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Abstra
t. Kapur and Subramaniam [8℄ de�ned synta
ti
al 
lasses of

equations where indu
tive validity is de
idable. Thus, their validity 
an

be 
he
ked without any user intera
tion and hen
e, this allows an integra-

tion of (a restri
ted form of) indu
tion in fully automated reasoning tools

su
h as model 
he
kers. However, the results of [8℄ were only restri
ted

to equations. This paper extends the 
lasses of 
onje
tures 
onsidered in

[8℄ to a larger 
lass of arbitrary quanti�er-free formulas (e.g., 
onje
tures

also 
ontaining negation, 
onjun
tion, disjun
tion, et
.).

1 Introdu
tion

Indu
tive theorem provers usually require massive manual intervention and they

may waste huge amounts of time on proof attempts whi
h fail due to the in-


ompleteness of the prover. Therefore, indu
tion has not yet been integrated in

fully automated reasoning systems (i.e., model 
he
kers) used for hardware and

proto
ol veri�
ation, stati
 and type analyses, byte-
ode veri�
ation, and proof-


arrying 
odes. Most su
h push-button systems use a 
ombination of de
ision

pro
edures for theories su
h as Presburger arithmeti
, propositional satis�ability,

and data stru
tures in
luding bit ve
tors, arrays, and lists. However, extending

these tools by the 
apability to perform indu
tion proofs would be very desirable,

sin
e indu
tion is frequently needed to reason about stru
tured and parameter-

ized 
ir
uits (e.g., n-bit adders or multipliers), the timing behavior of 
ir
uits

with feedba
k loops, and 
ode using loops and/or re
ursion.

For that reason, Kapur and Subramaniam proposed an approa
h for inte-

grating indu
tion s
hemes suggested by terminating fun
tion de�nitions with

de
ision pro
edures, and gave a synta
ti
al 
hara
terization of a 
lass of equa-

tions where indu
tive validity is de
idable using de
ision pro
edures and the


over set method for me
hanizing indu
tion [8, 11℄. For those equations, indu
-

tion proofs 
an be a

omplished without any user intera
tion and they only fail if

the 
onje
ture is not valid. In Se
tion 2, we give a simple 
hara
terization whi
h

?
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extends the 
lass of de
idable equations in [8℄. Subsequently, we further extend

the approa
h to arbitrary quanti�er-free formulas, i.e., we de�ne 
lasses of su
h

formulas where indu
tive validity is de
idable. The 
ru
ial 
on
ept for this 
har-

a
terization are so-
alled 
orre
tness predi
ates. For a quanti�er-free 
onje
ture

', 


'

is a 
orre
tness predi
ate i� for any tuple of (
onstru
tor) ground terms

q

�

, the truth of 


'

(q

�

) implies the truth of '[x

�

=q

�

℄ (
f. [6, 9℄). We present a

te
hnique for automati
ally generating 
orre
tness predi
ates in Se
tion 3.

The truth of a 
orre
tness predi
ate is only suÆ
ient, but not ne
essary for

the truth of the 
orresponding 
onje
ture. In Se
tion 4 we examine for whi
h

equations ' the 
orre
tness predi
ate is exa
t (i.e., the truth of 


'

(q

�

) is both

suÆ
ient and ne
essary for the truth of '[x

�

=q

�

℄). We develop a 
hara
terization

to re
ognize (a sub
lass of) these equations automati
ally. In Se
tion 5 we show

that the use of exa
t 
orre
tness predi
ates allows us to extend the de
idable


lasses of indu
tive theorems from equations to arbitrary quanti�er-free formulas.

Our results are also useful for 
onventional indu
tive theorem provers sin
e

exa
t 
orre
tness predi
ates 
an be used to simplify the proof of 
onje
tures like

double(y) = y ) y = 0 where indu
tive provers would fail otherwise.

Even though the paper fo
uses on 
onstru
tor systems and the de
idable

theory of quanti�er-free formulas on free 
onstru
tors, we believe the approa
h

extends to other de
idable theories T as well (e.g., Presburger arithmeti
).

2 Equations where Indu
tive Validity is De
idable

We use term rewrite systems R (TRSs) as our programming language [1℄. In a

TRS, all root symbols of left-hand sides are 
alled de�ned and all other fun
tion

symbols of R are 
onstru
tors. We only 
onsider 
onstru
tor systems (CSs),

i.e., TRSs where the left-hand sides 
ontain no de�ned symbols below the root

position, even though most of the results in this paper generalize to more general

theory-based systems, 
alled T -based systems in [8℄, with a de
idable theory T ,

in whi
h arguments to de�ned symbols are terms from T . Moreover, we restri
t

ourselves to (ground-)
onvergent and suÆ
iently 
omplete CSs R, i.e., for every

ground term t there exists a unique 
onstru
tor ground term q su
h that t!

�

R

q.

(A term 
ontaining only variables and 
onstru
tors is 
alled a 
onstru
tor term;

a 
onstru
tor term without variables is a 
onstru
tor ground term.)

For indu
tion proofs, we use the 
on
ept of 
over sets [7, 11℄. A 
over set is a

�nite set of pairs C = fhs

�

1

; ft

�

1;1

; : : : ; t

�

1;n

1

gi; : : : ; hs

�

m

; ft

�

m;1

; : : : ; t

�

m;n

m

gig, where

s

�

i

and t

�

i;j

are n-tuples of terms (for some n � 0). C is 
omplete if for every

n-tuple q

�

of 
onstru
tor ground terms, there is an s

�

i

and a substitution � su
h

that s

�

i

� = q

�

. Every 
over set C indu
es a relation <

C

on tuples of 
onstru
tor

ground terms: p

�

<

C

q

�

i� there exists a pair hs

�

i

; ft

�

i;1

; : : : ; t

�

i;n

i

gi 2 C su
h that

s

�

i

� = q

�

and t

�

i;j

� !

�

R

p

�

. C is 
alled well-founded i� <

C

is well founded.

1

A quanti�er-free formula ' is indu
tively valid (or \valid" for short), denoted

\R j=

ind

'", i� 8y

�

' holds in the initial model of the equations of R (where y

�

1

<

C

is well founded if there exists no in�nite sequen
e : : : t

3

<

C

t

2

<

C

t

1

<

C

t

0

.

2



are the variables in ').

2

For example, 
onsider the following CS:

half(0) ! 0; half(s(0)) ! 0; half(s(s(x))) ! s(half(x)):

This fun
tion de�nition suggests the 
over set C

half

= fh0;?i; hs(0);?i;

hs(s(x)); fxgig. To prove ' by indu
tion w.r.t. C

half

(using the indu
tion vari-

able y), one obtains the base formulas '[y=0℄ and '[y=s(0)℄ and the step formula

'[y=x℄) '[y=s(s(x))℄. Here, '[y=x℄ is the indu
tion hypothesis and '[y=s(s(x))℄

is the indu
tion 
on
lusion. When proving a 
onje
ture ' 
ontaining a term

f(y

1

; : : : ; y

n

), a su

essful heuristi
 for the 
hoi
e of an indu
tion relation is to

perform indu
tion w.r.t. C

f

using the indu
tion variables y

1

; : : : ; y

n

, 
f. [2, 11℄.

Kapur and Subramaniam [8℄ 
hara
terized 
lasses of equations where indu
-

tive validity is de
idable (the de
ision pro
edure 
onsists of an indu
tion proof

attempt w.r.t. a parti
ular 
over set). The observation is that if ea
h indu
tion

formula built a

ording to some 
over set C only 
ontains terms from an under-

lying de
idable theory, then validity of the original 
onje
ture 
an be de
ided.

Def. 1 and Thm. 2 apply to general T -based systems, but due to la
k of

spa
e, we fo
us on the de
idable quanti�er-free theory of free 
onstru
tors in

this paper. Here, r[s

�

℄ abbreviates r[y

�

=s

�

℄ where y

�


ontains all variables in r.

De�nition 1 (C-provability). Let R be a 
onvergent suÆ
iently 
omplete CS

and let C be a 
omplete well-founded 
over set. An equation r

1

= r

2

is C-provable

w.r.t. R i� r

2

is a 
onstru
tor term, for every hs

�

i

; ft

�

i;1

; : : : ; t

�

i;n

gi 2 C, s

�

i

and all

t

�

i;j

are tuples of 
onstru
tor terms, and there exists a 
onstru
tor term 
ontext

C

i

su
h that r

1

[s

�

i

℄!

�

R

C

i

[r

1

[t

�

i;1

℄; : : : ; r

1

[t

�

i;n

℄℄.

As an example, let us extend the CS for half by the rules double(0)! 0 and

double(s(x)) ! s(s(double(x))). Then the equation double(half(y)) = y is C

half

-

provable. As required, the term y is a 
onstru
tor term. Moreover, we obtain

r

1

[s

1

℄ = double(half(0)) !

�

R

0 and thus,C

1

= 0;

r

1

[s

2

℄ = double(half(s(0))) !

�

R

0 and thus,C

2

= 0;

r

1

[s

3

℄ = double(half(s(s(x))))!

�

R

s(s(double(half(x)))) and thus,C

3

= s(s(�)):

Sin
e C-provability is de
idable, Def. 1 
hara
terizes a de
idable 
lass of 
on-

je
tures. Instead of 
he
king C-provability dire
tly, several suÆ
ient 
onditions

for C-provability were given in [8℄. We obtain the following theorem.

Theorem 2 (De
idability of indu
tive validity for equations). Let R be

a 
onvergent suÆ
iently 
omplete CS, let C be a 
omplete well-founded 
over set,

and let r

1

= r

2

be a C-provable equation. Then indu
tive validity of r

1

= r

2

is

de
idable (by attempting an indu
tion proof w.r.t. C).

Proof. The de
ision pro
edure works by 
onstru
ting the formulas

C

i

[r

2

[t

�

i;1

℄; : : : ; r

2

[t

�

i;n

℄℄ = r

2

[s

�

i

℄ (1)

2

R j=

ind

' means that for all 
onstru
tor ground terms q

�

, '[y

�

=q

�

℄ follows from R's

equations and axioms stating that di�erent 
onstru
tor ground terms are not equal.

3



for all hs

�

i

; ft

�

i;1

; : : : ; t

�

i;n

gi 2 C. As these equations only 
ontain 
onstru
tor

terms, their validity is de
idable.

It turns out that r

1

= r

2

is valid i� all these equations are valid. For the

\if"-dire
tion, noti
e that (1) implies the indu
tion formula

r

1

[t

�

i;1

℄ = r

2

[t

�

i;1

℄ ^ : : : ^ r

1

[t

�

i;n

℄ = r

2

[t

�

i;n

℄ ) r

1

[s

�

i

℄ = r

2

[s

�

i

℄:

Thus, the validity of r

1

= r

2

follows by Noetherian indu
tion. For the \only

if"-dire
tion, note that the validity of r

1

= r

2

implies the validity of (1). ut

Sin
e double(half(y)) = y is C

half

-provable, the above de
ision pro
edure 
an

determine its validity. It has to 
he
k the validity of the equations

C

1

[r

2

[t

1

℄℄ = r

2

[s

1

℄; i.e., 0 = 0; (2)

C

2

[r

2

[t

2

℄℄ = r

2

[s

2

℄; i.e., 0 = s(0); (3)

C

3

[r

2

[t

3

℄℄ = r

2

[s

3

℄; i.e., s(s(x)) = s(s(x)): (4)

Sin
e these equations only 
ontain 
onstru
tor terms, their validity is de
idable.

(Obviously, su
h an equation is valid i� both terms in the equation are synta
ti-


ally identi
al.) While (2) and (4) are valid, the se
ond equation (3) is not valid

and thus, the 
onje
ture double(half(y)) = y is not valid either.

Our aim is to extend the result of Thm. 2 to more general formulas (i.e., not

just equations), provided that all equations in these formulas are C-provable.

For example, we would like to 
onsider formulas like double(half(y)) = y )

even(y) = true or double(y) = y ) y = 0. Equations appearing in these formulas

are neither valid nor unsatis�able; 
onsequently, there is a need to 
hara
terize

the subset of instantiations for the variables for whi
h these equations are true.

For this extension, we need the notion of 
orre
tness predi
ates.

3 Corre
tness Predi
ates

We present a te
hnique whi
h automati
ally generates algorithms for so-
alled


orre
tness predi
ates 


'

for equations '. For any tuple of 
onstru
tor ground

terms q

�

, the truth of 


'

(q

�

) implies that '[y

�

=q

�

℄ is valid. Our de�nition of


orre
tness predi
ates is similar to the de�nitions of [6, 9℄, but its form is quite

restri
ted sin
e we are interested in ensuring that validity of 
orre
tness predi-


ates is de
idable and that exa
t 
orre
tness predi
ates 
an be generated whi
h


ompletely 
hara
terize the domain of values on whi
h the 
onje
ture holds.

We have seen that the proof of the 
onje
ture double(half(y)) = y 
an be

attempted by indu
tion w.r.t. the 
over set C

half

. If y = 0, the 
onje
ture 
an

be redu
ed to the equation (2) whi
h is always true. In the 
ase y = s(0) we

obtain the equation (3) whi
h is always false. Finally, in the step 
ase where

y = s(s(x)), we have to prove that the indu
tion hypothesis double(half(x)) = x

implies the indu
tion 
on
lusion double(half(s(s(x)))) = s(s(x)). As shown in

Se
tion 2, double(half(s(s(x)))) evaluates to s(s(double(half(x)))). Due to the

indu
tion hypothesis, we 
an repla
e the subterm double(half(x)) by x. Thus,

4



we obtain the equation (4) (whi
h is always true). Hen
e, provided that the

indu
tion hypothesis is valid, the indu
tion 
on
lusion would also be valid. This

gives rise to the following rules for the 
orre
tness predi
ate 


double(half(y))=y

:




double(half(y))=y

(0)! true; (5)




double(half(y))=y

(s(0))! false; (6)




double(half(y))=y

(s(s(x)))! 


double(half(y))=y

(x): (7)

Thus, we have synthesized the even algorithm. Note that the rule (7) is stronger

than the following rule one would have gotten from the above analysis:




double(half(y))=y

(s(s(x)))! true if 


double(half(y))=y

(x):

Sin
e we want to generate un
onditional rewrite rules for the de�nition of 
or-

re
tness predi
ates and to synthesize a 
omplete de�nition, we use the form (7).

As a result, the 
orre
tness predi
ate so generated may not be exa
t, and hen
e,

provides only a suÆ
ient 
ondition for the 
onje
ture to be valid.

In general, to prove a C-provable equation r

1

= r

2

w.r.t. a 
over set C,

for ea
h pair hs

�

i

; ft

�

i;1

; : : : ; t

�

i;n

i

gi 2 C we must 
he
k whether the equation

C

i

[r

2

[t

�

i;1

℄; : : : ; r

2

[t

�

i;n

℄℄ = r

2

[s

�

i

℄ is valid, 
f. Equation (1) in the proof of Thm.

2. In order to obtain 
orre
tness predi
ates as simple as the ones above, we have

to demand that these equations are either valid for all instantiations or for none.

This ensures that the right-hand sides of the rules for 
orre
tness predi
ates only

have the form true, false, or re
ursive 
alls of 
orre
tness predi
ates.

De�nition 3 (Radi
al equations). Let R be a 
onvergent suÆ
iently 
om-

plete CS and let C = fhs

�

1

; ft

�

1;1

; : : : ; t

�

1;n

1

gi; : : : ; hs

�

m

; ft

�

m;1

; : : : ; t

�

m;n

m

gig be a


omplete well-founded 
over set. An equation r

1

= r

2

is radi
al under C i�

r

1

= r

2

is a C-provable equation where r

1

[s

�

i

℄ !

�

R

C

i

[r

1

[t

�

i;1

℄; : : : ; r

1

[t

�

i;n

i

℄℄ for a


onstru
tor term 
ontext C

i

and for all 1 � i � m we have

R j=

ind

C

i

[r

2

[t

�

i;1

℄; : : : ; r

2

[t

�

i;n

i

℄℄℄ = r

2

[s

�

i

℄ or

R j=

ind

:C

i

[r

2

[t

�

i;1

℄; : : : ; r

2

[t

�

i;n

i

℄℄℄ = r

2

[s

�

i

℄:

Note that sin
e all C

i

, s

�

i

, and t

�

i

are 
onstru
tor terms, it is de
idable whether

a C-provable equation is radi
al. The reason is that one only has to 
he
k whether

an equation between two 
onstru
tor terms is valid or unsatis�able. Obviously,

su
h an equation is unsatis�able i� the two terms are not uni�able. For instan
e,

the equation double(half(y)) = y is radi
al under C

half

sin
e the terms in the

equations (2) - (4) are either identi
al or not uni�able.

To ease the presentation, we will now restri
t ourselves to 
over sets where

there is at most one indu
tion hypothesis for every indu
tion step 
ase.

3

Thus,

3

The de�nition of 
orre
tness predi
ates 
an be easily generalized to the 
ase of mul-

tiple indu
tion hypotheses. In fa
t, 
orre
tness predi
ates 
an be de�ned for arbitrary

equations, i.e., they do not have to be C-provable or radi
al as required in this paper.

However, these requirements are ne
essary in order to generate exa
t 
orre
tness

predi
ates 


'

for arbitrary 
onje
tures ', su
h that validity of 


'

is de
idable.

5



we only 
onsider 
over sets with pairs hs

�

i

; ft

�

i;1

; : : : ; t

�

i;n

i

gi where 0 � n

i

� 1.

Then we obtain the following de�nition of 
orre
tness predi
ates.

De�nition 4 (Corre
tness Predi
ate). Let R, C, r

1

= r

2

be as in Def. 3

where 0 � n

i

� 1 for all 1 � i � m and let r

1

= r

2

be radi
al under C. Then the


orre
tness predi
ate 


r

1

=r

2

under C is de�ned by the following rules:




r

1

=r

2

(s

�

i

)!

�

true; if R j=

ind

C

i

= r

2

[s

�

i

℄ and n

i

= 0; (8)

false; if R j=

ind

:C

i

= r

2

[s

�

i

℄ and n

i

= 0; (9)




r

1

=r

2

(s

�

i

)!

�




r

1

=r

2

(t

�

i;1

); if R j=

ind

C

i

[r

2

[t

�

i;1

℄℄ = r

2

[s

�

i

℄ and n

i

= 1; (10)

false; if R j=

ind

:C

i

[r

2

[t

�

i;1

℄℄ = r

2

[s

�

i

℄ and n

i

= 1: (11)

Thm. 5 proves that a 
orre
tness predi
ate indeed represents a suÆ
ient, but

not a ne
essary 
ondition for the soundness of the 
orresponding equation.

Theorem 5 (Corre
tness predi
ates are suÆ
ient, but not ne
essary).

Let R, C, r

1

= r

2

be as in Def. 4. Let 


r

1

=r

2

be a 
orre
tness predi
ate for r

1

= r

2

under C and let R also 
ontain the rules de�ning 


r

1

=r

2

. Then we have

(a) R j=

ind




r

1

=r

2

(y

�

) = true) r

1

= r

2

.

(b) In general, we have R 6j=

ind

r

1

= r

2

) 


r

1

=r

2

(y

�

) = true.

Proof.

(a) Let q

�

be a tuple of 
onstru
tor ground terms su
h that R j=

ind




r

1

=r

2

(q

�

) =

true. We prove R j=

ind

r

1

[q

�

℄ = r

2

[q

�

℄ by indu
tion w.r.t. <

C

. Due to the


ompleteness of the 
over set, there exists some hs

�

; ft

�

1

; : : : ; t

�

n

gi 2 C and

some substitution � su
h that q

�

= s

�

� and sin
e r

1

= r

2

is C-provable (due

to its radi
ality), we have R j=

ind

r

1

[s

�

℄ = C[r

1

[t

�

1

℄; : : : ; r

1

[t

�

n

℄℄.

If n = 0, then we also have R j=

ind

C = r

2

[s

�

℄ and thus R j=

ind

r

1

[s

�

℄ =

r

2

[s

�

℄. If n = 1, we have R j=

ind

C[r

2

[t

�

1

℄℄ = r

2

[s

�

℄ and R j=

ind




r

1

=r

2

(t

�

1

�) =

true. The indu
tion hypothesis yields R j=

ind

r

1

[t

�

1

�℄ = r

2

[t

�

1

�℄. From the

validity of r

1

[s

�

℄ = C[r

1

[t

�

1

℄℄ and C[r

2

[t

�

1

℄℄ = r

2

[s

�

℄, R j=

ind

r

1

[s

�

�℄ = r

2

[s

�

�℄.

(b) Consider the equation half(y) = s(0) and indu
tion w.r.t. the 
over set C

half

.

In the base 
ases y = 0 and y = s(0) the resulting 
onje
ture 0 = s(0) is

unsatis�able and in the step 
ase, the indu
tion 
on
lusion half(s(s(x))) =

s(0) 
an be evaluated to s(half(x)) = s(0). Applying the indu
tion hypothesis

half(x) = s(0) yields s(s(0)) = s(0) whi
h is unsatis�able. So the equation

half(y) = s(0) is radi
al under C

half

and we obtain the rules 


half(y)=s(0)

(0)!

false, 


half(y)=s(0)

(s(0))! false, and 


half(y)=s(0)

(s(s(x)))! false. So 


half(y)=s(0)

is always false, but half(y) = s(0) holds for s

2

(0) and s

3

(0). ut

In fa
t, a 
orre
tness predi
ate 


'

(q

�

) yields true i� the equation ' holds for

both q

�

and for all arguments p

�

whi
h are smaller than q

�

w.r.t. the indu
tion

relation indu
ed by the 
over set. For that reason, the 
orre
tness predi
ate




half(y)=s(0)

returns false for the arguments s

2

(0) and s

3

(0) although the 
onje
ture

is true, sin
e it is false for the smaller arguments 0 and s(0).
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4 Conje
tures with Exa
t Corre
tness Predi
ate

In this se
tion we 
hara
terize equations r

1

= r

2

where the 
orre
tness predi
ate




r

1

=r

2

is exa
t, i.e., for all q

�

, 


r

1

=r

2

(q

�

) is true i� R j=

ind

r

1

[q

�

℄ = r

2

[q

�

℄.

Exa
tness is ensured if in Def. 4, whenever Rule (10) is used, the indu
tion


on
lusion r

1

[s

�

i

℄ = r

2

[s

�

i

℄ is equivalent to r

1

[t

�

i;1

℄ = r

2

[t

�

i;1

℄. As we have seen in

Se
t. 3, 


r

1

=r

2

(q

�

) only returns true if r

1

= r

2

is true for q

�

and for all p

�

smaller

than q

�

w.r.t. the indu
tion relation indu
ed by the 
over set. Thus, 


r

1

=r

2

is only

exa
t if r

1

[q

�

℄ = r

2

[q

�

℄ implies the validity of r

1

[p

�

℄ = r

2

[p

�

℄ for all arguments

p

�

<

C

q

�

. So 


r

1

=r

2

only des
ribes the exa
t set of instantiations where r

1

= r

2

is valid, if ea
h indu
tion 
on
lusion implies all its indu
tion hypotheses.

Consider again the proof of double(half(y)) = y by indu
tion w.r.t. C

half

. We

obtain the indu
tion 
on
lusion double(half(s(s(x)))) = s(s(x)) and the indu
tion

hypothesis double(half(x)) = x. Indeed, this 
onje
ture has the desired property

R j=

ind

double(half(s(s(x)))) = s(s(x)) ) double(half(x)) = x: (12)

To see this, note that in the �rst base 
ase where y = 0, the left-hand side

double(half(0)) evaluates to 0, whi
h is smaller than or equal to the right-hand

side 0 (if terms are 
ompared by the subterm relation, for example). Similarly,

in the se
ond base 
ase where y = s(0), the left-hand side evaluates to 0, whi
h

is again smaller than or equal to the right-hand side s(0). In the step 
ase, the

left hand side of the indu
tion 
on
lusion 
an be evaluated to

s(s(double(half(x)))) = s(s(x)):

This evaluated indu
tion 
on
lusion 
ontains the indu
tion hypothesis, sin
e the

underlined terms are the terms on both sides of the indu
tion hypothesis. (This

observation also forms the basis of the rippling te
hnique [3℄.) Thus, when going

from the indu
tion hypothesis to the indu
tion 
on
lusion, both sides of the

equation grow by the 
ontext s(s(�)). In other words, in the indu
tion base 
ases

the left-hand side is at most as great as the right-hand side and afterwards, the

left-hand side always grows at most as mu
h as the right-hand side. Thus, if one

ever rea
hes an instantiation t where double(half(t)) = t is no longer true, then

the reason is that double(half(t)) is smaller then t. But sin
e double(half(y))

grows at most as fast as y, afterwards there 
an never be a number s >

C

half

t where double(half(s)) = s is true again. Hen
e, if the indu
tion hypothesis

double(half(x)) = x is false, then the indu
tion 
on
lusion double(half(s(s(x)))) =

s(s(x)) is false as well (or, formulated as a 
ontraposition, we have Property (12)).

The observation above leads to a general 
riterion. For many C-provable

equations r

1

= r

2

, one does not only have r

1

[s

�

i

℄!

�

R

C

i

[r

1

[t

�

i;1

℄; : : : ; r

1

[t

�

i;n

i

℄℄ for

all hs

�

i

; ft

�

i;1

; : : : ; t

�

i;n

i

gi 2 C, but also r

2

[s

�

i

℄ = D

i

[r

2

[t

�

i;1

℄; : : : ; r

2

[t

�

i;n

i

℄℄ for some


onstru
tor ground 
ontexts C

i

and D

i

.

In our example, r

1

is double(half(y)) and r

2

is the term y. For the �rst pair of

the 
over set C

half

, we have C

1

= 0 and D

1

= 0 and for the se
ond pair we have

C

2

= 0 and D

2

= s(0). For the third pair, we have r

1

[s

�

3

℄ = double(half(s(s(x)))),

7



whi
h 
an be evaluated to s(s(double(half(x)))) and as t

�

3;1

= x, we obtain C

3

=

s(s(�)). Sin
e r

2

[s

�

3

℄ = s(s(x)), we also have D

3

= s(s(�)).

So r

1

grows by the 
ontext C

i

and r

2

grows by the 
ontextD

i

when going from

the indu
tion hypothesis r

1

[t

�

i;1

℄ = r

2

[t

�

i;1

℄ to the indu
tion 
on
lusion r

1

[s

�

i

℄ =

r

2

[s

�

i

℄. Our aim is to ensure that whenever r

1

and r

2

are no longer R-equal for

some instantiation, then they will never be
ome equal again for arguments whi
h

are greater w.r.t. the indu
tion relation indu
ed by the 
over set. A suÆ
ient

requirement for this is that the 
ontexts C

i

added around r

1

are always at

most as big as the 
ontexts D

i

added around r

2

. To 
ompare these 
ontexts

one 
an use an arbitrary ordering � on 
onstru
tor terms, i.e., any relation

whi
h is transitive and irre
exive. Moreover, we require � to be monotoni
 (i.e.,

s � t implies f(: : : s : : :) � f(: : : t : : :) for all 
onstru
tors f) and stable under

substitutions (i.e., s � t implies s� � t�). Then we only have to demand

C

i

[x

�

℄ � D

i

[x

�

℄ for all 1 � i � m.

As usual, \�" denotes the union of \�" and \=" where \=" is synta
ti
 equality.

Note that one may use any well-established te
hnique for the generation of

well-founded orderings su
h as the subterm ordering or the re
ursive path order-

ing <

rpo

(
f. e.g. [5, 10℄) to synthesize a suitable ordering � satisfying the above


onstraints. Moreover, sin
e � only has to be irre
exive, but not ne
essarily well

founded, one 
an also use any ordering > whi
h results from the reversal of su
h

a well-founded ordering < (e.g., the superterm ordering or >

rpo

).

In our example we need a well-founded monotoni
 stable ordering � where

C

1

= 0 � 0 = D

1

;

C

2

= 0 � s(0) = D

2

;

C

3

[x℄ = s(s(x)) � s(s(x)) = D

3

[x℄:

Su
h an ordering 
an easily found by standard te
hniques for automated termi-

nation proofs. For example, the 
onstraints are satis�ed by the subterm ordering.

Thus, one 
an automati
ally determine that double(half(y)) = y is a 
onje
ture

whose 
orre
tness predi
ate is exa
t. As 


double(half(y))=y

is only true for even

numbers, we have shown that indeed this 
onje
ture is false for all odd ones.

In general, if r

1

= r

2

is an equation and C is a 
over set su
h that the

above 
onditions are satis�ed by some ordering �, then we say that r

1

= r

2

maintains � under the 
over set C w.r.t. the underlying CS R. The reason is

that the relation � between r

1

and r

2

is indeed maintained when going from

an indu
tion hypothesis to an indu
tion 
on
lusion. By using established (and

de
idable 
lasses of) well-founded orderings � from the area of term rewrite sys-

tems one immediately obtains a synta
ti
al suÆ
ient 
ondition for maintenan
e

of orderings, whi
h 
an easily be 
he
ked automati
ally.

De�nition 6 (Maintenan
e of orderings). Let R be a 
onvergent suÆ
iently


omplete CS and let C = fhs

�

1

; ft

�

1;1

; : : : ; t

�

1;n

1

gi; : : : ; hs

�

m

; ft

�

m;1

; : : : ; t

�

m;n

m

gig be

a 
omplete well-founded 
over set (where 0 � n

i

� 1 for all 1 � i � m). Let
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r

1

= r

2

be C-provable and let C

i

and D

i

be 
onstru
tor ground 
ontexts where

r

1

[s

�

i

℄!

�

R

C

i

[r

1

[t

�

i;1

℄; : : : ; r

1

[t

�

i;n

i

℄℄ and

r

2

[s

�

i

℄ = D

i

[r

2

[t

�

i;1

℄; : : : ; r

2

[t

�

i;n

i

℄℄:

Let � be a monotoni
 ordering on 
onstru
tor terms whi
h is stable under sub-

stitutions. We say r

1

= r

2

maintains � under the 
over set C w.r.t. R i�

C

i

[x

�

℄ � D

i

[x

�

℄ for all 1 � i � m.

The following lemma proves that for equations whi
h maintain an ordering,

ea
h indu
tion 
on
lusion indeed implies its indu
tion hypothesis.

Lemma 7 (Equations where the reverse indu
tion formulas hold). Let

R, C, � be as in Def. 6 and let r

1

= r

2

maintain � under C w.r.t. R. Then for

all 1 � i � m with n

i

= 1, R j=

ind

r

1

[s

�

i

℄ = r

2

[s

�

i

℄ ) r

1

[t

�

i;1

℄ = r

2

[t

�

i;1

℄.

Proof. We �rst show that for all 
onstru
tor ground terms q

�

, we have

r

1

[q

�

℄#

R

� r

2

[q

�

℄: (13)

The proof of (13) is done by indu
tion w.r.t. <

C

. Due to the 
ompleteness of

C, there must be a pair hs

�

i

; ft

�

i;1

; : : : ; t

�

i;n

i

gi 2 C su
h that s

�

i

� = q

�

. If n

i

= 0,

then we have r

1

[q

�

℄#

R

= r

1

[s

�

i

�℄#

R

= C

i

� D

i

= r

2

[s

�

i

�℄ = r

2

[q

�

℄.

Otherwise, if n

i

= 1, we have r

1

[q

�

℄ #

R

= r

1

[s

�

i

�℄ #

R

= C

i

[r

1

[t

�

i;1

�℄ #

R

℄ �

C

i

[r

2

[t

�

i;1

�℄℄ by the indu
tion hypothesis and monotoni
ity and stability of �.

Furthermore, C

i

[r

2

[t

�

i;1

�℄℄ � D

i

[r

2

[t

�

i;1

�℄℄ = r

2

[s

�

i

�℄ = r

2

[q

�

℄: So (13) is proved.

Now we 
an prove Lemma 7. Let � substitute all variables of s

�

i

by 
onstru
tor

ground terms su
h that R j=

ind

r

1

[s

�

i

�℄ = r

2

[s

�

i

�℄. We assume that R 6j=

ind

r

1

[t

�

i;1

�℄ = r

2

[t

�

i;1

�℄. By (13) we must have r

1

[t

�

i;1

�℄#

R

� r

2

[t

�

i;1

�℄ and sin
e the

R-normal forms of r

1

[t

�

i;1

�℄ and r

2

[t

�

i;1

�℄ are di�erent by assumption this in fa
t

implies r

1

[t

�

i;1

�℄#

R

� r

2

[t

�

i;1

�℄. Sin
e � is monotoni
 and stable we have

r

1

[s

�

i

�℄#

R

= C

i

[r

1

[t

�

i;1

�℄#

R

℄ � C

i

[r

2

[t

�

i;1

�℄℄ � D

i

[r

2

[t

�

i;1

�℄℄ = r

2

[s

�

i

�℄:

But this 
ontradi
ts R j=

ind

r

1

[s

�

i

�℄ = r

2

[s

�

i

�℄ by the irre
exivity of �. ut

Now we prove that if r

1

= r

2

maintains an ordering, then 


r

1

=r

2

is indeed exa
t.

Theorem 8 (Equations where the 
orre
tness predi
ate is exa
t). Let

R, C, � be as in Def. 6 and let r

1

= r

2

be an equation whi
h is radi
al and main-

tains some ordering � under C w.r.t. R. Moreover, let 


r

1

=r

2

be a 
orre
tness

predi
ate for r

1

= r

2

under C and let R also 
ontain the rules de�ning 


r

1

=r

2

.

Then R j=

ind

r

1

= r

2

, 


r

1

=r

2

(y

�

) = true.

4

4

A more general version of this theorem 
an be proved in whi
h a 
onje
ture does

not have to be radi
al, and further, it is not ne
essary for the indu
tion s
heme of a


over set to have at most one indu
tion hypothesis in every subgoal.
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Proof. Due to Thm. 5 (a) we only have to prove R j=

ind

r

1

[q

�

℄ = r

2

[q

�

℄ )




r

1

=r

2

(q

�

) = true for all 
onstru
tor ground term tuples q

�

. Again, we use in-

du
tion on <

C

. Let R j=

ind

r

1

[q

�

℄ = r

2

[q

�

℄.

By the 
ompleteness of C, there exists some hs

�

; ft

�

1

; : : : ; t

�

n

gi 2 C and some

substitution � su
h that q

�

= s

�

�. If n = 0, then we have the rule 


r

1

=r

2

(s

�

)!

true sin
e the rule 


r

1

=r

2

(s

�

)! false would only be generated ifR j=

ind

:r

1

[s

�

℄ =

r

2

[s

�

℄. This implies R j=

ind




r

1

=r

2

(q

�

) = true.

Otherwise, if n = 1, by Lemma 7 the truth of r

1

[s

�

i

�℄ = r

2

[s

�

i

�℄ implies

R j=

ind

r

1

[t

�

i;1

�℄ = r

2

[t

�

i;1

�℄. So R j=

ind




r

1

=r

2

(t

�

i;1

�) by the indu
tion hypothesis.

By the rule 


r

1

=r

2

(s

�

)! 


r

1

=r

2

(t

�

1

), we obtain R j=

ind




r

1

=r

2

(s

�

i

�) = true. ut

Let us 
onsider the 
ounterexample of Thm. 5 (b) again. When trying to

prove half(y) = s(0), we obtain C

1

= 0, D

1

= s(0) and C

2

= 0, D

2

= s(0).

In the step 
ase, the left-hand side half(s(s(x))) evaluates to s(half(x)), i.e., we

have C

3

= s(�), whereas D

3

= �. There does not exist an ordering � su
h that

C

i

[x

�

℄ � D

i

[x

�

℄ for all i, sin
e C

1

� D

1

would imply 0 � s(0) and C

3

[0℄ � D

3

[0℄

would imply s(0) � 0 whi
h 
ontradi
ts the transitivity and irre
exivity of �.

Thus, half(y) = s(0) does not maintain any ordering under C

half

and indeed, its


orre
tness predi
ate is not exa
t as shown in Thm. 5 (b).

The above analysis of exa
tness of 
orre
tness predi
ates 
an be useful for

�xing faulty 
onje
tures, an obje
tive for whi
h 
orre
tness predi
ates were intro-

du
ed by Protzen [9℄. Sin
e an exa
t 
orre
tness predi
ate pre
isely 
hara
terizes

all instantiations on whi
h the faulty 
onje
ture is true, it 
an be used to �x the

faulty 
onje
ture into the \strongest theorem" possible.

5 Conje
tures where Indu
tive Validity is De
idable

Now we extend Thm. 2 from equations to arbitrary quanti�er-free formulas '. We

require that all equations r

1

= r

2

o

urring in ' are radi
al and maintain some

ordering under the same 
over set C.

5

Then by Thm. 8 their 
orre
tness predi-


ates 


r

1

=r

2

are sound and exa
t. For example, half(y) = 0 is radi
al and main-

tains the superterm ordering under C

half

. We obtain the 
orre
tness predi
ate




half(y)=0

(0) ! true; 


half(y)=0

(s(0)) ! true; 


half(y)=0

(s(s(x))) ! false:

The last rule is due to the fa
t that the instantiated left-hand side half(s(s(x)))

evaluates to s(half(x)) and the repla
ement of the subterm half(x) a

ording to

the indu
tion hypothesis yields the equation s(0) = 0 whi
h is unsatis�able.

5

Di�erent equations in a 
onje
ture may have to be proved using di�erent 
over

sets; these 
over sets 
an often be 
ombined into a single 
over set to generate a

single indu
tion s
heme using merging and instantiation (
f. [2, 7℄). Further, it is

not ne
essary for di�erent equations to maintain the same monotoni
 ordering. For

instan
e, in the running example of this se
tion two di�erent orderings are used in

a 
onje
ture.
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Given a 
orre
tness predi
ate 


'

, we 
an generate 


:'

by repla
ing the result

true by false and the result false by true whereas right-hand sides of the form




'

(t

�

) are repla
ed by 


:'

(t

�

). In the above example this yields




:half(y)=0

(0) ! false; 


:half(y)=0

(s(0)) ! false; 


:half(y)=0

(s(s(x))) ! true:

This 
orre
tness predi
ate is sound and exa
t for the 
onje
ture :half(y) = 0.

As stated before, exa
t 
orre
tness predi
ates 
an also be generated for non-

radi
al equations, as well as for equations whose validity is de
ided using indu
-

tion s
hemes with multiple indu
tion hypotheses. Thus, indu
tive validity of a

mu
h larger 
lass of literals (equations and negated equations) 
an be de
ided

using arbitrary well-founded 
omplete 
over sets without the requirement of rad-

i
ality. The restri
tions to radi
al equations and to indu
tion s
hemes involving

at most one indu
tion step in every subgoal are needed only for the de
idability

of 
onjun
tions and disjun
tions of 
onje
tures as dis
ussed below.

Given 


'

1

and 


'

2

, a straightforward idea to obtain rules for 


'

1

^'

2

is as

follows: If we have the rule 


'

i

(s

�

) ! false for some i 2 f1; 2g, then we also

obtain the rule 


'

1

^'

2

(s

�

) ! false. If we have the rules 


'

i

(s

�

) ! true for

both i 2 f1; 2g, then we obtain 


'

1

^'

2

(s

�

) ! true. Finally, if we have the rule




'

i

(s

�

) ! 


'

i

(t

�

) and either 


'

j

(s

�

) ! 


'

j

(t

�

) or 


'

j

(s

�

) ! true (for i; j 2

f1; 2g, i 6= j), then we also obtain the rule 


'

1

^'

2

(s

�

)! 


'

1

^'

2

(t

�

). But as the

following example illustrates, su
h a simplisti
 
onstru
tion does not work.

Re
all the rules (5) - (7) for 


double(half(y))=y

. We would obtain the following


orre
tness predi
ate for the formula ' : double(half(y)) = y ^ :half(y) = 0.




'

(0) ! false; 


'

(s(0)) ! false; 


'

(s(s(x))) ! 


'

(x):

However, this 
orre
tness predi
ate is not exa
t, sin
e it is always false,

whereas ' is true for all even numbers greater than 0. Even worse, the resulting


orre
tness predi
ate for the negated 
onje
ture :' would not even be sound

(sin
e it would always be true whereas :' is false for 0 and all odd numbers).

The problem with the above 
onstru
tion of 


'

1

^'

2

is the 
ase where one

rule 


'

1

(s

�

) ! 


'

1

(t

�

) leads to a re
ursive 
all, but the other has the form




'

2

(s

�

)! true. If we use the rule 


'

1

^'

2

(s

�

)! 


'

1

^'

2

(t

�

), then we may lose the

exa
tness of the 
orre
tness predi
ate, sin
e it 
ould be that 


'

2

(t

�

)!

�

false.

To avoid this problem, we will now 
onstru
t so-
alled basi
 
orre
tness pred-

i
ates (denoted b

r

1

=r

2

) where for re
ursive pairs hs

�

; ft

�

gi 2 C we always have

re
ursive rules b

r

1

=r

2

(s

�

)! b

r

1

=r

2

(t

�

), but never a rule with the result false.

Fortunately, if r

1

= r

2

is radi
al and maintains an ordering under C, one 
an

easily obtain a basi
 
orre
tness predi
ate by simply extending the 
over set C in

an appropriate way. For that purpose we have to restri
t ourselves to 
over sets

where for any two re
ursive pairs hs

�

i

; ft

�

i

gi; hs

�

j

; ft

�

j

gi 2 C with i 6= j, the terms

t

�

i

and s

�

j

do not unify (after renaming their variables). In other words, the argu-

ments t

�

i

in an indu
tion hypothesis must not unify with the arguments s

�

j

in any

other indu
tion 
on
lusion. The 
over set C

half

= fh0;?i; hs(0);?i; hs(s(x)); fxgig

trivially satis�es this 
ondition, sin
e there is only one re
ursive pair. The moti-

vation for this restri
tion is that for all 
hains q

�

0

<

C

q

�

1

<

C

: : : <

C

q

�

n

, it ensures
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'

(q

�

n

) = : : : = 


'

(q

�

1

). So a 
hange in the value of 


'


an only o

ur in the last

value q

�

0

, whi
h 
orresponds to a base 
ase (i.e., we might have 


'

(q

�

1

) 6= 


'

(q

�

0

)).

Our aim is to extend C to a 
over set C

0

where q

�

1

is already a base 
ase. Then

for all 
hains q

�

1

<

C

0

: : : <

C

0

q

�

n

we have 


'

(q

�

n

) = : : : = 


'

(q

�

1

) and thus, we 
an

indeed use the rule 


'

(s

�

0

)! 


'

(t

�

0

) for all re
ursive pairs hs

�

0

; ft

�

0

gi of C

0

.

The idea for the extension of 
over sets is simply to unify the terms t

�

i

of

the indu
tion hypotheses with the (variable-renamed) terms s

�

j

in the left 
om-

ponents of all pairs from C. Let �

i;j

be the respe
tive mgu's. Then every pair

hs

�

i

; ft

�

i

gi is repla
ed by the new non-re
ursive pairs hs

�

i

�

i;j

;?i for j 6= i and the

instantiated re
ursive pair hs

�

i

�

i;i

; ft

�

i

�

i;i

gi. For C

half

we obtain

C

0

half

= fh0;?i; hs(0);?i; hs(s(0));?i; hs(s(s(0)));?i; hs(s(s(s(x)))); fs(s(x))gig:

De�nition 9 (Extending 
over sets). Let C = fhs

�

1

; ft

�

1;1

; : : : ; t

�

1;n

1

gi; : : : ;

hs

�

m

; ft

�

m;1

; : : : ; t

�

m;n

m

gig be a 
over set with 0 � n

i

� 1, su
h that if n

i

= n

j

= 1

and i 6= j then there do not exist substitutions �

i;j

with t

�

i;1

�

i;j

= s

�

j

��

i;j

for a

variable renaming �. Then the extended 
over set C

0

is de�ned as follows:

C

0

=fhs

�

i

;?i jn

i

= 0g

[fhs

�

i

�

i;j

;?i jn

i

= 1; n

j

= 0; �

i;j

= mgu(t

�

i;1

; s

�

j

�) for a variable renaming �g

[fhs

�

i

�

i;i

; ft

�

i;1

�

i;i

gi jn

i

= 1; �

i;i

= mgu(t

�

i;1

; s

�

i

�) for a variable renaming �g:

Obviously, if C is 
omplete and well founded, then the extension C

0

is 
omplete

and well founded, too. Moreover, if an equation r

1

= r

2

is radi
al and maintains

an ordering under C, then it is also radi
al and maintains the same ordering under

the extension C

0

. In this 
ase we 
an 
onstru
t the basi
 
orre
tness predi
ate

by taking the extension C

0

and by using the results true and false in its non-

re
ursive 
ases and by using the rule b

r

1

=r

2

(s

�

) ! b

r

1

=r

2

(t

�

) for all re
ursive

pairs hs

�

; ft

�

gi. Note that only one su
h extension step for 
over sets C is already

enough: If a 
orre
tness predi
ate b has a non-re
ursive rule b(s

�

) ! true or

b(s

�

)! false for a re
ursive pair hs

�

; ft

�

gi 2 C, then a single extension step of C

suÆ
es to get re
ursive rules b(s

�

0

)! b(t

�

0

) for all re
ursive pairs hs

�

0

; ft

�

0

gi of

the extended 
over set C

0

. In our example we obtain

b

half(y)=0

(0)! true; b

double(half(y))=y

(0)! true;

b

half(y)=0

(s(0))! true; b

double(half(y))=y

(s(0))! false;

b

half(y)=0

(s

2

(0))! false; b

double(half(y))=y

(s

2

(0))! true;

b

half(y)=0

(s

3

(0))! false; b

double(half(y))=y

(s

3

(0))! false;

b

half(y)=0

(s

4

(x))! b

half(y)=0

(s

2

(x)): b

double(half(y))=y

(s

4

(x))! b

double(half(y))=y

(s

2

(x)):

Now indeed basi
 
orre
tness predi
ates for 
onjun
tions are 
onstru
ted by

using the result false if one of the 
onjun
ts yields false and true if both 
onjun
ts

yield true. If one (and therefore, both) 
onjun
ts have a re
ursive 
all, then the

basi
 
orre
tness predi
ate for the 
onjun
tion has a re
ursive 
all, too. So if '

is again the formula double(half(y)) = y ^ :half(y) = 0, then we have
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b

:half(y)=0

(0)! false; b

'

(0)! false;

b

:half(y)=0

(s(0))! false; b

'

(s(0))! false;

b

:half(y)=0

(s

2

(0))! true; b

'

(s

2

(0))! true;

b

:half(y)=0

(s

3

(0))! true; b

'

(s

3

(0))! false;

b

:half(y)=0

(s

4

(x))! b

:half(y)=0

(s

2

(x)): b

'

(s

4

(x))! b

'

(s

2

(x)):

De�nition 10 (Basi
 Corre
tness Predi
ates). Let R be a 
onvergent suf-

�
iently 
omplete CS and let C be a 
omplete well-founded 
over set su
h that

for all hs

�

; ft

�

1

; : : : ; t

�

n

gi 2 C, we have 0 � n � 1, and for two di�erent pairs

hs

�

; ft

�

gi; hs

�

0

; ft

�

0

gi 2 C, there does not exist a substitution � with t

�

� = s

�

0

��

for a variable renaming �. Let ' be a quanti�er-free formula su
h that all equa-

tions in ' are radi
al and maintain some ordering under C w.r.t. R.

Let C

0

= fhs

�

1

; ft

�

1;1

; : : : ; t

�

1;n

1

gi; : : : ; hs

�

m

; ft

�

m;1

; : : : ; t

�

m;n

m

gig be the extension

of C and let r

1

[s

�

i

℄ !

�

R

C

i

[r

1

[t

�

i;1

℄; : : : ; r

1

[t

�

i;n

i

℄℄ for a 
onstru
tor ground 
ontext

C

i

. Then the basi
 
orre
tness predi
ate b

'

under C is de�ned by the following

rules (analogous rules are used for formulas 
ontaining _, ), ,):

b

r

1

=r

2

(s

�

i

)!

8

<

:

true; if R j=

ind

C

i

= r

2

[s

�

i

℄ and n

i

= 0;

false; if R j=

ind

:C

i

= r

2

[s

�

i

℄ and n

i

= 0;

b

r

1

=r

2

(t

�

i;1

); if n

i

= 1;

b

:'

0

(s

�

i

)!

8

<

:

true; if we have the rule b

'

0

(s

�

i

)! false;

false; if we have the rule b

'

0

(s

�

i

)! true;

b

:'

0

(t

�

i;1

); if we have the rule b

'

0

(s

�

i

)! b

'

0

(t

�

i;1

);

b

'

1

^'

2

(s

�

i

)!

8

<

:

true; if b

'

1

(s

�

i

)! true and b

'

2

(s

�

i

)! true;

false; if b

'

1

(s

�

i

)! false or b

'

2

(s

�

i

)! false;

b

'

1

^'

2

(t

�

i;1

); if b

'

1

(s

�

i

)! b

'

1

(t

�

i;1

) and b

'

2

(s

�

i

)! b

'

2

(t

�

i;1

):

Now we 
an present the main theorem whi
h shows that the indu
tive validity

of arbitrary quanti�er-free 
onje
tures is de
idable, if all their equations are

radi
al and maintain an ordering under C. The de
ision pro
edure works by


onstru
ting the basi
 
orre
tness predi
ate and by 
he
king whether it always

yields true. The reason for the soundness of this approa
h is that basi
 
orre
tness

predi
ates are indeed sound and exa
t.

Theorem 11 (De
idability of indu
tive validity for arbitrary 
onje
-

tures). Let R, C, ' be as in Def. 10. Then indu
tive validity of ' is de
idable

(by 
he
king whether all non-re
ursive rules of b

'

have the right-hand side true,

where b

'

is the basi
 
orre
tness predi
ate for ' under C).

Proof. We have to show that b

'

is sound and exa
t, i.e., R j=

ind

', b

'

(y

�

) =

true if R also 
ontains the rules de�ning b

'

. We use an indu
tion w.r.t. the

stru
ture of '. First let ' be an equation r

1

= r

2

.

Let q

�

be a tuple of 
onstru
tor ground terms. We prove R j=

ind

r

1

[q

�

℄ =

r

2

[q

�

℄ , b

r

1

=r

2

(q

�

) = true by indu
tion w.r.t. <

C

0

. Sin
e C is 
omplete and

well founded, obviously its extension C

0

is 
omplete and well founded, too. Due
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to the 
ompleteness of C

0

, there exists some hs

�

; ft

�

1

; : : : ; t

�

n

gi 2 C

0

and some

substitution � su
h that q

�

= s

�

�. If n = 0, then the 
laim follows from radi
ality

of r

1

= r

2

under C and thus, under C

0

as well.

If n = 1 and R j=

ind

r

1

[s

�

�℄ = r

2

[s

�

�℄ then by Lemma 7 we also have

R j=

ind

r

1

[t

�

1

�℄ = r

2

[t

�

1

�℄ sin
e r

1

= r

2

maintains an ordering under C and thus,

under C

0

as well. The indu
tion hypothesis yields R j=

ind

b

r

1

=r

2

(t

�

1

�) = true and

thus, R j=

ind

b

r

1

=r

2

(s

�

�) = true as well.

Finally, let n = 1 and R j=

ind

:r

1

[s

�

�℄ = r

2

[s

�

�℄. We have to show that this

implies R j=

ind

:r

1

[t

�

1

�℄ = r

2

[t

�

1

�℄. Then the indu
tion hypothesis would yield

R j=

ind

b

r

1

=r

2

(t

�

1

�) = false and thus, R j=

ind

b

r

1

=r

2

(s

�

�) = false as well.

Note that s

�

= s

�

0

� and t

�

1

= t

�

1

0

� for some hs

�

0

; ft

�

1

0

gi 2 C by the de�nition

of extensions. Moreover, by the requirement that arguments t

�

1

0

of indu
tion

hypotheses may not unify with arguments of other indu
tion 
on
lusions we

also have that t

�

1

= t

�

1

0

� = s

�

0

�� by the de�nition of extensions. Sin
e r

1

= r

2

maintains an ordering under C we have r

1

[s

�

0

℄ !

�

R

C

0

i

[r

1

[t

�

1

0

℄℄ for a 
onstru
tor

ground 
ontext C

0

i

. As r

1

[s

�

℄ !

�

R

C

i

[r

1

[t

�

1

℄℄, this means that C

0

i

= C

i

or, in

other words, r

1

[s

�

0

℄ !

�

R

C

i

[r

1

[t

�

1

0

℄℄. Radi
ality of r

1

= r

2

under C implies that

R j=

ind

C

i

[r

2

[t

�

1

0

℄℄ = r

2

[s

�

0

℄ or R j=

ind

:C

i

[r

2

[t

�

1

0

℄℄ = r

2

[s

�

0

℄.

First assume R j=

ind

C

i

[r

2

[t

�

1

0

℄℄ = r

2

[s

�

0

℄. This implies R j=

ind

(C

i

[r

2

[t

�

1

0

℄℄ =

r

2

[s

�

0

℄)�, i.e., R j=

ind

C

i

[r

2

[t

�

1

℄℄ = r

2

[s

�

℄. If we had R 6j=

ind

:r

1

[t

�

1

�℄ = r

2

[t

�

1

�℄

(i.e., R j=

ind

(r

1

[t

�

1

℄ = r

2

[t

�

1

℄)�� for some �), then we would also have R j=

ind

(C

i

[r

1

[t

�

1

℄℄ = r

2

[s

�

℄)�� . Sin
e r

1

[s

�

℄!

�

R

C

i

[r

1

[t

�

1

℄℄, this implies R j=

ind

(r

1

[s

�

℄ =

r

2

[s

�

℄)�� in 
ontradi
tion to the prerequisite R j=

ind

:r

1

[s

�

�℄ = r

2

[s

�

�℄.

Thus, R j=

ind

:C

i

[r

2

[t

�

1

0

℄℄ = r

2

[s

�

0

℄. Again assume R j=

ind

(r

1

[t

�

1

℄ = r

2

[t

�

1

℄)��

for some � . Sin
e t

�

1

�� = s

�

0

���� , we have R j=

ind

(r

1

[s

�

0

℄ = r

2

[s

�

0

℄)���� and

sin
e r

1

= r

2

maintains an ordering under C, this implies R j=

ind

(r

1

[t

�

1

0

℄ =

r

2

[t

�

1

0

℄)���� by Lemma 7. By the prerequisite, this yields R j=

ind

(:C

i

[r

1

[t

�

1

0

℄℄ =

r

2

[s

�

0

℄)���� . However sin
e r

1

[s

�

0

℄ !

�

R

C

i

[r

1

[t

�

1

0

℄℄, this is equivalent to R j=

ind

(:r

1

[s

�

0

℄ = r

2

[s

�

0

℄)���� , whi
h 
ontradi
ts the assumption (as t

�

1

�� = s

�

0

����).

For formulas whi
h are no equations, the 
laim immediately follows from the

(outer) indu
tion hypothesis. ut

Note that the 
onditions in Thm. 11 (i.e., radi
ality and maintenan
e of or-

derings) 
an be 
he
ked automati
ally (by using orderings from the area of term

rewrite systems whi
h are amenable to automation). The set of all 
onje
tures '

satisfying these 
onditions forms a 
lass where indu
tive validity is de
idable. To

de
ide indu
tive validity of ' one simply 
onstru
ts the rules for the basi
 
or-

re
tness predi
ate b

'

(whi
h 
an be done automati
ally) and one 
he
ks whether

there is no rule of the form b

'

(: : :)! false.

So for a formula like double(y) = y ) y = 0, one �rst 
he
ks whether

this formula belongs to the 
lass where indu
tive validity is de
idable. For that

purpose, one examines whether the 
onje
ture 
ontains a subterm f(y

�

) for

pairwise disjoint variables y

�

and an algorithm f and then one 
he
ks whether

all equations in the 
onje
ture are radi
al and maintain an ordering under C

f

(using the indu
tion variables y

�

).

14



In our example, the equations double(y) = y and y = 0 indeed are both

radi
al and they maintain the superterm ordering under C

double

. So indu
tive

validity of this 
onje
ture is de
idable. The de
ision pro
edure 
onstru
ts the

basi
 
orre
tness predi
ate

b

double(y)=y)y=0

(0)! true;

b

double(y)=y)y=0

(s(0))! true;

b

double(y)=y)y=0

(s(s(x)))! b

double(y)=y)y=0

(s(x));

and 
he
ks whether all non-re
ursive rules of b

double(y)=y)y=0

have true on their

right-hand side, whi
h is obviously the 
ase. Thus, the formula is valid.

Note that in this way we 
an de
ide the indu
tive validity of 
onje
tures

whi
h were up to now hard problems for indu
tive theorem provers. In fa
t,

virtually all existing indu
tive provers fail in verifying double(y) = y ) y = 0.

6

The reason is that the indu
tion 
on
lusion double(s(x)) = s(x)) s(x) = 0 
an

be evaluated to :s(double(x)) = x, but there is no way to apply the indu
tion

hypothesis double(x) = x) x = 0 and thus, the proof of the indu
tion step 
ase

does not su

eed. On the other hand, by our de
ision pro
edure, validity of su
h


onje
tures 
an be shown without using any indu
tive theorem prover at all.

6 Con
lusion

We presented a 
lass of 
onje
tures where indu
tive validity is de
idable (by a

very simple de
ision pro
edure). This allows an integration of indu
tive reasoning

within fully automated tools like model 
he
kers or 
ompilers. First, we extended

the results of [8℄ to a larger 
lass of equations and subsequently, we extended

the approa
h further to arbitrary quanti�er-free 
onje
tures. The main idea is

to build 
orre
tness predi
ates for all equations o

urring in a 
onje
ture and we

gave a 
riterion for 
he
king whether these 
orre
tness predi
ates really des
ribe

the exa
t set of obje
ts where the equation is valid. We showed how to 
onstru
t

(basi
) 
orre
tness predi
ates for non-atomi
 formulas and by 
he
king their

de�ning rules, the indu
tive validity of su
h formulas 
an easily be de
ided.

We have used 
orre
tness predi
ates 


r

1

=r

2

to des
ribe the instan
es where

an equation r

1

= r

2

is valid. However, in order to 
ombine the 
orre
tness pred-

i
ates 


r

1

=r

2

and 


r

0

1

=r

0

2

of two di�erent equations (e.g., when building their


onjun
tion), we have to restri
t ourselves to basi
 
orre
tness predi
ates and

moreover, 


r

1

=r

2

and 


r

0

1

=r

0

2

must have been built w.r.t. \
ompatible" 
over sets.

In order to avoid these diÆ
ulties, an interesting alternative approa
h is to rep-

resent the set of instan
es where equations are valid by tree automata [4℄ instead

of 
orre
tness predi
ates. As long as these sets of instan
es are regular, this

indeed results in a very elegant method for de
iding indu
tive validity (sin
e

regular languages are e�e
tively 
losed under 
omplement and interse
tion and

sin
e their emptiness is de
idable). However, in general there are many equations

where the set of instan
es whi
h makes them valid is not regular. For example,

6

This problem was pointed out to us by U. K�uhler.
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the equation plus(minus(x; y);minus(y; x)) = 0 is valid i� x and y are equal. A


orre
tness predi
ate des
ribing this set 
an easily be 
onstru
ted automati
ally,

whereas this set is not regular and therefore 
annot be des
ribed by (ordinary)

tree automata. This indi
ates that the use of tree automata may be too restri
-

tive 
ompared to the use of (basi
) 
orre
tness predi
ates. However, we intend to

study the possibilities of using automata for de
iding indu
tive validity further

in future work.

In this paper, we fo
used on integrating indu
tion s
hemes with a de
ision

pro
edure for the quanti�er-free theory of free 
onstru
tors to obtain an exten-

sion of the de
ision pro
edure to quanti�er-free formulas whose proofs (or dis-

proofs) may require the use of indu
tion. Kapur and Subramaniam [8℄ dis
ussed

an approa
h for integrating indu
tion s
hemes into de
idable quanti�er-free the-

ories in
luding Presburger arithmeti
, and they gave a de
ision pro
edure for

indu
tive validity of a large 
lass of equations involving T -based fun
tion sym-

bols, where T is a de
idable quanti�er-free theory. In future work, we intend to

generalize the te
hniques developed in this paper from 
onstru
tor systems to

T -based systems (in
luding Presburger arithmeti
) as well.
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