,
for terminating methods).

Then by Lemma 28, we immediately obtain that in the corresponding ITS I,
(s, σ) starts an evaluation of at least weight m, which implies σ(bI(s)) ≥ m. ut
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