
A Dependency Pair Framework for Relative
Termination of Term Rewriting⋆

Jan-Christoph Kassing , Grigory Vartanyan , and Jürgen Giesl

RWTH Aachen University, Aachen, Germany
{kassing,giesl}@cs.rwth-aachen.de, grigory.vartanyan@rwth-aachen.de

Abstract. Dependency pairs are one of the most powerful techniques
for proving termination of term rewrite systems (TRSs), and they are
used in almost all tools for termination analysis of TRSs. Problem #106
of the RTA List of Open Problems asks for an adaption of dependency
pairs for relative termination. Here, infinite rewrite sequences are allowed,
but one wants to prove that a certain subset of the rewrite rules cannot
be used infinitely often. Dependency pairs were recently adapted to
annotated dependency pairs (ADPs) to prove almost-sure termination of
probabilistic TRSs. In this paper, we develop a novel adaption of ADPs
for relative termination. We implemented our new ADP framework in
our tool AProVE and evaluate it in comparison to state-of-the-art tools
for relative termination of TRSs.

1 Introduction

Termination is an important topic in program verification. There is a wealth of
work on automatic termination analysis of term rewrite systems (TRSs) which
can also be used to analyze termination of programs in many other languages.
Essentially all current termination tools for TRSs (e.g., AProVE [13], NaTT [36],
MU-TERM [15], TTT2 [27], etc.) use dependency pairs (DPs) [1, 11, 12, 16, 17].

A combination of two TRSs (a main TRS R and a base TRS B) is “relatively
terminating” if there is no rewrite sequence that uses infinitely many steps with
rules from R (whereas rules from B may be used infinitely often). Relative
termination of TRSs has been studied since decades [8], and approaches based on
relative rewriting are used for many applications, e.g., in complexity analysis [3,
6, 7, 29, 37], for proving confluence [19, 25], for certifying confluence proofs [30],
for proving termination of narrowing [20, 31, 34], and for proving liveness [26].

However, while techniques and tools for analyzing ordinary termination of
TRSs are very powerful due to the use of DPs, a direct application of standard
DPs to analyze relative termination is not possible. Therefore, most existing
approaches for automated analysis of relative termination are quite restricted
in power. Hence, one of the largest open problems regarding DPs is Problem
#106 of the RTA List of Open Problems [5]: Can we use the dependency pair

⋆ funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
- 235950644 (Project GI 274/6-2) and DFG Research Training Group 2236 UnRAVeL

http://orcid.org/0009-0001-9972-2470
http://orcid.org/0009-0009-9631-8307
http://orcid.org/0000-0003-0283-8520


2 J.-C. Kassing, G. Vartanyan, J. Giesl

method to prove relative termination? A first major step towards an answer to
this question was presented in [21] by giving criteria for R and B that allow the
use of ordinary DPs for relative termination.

Recently, we adapted DPs to analyze probabilistic innermost term rewriting,
by using so-called annotated dependency pairs (ADPs) [23] or dependency tuples
(DTs) [22] (which were originally proposed for innermost complexity analysis of
TRSs [32]).1 In these adaptions, one considers all defined function symbols in the
right-hand side of a rule at once, whereas ordinary DPs consider them separately.

In this paper, we show that considering the defined symbols on right-hand sides
separately (as for classical DPs) does not suffice for relative termination. On the
other hand, we do not need to consider all of them at once either (i.e., we do not
have to use the notions of ADPs or DTs from [22, 23, 32]). Instead, we introduce
a new definition of ADPs that is suitable for relative termination and develop a
corresponding ADP framework for automated relative termination proofs of TRSs.
Moreover, while ADPs and DTs were only applicable for innermost rewriting in
[22, 23, 32], we now adapt ADPs to full (relative) rewriting, i.e., we do not impose
any specific evaluation strategy. So while [21] presented conditions under which
the ordinary classical DP framework can be used to prove relative termination,
in this paper we develop the first specific DP framework for relative termination.

Structure: We start with preliminaries on relative rewriting in Sect. 2. In Sect. 3
we recapitulate the core processors of the DP framework and show that classical
DPs are unsound for relative termination in general. Moreover, we state the main
results of [21] on criteria when ordinary DPs may nevertheless be used for relative
termination. Afterwards, we introduce our novel notion of annotated dependency
pairs for relative termination in Sect. 4 and present a corresponding new ADP
framework in Sect. 5. We implemented our framework in the tool AProVE and in
Sect. 6, we evaluate our implementation in comparison to other state-of-the-art
tools. All proofs can be found in [24].

2 Relative Term Rewriting

We assume familiarity with term rewriting [2] and regard (finite) TRSs over a
(finite) signature Σ and a set of variables V.

Example 1. Consider the following TRS RdivL, where divL(x, xs) computes the
number that results from dividing x by each element of the list xs. As usual,
natural numbers are represented by the function symbols 0 and s, and lists
are represented via nil and cons. Then divL(s24(0), cons(s4(0), cons(s3(0), nil)))
evaluates to s2(0), because (24/4)/3 = 2. Here, s2(0) stands for s(s(0)), etc.

minus(x, 0) → x (1)

minus(s(x), s(y)) → minus(x, y) (2)

div(0, s(y)) → 0 (3)

div(s(x), s(y)) → s(div(minus(x, y), s(y))) (4)

divL(x, nil) → x (5)

divL(x, cons(y, xs)) → divL(div(x, y), xs) (6)

1 As shown in [23], using ADPs instead of DTs leads to a more elegant, more powerful,
and less complicated framework, and to completeness of the underlying chain criterion.



Dependency Pairs for Relative Termination 3

A TRS R induces a rewrite relation →R ⊆ T (Σ,V)× T (Σ,V) on terms where
s →R t holds if there is a π ∈ Pos(s), a rule ℓ → r ∈ R, and a substitution σ such
that s|π = ℓσ and t = s[rσ]π. For example, minus(s(0), s(0)) →RdivL

minus(0, 0)
→RdivL

0. We call a TRS R terminating (abbreviated SN, for “strongly normal-
izing”) if →R is well founded. Using the DP framework, one can easily prove
that RdivL is SN (see Sect. 3.1). In particular, in each application of the recursive
divL-rule (6), the length of the list in divL’s second argument is decreased by one.

In the relative setting, one considers two TRSs R and B. We say that R is
relatively terminating w.r.t. B (i.e., R/B is SN) if there is no infinite (→R ∪ →B)-
rewrite sequence that uses an infinite number of →R-steps. We refer to R as the
main and B as the base TRS.

Example 2. Let RdivL be the main TRS. Since the order of the list elements does
not affect the termination of RdivL, this algorithm also works for multisets. To
abstract lists to multisets, we add the base TRS Bmset = {(7)}.

cons(x, cons(y, zs)) → cons(y, cons(x, zs)) (7)

Bmset is non-terminating, since it can switch elements in a list arbitrarily often.
However, RdivL/Bmset is SN as each application of Rule (6) still reduces the list
length. Indeed, termination of RdivL/Bmset can also be shown via the approach of
[21], because it allows us to apply (standard) DPs in this example, see Ex. 13.

However, if Bmset is replaced by the base TRS Bmset2 with the rule

divL(z, cons(x, cons(y, zs))) → divL(z, cons(y, cons(x, zs))), (8)

then RdivL/Bmset2 remains terminating, but the approach of [21] is no longer
applicable, see Ex. 14. In contrast, with our new DP framework in Sect. 4 and 5,
termination of such examples can be proved automatically.2

We will use the following four examples to illustrate the problems that one
has to take into account when analyzing relative termination. So these examples
show why a naive adaption of dependency pairs does not work in the relative
setting and why we need our new notion of annotated dependency pairs. The
examples represent different types of infinite rewrite sequences that can lead
to non-termination in the relative setting: redex-duplicating, redex-creating (or
“-emitting”), and ordinary infinite sequences.

Example 3 (Redex-Duplicating). Consider the TRSs R1 = {a → b} and B1 =
{f(x) → d(f(x), x)} from [21, Ex. 4]. R1/B1 is not SN due to the infinite
rewrite sequence f(a) →B1

d(f(a), a) →R1
d(f(a), b) →B1

d(d(f(a), a), b) →R1

d(d(f(a), b), b) →B1
. . . The reason is that B1 can be used to duplicate an arbi-

trary R1-redex infinitely often.

Example 4 (Redex-Creating on Parallel Position). Next, consider R2 = {a → b}
and B2 = {f → d(f, a)}. R2/B2 is not SN as we have the infinite rewrite sequence

2 To ease the presentation, the rule (8) only switches the first two elements in a list.
Our approach also succeeds on a more complicated variant where the elements of
lists in divL’s second argument can be permuted arbitrarily. We included such an
example in the benchmark collection that we used for our evaluation in Sect. 6.



4 J.-C. Kassing, G. Vartanyan, J. Giesl

f →B2
d(f, a) →R2

d(f, b) →B2
d(d(f, a), b) →R2

d(d(f, b), b) →B2
. . . Here, B2

can create an R2-redex infinitely often (where in the right-hand side d(f, a) of
B2’s rule, the B2-redex f and the created R2-redex a are on parallel positions).

Example 5 (Redex-Creating on Position Above). Let R3 = {a(x) → b(x)} and
B3 = {f → a(f)}. R3/B3 is not SN as we have f →B3

a(f) →R3
b(f) →B3

b(a(f)) →R3
b(b(f)) →B3

. . ., i.e., again B3 can be used to create an R3-redex
infinitely often. In the right-hand side a(f) of B3’s rule, the position of the created
R3-redex a(. . .) is above the position of the B3-redex f.

Example 6 (Ordinary Infinite). Finally, consider R4 = {a → b} and B4 = {b →
a}. Here, the base TRS B4 can neither duplicate nor create an R4-redex infinitely
often, but in combination with the main TRS R4 we obtain the infinite rewrite
sequence a →R4

b →B4
a →R4

b →B4
. . . Thus, R4/B4 is not SN.

3 DP Framework

We first recapitulate dependency pairs for ordinary (non-relative) rewriting in
Sect. 3.1 and summarize existing results on DPs for relative rewriting in Sect. 3.2.

3.1 Dependency Pairs for Ordinary Term Rewriting

We recapitulate DPs and the two most important processors of the DP framework,
and refer to, e.g., [1, 11, 12, 16, 17] for more details. As an example, we show
how to prove termination of RdivL without the base Bmset. We decompose the
signature Σ = C ⊎ D of a TRS R such that f ∈ D if f = root(ℓ) for some
rule ℓ → r ∈ R. The symbols in C and D are called constructors and defined
symbols of R, respectively. For every f ∈ D, we introduce a fresh annotated (or
“marked”) symbol f# of the same arity. Let D# denote the set of all annotated
symbols, and let Σ# = Σ ⊎ D#. To ease readability, we often use capital letters
like F instead of f#. For any term t = f(t1, . . . , tn) ∈ T (Σ,V) with f ∈ D, let
t# = f#(t1, . . . , tn). For each rule ℓ → r and each subterm t of r with defined
root symbol, one obtains a dependency pair ℓ# → t#. Let DP(R) denote the set
of all dependency pairs of the TRS R.

Example 7. For RdivL from Ex. 1, we obtain the following five dependency pairs.

M(s(x), s(y)) → M(x, y) (9)

D(s(x), s(y)) → M(x, y) (10)

D(s(x), s(y)) → D(m(x, y), s(y)) (11)

DL(x, cons(y, xs)) → D(x, y) (12)

DL(x, cons(y, xs)) → DL(div(x, y), xs) (13)

The DP framework operates on DP problems (P,R) where P is a (finite) set
of DPs, and R is a (finite) TRS. A (possibly infinite) sequence t0, t1, t2, . . . with
ti

ε→P ◦ →∗
R ti+1 for all i is a (P,R)-chain. Here,

ε→ are rewrite steps at the
root. A chain represents subsequent “function calls” in evaluations. Between two
function calls (corresponding to steps with P, called p-steps) one can evaluate
the arguments using arbitrary many steps with R (called r-steps). So r-steps are
rewrite steps that are needed in order to enable another p-step at a position above



Dependency Pairs for Relative Termination 5

later on. Hence, DL(s(0), cons(s(0), nil)),DL(s(0), nil) is a (DP(RdivL),RdivL)-chain,
as DL(s(0), cons(s(0), nil))

ε→DP(RdivL) DL(div(s(0), s(0)), nil) →∗
RdivL

DL(s(0), nil).
A DP problem (P,R) is called terminating (SN) if there is no infinite (P,R)-

chain. The main result on DPs is the chain criterion which states that a TRS
R is SN iff (DP(R),R) is SN. The key idea of the DP framework is a divide-
and-conquer approach which applies DP processors to transform DP problems
into simpler sub-problems. A DP processor Proc has the form Proc(P,R) =
{(P1,R1), . . . , (Pn,Rn)}, where P,P1, . . . ,Pn are sets of DPs and R,R1, . . . ,Rn

are TRSs. Proc is sound if (P,R) is SN whenever (Pi,Ri) is SN for all 1 ≤ i ≤ n.
It is complete if (Pi,Ri) is SN for all 1 ≤ i ≤ n whenever (P,R) is SN.

So for a TRS R, one starts with the initial DP problem (DP(R),R) and
applies sound (and preferably complete) DP processors until all sub-problems are
“solved” (i.e., processors transform them to the empty set). This allows for modular
termination proofs, as different techniques can be applied on each sub-problem.

One of the most important processors is the dependency graph processor.
The (P,R)-dependency graph indicates which DPs can be used after each other
in chains. Its set of nodes is P and there is an edge from s1 → t1 to s2 → t2
if there are substitutions σ1, σ2 with t1σ1 →∗

R s2σ2. Any infinite (P,R)-chain
corresponds to an infinite path in the dependency graph, and since the graph is
finite, this infinite path must end in a strongly connected component (SCC).3

Hence, it suffices to consider the SCCs of this graph independently.

Theorem 8 (Dep. Graph Processor). For the SCCs P1, . . . ,Pn of the (P,R)-
dependency graph, ProcDG(P,R) = {(P1,R), . . . , (Pn,R)} is sound and complete.

(13) (12)

(9) (10) (11)

While the exact dependency graph is not computable
in general, there are several techniques to over-approxi-
mate it automatically [1, 12, 16]. The (DP(RdivL),RdivL)-
dependency graph for our example is on the right. Here,
ProcDG(DP(RdivL),RdivL) yields

(
{(9)},RdivL

)
,
(
{(11)},RdivL

)
, and

(
{(13)},RdivL

)
.

The second crucial processor adapts classical reduction orders to DP problems.
A reduction pair (≿,≻) consists of two relations on terms such that ≿ is reflexive,
transitive, and closed under contexts and substitutions, and ≻ is a well-founded
order that is closed under substitutions but does not have to be closed under
contexts. Moreover, ≿ and ≻ must be compatible, i.e., ≿ ◦ ≻ ◦ ≿ ⊆ ≻. The
reduction pair processor requires that all rules and dependency pairs are weakly
decreasing, and it removes those DPs that are strictly decreasing.

Theorem 9 (Reduction Pair Processor). Let (≿,≻) be a reduction pair
such that P ∪R ⊆≿. Then ProcRPP(P,R) = {(P \ ≻,R)} is sound and complete.

For example, one can use reduction pairs based on polynomial interpretations
[28]. A polynomial interpretation Pol is a Σ#-algebra which maps every function

3 Here, a set P ′ of dependency pairs is an SCC if it is a maximal cycle, i.e., it is a
maximal set such that for any s1 → t1 and s2 → t2 in P ′ there is a non-empty path
from s1 → t1 to s2 → t2 which only traverses nodes from P ′.



6 J.-C. Kassing, G. Vartanyan, J. Giesl

symbol f ∈ Σ# to a polynomial fPol ∈ N[V ]. Pol(t) denotes the interpretation of
a term t by the Σ#-algebra Pol. Then Pol induces a reduction pair (≿,≻) where
t1 ≿ t2 (t1 ≻ t2) holds if the inequation Pol(t1) ≥ Pol(t2) (Pol(t1) > Pol(t2)) is
true for all instantiations of its variables by natural numbers.

For the three remaining DP problems
(
{(9)},RdivL

)
,
(
{(11)},RdivL

)
, and(

{(13)},RdivL

)
in our example, we can apply the reduction pair processor using

the polynomial interpretation which maps 0 and nil to 0, s(x) to x+1, cons(y, xs)
to xs + 1, DL(x, xs) to xs, and all other symbols to their first arguments. Since
(9), (11), and (13) are strictly decreasing, ProcRPP transforms all three remaining
DP problems into DP problems of the form (∅, . . .). As ProcDG(∅, . . .) = ∅ and
all processors used are sound, this means that there is no infinite chain for the
initial DP problem (DP(RdivL),RdivL) and thus, RdivL is SN.

3.2 Dependency Pairs for Relative Termination

Up to now, we only considered DPs for ordinary termination of TRSs. The
easiest idea to use DPs in the relative setting is to start with the DP problem
(DP(R ∪ B),R ∪ B). This would prove termination of R ∪ B, which implies
termination of R/B, but ignores that the rules in B do not have to terminate.
Since termination of DP problems is already defined via a relative condition
(finite chains can only have finitely many p-steps but there may exist rewrite
sequences with infinitely many r-steps that are no chains), another idea for
proving termination of R/B is to start with the DP problem (DP(R),R ∪ B),
which only considers the DPs of R. However, this is unsound in general.

Example 10. The only defined symbol of R2 from Ex. 4 is a. Since the right-hand
side of R2’s rule does not contain defined symbols, we would get the DP problem
(∅,R2 ∪ B2), which is SN as it has no DP. Thus, we would falsely conclude that
R2/B2 is SN. Similarly, this approach would also falsely “prove” SN for Ex. 3
and 5. Thus, the standard notion of DPs is unsound for relative termination.

In [21], it was shown that under certain conditions on R and B, starting
with the DP problem (DP(R ∪ Ba),R ∪ B) for a subset Ba ⊆ B is sound for
relative termination.4 The two conditions on the TRSs are dominance and being
non-duplicating. We say that R dominates B if defined symbols of R do not occur
in the right-hand sides of rules of B. A TRS is non-duplicating if no variable
occurs more often on the right-hand side of a rule than on its left-hand side.

Theorem 11 (First Main Result of [21], Sound and Complete). Let R
and B be TRSs such that B is non-duplicating and R dominates B. Then the DP
problem (DP(R),R∪ B) is SN iff R/B is SN.

Theorem 12 (Second Main Result of [21], only Sound). Let R and
B = Ba ⊎ Bb be TRSs. If Bb is non-duplicating, R ∪ Ba dominates Bb, and the
DP problem (DP(R∪ Ba),R∪ B) is SN, then R/B is SN.

4 As before, for the construction of DP(R∪ Ba), only the root symbols of left-hand
sides of R∪ Ba are considered to be “defined”.



Dependency Pairs for Relative Termination 7

Example 13. For the main TRS RdivL from Ex. 1 and base TRS Bmset from Ex. 2
we can apply Thm. 11 and consider the DP problem (DP(RdivL),RdivL ∪ Bmset),
since Bmset is non-duplicating andRdivL dominates Bmset. As for (DP(RdivL),RdivL),
the DP framework can prove that (DP(RdivL),RdivL ∪ Bmset) is SN. In this way,
the tool NaTT which implements the results of [21] proves that RdivL/Bmset is SN.
Note that sophisticated techniques like DPs are needed to prove SN forRdivL/Bmset

because classical (simplification) orders already fail to prove termination of RdivL.

Example 14. As mentioned in Ex. 2, if we consider Bmset2 with the rule

divL(z, cons(x, cons(y, zs))) → divL(z, cons(y, cons(x, zs))) (8)

instead of Bmset as the base TRS, then RdivL/Bmset2 is still terminating, but we
cannot use Thm. 11 since RdivL does not dominate Bmset2. If we try to split Bmset2

as in Thm. 12, then ∅ ̸= Ba ⊆ Bmset2 implies Ba = Bmset2, but Bmset2 is non-
terminating. Therefore, all previous tools for relative termination fail in proving
that RdivL/Bmset2 is SN. In Sect. 4 we will present our novel DP framework which
can prove relative termination of relative TRSs like RdivL/Bmset2.

As remarked in [21], Thm. 11 and 12 are unsound if one only considers minimal
chains, i.e., if for a DP problem (P,R) one only considers chains t0, t1, . . ., where
all ti are R-terminating. In the DP framework for ordinary rewriting, the restric-
tion to minimal chains allows the use of further processors, e.g., based on usable
rules [12, 17] or the subterm criterion [17]. As shown in [21], usable rules and the
subterm criterion can nevertheless be applied if B is quasi-terminating [4], i.e.,
{t | s →∗

B t} is finite for every term s. This restriction would also be needed to
integrate processors that rely on minimality into our new framework in Sect. 4.

4 Annotated Dependency Pairs for Relative Termination

As shown in Sect. 3.2, up to now there only exist criteria [21] that state when
it is sound to apply ordinary DPs for proving relative termination, but there
is no specific DP-based technique to analyze relative termination directly. For
ordinary termination, we create a separate DP for each occurrence of a defined
symbol in the right-hand side of a rule (and no DP is created for rules without
defined symbols in their right-hand sides). This would work to detect ordinary
infinite sequences like the one in Ex. 6 in the relative setting, i.e., such an infinite
sequence would give rise to an infinite chain. However, as shown in Ex. 10, this
would not suffice to detect infinite redex-creating sequences as in Ex. 4 and 5.
Thus, ordinary DPs are unsound for analyzing relative termination.

To solve this problem, we now adapt the concept of annotated dependency pairs
(ADPs) for relative termination. ADPs were introduced in [23] to prove innermost
almost-sure termination of probabilistic term rewriting. In the relative setting, we
can use similar dependency pairs as in the probabilistic setting, but with a different
rewrite relation ↪−→ to deal with non-innermost steps. Compared to [21], we
(a) remove the requirement of dominance, which will be handled by the dependency
graph processor, and (b) allow for ADP processors that are specifically designed
for the relative setting before possibly moving to ordinary DPs.



8 J.-C. Kassing, G. Vartanyan, J. Giesl

The requirement that B must be non-duplicating remains, since relative non-
termination because of duplicating rules is not necessarily due to the relation
between the left-hand side and the subterms with defined root symbols in the
right-hand side of a rule. Therefore, this cannot be captured by (A)DPs, i.e.,
DPs do not help in analyzing redex-duplicating sequences as in Ex. 3, where the
crucial redex a is not generated from a “function call” in the right-hand side of
a rule, but it just corresponds to a duplicated variable. To handle TRSs R/B
where Bdup ⊆ B is duplicating, one can move the duplicating rules to the main
TRS R and try to prove relative termination of (R∪Bdup)/(B \Bdup) instead, or
one can try to find a reduction pair (≿,≻) where ≻ is closed under contexts such
that R∪ B ⊆ ≿ and Bdup ⊆ ≻. Then it suffices to prove relative termination of
(R\≻)/(B\≻) instead.

We will now define a notion of DPs that can detect infinite redex-creating
sequences as in Ex. 4 with R2 = {a → b} and B2 = {f → d(f, a)}: f →B2

d(f, a) →R2
d(f, b) →B2

d(d(f, a), b) →R2
. . . To this end, (1) we need a DP for

the rule a → b to track the reduction of the created R2-redex a, although b is a
constructor. Moreover, (2) both defined symbols f and a in the right-hand side of
the rule f → d(f, a) have to be considered simultaneously: We need f to create an
infinite number of R2-redexes, and we need a since it is the created R2-redex.
Hence, for rules from the base TRS B2, we have to consider all possible pairs
of defined symbols in their right-hand sides simultaneously.5 This is not needed
for the main TRS R2, i.e., if the f-rule were in the main TRS, then the f in
the right-hand side could be considered separately from the a that it generates.
Therefore, we distinguish between main and base ADPs (that are generated from
the main and the base TRS, respectively).

As in [23], we now annotate defined symbols directly in the original rewrite
rule instead of extracting annotated subterms from its right-hand side. In this
way, we may have terms containing several annotated symbols, which allows us to
consider pairs of defined symbols in right-hand sides simultaneously. At the same
time, an ADP maintains the information on the positions of the subterms in the
original right-hand side. (This information will be needed for the “completeness”
of the chain criterion in Thm. 23, i.e., it allows us to obtain an equivalent
characterization of relative termination via chains of ADPs.6)

Definition 15 (Annotations). For t ∈ T
(
Σ#,V

)
and X ⊆ Σ# ∪ V, let

PosX (t) be the set of all positions of t with symbols or variables from X . For
Φ ⊆ PosD∪D#(t), #Φ(t) is the variant of t where the symbols at positions from Φ
are annotated and all other annotations are removed. Thus, PosD#(#Φ(t)) = Φ,

5 For relative termination, it suffices to consider pairs of defined symbols. The reason
is that to “track” a non-terminating reduction, one only has to consider a single
redex plus possibly another redex of the base TRS which may later create a redex of
the main TRS again.

6 This is the main advantage of ADPs over related formalisms like dependency tuples
[22, 32] where this information on the positions is lost. Therefore, as shown in [23] for
almost-sure termination analysis of probabilistic term rewriting, using ADPs instead
of DTs leads to a more elegant, more powerful, and less complicated framework.



Dependency Pairs for Relative Termination 9

and #∅(t) removes all annotations from t, where we often write ♭(t) instead of
#∅(t). Moreover, for a singleton {π}, we often write #π instead of #{π}. We
write t ⊴π

# s if π ∈ PosD#(s) and t = ♭(s|π) (i.e., t results from a subterm of
s with annotated root symbol by removing its annotations). We also write ⊴#

instead of ⊴π
# if π is irrelevant.

Example 16. If f ∈ D, then we have #1(f(f(x))) = #1(F(F(x))) = f(F(x)) and
♭(F(F(x))) = f(f(x)). Moreover, we have f(x) ⊴1

# f(F(x)).

While in [23] all defined symbols on the right-hand sides of rules were anno-
tated, we now define our novel variant of annotated dependency pairs for relative
rewriting. As explained before Def. 15, we have to track (at most) two redexes
for base ADPs and only one redex for main ADPs.

Definition 17 (Annotated Dependency Pair). A rule ℓ → r with ℓ ∈
T (Σ,V) \ V, r ∈ T

(
Σ#,V

)
, and V(r) ⊆ V(ℓ) is called an annotated depen-

dency pair (ADP). Let D be the defined symbols of R ∪ B, and for n ∈ N, let
An(ℓ → r) = {ℓ → #Φ(r) | Φ ⊆ PosD(r), |Φ| = min(n, |PosD(r)|)}. The canoni-
cal main ADPs for R are A1(R) =

⋃
ℓ→r∈R

A1(ℓ→r) and the canonical base ADPs

for B are A2(B)=
⋃

ℓ→r∈B
A2(ℓ→r).

So the left-hand side of an ADP is just the left-hand side of the original
rule. The right-hand side results from the right-hand side of the original rule by
replacing certain defined symbols f with f#.

Example 18. The canonical ADPs of Ex. 4 are A1(R2) = {a → b} and A2(B2) =
{f → d(F,A)} and for Ex. 5 we get A1(R3) = {a(x) → b(x)} and A2(B3) = {f →
A(F)}. For RdivL/Bmset2 from Ex. 1 and 14, the ADPs A1(RdivL) are

minus(x, 0) → x (14)

minus(s(x), s(y)) → M(x, y) (15)

div(0, s(y)) → 0 (16)

divL(x, nil) → x (17)

div(s(x), s(y)) → s(D(minus(x, y), s(y))) (18)

div(s(x), s(y)) → s(div(M(x, y), s(y))) (19)

divL(x, cons(y, xs)) → DL(div(x, y), xs) (20)

divL(x, cons(y, xs)) → divL(D(x, y), xs) (21)

and A2(Bmset2) contains divL(z, cons(x, cons(y, zs))) → DL(z, cons(y, cons(x, zs))) (22)

In [23], ADPs were only used for innermost rewriting. We now modify their
rewrite relation and define what happens with annotations inside the substitutions
during a rewrite step. To simulate redex-creating sequences as in Ex. 5 with
ADPs (where the position of the created redex a(. . .) is above the position of the
creating redex f), ADPs should be able to rewrite above annotated arguments
without removing their annotation (we will demonstrate that in Ex. 25). Thus,
for an ADP ℓ → r with a variable ℓ|π = x, we use a variable reposition function
(VRF) to indicate which occurrence of x in r should keep the annotations if one
rewrites an instance of ℓ where the subterm at position π is annotated. So a VRF
maps positions of variables in the left-hand side of a rule to positions of the same
variable in the right-hand side.



10 J.-C. Kassing, G. Vartanyan, J. Giesl

Definition 19 (Variable Reposition Function). Let ℓ → r be an ADP. A
function φ : PosV(ℓ) → PosV(r) ⊎ {⊥} is called a variable reposition function
(VRF) for ℓ → r iff ℓ|π = r|φ(π) whenever φ(π) ̸= ⊥.

Example 20. For the ADP a(x) → b(x) for R3 from Ex. 5, if x on position 1 of the
left-hand side is instantiated by F, then the VRF φ(1) = 1 indicates that this
ADP rewrites A(F) to b(F), while φ(1) = ⊥ means that it rewrites A(F) to b(f).

With VRFs we can define the rewrite relation for ADPs w.r.t. full rewriting.

Definition 21 (↪−→P). Let P be a set of ADPs. A term s ∈ T
(
Σ#,V

)
rewrites

to t using P (denoted s ↪−→P t) if there are an ADP ℓ → r ∈ P, a substitution σ,
a position π ∈ PosD∪D#(s) such that ♭(s|π) = ℓσ, a VRF φ for ℓ → r, and7

t = s[#Φ(rσ)]π if π ∈ PosD#(s) (pr)
t = s[#Ψ (rσ)]π if π ∈ PosD(s) (r)

with Ψ={φ(ρ).τ |ρ∈PosV(ℓ), φ(ρ) ̸=⊥, ρ.τ ∈PosD#(s|π)} and Φ = PosD#(r)∪Ψ .

So Ψ considers all positions of annotated symbols in s|π that are below positions
ρ of variables in ℓ. If the VRF maps ρ to a variable position ρ′ in r, then the
annotations below π.ρ in s are kept in the resulting subterm at position π.ρ′

after the rewriting.
Rewriting with P is like ordinary term rewriting, while considering and

modifying annotations. Note that we represent a DP resulting from a rule
as well as the original rule by just one ADP. So the ADP div(s(x), s(y)) →
s(D(minus(x, y), s(y))) represents both the DP resulting from div in the right-
hand side of the rule (4), and the rule (4) itself (by simply disregarding all
annotations of the ADP).

Similar to the classical DP framework, our goal is to track specific reduction
sequences. As before, there are p-steps where a DP is applied at the position of
an annotated symbol. These steps may introduce new annotations. Moreover,
between two p-steps there can be several r-steps.

A step of the form (pr) at position π in Def. 21 represents a p- or an r-step
(or both), where an r-step is only possible if one later rewrites an annotated
symbol at a position above π. All annotations are kept during this step except
for annotations of subterms that correspond to variables of the applied rule.
Here, the used VRF φ determines which of these annotations are kept and
which are removed. As an example, with the canonical ADP a(x) → b(x) from
A1(R3) we can rewrite A(F) ↪−→A1(R3)

b(F) as in Ex. 20. Here, we have π = ε,

♭(s|ε) = a(f) = ℓσ, r = b(x), and the VRF φ with φ(1) = 1 such that the
annotation of F in A’s argument is kept in the argument of b.

7 In [23] there were two additional cases in the definition of the corresponding rewrite
relation. One of them was needed for processors that restrict the rules applicable for
r-steps (e.g., based on usable rules), and the other case was needed to ensure that the
innermost evaluation strategy is not affected by the application of ADP processors.
This is unnecessary here since we consider full rewriting. On the other hand, VRFs
are new compared to [23], since they are not needed for innermost rewriting.



Dependency Pairs for Relative Termination 11

A step of the form (r) rewrites at the position of a non-annotated defined
symbol, and represents just an r-step. Hence, we remove all annotations from the
right-hand side r of the ADP. However, we may have to keep the annotations inside
the substitution, hence we move them according to the VRF. For example, we ob-
tain the rewrite step s(D(minus(s(0), s(0)), s(0))) ↪−→A1(RdivL)

s(D(minus(0, 0), s(0)))

using the ADP minus(s(x), s(y)) → M(x, y) (15) and any VRF.
A (relative) ADP problem has the form (P,S), where P and S are finite sets

of ADPs. P is the set of all main ADPs and S is the set of all base ADPs. Now
we can define chains in the relative setting.

Definition 22 (Chains and Terminating ADP Problems). Let (P,S)
be an ADP problem. A sequence of terms t0, t1, . . . with ti ∈ T

(
Σ#,V

)
is a

(P,S)-chain if we have ti ↪−→P∪S ti+1 for all i ∈ N. The chain is called infinite if
infinitely many of these rewrite steps use ↪−→P with Case (pr). We say that an
ADP problem (P,S) is terminating (SN) if there is no infinite (P,S)-chain.

Note the two different forms of relativity in Def. 22: In a finite chain, we
may not only use infinitely many steps with S but also infinitely many steps
with P where Case (r) applies. Thus, an ADP problem (P,S) without annotated
symbols or without any main ADPs (i.e., where P = ∅) is obviously SN. Finally,
we obtain our desired chain criterion.

Theorem 23 (Chain Criterion for Relative Rewriting). Let R and B
be TRSs such that B is non-duplicating. Then R/B is SN iff the ADP problem
(A1(R),A2(B)) is SN.

Example 24. The infinite rewrite sequence of Ex. 4 can be simulated by the
following infinite chain using A1(R2) = {a → b} and A2(B2) = {f → d(F,A)}.

F ↪−→A2(B2)
d(F,A) ↪−→A1(R2)

d(F, b) ↪−→A2(B2)
d(d(F,A), b) ↪−→A1(R2)

. . .

The steps with ↪−→A2(B2)
use Case (pr) at the position of the annotated symbol

F and the steps with ↪−→A1(R2)
use (pr) as well. For this infinite chain, we indeed

need two annotated symbols in the right-hand side of the base ADP: If A were
not annotated (i.e., if we had the ADP f → d(F, a)), then the step with ↪−→A1(R2)

would just use Case (r) and the chain would not be considered “infinite”. If F
were not annotated (i.e., if we had the ADP f → d(f,A)), then we would have
the step f ↪−→A2(B2)

d(f, a) which uses Case (r) and removes all annotations from
the right-hand side. Hence, again the chain would not be considered “infinite”.

Example 25. The infinite rewrite sequence of Ex. 5 is simulated by the following
chain with A1(R3) = {a(x) → b(x)} and A2(B3) = {f → A(F)}.

F ↪−→A2(B3)
A(F) ↪−→A1(R3)

b(F) ↪−→A2(B3)
b(A(F)) ↪−→A1(R3)

b(b(F)) ↪−→A2(B3)
. . .

Here, it is important to use the VRF φ(1) = 1 for a(x) → b(x) which keeps the
annotation of A’s argument F when rewriting with A1(R3), i.e., these steps must
yield b(F) instead of b(f) to generate further subterms A(. . .) afterwards.



12 J.-C. Kassing, G. Vartanyan, J. Giesl

5 The Relative ADP Framework

Now we present processors for our novel relative ADP framework. An ADP proces-
sor Proc has the form Proc(P,S)={(P1,S1), . . . , (Pn,Sn)}, where P,P1, . . . ,Pn,
S1, . . . ,Sn are sets of ADPs. Proc is sound if (P,S) is SN whenever (Pi,Si) is
SN for all 1 ≤ i ≤ n. It is complete if (Pi,Si) is SN for all 1 ≤ i ≤ n whenever
(P,S) is SN. To prove relative termination of R/B, we start with the canonical
ADP problem (A1(R),A2(B)) and apply sound (and preferably complete) ADP
processors until all sub-problems are transformed to the empty set.

In Sect. 5.1, we present two processors to remove (base) ADPs, and in Sect. 5.2
and 5.3, we adapt the main processors of the classical DP framework from Sect. 3.1
to the relative setting. As mentioned, the soundness and completeness proofs for
our processors and the chain criterion (Thm. 23) can be found in [24].

5.1 Derelatifying Processors

The following two derelatifying processors can be used to switch from ADPs to
ordinary DPs, similar to Thm. 11 and 12. We extend ♭ to ADPs and sets of
ADPs S by defining ♭(ℓ → r) = ℓ → ♭(r) and ♭(S) = {ℓ → ♭(r) | ℓ → r ∈ S}.

If the ADPs in S contain no annotations anymore, then it suffices to use
ordinary DPs. The corresponding set of DPs for a set of ADPs P is defined as
dp(P) = {ℓ# → t# | ℓ → r ∈ P, t ⊴# r}.
Theorem 26 (Derelatifying Processor (1)). Let (P,S) be an ADP problem
such that ♭(S) = S. Then ProcDRP1(P,S) = ∅ is sound and complete iff the
ordinary DP problem (dp(P), ♭(P ∪ S)) is SN.

Furthermore, similar to Thm. 12, we can always move ADPs from S to P,
but such a processor is only sound and not complete. However, it may help to
satisfy the requirements of Thm. 26 by moving ADPs with annotations from S
to P such that the ordinary DP framework can be used afterwards.

Theorem 27 (Derelatifying Processor (2)). Let (P,S) be an ADP problem,
and let S = Sa⊎Sb. Then ProcDRP2(P,S) = {(P∪split(Sa),Sb)} is sound. Here,
split(Sa) = {ℓ → #π(r) | ℓ → r ∈ Sa, π ∈ posD#(r)}.
So if Sa contains an ADP with two annotations, then we split it into two ADPs,
where each only contains a single annotation.

Example 28. There are also redex-creating examples that are terminating, e.g.,
R2 = {a → b} and the base TRS B′

2 = {f(s(y)) → d(f(y), a)}. Relative (and full)
termination of this example can easily be shown by using the second derelatifying
processor from Thm. 27 to replace the base ADP f(s(y)) → d(F(y),A) by the
main ADPs f(s(y)) → d(F(y), a) and f(s(y)) → d(f(y),A). Then the processor of
Thm. 26 is used to switch to the ordinary DPs F(s(y)) → F(y) and F(s(y)) → A.

5.2 Relative Dependency Graph Processor

Next, we develop a dependency graph processor in the relative setting. The
definition of the dependency graph is analogous to the one in the standard setting



Dependency Pairs for Relative Termination 13

(15)

(14) (16) (17)

(18)(19) (20)

(21)

(22)

Fig. 1: (A1(RdivL),A2(Bmset2))-Dep. Graph

a → b f → d(F,A)

Fig. 2: (A1(R2),A2(B2))-Dep. Graph

and thus, the same techniques can be used to over-approximate it automatically.

Definition 29 (Relative Dependency Graph). Let (P,S) be an ADP prob-
lem. The (P,S)-dependency graph has the set of nodes P∪S and there is an edge
from ℓ1 → r1 to ℓ2 → r2 if there exist substitutions σ1, σ2 and a term t ⊴# r1
such that t#σ1 →∗

♭(P∪S) ℓ
#
2 σ2.

So similar to the standard dependency graph, there is an edge from an ADP
ℓ1 → r1 to ℓ2 → r2 if the rules of ♭(P ∪ S) (without annotations) can reduce an
instance of a subterm t of r1 to an instance of ℓ2, if one only annotates the roots
of t and ℓ2 (i.e., then the rules can only be applied below the root).

Example 30. The dependency graph for the ADP problem (A1(RdivL),A2(Bmset2))
from Ex. 18 is shown in Fig. 1. Here, nodes from A1(RdivL) are denoted by
rectangles and the node from A2(Bmset2) is a circle.

To detect possible ordinary infinite rewrite sequences as in Ex. 6, we again
have to regard SCCs of the dependency graph, where we only need to consider
SCCs that contain a node from P, because otherwise, all steps in the SCC are
relative (base) steps. However, in the relative ADP framework, non-termination
can also be due to chains representing redex-creating sequences. Here, it does not
suffice to look at SCCs. Thus, the relative dependency graph processor differs
substantially from the corresponding processor for ordinary rewriting (and also
from the corresponding processor for the probabilistic ADP framework in [23]).

Example 31 (Dependency Graph for Redex-Creating TRSs). For R2 and B2 from
Ex. 4, the dependency graph for (A1(R2),A2(B2)) from Ex. 24 is in Fig. 2. Here,
we cannot regard the SCC {f → d(F,A)} separately, as we need A1(R2)’s rule
a → b to reduce the created redex. To find the ADPs that can reduce the created
redexes, we have to regard the outgoing paths from the SCCs of S to ADPs of P .

The structure that we are looking for in the redex-creating case is a path
from an SCC to a node from P (i.e., a form of a lasso), which is minimal in the
sense that if we reach a node from P, then we stop and do not move further
along the edges of the graph. Moreover, the SCC needs to contain an ADP with
more than one annotated symbol, as otherwise the generation of the infinitely
many P-redexes would not be possible. Here, it suffices to look at SCCs in the
graph restricted to only S-nodes (i.e., in the (♭(P),S)-dependency graph). The
reason is that if the SCC contains a node from P, then as mentioned above, we



14 J.-C. Kassing, G. Vartanyan, J. Giesl

have to prove anyway that the SCC does not give rise to infinite chains.

Definition 32 (SCC
(P,S)
P′ , Lasso). Let (P,S) be an ADP problem. For any

P ′ ⊆ P ∪ S, let SCC(P,S)
P′ denote the set of all SCCs of the (P,S)-dependency

graph that contain an ADP from P ′. Moreover, let S>1 ⊆ S denote the set of all
ADPs from S with more than one annotation. Then the set of all minimal lassos

is defined as Lasso = {Q ∪ {n1, . . . , nk} | Q ∈ SCC
(♭(P),S)
S>1

, n1, . . . , nk is a path
in the (♭(P),S)-dependency graph such that n1 ∈ Q and nk ∈ ♭(P)}.

We remove the annotations of ADPs which do not have to be considered
anymore for p-steps due to the dependency graph, but we keep the ADPs for
possible r-steps and thus, consider them as relative (base) ADPs.

Theorem 33 (Dep. Graph Processor). Let (P,S) be an ADP problem. Then

ProcDG(P,S) = {(P ∩Q, (S ∩ Q) ∪ ♭( (P ∪ S) \ Q ) ) | Q ∈ SCC
(P,S)
P ∪ Lasso}

is sound and complete.

Example 34. For (A1(RdivL),A2(Bmset2)) from Ex. 30 we have three SCCs {(15)},
{(18)}, and {(20), (22)} containing nodes from A1(RdivL). The set {(22)} is the
only SCC of (♭(A1(RdivL)),A2(Bmset2)) and there are paths from that SCC to
the ADPs (20) and (21) of P. However, they are not in Lasso, because the
SCC {(22)} does not contain an ADP with more than one annotation. Hence,
we result in the three new ADP problems ({(15)}, {♭(22)}∪♭(A1(RdivL)\{(15)})),
({(18)}, {♭(22)}∪♭(A1(RdivL)\{(18)})), and ({(20)}, {(22)}∪♭(A1(RdivL)\{(20)})).
For the first two of these new ADP problems, we can use the derelatifying pro-
cessor of Thm. 26 and prove SN via ordinary DPs, since their base ADPs do not
contain any annotated symbols anymore.

The dependency graph processor in combination with the derelatifying proces-
sors of Thm. 26 and 27 already subsumes the techniques of Thm. 11 and 12. The
reason is that if R dominates B, then there is no edge from an ADP of A2(B) to
any ADP of A1(R) in the (A1(R),A2(B))-dependency graph. Hence, there are no
minimal lassos and the dependency graph processor just creates ADP problems
from the SCCs of A1(R) where the base ADPs do not have any annotations
anymore. Then Thm. 26 allows us to switch to ordinary DPs. For example, if
we consider Bmset instead of Bmset2, then the dependency graph processor yields
the three sub-problems for the SCCs {(15)}, {(18)}, and {(20)}, where the base
ADPs do not contain annotations anymore. Then, we can move to ordinary DPs
via Thm. 26.

Compared to Thm. 11 and 12, the dependency graph allows for more precise
over-approximations than just “dominance” to detect when the base ADPs
do not depend on the main ADPs. Moreover, the derelatifying processors of
Thm. 26 and 27 allow us to switch to the ordinary DP framework also for sub-
problems which result from the application of other processors of our relative
ADP framework. In other words, Thm. 26 and 27 allow us to apply this switch
in a modular way, even if their prerequisites do not hold for the initial canonical
ADP problem (i.e., even if the prerequisites of Thm. 11 and 12 do not hold for
the whole TRSs).



Dependency Pairs for Relative Termination 15

5.3 Relative Reduction Pair Processor

Next, we adapt the reduction pair processor to ADPs for relative rewriting.
While the reduction pair processor for ADPs in the probabilistic setting [23] was
restricted to polynomial interpretations, we now allow arbitrary reduction pairs
using a similar idea as in [18] for complexity analysis via DPs.

To find out which ADPs cannot be used for infinitely many p-steps, the idea
is not to compare the annotated left-hand side with the whole right-hand side,
but just with the set of its annotated subterms. To combine these subterms in
the case of ADPs with two or no annotated symbols, we extend the signature by
two fresh compound symbols c0 and c2 of arity 0 and 2, respectively. Similar to
[18], we have to use c-monotonic and c-invariant reduction pairs.

Definition 35 (c-Monotonic, c-Invariant). For r ∈ T
(
Σ#,V

)
, we define

ann(r) = c0 if r does not contain any annotation, ann(r) = t# if t ⊴# r

and r only contains one annotated symbol, and ann(r) = c2(r
#
1 , r#2 ) if r1 ⊴π1

# r,
r2 ⊴π2

# r, and π1 <lex π2 where <lex is the (total) lexicographic order on positions.
A reduction pair (≿,≻) is called c-monotonic if c2(s1, t) ≻ c2(s2, t) and

c2(t, s1) ≻ c2(t, s2) for all s1, s2, t ∈ T
(
Σ#,V

)
with s1 ≻ s2. Moreover, it is

c-invariant if c2(s1, s2) ∼ c2(s2, s1) and c2(s1, c2(s2, s3)) ∼ c2(c2(s1, s2), s3) for
∼ = ≿ ∩≾ and all s1, s2, s3 ∈ T

(
Σ#,V

)
.

So for example, reduction pairs based on polynomial interpretations are c-
monotonic and c-invariant if c2(x, y) is interpreted by x+ y.

For an ADP problem (P,S), now the reduction pair processor has to orient
the non-annotated rules ♭(P ∪S) weakly and for all ADPs ℓ → r, it compares the
annotated left-hand side ℓ# with ann(r). In strictly decreasing ADPs, one can
then remove all annotations and consider them as relative (base) ADPs again.

Theorem 36 (Reduction Pair Processor). Let (P,S) be an ADP problem
and let (≿,≻) be a c-monotonic and c-invariant reduction pair such that ♭(P ∪S)
⊆ ≿ and ℓ# ≿ ann(r) for all ℓ → r ∈ P ∪S. Moreover, let P≻ ⊆ P ∪S such that
ℓ# ≻ ann(r) for all ℓ → r ∈ P≻. Then ProcRPP(P,S) = {(P \ P≻, (S \ P≻) ∪
♭(P≻))} is sound and complete.

Example 37. For the remaining ADP problem ({(20)}, {(22)} ∪ ♭(A1(RdivL) \
{(20)})) from Ex. 34, we can apply the reduction pair processor using the poly-
nomial interpretation from the end of Sect. 3.1 which maps 0 and nil to 0, s(x) to
x+ 1, cons(y, xs) to xs + 1, DL(x, xs) to xs, and all other symbols to their first
arguments. Then, (20) is oriented strictly (i.e., it is in P≻), and (22) and all other
base ADPs are oriented weakly. Hence, we remove the annotation from (20) and
move it to the base ADPs. Now there is no main ADP anymore, and thus the de-
pendency graph processor returns ∅. This proves SN for (A1(RdivL),A2(Bmset2)),
hence RdivL/Bmset2 is also SN.

Example 38. Regard the ADPs a → b and f → d(F,A) for the redex-creating
Ex. 4 again. When using a polynomial interpretation Pol that maps c0 to 0
and c2(x, y) to x + y, then for the reduction pair processor one has to satisfy
Pol(A) ≥ 0 and Pol(F) ≥ Pol(F)+Pol(A), i.e., one cannot make any of the ADPs



16 J.-C. Kassing, G. Vartanyan, J. Giesl

strictly decreasing.
In contrast, for the variant with the terminating base rule f(s(y)) → d(f(y), a)

from Ex. 28, we have the ADPs a → b and f(s(y)) → d(F(y),A). Here, the second
constraint is Pol(F(s(y))) ≥ Pol(F(y))+Pol(A). To make one of the ADPs strictly
decreasing, one can set Pol(F(x)) = x, Pol(s(x)) = x + 1, and Pol(A) = 1 or
Pol(A) = 0. Then the reduction pair processor removes the annotations from the
strictly decreasing ADP and the dependency graph processor proves SN.

6 Evaluation and Conclusion

In this paper, we introduced the first notion of (annotated) dependency pairs
and the first DP framework for relative termination, which also features suitable
dependency graph and reduction pair processors for relative ADPs. Of course,
further classical DP processors can be adapted to our relative ADP framework
as well. For example, in our implementation of the novel ADP framework in our
tool AProVE [13], we also included a straightforward adaption of the classical rule
removal processor [11], see [24].8 While the soundness proofs for the processors
in the new relative ADP framework are more involved than in the standard DP
framework, the new processors themselves are quite analogous to their original
counterparts and thus, adapting an existing implementation of the ordinary DP
framework to the relative ADP framework does not require much effort. In future
work, we will investigate how to use our new form of ADPs for full (instead of
innermost) rewriting also in the probabilistic setting and for complexity analysis.

To evaluate the new relative ADP framework, we compared its implementation
in “new AProVE” to all tools that participated in the most recent termination
competition (TermComp 2023) [14] on relative rewriting, i.e., NaTT [36], TTT2 [27],
MultumNonMulta [9], and “old AProVE” which did not yet contain the contri-
butions of the current paper. In TermComp 2023, 98 benchmarks were used for
relative termination. However, these benchmarks only consist of examples where
the main TRSR dominates the base TRS B (i.e., which can be handled by Thm. 11
from [21]) or which can already be solved via simplification orders directly.

Therefore, we extended the collection by 32 new “typical” examples for
relative rewriting, including both RdivL/Bmset from Ex. 1 and 2, and our leading
example RdivL/Bmset2 from Ex. 2 and 14 (where only new AProVE can prove SN).
Except for RdivL/Bmset, in these examples R does not dominate B. Most of these
examples adapt well-known classical TRSs from the Termination Problem Data
Base [33] used at TermComp to the relative setting. Moreover, 5 of our new
examples illustrate the application of relative termination for proving confluence,
i.e., in these examples one can prove confluence with the approach of [19] via our
new technique for relative termination proofs.

8 This processor works analogously to the preprocessing at the beginning of Sect. 4
which can be used to remove duplicating rules: For an ADP problem (P,S), it
tries to find a reduction pair (≿,≻) where ≻ is closed under contexts such that
♭(P ∪ S) ⊆ ≿. Then for P≻ ⊆ P ∪ S with ♭(P≻) ⊆ ≻, the processor replaces the
ADP by (P \ P≻,S \ P≻).



Dependency Pairs for Relative Termination 17

In the following table, the number in the “YES” (“NO”) row indicates for
how many of the 130 examples the respective tool could prove (disprove) relative
termination and “MAYBE” refers to the benchmarks where the tool could not
solve the problem within the timeout of 300 s per example. The numbers in
brackets are the respective results when only considering our new 32 examples.
“AVG(s)” gives the average runtime of the tool on solved examples in seconds.

new AProVE NaTT old AProVE TTT2 MultumNonMulta

YES 91 (32) 68 (10) 48 (5) 39 (3) 0 (0)

NO 13 (0) 5 (0) 13 (0) 7 (0) 13 (0)

MAYBE 26 (0) 57 (22) 69 (27) 84 (29) 117 (32)

AVG(s) 5.11 0.41 4.02 1.67 1.60

The table clearly shows that while old AProVE was already the second most
powerful tool for relative termination, the integration of the ADP framework in
new AProVE yields a substantial advance in power (i.e., it only fails on 26 of the
examples, compared to 57 and 69 failures of NaTT and old AProVE, respectively).
In particular, previous tools (including old AProVE) often have problems with
relative TRSs where the main TRS does not dominate the base TRS, whereas
the ADP framework can handle such examples.

A special form of relative TRSs are relative string rewrite systems (SRSs),
where all function symbols have arity 1. Due to the base ADPs with two annotated
symbols on the right-hand side, here the ADP framework is less powerful than
dedicated techniques for string rewriting. For the 403 relative SRSs at TermComp
2023, the ADP framework only finds 71 proofs, mostly due to the dependency
graph and the rule removal processor, while termination analysis via AProVE’s
standard strategy for relative SRSs succeeds on 209 examples, and the two
most powerful tools for relative SRSs at TermComp 2023 (MultumNonMulta and
Matchbox [35]) succeed on 274 and 269 examples, respectively.

Another special form of relative rewriting is equational rewriting, where one
has a set of equations E which correspond to relative rules that can be applied in
both directions. In [10], DPs were adapted to equational rewriting. However, this
approach requires E-unification to be decidable and finitary (i.e., for (certain)
pairs of terms, it has to compute finite complete sets of E-unifiers). This works
well if E are AC- or C-axioms, and for this special case, dedicated techniques like
[10] are more powerful than our new ADP framework for relative termination. For
example, on the 76 AC- and C-benchmarks for equational rewriting at TermComp
2023, the relative ADP framework finds 36 proofs, while dedicated tools for AC-
rewriting like AProVE’s equational strategy or MU-TERM [15] succeed on 66
and 64 examples, respectively. However, in general, the requirement of a finitary
E-unification algorithm is a hard restriction. In contrast to existing tools for
equational rewriting, our new ADP framework can be used for arbitrary (non-
duplicating) relative rules.

For details on our experiments, our collection of examples, and for instructions
on how to run our implementation in AProVE via its web interface or locally, see:
https://aprove-developers.github.io/RelativeDTFramework/

https://aprove-developers.github.io/RelativeDTFramework/


18 J.-C. Kassing, G. Vartanyan, J. Giesl

References

[1] T. Arts and J. Giesl. “Termination of Term Rewriting Using Dependency
Pairs”. In: Theoretical Computer Science 236.1-2 (2000), pp. 133–178. doi:
10.1016/S0304-3975(99)00207-8.

[2] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998. doi: 10.1017/CBO9781139172752.

[3] T. Baudon, C. Fuhs, and L. Gonnord. “Analysing Parallel Complexity of
Term Rewriting”. In: Proc. LOPSTR ’22. LNCS 13474. 2022, pp. 3–23.
doi: 10.1007/978-3-031-16767-6 1.

[4] N. Dershowitz. “Termination of Rewriting”. In: Journal of Symbolic Com-
putation 3.1 (1987), pp. 69–115. doi: https://doi.org/10.1016/S0747-
7171(87)80022-6.

[5] N. Dershowitz. The RTA List of Open Problems. url: https://www.cs.tau.
ac.il/∼nachum/rtaloop/.

[6] F. Frohn, J. Giesl, J. Hensel, C. Aschermann, and T. Ströder. “Lower
Bounds for Runtime Complexity of Term Rewriting”. In: Journal of Auto-
mated Reasoning 59.1 (2017), pp. 121–163. doi: 10.1007/S10817-016-9397-
X.

[7] C. Fuhs. “Transforming Derivational Complexity of Term Rewriting to
Runtime Complexity”. In: Proc. FroCoS ’19. LNCS 11715. 2019, pp. 348–
364. doi: 10.1007/978-3-030-29007-8 20.

[8] A. Geser. “Relative Termination”. PhD thesis. University of Passau, Ger-
many, 1990. url: https://www.uni-ulm.de/fileadmin/website uni ulm/iui/
Ulmer Informatik Berichte/1991/UIB-1991-03.pdf.

[9] A. Geser, D. Hofbauer, and J. Waldmann. “Sparse Tiling Through Overlap
Closures for Termination of String Rewriting”. In: Proc. FSCD ’19. LIPIcs
131. 2019, 21:1–21:21. doi: 10.4230/LIPICS.FSCD.2019.21.

[10] J. Giesl and D. Kapur. “Dependency Pairs for Equational Rewriting”. In:
Proc. RTA ’01. LNCS 2051. 2001, pp. 93–108. doi: 10.1007/3-540-45127-7 9.

[11] J. Giesl, R. Thiemann, and P. Schneider-Kamp. “The Dependency Pair
Framework: Combining Techniques for Automated Termination Proofs”.
In: Proc. LPAR ’04. LNCS 3452. 2004, pp. 301–331. doi: 10.1007/978-3-
540-32275-7 21.

[12] J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. “Mechanizing
and Improving Dependency Pairs”. In: Journal of Automated Reasoning
37.3 (2006), pp. 155–203. doi: 10.1007/s10817-006-9057-7.

[13] J. Giesl, C. Aschermann, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs,
J. Hensel, C. Otto, M. Plücker, P. Schneider-Kamp, T. Ströder, S. Swider-
ski, and R. Thiemann. “Analyzing Program Termination and Complexity
Automatically with AProVE”. In: Journal of Automated Reasoning 58.1
(2017), pp. 3–31. doi: 10.1007/s10817-016-9388-y.

[14] J. Giesl, A. Rubio, C. Sternagel, J. Waldmann, and A. Yamada. “The
Termination and Complexity Competition”. In: Proc. TACAS ’19. LNCS
11429. Website of TermComp: https : // termination - portal . org/wiki /

https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.1007/978-3-031-16767-6_1
https://doi.org/https://doi.org/10.1016/S0747-7171(87)80022-6
https://doi.org/https://doi.org/10.1016/S0747-7171(87)80022-6
https://www.cs.tau.ac.il/~nachum/rtaloop/
https://www.cs.tau.ac.il/~nachum/rtaloop/
https://doi.org/10.1007/S10817-016-9397-X
https://doi.org/10.1007/S10817-016-9397-X
https://doi.org/10.1007/978-3-030-29007-8_20
https://www.uni-ulm.de/fileadmin/website_uni_ulm/iui/Ulmer_Informatik_Berichte/1991/UIB-1991-03.pdf
https://www.uni-ulm.de/fileadmin/website_uni_ulm/iui/Ulmer_Informatik_Berichte/1991/UIB-1991-03.pdf
https://doi.org/10.4230/LIPICS.FSCD.2019.21
https://doi.org/10.1007/3-540-45127-7_9
https://doi.org/10.1007/978-3-540-32275-7_21
https://doi.org/10.1007/978-3-540-32275-7_21
https://doi.org/10.1007/s10817-006-9057-7
https://doi.org/10.1007/s10817-016-9388-y
https://termination-portal.org/wiki/Termination_Competition


Dependency Pairs for Relative Termination 19

Termination Competition. 2019, pp. 156–166. doi: 10.1007/978-3-030-
17502-3 10.

[15] R. Gutiérrez and S. Lucas. “MU-TERM: Verify Termination Properties
Automatically (System Description)”. In: Proc. IJCAR ’20. LNCS 12167.
2020, pp. 436–447. doi: 10.1007/978-3-030-51054-1 28.

[16] N. Hirokawa and A. Middeldorp. “Automating the Dependency Pair
Method”. In: Information and Computation 199.1-2 (2005), pp. 172–199.
doi: 10.1016/j.ic.2004.10.004.

[17] N. Hirokawa and A. Middeldorp. “Tyrolean Termination Tool: Techniques
and Features”. In: Information and Computation 205.4 (2007), pp. 474–511.
doi: 10.1016/J.IC.2006.08.010.

[18] N. Hirokawa and G. Moser. “Automated Complexity Analysis Based on
the Dependency Pair Method”. In: Proc. IJCAR ’08. LNCS 5195. 2008,
pp. 364–379. doi: 10.1007/978-3-540-71070-7 32.

[19] N. Hirokawa and A. Middeldorp. “Decreasing Diagrams and Relative Ter-
mination”. In: Journal of Automated Reasoning 47.4 (2011), pp. 481–501.
doi: 10.1007/S10817-011-9238-X.

[20] J. Iborra, N. Nishida, and G. Vidal. “Goal-Directed and Relative De-
pendency Pairs for Proving the Termination of Narrowing”. In: Proc.
LOPSTR ’09. LNCS 6037. 2009, pp. 52–66. doi: 10.1007/978-3-642-12592-
8 5.

[21] J. Iborra, N. Nishida, G. Vidal, and A. Yamada. “Relative Termination
via Dependency Pairs”. In: Journal of Automated Reasoning 58.3 (2017),
pp. 391–411. doi: 10.1007/S10817-016-9373-5.

[22] J.-C. Kassing and J. Giesl. “Proving Almost-Sure Innermost Termination of
Probabilistic Term Rewriting Using Dependency Pairs”. In: Proc. CADE ’23.
LNCS 14132. 2023, pp. 344–364. doi: 10.1007/978-3-031-38499-8 20.

[23] J.-C. Kassing, S. Dollase, and J. Giesl. “A Complete Dependency Pair
Framework for Almost-Sure Innermost Termination of Probabilistic Term
Rewriting”. In: Proc. FLOPS ’24. LNCS 14659. To appear. Long version
at CoRR abs/2309.00344. 2024. doi: 10.48550/arXiv.2309.00344.

[24] J.-C. Kassing, G. Vartanyan, and J. Giesl. “A Dependency Pair Framework
for Relative Termination of Term Rewriting”. In: CoRR abs/2404.15248
(2024). doi: 10.48550/arXiv.2404.15248.

[25] D. Klein and N. Hirokawa. “Confluence of Non-Left-Linear TRSs via
Relative Termination”. In: Proc. LPAR ’18. LNCS 7180. 2012, pp. 258–273.
doi: 10.1007/978-3-642-28717-6 21.

[26] A. Koprowski and H. Zantema. “Proving Liveness with Fairness Using
Rewriting”. In: Proc. FroCoS ’05. LNCS 3717. 2005, pp. 232–247. doi:
10.1007/11559306 13.

[27] M. Korp, C. Sternagel, H. Zankl, and A. Middeldorp. “Tyrolean Termination
Tool 2”. In: Proc. RTA ’09. LNCS 5595. 2009, pp. 295–304. doi: 10.1007/978-
3-642-02348-4 21.

[28] D. S. Lankford. On Proving Term Rewriting Systems are Noetherian. Memo
MTP-3, Math. Dept., Louisiana Technical University, Ruston, LA, 1979.

https://termination-portal.org/wiki/Termination_Competition
https://termination-portal.org/wiki/Termination_Competition
https://termination-portal.org/wiki/Termination_Competition
https://doi.org/10.1007/978-3-030-17502-3_10
https://doi.org/10.1007/978-3-030-17502-3_10
https://doi.org/10.1007/978-3-030-51054-1_28
https://doi.org/10.1016/j.ic.2004.10.004
https://doi.org/10.1016/J.IC.2006.08.010
https://doi.org/10.1007/978-3-540-71070-7_32
https://doi.org/10.1007/S10817-011-9238-X
https://doi.org/10.1007/978-3-642-12592-8_5
https://doi.org/10.1007/978-3-642-12592-8_5
https://doi.org/10.1007/S10817-016-9373-5
https://doi.org/10.1007/978-3-031-38499-8_20
https://doi.org/10.48550/arXiv.2309.00344
https://doi.org/10.48550/arXiv.2404.15248
https://doi.org/10.1007/978-3-642-28717-6_21
https://doi.org/10.1007/11559306_13
https://doi.org/10.1007/978-3-642-02348-4_21
https://doi.org/10.1007/978-3-642-02348-4_21


20 J.-C. Kassing, G. Vartanyan, J. Giesl

url: https://www.ens- lyon.fr/LIP/REWRITING/TERMINATION/
Lankford Poly Term.pdf.

[29] M. Naaf, F. Frohn, M. Brockschmidt, C. Fuhs, and J. Giesl. “Complexity
Analysis for Term Rewriting by Integer Transition Systems”. In: Proc.
FroCoS ’17. LNCS 10483. 2017, pp. 132–150. doi: 10.1007/978-3-319-
66167-4 8.

[30] J. Nagele, B. Felgenhauer, and H. Zankl. “Certifying Confluence Proofs via
Relative Termination and Rule Labeling”. In: Logical Methods in Computer
Science 13.2 (2017). doi: 10.23638/LMCS-13(2:4)2017.

[31] N. Nishida and G. Vidal. “Termination of Narrowing via Termination of
Rewriting”. In: Applicable Algebra in Engineering, Communication and
Computing 21.3 (2010), pp. 177–225. doi: 10.1007/S00200-010-0122-4.

[32] L. Noschinski, F. Emmes, and J. Giesl. “Analyzing Innermost Runtime
Complexity of Term Rewriting by Dependency Pairs”. In: Journal of
Automated Reasoning 51 (2013), pp. 27–56. doi: 10.1007/978-3-642-22438-
6 32.

[33] TPDB (Termination Problem Data Base). url: https ://github .com/
TermCOMP/TPDB.

[34] G. Vidal. “Termination of Narrowing in Left-Linear Constructor Systems”.
In: Proc. FLOPS ’08. LNCS 4989. 2008, pp. 113–129. doi: 10.1007/978-3-
540-78969-7 10.

[35] J. Waldmann. “Matchbox: A Tool for Match-Bounded String Rewriting”.
In: Proc. RTA ’04. LNCS 3091. 2004, pp. 85–94. doi: 10.1007/978-3-540-
25979-4 6.

[36] A. Yamada, K. Kusakari, and T. Sakabe. “Nagoya Termination Tool”. In:
Proc. RTA-TLCA ’14. LNCS 8560. 2014, pp. 466–475. doi: 10.1007/978-3-
319-08918-8 32.

[37] H. Zankl and M. Korp. “Modular Complexity Analysis for Term Rewriting”.
In: Logical Methods in Computer Science 10.1 (2014). doi: 10.2168/LMCS-
10(1:19)2014.

https://www.ens-lyon.fr/LIP/REWRITING/TERMINATION/Lankford_Poly_Term.pdf
https://www.ens-lyon.fr/LIP/REWRITING/TERMINATION/Lankford_Poly_Term.pdf
https://doi.org/10.1007/978-3-319-66167-4_8
https://doi.org/10.1007/978-3-319-66167-4_8
https://doi.org/10.23638/LMCS-13(2:4)2017
https://doi.org/10.1007/S00200-010-0122-4
https://doi.org/10.1007/978-3-642-22438-6_32
https://doi.org/10.1007/978-3-642-22438-6_32
https://github.com/TermCOMP/TPDB
https://github.com/TermCOMP/TPDB
https://doi.org/10.1007/978-3-540-78969-7_10
https://doi.org/10.1007/978-3-540-78969-7_10
https://doi.org/10.1007/978-3-540-25979-4_6
https://doi.org/10.1007/978-3-540-25979-4_6
https://doi.org/10.1007/978-3-319-08918-8_32
https://doi.org/10.1007/978-3-319-08918-8_32
https://doi.org/10.2168/LMCS-10(1:19)2014
https://doi.org/10.2168/LMCS-10(1:19)2014

	A Dependency Pair Framework for Relative Termination of Term Rewriting

