Decidable Classes of Inductive Theorems*

Jiirgen Giesl! and Deepak Kapur?

! LuFG Informatik II, RWTH Aachen, Ahornstr. 55, 52074 Aachen, Germany,
giesl@informatik.rwth-aachen.de
2 Computer Science Dept., University of New Mexico, Albuquerque, NM 87131, USA
kapur@cs.unm.edu

Abstract. Kapur and Subramaniam [8] defined syntactical classes of
equations where inductive validity is decidable. Thus, their validity can
be checked without any user interaction and hence, this allows an integra-
tion of (a restricted form of) induction in fully automated reasoning tools
such as model checkers. However, the results of [8] were only restricted
to equations. This paper extends the classes of conjectures considered in
[8] to a larger class of arbitrary quantifier-free formulas (e.g., conjectures
also containing negation, conjunction, disjunction, etc.).

1 Introduction

Inductive theorem provers usually require massive manual intervention and they
may waste huge amounts of time on proof attempts which fail due to the in-
completeness of the prover. Therefore, induction has not yet been integrated in
fully automated reasoning systems (i.e., model checkers) used for hardware and
protocol verification, static and type analyses, byte-code verification, and proof-
carrying codes. Most such push-button systems use a combination of decision
procedures for theories such as Presburger arithmetic, propositional satisfiability,
and data structures including bit vectors, arrays, and lists. However, extending
these tools by the capability to perform induction proofs would be very desirable,
since induction is frequently needed to reason about structured and parameter-
ized circuits (e.g., n-bit adders or multipliers), the timing behavior of circuits
with feedback loops, and code using loops and/or recursion.

For that reason, Kapur and Subramaniam proposed an approach for inte-
grating induction schemes suggested by terminating function definitions with
decision procedures, and gave a syntactical characterization of a class of equa-
tions where inductive validity is decidable using decision procedures and the
cover set method for mechanizing induction [8,11]. For those equations, induc-
tion proofs can be accomplished without any user interaction and they only fail if
the conjecture is not valid. In Section 2, we give a simple characterization which

* Proceedings of the International Joint Conference on Automated Reasoning, IJCAR
2001, LNAT 2083, pp. 469-484, Springer-Verlag, 2001. Supported by the Deutsche
Forschungsgemeinschaft Grant GI 274/4-1 and the National Science Foundation
Grants nos. CCR-~9996150 and CDA-9503064.



extends the class of decidable equations in [8]. Subsequently, we further extend
the approach to arbitrary quantifier-free formulas, i.e., we define classes of such
formulas where inductive validity is decidable. The crucial concept for this char-
acterization are so-called correctness predicates. For a quantifier-free conjecture
@, ¢, is a correctness predicate iff for any tuple of (constructor) ground terms
¢*, the truth of c¢,(¢*) implies the truth of ¢[z*/q*] (cf. [6,9]). We present a
technique for automatically generating correctness predicates in Section 3.

The truth of a correctness predicate is only sufficient, but not necessary for
the truth of the corresponding conjecture. In Section 4 we examine for which
equations ¢ the correctness predicate is ezact (i.e., the truth of c,(g*) is both
sufficient and necessary for the truth of ¢[z*/¢*]). We develop a characterization
to recognize (a subclass of) these equations automatically. In Section 5 we show
that the use of exact correctness predicates allows us to extend the decidable
classes of inductive theorems from equations to arbitrary quantifier-free formulas.

Our results are also useful for conventional inductive theorem provers since
exact correctness predicates can be used to simplify the proof of conjectures like
double(y) = y = y = 0 where inductive provers would fail otherwise.

Even though the paper focuses on constructor systems and the decidable
theory of quantifier-free formulas on free constructors, we believe the approach
extends to other decidable theories T as well (e.g., Presburger arithmetic).

2 Equations where Inductive Validity is Decidable

We use term rewrite systems R (TRSs) as our programming language [1]. In a
TRS, all root symbols of left-hand sides are called defined and all other function
symbols of R are constructors. We only consider constructor systems (CSs),
i.e., TRSs where the left-hand sides contain no defined symbols below the root
position, even though most of the results in this paper generalize to more general
theory-based systems, called 7-based systems in [8], with a decidable theory T,
in which arguments to defined symbols are terms from 7. Moreover, we restrict
ourselves to (ground-)convergent and sufficiently complete CSs R, i.e., for every
ground term ¢ there exists a unique constructor ground term ¢ such that ¢ =% g.
(A term containing only variables and constructors is called a constructor term;
a constructor term without variables is a constructor ground term.)

For induction proofs, we use the concept of cover sets [7,11]. A cover set is a
finite set of pairs C = {(s7,{t] 1, s t1 n, })s- -5 Sy Ui 15+ - s tim,, )}, Where
s; and t;; are n-tuples of terms (for some n > 0). C is complete if for every
n-tuple ¢* of constructor ground terms, there is an s} and a substitution o such
that s}o = ¢*. Every cover set C induces a relation <¢ on tuples of constructor
ground terms: p* <c ¢* iff there exists a pair (s}, {t},...,t,,}) € C such that
sjo =q" and t] ;o0 —% p*. C is called well-founded iff <c is well founded.!

A quantifier-free formula ¢ is inductively valid (or “valid” for short), denoted
“R Eina ¢”, iff Vy* ¢ holds in the initial model of the equations of R (where y*

! <¢ is well founded if there exists no infinite sequence ...ts <c¢ t2 <¢ t1 <c to.



are the variables in ¢).? For example, consider the following CS:
half(0) — 0, half(s(0)) — 0, half(s(s(z))) — s(half(x)).

This function definition suggests the cover set Char = {(0,9), (s(0), D),
(s(s(z)),{z})}. To prove p by induction w.r.t. Chys (using the induction vari-
able y), one obtains the base formulas ¢[y/0] and ¢[y/s(0)] and the step formula
oly/x] = ¢ly/s(s(x))]. Here, ply/z] is the induction hypothesis and ¢[y/s(s(z))]
is the induction conclusion. When proving a conjecture ¢ containing a term
f(Y1,---,Yn), a successful heuristic for the choice of an induction relation is to
perform induction w.r.t. Cy using the induction variables y1,...,y,, cf. [2,11].

Kapur and Subramaniam [8] characterized classes of equations where induc-
tive validity is decidable (the decision procedure consists of an induction proof
attempt w.r.t. a particular cover set). The observation is that if each induction
formula built according to some cover set C only contains terms from an under-
lying decidable theory, then validity of the original conjecture can be decided.

Def. 1 and Thm. 2 apply to general T-based systems, but due to lack of
space, we focus on the decidable quantifier-free theory of free constructors in
this paper. Here, r[s*] abbreviates r[y*/s*] where y* contains all variables in 7.

Definition 1 (C-provability). Let R be a convergent sufficiently complete CS
and let C be a complete well-founded cover set. An equation ry = ry is C-provable

w.r.t. R iff r2 is a constructor term, for every (si,{t; ,...,t;,}) € C, sy and all
t; ; are tuples of constructor terms, and there exists a constructor term context
C; such that m1[s}] =% 01[7“1[15;1], ce Tl[tf,n]]-

As an example, let us extend the CS for half by the rules double(0) — 0 and
double(s(z)) — s(s(double(x))). Then the equation double(half(y)) = y is Cha-
provable. As required, the term y is a constructor term. Moreover, we obtain

r1[s1] = double(half(0)) —50 and thus,C; =0,
r1[s2] = double(half(s(0))) —% 0 and thus, Cy =0,
r1[s3] = double(half(s(s(z)))) =% s(s(double(half(z)))) and thus, C3 = s(s(0)).

Since C-provability is decidable, Def. 1 characterizes a decidable class of con-
jectures. Instead of checking C-provability directly, several sufficient conditions
for C-provability were given in [8]. We obtain the following theorem.

Theorem 2 (Decidability of inductive validity for equations). Let R be
a convergent sufficiently complete CS, let C be a complete well-founded cover set,
and let r1 = ro be a C-provable equation. Then inductive validity of 11 = ro is
decidable (by attempting an induction proof w.r.t. C).

Proof. The decision procedure works by constructing the formulas

Cilraltinls - - s raltinll = rafsi] (1)

2 R [=ina @ means that for all constructor ground terms ¢*, ¢[y*/q"] follows from R’s
equations and axioms stating that different constructor ground terms are not equal.



for all (sf,{t;,...,t;,}) € C. As these equations only contain constructor
terms, their validity is decidable.

It turns out that r; = 7o is valid iff all these equations are valid. For the
“if”-direction, notice that (1) implies the induction formula

rltii] = raltid A At ] = refti ] = ralsi] = s

Thus, the validity of r; = ry follows by Noetherian induction. For the “only
if”-direction, note that the validity of r; = ro implies the validity of (1). O

Since double(half(y)) = y is Chai-provable, the above decision procedure can
determine its validity. It has to check the validity of the equations

Cl [T‘Q[tl]] =T9 [51], i.e., 0= 0, (2)
Cg[?“g[tg]] =Ta [82], i.e., 0= S(O)7 (3)
Cslra[ts]] = ra[ss], i-e., s(s(z)) = s(s(z)). (4)

Since these equations only contain constructor terms, their validity is decidable.
(Obviously, such an equation is valid iff both terms in the equation are syntacti-
cally identical.) While (2) and (4) are valid, the second equation (3) is not valid
and thus, the conjecture double(half(y)) = y is not valid either.

Our aim is to extend the result of Thm. 2 to more general formulas (i.e., not
just equations), provided that all equations in these formulas are C-provable.
For example, we would like to consider formulas like double(half(y)) = y =
even(y) = true or double(y) = y = y = 0. Equations appearing in these formulas
are neither valid nor unsatisfiable; consequently, there is a need to characterize
the subset of instantiations for the variables for which these equations are true.
For this extension, we need the notion of correctness predicates.

3 Correctness Predicates

We present a technique which automatically generates algorithms for so-called
correctness predicates c, for equations . For any tuple of constructor ground
terms ¢*, the truth of c,(¢*) implies that ¢[y*/¢*] is valid. Our definition of
correctness predicates is similar to the definitions of [6, 9], but its form is quite
restricted since we are interested in ensuring that validity of correctness predi-
cates is decidable and that exact correctness predicates can be generated which
completely characterize the domain of values on which the conjecture holds.
We have seen that the proof of the conjecture double(half(y)) = y can be
attempted by induction w.r.t. the cover set Cpha¢. If y = 0, the conjecture can
be reduced to the equation (2) which is always true. In the case y = s(0) we
obtain the equation (3) which is always false. Finally, in the step case where
y = s(s(x)), we have to prove that the induction hypothesis double(half(z)) = x
implies the induction conclusion double(half(s(s(z)))) = s(s(z)). As shown in
Section 2, double(half(s(s(z)))) evaluates to s(s(double(half(x)))). Due to the
induction hypothesis, we can replace the subterm double(half(z)) by z. Thus,



we obtain the equation (4) (which is always true). Hence, provided that the
induction hypothesis is valid, the induction conclusion would also be valid. This

gives rise to the following rules for the correctness predicate cgouble(half(y))=y:
Cdouble(half(y))=y (0) — true, (5)
Cdouble(half(y))—=y (5(0)) — false, (6)
Couble(half (y)) =y (S ( (2))) = Cdouble(half(y))=y (Z)- (7)

Thus, we have synthesized the even algorithm. Note that the rule (7) is stronger
than the following rule one would have gotten from the above analysis:

cdouble(half(y)):y(s(s(w))) — true if cdouble(half(y)):y(w)'

Since we want to generate unconditional rewrite rules for the definition of cor-
rectness predicates and to synthesize a complete definition, we use the form (7).
As a result, the correctness predicate so generated may not be exact, and hence,
provides only a sufficient condition for the conjecture to be valid.

In general, to prove a C-provable equation r; = ry w.r.t. a cover set C,
for each pair (s}, {t},..., Zm}> € C we must check whether the equation
Cilra[ti ], -+ 2[t] I = 7‘2[ ¥] is valid, cf. Equation (1) in the proof of Thm.

2. In order to obtain correctness predicates as simple as the ones above, we have
to demand that these equations are either valid for all instantiations or for none.
This ensures that the right-hand sides of the rules for correctness predicates only
have the form true, false, or recursive calls of correctness predicates.

Definition 3 (Radical equations). Let R be a convergent sufficiently com-
plete CS and let C = {(s1,{t71,-- - tin 1) -~ ,( Sps Utmas st 1)} e a
complete well-founded cover set. An equation r1 = ry is radical under C iff
r1 = 12 is a C-provable equation where r1[s;] =% Ci[r1[t; ],...,ri[t},,]] for a
constructor term context C; and for all 1 < i < m we have

R Fina  Cilra[ti4], ---,rz[t;-*ni]]]Zrz[s;‘] or
R =ina ~Cilra[ti ], ., r2[ti o ]l] = r2[si].

Note that since all C;, s}, and ¢} are constructor terms, it is decidable whether
a C-provable equation is radical. The reason is that one only has to check whether
an equation between two constructor terms is valid or unsatisfiable. Obviously,
such an equation is unsatisfiable iff the two terms are not unifiable. For instance,
the equation double(half(y)) = y is radical under Cpa since the terms in the
equations (2) - (4) are either identical or not unifiable.

To ease the presentation, we will now restrict ourselves to cover sets where
there is at most one induction hypothesis for every induction step case.® Thus,

3 The definition of correctness predicates can be easily generalized to the case of mul-
tiple induction hypotheses. In fact, correctness predicates can be defined for arbitrary
equations, i.e., they do not have to be C-provable or radical as required in this paper.
However, these requirements are necessary in order to generate exact correctness
predicates ¢, for arbitrary conjectures ¢, such that validity of ¢, is decidable.



we only consider cover sets with pairs (s}, {t;,...,t}, }) where 0 < n; < 1.
Then we obtain the following definition of correctness predicates.

Definition 4 (Correctness Predicate). Let R, C, r1 = ro be as in Def. 3
where 0 < mn; <1 forall1 <i<m and let 11 = ro be radical under C. Then the
correctness predicate cp,—r, under C is defined by the following rules:

; )
Cri=ra (87 false, if R |=ina —C; = r2[s}] and n; =0, )
c (S*) s Cri=ry (t:,l)’ if R ':ind Ci[r2[t;'k,1]] = 7‘2[8;] and n; = 1, (10)
r1=r2\%; fa|se, lfR l:ind _|Ci[7'2[t;1]] =17y [5’9‘] and n; = 1. (].l)

(2

) { true, if R Eina C; = r2[s7] and n; =0, (
(

Thm. 5 proves that a correctness predicate indeed represents a sufficient, but
not a necessary condition for the soundness of the corresponding equation.

Theorem 5 (Correctness predicates are sufficient, but not necessary).
Let R, C, r1 =12 be as in Def. 4. Let ¢, =r, be a correctness predicate for r1 = ro
under C and let R also contain the rules defining ¢, ,—,,. Then we have

(a) R Eind Cri=r,(y*) = true = ry = ro.
(b) In general, we have R [Fina 11 = T2 = Cri—r, (¥*) = true.

Proof.

(a) Let ¢* be a tuple of constructor ground terms such that R FEind ¢ry=r,(¢*) =
true. We prove R =ina 7r1[¢*] = 72[¢*] by induction w.r.t. <c. Due to the

completeness of the cover set, there exists some (s*,{t},...,¢:}) € C and
some substitution ¢ such that ¢* = s*o and since ry = ry is C-provable (due
to its radicality), we have R |Eing r1[s*] = C[r1[t7], ..., r[t2]]-

If n = 0, then we also have R Ejng C = 73[s*] and thus R Einq 71[s*] =
ro[s*]. Iif n = 1, we have R =ing C[r2[t]]] = r2[s*] and R Eind ¢rj=ry (tj0) =
true. The induction hypothesis yields R |=ing m1[tjo] = ro[tjo]. From the
validity of r1[s*] = C[r1[t]]] and C[ra[t7]] = r2[s*], R Eind ri[s*c] = ra[s*o].

—
=

Consider the equation half(y) = s(0) and induction w.r.t. the cover set Chais.
In the base cases y = 0 and y = s(0) the resulting conjecture 0 = s(0) is
unsatisfiable and in the step case, the induction conclusion half(s(s(z))) =
s(0) can be evaluated to s(half(z)) = s(0). Applying the induction hypothesis
half(z) = s(0) yields s(s(0)) = s(0) which is unsatisfiable. So the equation
half(y) = s(0) is radical under Chair and we obtain the rules chaif(y)—s(0) (0) —
false, Chalf(y)=s(0) (5(0)) —>fa|se, and Chalf(y)=s(0) (s(s(x))) —false. So Chalf (y)=s(0)
is always false, but half(y) = s(0) holds for s?(0) and s*(0). O

In fact, a correctness predicate c,(¢*) yields true iff the equation ¢ holds for
both ¢* and for all arguments p* which are smaller than ¢* w.r.t. the induction
relation induced by the cover set. For that reason, the correctness predicate
Chalf(y)=s(0) Teturns false for the arguments s2(0) and s®(0) although the conjecture
is true, since it is false for the smaller arguments 0 and s(0).



4 Conjectures with Exact Correctness Predicate

In this section we characterize equations r;y = ro where the correctness predicate
Cri=r, 18 ezact, i.e., for all ¢*, ¢;,j—r,(q¢*) is true iff R |=ina m[¢*] = r2[q*].
Exactness is ensured if in Def. 4, whenever Rule (10) is used, the induction
conclusion 7 [sf] = 73[s}] is equivalent to ri[t] ;] = 72[t},]. As we have seen in
Sect. 3, ¢y, —r,(q*) only returns true if 7, = ry is true for ¢* and for all p* smaller
than ¢* w.r.t. the induction relation induced by the cover set. Thus, ¢,,~, is only
exact if r1[¢*] = r2[g*] implies the validity of ri[p*] = ra[p*] for all arguments
p* <¢ ¢*. So ¢p, =, only describes the exact set of instantiations where ri = 73
is valid, if each induction conclusion implies all its induction hypotheses.
Consider again the proof of double(half(y)) = y by induction w.r.t. Chas. We
obtain the induction conclusion double(half(s(s(x)))) = s(s(x)) and the induction
hypothesis double(half(z)) = . Indeed, this conjecture has the desired property

R Eind double(half(s(s(z)))) = s(s(z)) = double(half(z)) = z. (12)

To see this, note that in the first base case where y = 0, the left-hand side
double(half(0)) evaluates to 0, which is smaller than or equal to the right-hand
side 0 (if terms are compared by the subterm relation, for example). Similarly,
in the second base case where y = s(0), the left-hand side evaluates to 0, which
is again smaller than or equal to the right-hand side s(0). In the step case, the
left hand side of the induction conclusion can be evaluated to

s(s(double(half(z)))) = s(s(z))-

This evaluated induction conclusion contains the induction hypothesis, since the
underlined terms are the terms on both sides of the induction hypothesis. (This
observation also forms the basis of the rippling technique [3].) Thus, when going
from the induction hypothesis to the induction conclusion, both sides of the
equation grow by the context s(s(d)). In other words, in the induction base cases
the left-hand side is at most as great as the right-hand side and afterwards, the
left-hand side always grows at most as much as the right-hand side. Thus, if one
ever reaches an instantiation ¢ where double(half(t)) = ¢ is no longer true, then
the reason is that double(half(t)) is smaller then t. But since double(half(y))
grows at most as fast as y, afterwards there can never be a number s >¢, .
t where double(half(s)) = s is true again. Hence, if the induction hypothesis
double(half(x)) = z is false, then the induction conclusion double(half(s(s(z)))) =
s(s(z)) is false as well (or, formulated as a contraposition, we have Property (12)).

The observation above leads to a general criterion. For many C-provable
equations 7, = 72, one does not only have ri[s}] =% Ci[r1[t] ],..., [t} ]] for
all (s7,{t;1,.--,ti,,}) € C, but also ra[si] = Di[ra[t}],...,72[t],,]] for some
constructor ground contexts C; and D;.

In our example, 7y is double(half(y)) and 79 is the term y. For the first pair of
the cover set Charf, we have C7 = 0 and D; = 0 and for the second pair we have
C2 = 0 and D5 = s(0). For the third pair, we have r1[s5] = double(half(s(s(z)))),



which can be evaluated to s(s(double(half(z)))) and as ¢35 ; = x, we obtain C3 =
s(s(0)). Since ra[s3] = s(s(z)), we also have D3 = s(s(0J)).

So 71 grows by the context C; and r2 grows by the context D; when going from
the induction hypothesis r1[t},] = r2[t] ] to the induction conclusion r1[s;] =
ro[sf]. Our aim is to ensure that whenever r; and ro are no longer R-equal for
some instantiation, then they will never become equal again for arguments which
are greater w.r.t. the induction relation induced by the cover set. A sufficient
requirement for this is that the contexts C; added around r; are always at
most as big as the contexts D; added around r2. To compare these contexts
one can use an arbitrary ordering < on constructor terms, i.e., any relation
which is transitive and irreflexive. Moreover, we require < to be monotonic (i.e.,
s < t implies f(...s...) < f(...t...) for all constructors f) and stable under
substitutions (i.e., s < ¢t implies so < to). Then we only have to demand

Ci[z*] X D;[z*] for all 1 <7 < m.

As usual, “<” denotes the union of “<” and “=" where “=" is syntactic equality.

Note that one may use any well-established technique for the generation of
well-founded orderings such as the subterm ordering or the recursive path order-
ing <rpo (cf. e.g. [5,10]) to synthesize a suitable ordering < satisfying the above
constraints. Moreover, since < only has to be irreflexive, but not necessarily well
founded, one can also use any ordering > which results from the reversal of such
a well-founded ordering < (e.g., the superterm ordering or >p,).

In our example we need a well-founded monotonic stable ordering < where

Ci=0=<0=Dy,
Cz =0 j S(O) = Dg,
Csz] = s(s(z)) = s(s(x)) = Ds|a].

Such an ordering can easily found by standard techniques for automated termi-
nation proofs. For example, the constraints are satisfied by the subterm ordering.
Thus, one can automatically determine that double(half(y)) = y is a conjecture
whose correctness predicate is exact. As Cyouble(half(y))=y 1S Oonly true for even
numbers, we have shown that indeed this conjecture is false for all odd ones.

In general, if 71 = r is an equation and C is a cover set such that the
above conditions are satisfied by some ordering <, then we say that ry = ry
maintains < under the cover set C w.r.t. the underlying CS R. The reason is
that the relation < between r; and ry is indeed maintained when going from
an induction hypothesis to an induction conclusion. By using established (and
decidable classes of) well-founded orderings < from the area of term rewrite sys-
tems one immediately obtains a syntactical sufficient condition for maintenance
of orderings, which can easily be checked automatically.

Definition 6 (Maintenance of orderings). Let R be a convergent sufficiently
complete CS and let C = {(s1,{t1 1, ti 0, })s- s (Sps o 1r -+ st 1)} b€
a complete well-founded cover set (where 0 < n; <1 for all1 < i < m). Let



ry = ro be C-provable and let C; and D; be constructor ground contexts where

ri[s;] =5 C,'[rl[t;l], .. ,rl[t;ni]] and
ra[s;] = Difra[ti ], ... o[t ]]-

Let < be a monotonic ordering on constructor terms which is stable under sub-
stitutions. We say ry = ro maintains < under the cover set C w.r.t. R iff
Ci[z*] 2 D;[z*] for all1 <i < m.

The following lemma proves that for equations which maintain an ordering,
each induction conclusion indeed implies its induction hypothesis.

Lemma 7 (Equations where the reverse induction formulas hold). Let
R, C, < be as in Def. 6 and let ry = ro maintain < under C w.r.t. R. Then for
all <i<m withn; =1, R |Eina r1[s7] = re[s]] = [t;l] = rg[t;l].

Proof. We first show that for all constructor ground terms ¢*, we have

rilg*r X 72 g’ (13)

The proof of (13) is done by induction w.r.t. <c. Due to the completeness of
C, there must be a pair (s}, {t;,,...,t,,}) € C such that sjo = ¢*. If n; =0,
then we have r1[¢*]Ir = ri[sfo[ir = C; = D; = ra[sio] = raq*].

Otherwise, if n; = 1, we have ri[¢*] [r = ri[s]o]lr = Ci[ri[t] 0] Ir] =<
Ci[ra[t; 10]] by the induction hypothesis and monotonicity and stability of <.

Furthermore, C;[rs[t} ;0] X Di[rz[t; 10]] = ra[sjo] = r2[g*]. So (13) is proved.
Now we can prove Lemma 7. Let o substitute all variables of s} by constructor
ground terms such that R Fina 71[sfo] = ra[sfo]. We assume that R Fing

ri[tf 0] = 2t} o). By (13) we must have r1[t],0]}r < 72[t] 0] and since the
R-normal forms of 7 [t} 0] and ry[t o] are different by assumption this in fact
implies 71[t};0]{r < 72[t;0]. Since < is monotonic and stable we have

rifsiollr = Cilri[t;1olir | < Cilra[t; 10]] 2 Di[ra[t] 1 0]] = ra[sio].
But this contradicts R |=ing 71[s70] = ra[sio] by the irreflexivity of <. |
Now we prove that if r; = ro maintains an ordering, then ¢,,—,, is indeed exact.

Theorem 8 (Equations where the correctness predicate is exact). Let
R, C, < be as in Def. 6 and let 11 = ro be an equation which is radical and main-
tains some ordering < under C w.r.t. R. Moreover, let ¢,,—,, be a correctness
predicate for ri1 = ro under C and let R also contain the rules defining ¢y =r,-
Then R Eind 71 = T2 & Crymry (Y*) = true.?

% A more general version of this theorem can be proved in which a conjecture does
not have to be radical, and further, it is not necessary for the induction scheme of a
cover set to have at most one induction hypothesis in every subgoal.



Proof. Due to Thm. 5 (a) we only have to prove R Eina r1[¢*] = m2l¢*] =
Cry=r,(q*) = true for all constructor ground term tuples ¢*. Again, we use in-
duction on <¢. Let R |Eing 71[¢*] = r2[q*].

By the completeness of C, there exists some (s*,{t},...,t%}) € C and some
substitution o such that ¢* = s*o. If n = 0, then we have the rule ¢,, —,(s*) —
true since the rule ¢, ., (s*) — false would only be generated if R |=inq —71[s*] =
r2[s*]. This implies R f=ind ¢ry=r, (¢*) = true.

Otherwise, if n = 1, by Lemma 7 the truth of r1[sfo] = re[sfo] implies
R [Find 71[t; 10] = 72[t} 10]. S0 R Find ¢, =r, (¢} ;0) by the induction hypothesis.
By the rule ¢;,—, (8*) = ¢ry=r, (t]), we obtain R Eing ¢ry=ry(sio) =true. O

Let us consider the counterexample of Thm. 5 (b) again. When trying to
prove half(y) = s(0), we obtain C; = 0, D; = s(0) and C2 = 0, Dy = s(0).
In the step case, the left-hand side half(s(s(z))) evaluates to s(half(z)), i.e., we
have C3 = s(0), whereas D3 = [J. There does not exist an ordering < such that
C;[z*] < D;[z*] for all 4, since C; = Dy would imply 0 < s(0) and C5[0] = D3]0]
would imply s(0) < 0 which contradicts the transitivity and irreflexivity of <.
Thus, half(y) = s(0) does not maintain any ordering under Cha¢ and indeed, its
correctness predicate is not exact as shown in Thm. 5 (b).

The above analysis of exactness of correctness predicates can be useful for
fixing faulty conjectures, an objective for which correctness predicates were intro-
duced by Protzen [9]. Since an exact correctness predicate precisely characterizes
all instantiations on which the faulty conjecture is true, it can be used to fix the
faulty conjecture into the “strongest theorem” possible.

5 Conjectures where Inductive Validity is Decidable

Now we extend Thm. 2 from equations to arbitrary quantifier-free formulas . We
require that all equations r; = re occurring in ¢ are radical and maintain some
ordering under the same cover set C.> Then by Thm. 8 their correctness predi-
cates ¢;, =, are sound and exact. For example, half(y) = 0 is radical and main-
tains the superterm ordering under Ch,r. We obtain the correctness predicate

Chalf(y)=0(0) — true, Chair(y)=0(s(0)) — true, chair(y)—o(s(s(z))) — false.

The last rule is due to the fact that the instantiated left-hand side half(s(s(z)))
evaluates to s(half(z)) and the replacement of the subterm half(z) according to
the induction hypothesis yields the equation s(0) = 0 which is unsatisfiable.

% Different equations in a conjecture may have to be proved using different cover
sets; these cover sets can often be combined into a single cover set to generate a
single induction scheme using merging and instantiation (cf. [2,7]). Further, it is
not necessary for different equations to maintain the same monotonic ordering. For
instance, in the running example of this section two different orderings are used in
a conjecture.

10



Given a correctness predicate c,,, we can generate c-,, by replacing the result
true by false and the result false by true whereas right-hand sides of the form
¢, (t*) are replaced by c-,(t*). In the above example this yields

C-half(y)=0(0) — false, copaif(y)=0(s(0)) — false, c-hai(y)=o(s(s(x))) — true.

This correctness predicate is sound and exact for the conjecture —half(y) = 0.

As stated before, exact correctness predicates can also be generated for non-
radical equations, as well as for equations whose validity is decided using induc-
tion schemes with multiple induction hypotheses. Thus, inductive validity of a
much larger class of literals (equations and negated equations) can be decided
using arbitrary well-founded complete cover sets without the requirement of rad-
icality. The restrictions to radical equations and to induction schemes involving
at most one induction step in every subgoal are needed only for the decidability
of conjunctions and disjunctions of conjectures as discussed below.

Given c,, and c,,, a straightforward idea to obtain rules for c,, Ay, is as
follows: If we have the rule c,,(s*) — false for some ¢ € {1,2}, then we also
obtain the rule cy,,ry,(s*) — false. If we have the rules c,,(s*) — true for
both ¢ € {1,2}, then we obtain cy, rp, (s*) — true. Finally, if we have the rule
Cpi(87) = cp,(t*) and either ¢, (s*) — ¢y, (t*) or ¢y, (s*) — true (for i,j €
{1,2}, i # j), then we also obtain the rule cy, np, (5*) = Cpynp, (t*). But as the
following example illustrates, such a simplistic construction does not work.

Recall the rules (5) - (7) for Caouble(half(y))=y- We would obtain the following
correctness predicate for the formula ¢ : double(half(y)) = y A —half(y) = 0.

c,(0) — false, ¢, (s(0)) — false, c,(s(s(z))) = cp(z).

However, this correctness predicate is not exact, since it is always false,
whereas ¢ is true for all even numbers greater than 0. Even worse, the resulting
correctness predicate for the negated conjecture —¢ would not even be sound
(since it would always be true whereas —y is false for 0 and all odd numbers).

The problem with the above construction of ¢, Ay, is the case where one
rule ¢y, (s*) — ¢y, (t*) leads to a recursive call, but the other has the form
Cop, (8%) — true. If we use the rule cp, np, (8%) = Cpyap, (t*), then we may lose the
exactness of the correctness predicate, since it could be that c,, (t*) —* false.

To avoid this problem, we will now construct so-called basic correctness pred-
icates (denoted b,,—,,) where for recursive pairs (s*,{t*}) € C we always have
recursive rules b, —, (s*) = by, —,(t*), but never a rule with the result false.

Fortunately, if 7y = 72 is radical and maintains an ordering under C, one can
easily obtain a basic correctness predicate by simply extending the cover set C in
an appropriate way. For that purpose we have to restrict ourselves to cover sets
where for any two recursive pairs (s}, {t;}), (s}, {t;}) € C with i # j, the terms
t; and s} do not unify (after renaming their variables). In other words, the argu-
ments ¢} in an induction hypothesis must not unify with the arguments s} in any
other induction conclusion. The cover set Chair = {(0, @), (s(0), @), (s(s(x)), {z})}
trivially satisfies this condition, since there is only one recursive pair. The moti-
vation for this restriction is that for all chains ¢ <¢ ¢} <c ... <c ¢, it ensures

11



co(qr) = ... = cy(qf). So a change in the value of ¢, can only occur in the last
value ¢g, which corresponds to a base case (i.e., we might have ¢, (q7) # ¢, (q5))-
Our aim is to extend C to a cover set C' where ¢} is already a base case. Then
for all chains ¢} <¢r ... <c¢/ g, we have c,(¢}) = ... = cy(gf) and thus, we can
indeed use the rule c,(s*') — ¢, (t*') for all recursive pairs (s*', {t*'}) of C'.

The idea for the extension of cover sets is simply to unify the terms ¢} of
the induction hypotheses with the (variable-renamed) terms s} in the left com-
ponents of all pairs from C. Let p; ; be the respective mgu’s. Then every pair
(s7, {t;}) is replaced by the new non-recursive pairs (s} ; ;, ) for j # i and the
instantiated recursive pair (s} p; ;, {t}1ii})- For Chas we obtain

Charr = {(0,2), (s(0),2), (s(s(0)), 2), (s(s(s(0))), @), (s(s(s(s()))), {s(s(=))})}-

Definition 9 (Extending cover sets). Let C = {(s7,{t71,---,t1 ., })- >
(Sps it as- -+ stimn, 1)} be a cover set with 0 < n; <1, such that if n; =n; =1
and i # j then there do not exist substitutions p;,; with t} p;j = sjvp,; for a
variable renaming v. Then the extended cover set C' is defined as follows:

C'={(s{,2)|n; = 0}
U{(si 1i,j, D) | i = 1,nj = 0, s j = mgu(t; 1, sjv) for a variable renaming v}

U{(s] pa,in 15 14,0 }) | mi = 1, pig = mgu(t |, s7v) for a variable renaming v}.

Obviously, if C is complete and well founded, then the extension C’ is complete
and well founded, too. Moreover, if an equation r; = ro is radical and maintains
an ordering under C, then it is also radical and maintains the same ordering under
the extension C’. In this case we can construct the basic correctness predicate
by taking the extension C' and by using the results true and false in its non-
recursive cases and by using the rule by, —p,(s*) — by =, (t*) for all recursive
pairs (s*,{t*}). Note that only one such extension step for cover sets C is already
enough: If a correctness predicate b has a non-recursive rule b(s*) — true or
b(s*) — false for a recursive pair (s*,{t*}) € C, then a single extension step of C
suffices to get recursive rules b(s*') — b(t*') for all recursive pairs (s*', {t*'}) of
the extended cover set C'. In our example we obtain

bhaif(y)=0(0) — true, bouble(half (y))=y (0) —* true,
baif(y)=0(s(0)) — true, bdouble(half(y)) =y (S (0)) — false,
bhalf(y)zo(sz(o)) — false, bdouble(half (y))= y(s (0)) — true,
bhaif(y)=0(s° (0)) — false, bdouble(half (y)) = y(s (0)) — false,
Brat(y)=0 (52 (€)) = Brair(y)=0(2(2)).  Betouble(half(y)) =y (5 (€)) = Betouble(half(y))=y (52(2))-

Now indeed basic correctness predicates for conjunctions are constructed by
using the result false if one of the conjuncts yields false and true if both conjuncts
yield true. If one (and therefore, both) conjuncts have a recursive call, then the
basic correctness predicate for the conjunction has a recursive call, too. So if ¢
is again the formula double(half(y)) = y A —half(y) = 0, then we have

12



b-half(y)=0(0) — false, b,(0) — false,
bhaif(y)=0(s(0)) — false, b¢,(s(0)) — false,
bﬁhalf (1)=0(s°(0)) — true, by (s2(0)) — true,
b-hatf(y)—=0(s°(0)) — true, by (s3(0)) — false,
bonaif(y)=0(5* (%)) = bohaif(y)=0(s*(z))- by (s (7)) = by(s*(z)).

Definition 10 (Basic Correctness Predicates). Let R be a convergent suf-
ficiently complete CS and let C be a complete well-founded cover set such that
for all {s*,{t5,...,t:}) € C, we have 0 < n < 1, and for two different pairs
(s*,{t*}), (s*',{t*'}) € C, there does not exist a substitution p with t*p = s*'vp
for a variable renaming v. Let ¢ be a quantifier-free formula such that all equa-
tions in ¢ are radical and maintain some ordering under C w.r.t. R.

Let C" = {(s1,{t1,15- -+ Ty })sevvs (Srs {15+ - sty 1)} be the extension
of C and let r1[s}] =% Ci[r1[ti 1], ..., mi[t],,]] for a constructor ground context

C;. Then the baszc correctness predicate b, under C is defined by the following
rules (analogous rules are used for formulas containing V, =, & ):

true, if R Eina Ci = r2[s] and n; =0,
by =ry(s7) — { false, if R Eina —C;i = r2[s] and n; =0,
bry=rs (£ ) ifni =1,
true, if we have the rule b, (s}) — false,
boy(s7) — < false, if we have the rule b 1(8F) — true,
by (t7 1), if we have the rule b 1(87) = by (t5 1),
true, if by, (s7) — true and by, (s}) — true,
byings (87) — 4 false, if by, (s7) — false or b, ( *) — false,

borngs (1), if by (87) = by, (1) and b, (87) = by, (£ 1)-

Now we can present the main theorem which shows that the inductive validity
of arbitrary quantifier-free conjectures is decidable, if all their equations are
radical and maintain an ordering under C. The decision procedure works by
constructing the basic correctness predicate and by checking whether it always
yields true. The reason for the soundness of this approach is that basic correctness
predicates are indeed sound and exact.

Theorem 11 (Decidability of inductive validity for arbitrary conjec-
tures). Let R, C, ¢ be as in Def. 10. Then inductive validity of ¢ is decidable
(by checking whether all non-recursive rules of b, have the right-hand side true,
where by, is the basic correctness predicate for ¢ under C).

Proof. We have to show that b, is sound and exact, i.e., R =ind ¢ < by(y*) =
true if R also contains the rules defining b,. We use an induction w.r.t. the
structure of ¢. First let ¢ be an equation ry = 9.

Let ¢* be a tuple of constructor ground terms. We prove R Eina 71[¢*] =
r2[¢*] & br,=r,(¢*) = true by induction w.r.t. <c¢/. Since C is complete and
well founded, obviously its extension C’ is complete and well founded, too. Due

13



to the completeness of C’, there exists some (s*,{t},...,t5}) € C' and some
substitution o such that ¢* = s*o. If n = 0, then the claim follows from radicality
of 1 = ro under C and thus, under C’ as well.

If n =1 and R kg ri[s*c] = ra[s*o] then by Lemma 7 we also have
R |=ind T1[t70] = r2[tio] since 71 = ro maintains an ordering under C and thus,
under C’ as well. The induction hypothesis yields R |=ina by, =r, (ti0) = true and
thus, R FEind br,=r, (s*0) = true as well.

Finally, let n =1 and R |=ina —71[s*0] = r2[s*c]. We have to show that this
implies R Fing —71[tfo] = r2[tio]. Then the induction hypothesis would yield
R Eind br,=r, (t]o) = false and thus, R =ing br,=r, (s*0) = false as well.

Note that s* = s*'u and ¢} = ¢}y for some (s*',{t;'}) € C by the definition
of extensions. Moreover, by the requirement that arguments ;' of induction
hypotheses may not unify with arguments of other induction conclusions we
also have that t; = ;' = s*'vu by the definition of extensions. Since r; = 7
maintains an ordering under C we have r1[s*'] —% C![r1[t}']] for a constructor
ground context C!. As ri[s*] —% C;[r1[t{]], this means that C} = C; or, in
other words, r1[s*'] =% C;[ri[t}']]. Radicality of r; = 72 under C implies that
R Eina Cilr2[ti’]] = ra[s*'] or R =ing =Cilra[t]]] = r2[s™].

First assume R [ina Ci[ra[t}’]] = ro[s*’]. This implies R Fina (Cilr2[t}]] =
ra[s*' ), ie., R =ina Ci[r2[ti]] = ro[s*]. If we had R [eing —r1[tio] = ratio]
(i.e.; R FEina (r1[t]] = r2[ti])oT for some 7), then we would also have R |=ing
(Ci[r1[t1]] = re[s*])or. Since ri[s*] =% C;[ri[t]]], this implies R }=ina (r1[s*] =
ro[s*])oT in contradiction to the prerequisite R =ing —r1[s*c] = ro[s*c].

Thus, R [=ina —Ci[r2[t}']] = ra[s*']. Again assume R |=ina (71[t]] = ra[t]])or
for some 7. Since tjor = s*'vuor, we have R Fina (r1[s*'] = ra[s*'])vpor and
since 7, = 75 maintains an ordering under C, this implies R |=ing (r1[t}’]
r2[t;'])vpoT by Lemma 7. By the prerequisite, this yields R g (=Ci[ri[t1']]
ro[s*'])vuoT. However since 71[s*'] =% C;[r1[t}']], this is equivalent to R Fina
(=r1[s*'] = r2[s*'])vpoT, which contradicts the assumption (as tjor = s*'vuor).

|

For formulas which are no equations, the claim immediately follows from the
(outer) induction hypothesis. O

Note that the conditions in Thm. 11 (i.e., radicality and maintenance of or-
derings) can be checked automatically (by using orderings from the area of term
rewrite systems which are amenable to automation). The set of all conjectures ¢
satisfying these conditions forms a class where inductive validity is decidable. To
decide inductive validity of ¢ one simply constructs the rules for the basic cor-
rectness predicate b, (which can be done automatically) and one checks whether
there is no rule of the form b, (...) — false.

So for a formula like double(y) = y = y = 0, one first checks whether
this formula belongs to the class where inductive validity is decidable. For that
purpose, one examines whether the conjecture contains a subterm f(y*) for
pairwise disjoint variables y* and an algorithm f and then one checks whether
all equations in the conjecture are radical and maintain an ordering under Cy
(using the induction variables y*).

14



In our example, the equations double(y) = y and y = 0 indeed are both
radical and they maintain the superterm ordering under Cyouple- S0 inductive
validity of this conjecture is decidable. The decision procedure constructs the
basic correctness predicate

bouble(y)—y=y—0(0) — true,
baouble(y)=y=y—0(s(0)) — true,
)

bdouble(y):y:>y=0 (S(S(J)) ) — bdouble(y)=y=>y=0 (S(.’E)),

and checks whether all non-recursive rules of byouple(y)—y=y—0 have true on their
right-hand side, which is obviously the case. Thus, the formula is valid.

Note that in this way we can decide the inductive validity of conjectures
which were up to now hard problems for inductive theorem provers. In fact,
virtually all existing inductive provers fail in verifying double(y) = y = y = 0.5
The reason is that the induction conclusion double(s(z)) = s(z) = s(z) = 0 can
be evaluated to —s(double(z)) = z, but there is no way to apply the induction
hypothesis double(z) = z = = = 0 and thus, the proof of the induction step case
does not succeed. On the other hand, by our decision procedure, validity of such
conjectures can be shown without using any inductive theorem prover at all.

6 Conclusion

We presented a class of conjectures where inductive validity is decidable (by a
very simple decision procedure). This allows an integration of inductive reasoning
within fully automated tools like model checkers or compilers. First, we extended
the results of [8] to a larger class of equations and subsequently, we extended
the approach further to arbitrary quantifier-free conjectures. The main idea is
to build correctness predicates for all equations occurring in a conjecture and we
gave a criterion for checking whether these correctness predicates really describe
the exact set of objects where the equation is valid. We showed how to construct
(basic) correctness predicates for non-atomic formulas and by checking their
defining rules, the inductive validity of such formulas can easily be decided.

We have used correctness predicates ¢, =, to describe the instances where
an equation ry = ry is valid. However, in order to combine the correctness pred-
icates ¢y =r, and ¢, of two different equations (e.g., when building their
conjunction), we have to restrict ourselves to basic correctness predicates and
IMOTEOVer, Cry =y, and ¢,;—,; must have been built w.r.t. “compatible” cover sets.
In order to avoid these difficulties, an interesting alternative approach is to rep-
resent the set of instances where equations are valid by tree automata [4] instead
of correctness predicates. As long as these sets of instances are regular, this
indeed results in a very elegant method for deciding inductive validity (since
regular languages are effectively closed under complement and intersection and
since their emptiness is decidable). However, in general there are many equations
where the set of instances which makes them valid is not regular. For example,

6 This problem was pointed out to us by U. Kiihler.

15



the equation plus(minus(z,y), minus(y,z)) = 0 is valid iff z and y are equal. A
correctness predicate describing this set can easily be constructed automatically,
whereas this set is not regular and therefore cannot be described by (ordinary)
tree automata. This indicates that the use of tree automata may be too restric-
tive compared to the use of (basic) correctness predicates. However, we intend to
study the possibilities of using automata for deciding inductive validity further
in future work.

In this paper, we focused on integrating induction schemes with a decision
procedure for the quantifier-free theory of free constructors to obtain an exten-
sion of the decision procedure to quantifier-free formulas whose proofs (or dis-
proofs) may require the use of induction. Kapur and Subramaniam [8] discussed
an approach for integrating induction schemes into decidable quantifier-free the-
ories including Presburger arithmetic, and they gave a decision procedure for
inductive validity of a large class of equations involving 7 -based function sym-
bols, where T is a decidable quantifier-free theory. In future work, we intend to
generalize the techniques developed in this paper from constructor systems to
T-based systems (including Presburger arithmetic) as well.

References

—_

. F. Baader & T. Nipkow, Term Rewriting and All That, Cambridge Univ. Pr., 1998.

. R. S. Boyer and J Moore, A Computational Logic, Academic Press, 1979.

3. A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, & A. Smaill, Rippling: A
Heuristic for Guiding Inductive Proofs, Artificial Intelligence, 62:185-253, 1993.

4. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Ti-
son, & M. Tommasi. Tree Automata and Applications. Draft, available from
http://wuw.grappa.univ-1ille3.fr/tata/, 1999.

5. N. Dershowitz, Termination of Rewriting, J. Symb. Comp., 3:69-116, 1987.

6. M. Franova & Y. Kodratoff, Predicate Synthesis from Formal Specifications, in
Proc. ECAI 92, 1992.

7. D. Kapur & M. Subramaniam, New Uses of Linear Arithmetic in Automated The-
orem Proving by Induction, Journal of Automated Reasoning, 16:39-78, 1996.

8. D. Kapur & M. Subramaniam, Extending Decision Procedures with Induction
Schemes, in Proc. CADE-17, LNAI 1831, pages 324-345, 2000.

9. M. Protzen, Patching Faulty Conjectures, Proc. CADE-13, LNAI 1104, 1996.

10. J. Steinbach, Simplification orderings: History of results, Fundamenta Informati-
cae, 24:47-87, 1995.

11. H. Zhang, D. Kapur, & M. S. Krishnamoorthy, A Mechanizable Induction Principle

for Equational Specifications, in Proc. CADE-9, LNCS 310, 1988.

[\V]

16



