
Constant Runtime Complexity of Term Rewriting is
Semi-Decidable

Florian Frohn, Jürgen Giesl

LuFG Informatik 2, RWTH Aachen University, Germany

Abstract

We prove that it is semi-decidable whether the runtime complexity of a term
rewrite system is constant. Our semi-decision procedure exploits that constant
runtime complexity is equivalent to termination of a restricted form of narro-
wing, which can be examined by considering finitely many start terms. We im-
plemented our semi-decision procedure in the tool AProVE to show its efficiency
and its success for systems where state-of-the-art complexity analysis tools fail.

Keywords: Computational Complexity, Decidability, Formal Methods,
Program Correctness, Term Rewriting

1. Introduction

There are many techniques to infer upper bounds on the runtime complexity of
term rewrite systems (TRSs) or closely related formalisms. As “runtime com-
plexity” corresponds to the usual notion of program complexity, such techniques
can be used to analyze the complexity of programs in real-world languages via
suitable transformations [6, 8, 14]. Usually, complexity bounds are inferred to
provide guarantees on a program’s resource usage. But constant bounds are also
important for detecting bugs, as constant-time algorithms cannot fully traverse
their in- or output if it exceeds a certain size. Thus, if there is a constant bound
for an algorithm which is supposed to traverse arbitrarily large data, then the al-
gorithm is incorrect. To find such bugs in real programs, one would have to com-
bine our results with corresponding transformations from programs to TRSs.

In this paper we prove that it is semi-decidable if the runtime complexity
of a TRS is constant. A similar result is known for Turing Machines [12].1 Note
that in general there is no complexity-preserving transformation from one lan-
guage to another, i.e., semi-decidability of constant bounds for one language
does not imply semi-decidability for other Turing-complete languages (like term
rewriting). After introducing preliminaries in Sect. 2, we present our semi-deci-
sion procedure in Sect. 3. Sect. 4 discusses related work and shows the efficiency

1However, Turing Machines and TRSs are inherently different. For example, Turing Ma-
chines only read a constant part of the input in constant time, whereas TRSs can copy the
whole input in constant time using duplicating rules like f(x)→ g(x, x). Similarly, TRSs can
compare the whole input in constant time using non-left-linear rules like f(x, x)→ g(x), etc.

Preprint submitted to Information Processing Letters June 29, 2018

of our procedure by evaluating our implementation in the tool AProVE [9].

2. Preliminaries

We recapitulate the main notions for TRSs [4]. T (Σ,V) is the set of terms over a
finite signature Σ and the variables V, where V(t) is the set of variables occurring
in t and root(t) is the root symbol of a term t /∈ V. The positions pos(t) ⊂ N∗ are

{ε} if t ∈ V and {ε}∪
⋃k
i=1{i.π | π ∈ pos(ti)} if t = f(t1, . . . , tk). The subterm of

t at position π ∈ pos(t) is t|π = t if π = ε and t|π = ti|π′ if π = i.π′ and t = f(t1,
. . . , tk). The term that results from replacing t|π with s ∈ T (Σ,V) is t[s]π. The

size of a term is |x| = 1 if x ∈ V and |f(t1, . . . , tk)| = 1+
∑k
i=1 |ti|. A TRS R is a

finite set of rules {`1 → r1, . . . , `n → rn} with `i, ri ∈ T (Σ,V), `i 6∈ V, and V(ri)
⊆ V(`i) for all 1 ≤ i ≤ n. The rewrite relation is defined as s −→R t if there are
π ∈ pos(s), `→ r ∈ R, and a substitution σ such that s|π = `σ and t = s[rσ]π.
Here, `σ is the redex of the rewrite step. For two terms s and t, s −→nR t stands
for a rewrite sequence s = s0 −→R s1 −→R · · · −→R sn−1 −→R sn = t for some
terms s1, . . . , sn−1. The defined (resp. constructor) symbols of R are Σd(R) =
{root(`) | ` → r ∈ R} and Σc(R) = Σ \ Σd(R). A term f(t1, . . . , tk) is basic if
f ∈ Σd(R) and t1, . . . , tk are constructor terms (i.e., t1, . . . , tk ∈ T (Σc(R),V)).

Example 1. The following TRS R is a variation of the example SK90/4.51

from the Termination Problems Data Base (TPDB) [18] where two rules which
are not reachable from basic terms were removed for the sake of clarity.

f(a)→ g(h(a)) h(g(x))→ g(h(f(x)))

We have Σd(R) = {f, h}, Σc(R) = {g, a}, and x ∈ V. An example rewrite
sequence (where the underlined subterms are the redexes) is

h(g(a)) −→R g(h(f(a))) −→R g(h(g(h(a)))) −→R g(g(h(f(h(a))))).

We now define the runtime complexity of a TRS R. In the following defini-
tion, ω is the smallest infinite ordinal and hence, ω > n holds for all n ∈ N. For
any M ⊆ N ∪ {ω}, supM is the least upper bound of M .

Definition 2 (Runtime Complexity [10, 11, 15]). The derivation height of
a term t w.r.t. a relation→ is the length of the longest sequence of→-steps start-
ing with t, i.e., dh(t,→) = sup{n ∈ N | t′ ∈ T (Σ,V), t→n t′}. Thus, dh(t,→) =
ω if t starts an infinite→-sequence. The runtime complexity function rcR maps
any m ∈ N to the length of the longest −→R-sequence starting with a basic term
whose size is at most m, i.e., rcR(m) = sup{dh(t,−→R) | t is basic, |t| ≤ m}.

Example 3. There is no longer→R-sequence for h(g(a)) than the one in Ex. 1,
i.e., dh(h(g(a)),−→R) = 3. So |h(g(a))|=3 implies rcR(3)≥3. Our new approach
proves rcR(m) ∈ O(1) automatically, i.e., R has constant runtime complexity.

So our goal is to check whether there is an n ∈ N such that all evaluations of
basic terms take at most n steps. Our semi-decision procedure is based on nar-
rowing, which is similar to rewriting, but uses unification instead of matching.

2

Definition 4 (Narrowing). A substitution σ is a unifier of s, t ∈ T (Σ,V) if
sσ = tσ, and σ is the most general unifier (mgu) if every unifier has the form σ◦θ
for some substitution θ. A term s narrows to t (s σ

π R t) if there is a position π ∈
pos(s) with s|π /∈ V, a (variable-renamed) rule `→ r ∈ R with σ = mgu(s|π, `),
and t = s[r]πσ. We omit π or σ if they are irrelevant and write s

σ1◦···◦σn n
R t or

s n
R t if we have s

σ1

R · · ·
σn

R t. A finite narrowing sequence t0
σ1

R · · ·
σn

R tn is constructor based if t0 σ1 · · ·σn is a basic term. An infinite narrowing
sequence is constructor based if all its finite prefixes are constructor based.

Example 5. R from Ex. 1 has the constructor-based narrowing sequence

h(x)
{x/g(x′)}

ε R g(h(f(x′)))
{x′/a}

1.1 R g(h(g(h(a))))
∅
1 R g(g(h(f(h(a))))).

3. Constant Bounds for Runtime Complexity of Term Rewriting

For our semi-decision procedure, we will show that the runtime complexity of a
TRS R is constant iff R has no infinite constructor-based narrowing sequence.

Example 6. To see why constructor-based narrowing terminates forR of Ex. 1,
first consider sequences starting with basic terms of the form h(t). If t ∈ V, then
narrowing h(t) terminates after three steps, cf. Ex. 5. The same holds if t = g(t′)
with t′ ∈ V or t′ = a. For other constructor terms t′, narrowing h(g(t′)) termi-
nates after one step. Finally, if t /∈ V and root(t) 6= g, then h(t) is a normal form
w.r.t. R. Now we consider basic start terms f(t). If t ∈ V or t = a, then
narrowing f(t) terminates after one step: f(t) R g(h(a)). If t 6= a is a non-
variable constructor term, then f(t) is a normal form w.r.t. R. This covers all
constructor-based narrowing sequences, i.e., R’s runtime complexity is constant.

In contrast, if we change the second rule to h(g(x)) → g(h(x)), then the
runtime complexity becomes linear and constructor-based narrowing becomes
non-terminating: h(x)

{x/g(x′)}

R g(h(x′))
{x′/g(x′′)}

R g(g(h(x′′))) R · · ·

Unfortunately, the reasoning in Ex. 6 is hard to automate, since it explicitly
considers all sequences that start with any of the infinitely many basic terms.
For automation, we show that constructor-based narrowing sequences can be
“generalized” such that one only has to regard finitely many start terms. Then
a semi-decision procedure for termination of constructor-based narrowing is ob-
tained by enumerating only those sequences that begin with these start terms.

We first define a partial ordering % that clarifies which narrowing sequences
are more general than others, and prove the equivalence between constant run-
time and termination of constructor-based narrowing afterwards.

Definition 7 (Ordering Narrowing Sequences). Let R be a TRS and let
s0

σ1

π1 R s1
σ2

π2 R · · ·
σn

πn R sn and t0
θ1

π1 R t1
θ2

π2 R · · ·
θn

πn R tn be narrowing
sequences of the same length n that use the same narrowing positions. We have
(s0

n
R sn) % (t0

n
R tn) if there is a substitution η such that si σi+1 · · ·σn η =

ti θi+1 · · · θn for all 0 ≤ i < n and sn η = tn.

Example 8. For the TRS R of Ex. 1, we have

3

h(x)
{x/g(x′)}

ε R g(h(f(x′)))
{x′/a}

1.1 R g(h(g(h(a))))
∅
1 R g(g(h(f(h(a))))),

h(g(x′))
∅
ε R g(h(f(x′)))

{x′/a}

1.1 R g(h(g(h(a))))
∅
1 R g(g(h(f(h(a))))), and

h(g(a))
∅
ε R g(h(f(a)))

∅
1.1R g(h(g(h(a))))

∅
1 R g(g(h(f(h(a))))).

Thus, (h(x) 3
R t) % (h(g(x′)) 3

R t) % (h(g(a)) 3
R t) for t = g(g(h(f(h(a))))),

i.e., the sequence h(x) 3
R t is most general. Indeed, all the sequences in Ex. 6

are specializations (w.r.t. %) of sequences that start with h(x) or f(x).

The following theorem shows that every constructor-based narrowing se-
quence is a specialization of a narrowing sequence starting with a basic term of
the form f(x1, . . . , xk). Thus, when reasoning about termination of constructor-
based narrowing, it suffices to consider only the “most general” sequences that
start with such basic terms. This is the foundation of our semi-decision proce-
dure, as there are just finitely many such terms (up to variable renaming).

Theorem 9 (Most General Narrowing Sequences). For a TRS R, let t0
θ1

π1 R
· · · θn

πn R tn be a constructor-based narrowing sequence where root(t0) = f .
Then there exists a narrowing sequence f(x1, . . . , xk) = s0

σ1

π1 R · · ·
σn

πn R sn
for pairwise different variables x1, . . . , xk such that (s0

n
R sn) % (t0

n
R tn).

Proof. We prove for all n: If t0
θ1

π1 R · · ·
θn

πn R tn is constructor based and root(t0)
= f , then there is a narrowing sequence f(x1, ..., xk) = s0

σ1

π1 R · · ·
σn

πn R sn with

(s0
σ1

π1 R · · ·
σn

πn R sn) % (t0
θ1

π1 R · · ·
θn

πn R tn) and (1)

root(ti|τ)∈Σd(R) implies root(ti|τ)=root(si|τ) for all 0≤ i≤n and τ ∈pos(ti). (2)

We use induction on n. If n = 0, then there is clearly a substitution η with
s0 η = f(x1, . . . , xk) η = t0 since root(t0) = f . Moreover as t0 is basic, its only
defined symbol is at the root position ε. We have root(t0|ε) = f = root(s0|ε).

In the induction step, we may assume that t0
θ1

π1 R · · ·
θn+1

πn+1 R tn+1 is con-
structor based. Let `→ r ∈ R be the (variable-renamed) rule used for tn

θn+1

πn+1 R
tn+1, i.e., tn|πn+1 /∈ V, θn+1 = mgu(tn|πn+1 , `), tn+1 = tn[r]πn+1 θn+1. By the
induction hypothesis, (1) and (2) hold. By (1), there is a substitution η with

si σi+1 · · ·σn η = ti θi+1 · · · θn for all 0 ≤ i < n and sn η = tn. (3)

Like in the step tn
θn+1

πn+1 R tn+1, we now want to use the same rule `→ r on the
same position πn+1 to narrow sn. Since tn|πn+1

/∈ V and tn|πn+1
unifies with `,

we have root(tn|πn+1
) ∈ Σd(R). Thus, (2) implies root(tn|πn+1

) = root(sn|πn+1
)

and hence, sn|πn+1
/∈ V. Moreover, as w.l.o.g. sn is variable-disjoint from `,

sn|πn+1
unifies with ` because (3) implies sn η = tn and thus,

sn|πn+1 η θn+1 = sn η θn+1|πn+1 = tn θn+1|πn+1 = tn|πn+1 θn+1 = ` θn+1,

as θn+1 unifies tn|πn+1 and `. Let σn+1 be the mgu of sn|πn+1 and `. Then we
have sn

σn+1

πn+1 R sn[r]πn+1 σn+1 = sn+1. It remains to show that

(s0
σ1

π1
R · · ·

σn

πn R sn
σn+1

πn+1
R sn+1) % (t0

θ1

π1
R · · ·

θn

πn R tn
θn+1

πn+1
R tn+1) and (4)

root(ti|τ)∈Σd(R) implies root(ti|τ)=root(si|τ) for all 0≤ i≤n+1 and τ ∈pos(ti). (5)

To prove (5), due to (2) we only have to regard the case where i = n + 1.

4

Thus, let root(tn+1|τ) = root(tn[r]πn+1 θn+1 |τ) ∈ Σd(R). We first regard the
case where τ ∈ pos(tn[r]πn+1) and root(tn[r]πn+1 |τ) ∈ Σd(R). Then we have

root(tn[r]πn+1
θn+1 |τ)

= root(tn[r]πn+1
|τ) as τ ∈ pos(tn[r]πn+1

) and root(tn[r]πn+1
|τ) ∈ Σd(R)

= root(sn[r]πn+1
|τ) by the induction hypothesis (2)

= root(sn[r]πn+1
σn+1 |τ) as root(sn[r]πn+1

|τ) ∈ Σd(R), i.e., sn[r]πn+1
|τ /∈ V

= root(sn+1|τ) as sn+1 = sn[r]πn+1 σn+1.

Otherwise, since t0 θ1 · · · θn+1 is basic, θn+1 instantiates V(t0 θ1 · · · θn) by con-
structor terms. As t0 θ1 · · · θn −→nR tn, we have V(tn) ⊆ V(t0 θ1 · · · θn). Hence,
τ ≥ πn+1 (i.e., τ is below or equal to πn+1), since θn+1 only instantiates V(tn) by
constructor terms. Thus, there are positions τr and τ ′ such that τ = πn+1.τr.τ

′

and r|τr ∈ V. Since V(r) ⊆ V(`), there is also a position τ` with `|τ` = r|τr .
Thus, for root(tn+1|τ) = root(tn[r]πn+1 θn+1|τ) ∈ Σd(R) we now get

root(tn[r]πn+1 θn+1 |τ)
= root(tn[r]πn+1

θn+1 |πn+1.τr.τ ′) as τ = πn+1.τr.τ
′

= root(tn[`]πn+1
θn+1 |πn+1.τ`.τ ′) as r|τr = `|τ`

= root(tn θn+1 |πn+1.τ`.τ ′) as θn+1 = mgu(tn|πn+1
, `)

= root(tn|πn+1.τ`.τ ′) as θn+1 instantiates V(tn) by constructor terms

= root(sn|πn+1.τ`.τ ′) by the induction hypothesis (2)
= root(sn σn+1 |πn+1.τ`.τ ′) as root(sn|πn+1.τ`.τ ′) ∈ Σd(R)
= root(sn[`]πn+1

σn+1 |πn+1.τ`.τ ′) as σn+1 = mgu(sn|πn+1
, `)

= root(sn[r]πn+1
σn+1 |πn+1.τr.τ ′) as r|τr = `|τ`

= root(sn+1|πn+1.τr.τ ′) as sn+1 = sn[r]πn+1
σn+1

= root(sn+1|τ) as τ = πn+1.τr.τ
′.

To prove (4), we have to show that there is a substitution η′ such that

si σi+1 · · ·σn+1 η
′ = ti θi+1 · · · θn+1 for all 0 ≤ i ≤ n+ 1.

By (3), we have sn η = tn and moreover, we had θn+1 = mgu(tn|πn+1
, `). Hence,

we obtain sn η θn+1 = tn θn+1 = tn[`]πn+1
θn+1. W.l.o.g., sn, tn, and ` are

variable disjoint and thus, a unifier of sn, tn, and tn[`]πn+1 is

µ = (η ◦ θn+1)|V\(V(tn)∪V(`)) ∪ θn+1|V(tn)∪V(`). (6)

Here, for any V ⊆ V and any substitution σ, σ|V denotes the restriction of σ to
V , i.e., we have xσ|V = xσ if x ∈ V and xσ|V = x, otherwise.

As µ is a unifier of sn|πn+1 and `, by the definition of σn+1 = mgu(sn|πn+1 , `)
there must be a substitution η′ such that σn+1 ◦ η′ = µ. Thus, we get

sn+1 η
′ = sn[r]πn+1 σn+1 η

′ as sn+1 = sn[r]πn+1 σn+1

= sn[r]πn+1
µ as σn+1 ◦ η′ = µ

= sn µ [r µ]πn+1

= sn η θn+1 [r θn+1]πn+1
by (6) since V(r) ⊆ V(`)

= sn η [r]πn+1
θn+1

= tn[r]πn+1 θn+1 as sn η = tn by the induction hypothesis (3)
= tn+1 as tn+1 = tn[r]πn+1 θn+1.

For all 0 ≤ i ≤ n we have

5

si σi+1 · · ·σn+1 η
′ = si σi+1 · · ·σn µ as σn+1 ◦ η′ = µ

= si σi+1 · · ·σn η θn+1 by (6)
= ti θi+1 · · · θnθn+1 as si σi+1 · · ·σn η = ti θi+1 · · · θn

by the induction hypothesis (3).

The following theorem shows that constant runtime complexity is indeed
equivalent to termination of constructor-based narrowing.

Theorem 10 (Constant Runtime and Constructor-Based Narrowing). We have
rcR(m) ∈ O(1) iff there is no infinite constructor-based narrowing sequence.

Proof. For the “if” direction, let rcR(m) /∈ O(1). Then for each n ∈ N there is
a rewrite sequence of length n starting with a basic term f(. . .). Since Σd(R)
is finite, there is an f ∈ Σd(R) with rewrite sequences t1 −→n1

R q1, t2 −→n2

R q2, . . .,
where n1<n2< · · · , root(t1)=root(t2)= · · ·=f , and t1, t2, . . . are basic. Every
rewrite sequence is also a narrowing sequence (where the narrowing substitutions
just instantiate variables in rules, but not in narrowed terms). Thus, ti

θi ni
R qi

where tiθi = ti for all i ≥ 1. By Lemma 9, f(x1, . . . , xk) starts narrowing se-
quences f(x1, . . . , xk)

σ1 n1

R s1, f(x1, . . . , xk)
σ2 n2

R s2, . . ., where (f(x1, . . . , xk)
σi ni
R si) % (ti

θi ni
R qi) and thus, f(x1, . . . , xk)σi matches tiθi = ti for all i ≥ 1.

Hence, all f(x1, . . . , xk)σi are basic, i.e., all narrowing sequences f(x1, . . . , xk)
σi ni
R si are constructor based. Consider the tree of all constructor-based narrow-

ing sequences (up to variable renaming) starting in the root node f(x1, . . . , xk).
Since f(x1, . . . , xk)

σi ni
R si for infinitely many n1 < n2 < · · · , the tree has

infinitely many nodes. As R is finite, R is finitely branching. Thus, by
König’s Lemma the tree has an infinite path, i.e., there is an infinite narrow-
ing sequence starting with f(x1, . . . , xk) whose finite prefixes are all constructor
based. Hence, the infinite narrowing sequence is also constructor based.

For the “only if” direction, let rcR(m) ∈ O(1), i.e., there is an n ∈ N
such that rcR(m) ≤ n holds for all m ∈ N. Assume that there is an infinite
constructor-based narrowing sequence t0

σ1

R t1
σ2

R · · · Then for each n ∈ N,
we have t0 σ1 · · ·σn+1 −→n+1

R tn+1. As t0 σ1 · · ·σn+1 is basic, this is a contradic-
tion to rcR(m) ≤ n when choosing m = |t0 σ1 · · ·σn+1|.

By Thm. 9 and 10, rcR(m) ∈ O(1) holds iff there is no infinite constructor-
based narrowing sequence that starts with a term of the form f(x1, . . . , xk)
where f ∈ Σd(R) and x1, . . . , xk are pairwise different variables. This yields
our main result: It is semi-decidable whether a TRS has constant runtime.

Procedure 1 Semi-Decision Procedure for rcR(m) ∈ O(1)

1. For each f ∈ Σd(R)
1.1. Set n := 0.

1.2. Set n := n+ 1.

1.3. Iterate over all narrowing sequences f(x1,..., xk)
σ n

R s (up to variable renaming).
If there is a sequence where f(x1, ..., xk)σ is basic, then go back to Step 1.2.

2. Return “rcR(m) ∈ O(1)”.

6

Corollary 11 (Constant Runtime of Rewriting is Semi-Decidable). Proc. 1 is
a semi-decision procedure for rcR(m) ∈ O(1).

To implement Proc. 1 efficiently, one builds up the trees of all constructor-
based narrowing sequences for all terms f(x1, . . . , xk), and returns “rcR(m) ∈
O(1)” if constructing these trees terminates (i.e., if all these trees are finite).

Example 12. Reconsider the variation of SK90/4.51 from the TPDB in Ex.
1. Until 2016, no tool could prove that the runtime of SK90/4.51 is constant at
the annual Termination and Complexity Competition (TermComp) [17].2 Since
TermComp 2016, AProVE can infer a constant upper bound via the new semi-
decision procedure in Proc. 1. Thus, it enumerates all constructor-based nar-
rowing sequences starting with h(x) and f(x) before returning “rcR(m) ∈ O(1)”.

One can adapt Proc. 1 to innermost rewriting by only considering innermost
narrowing sequences f(x1, . . . , xk) σ n

R s in Step 1.3. A narrowing sequence
t θ n
R q is innermost if tθ −→nR q is an innermost rewrite sequence. This adaption

is sound because whenever there is a constructor-based innermost narrowing
sequence t θ n

R q, then there is a narrowing sequence (f(x1, . . . , xk) σ n
R s) %

(t θ n
R q) due to Lemma 9. Note that f(x1, . . . , xk) σ n

R s is also an innermost
sequence because the steps are performed at the same positions as in t θ n

R q.

Corollary 13 (Constant Runtime of Innermost Rewriting is Semi-Decidable).
It is semi-decidable if the innermost runtime complexity of a TRS is constant.

4. Conclusion, Related Work, and Experiments

We proved that constant runtime is semi-decidable for TRSs and implemented
our semi-decision procedure in the tool AProVE. This implementation comple-
ments AProVE’s other techniques to analyze the runtime complexity of TRSs.

Related Work. There are many approaches to analyze the runtime complexity
of TRSs (e.g., [10, 15, 19]), but they do not focus on constant upper bounds.3

While some approaches apply narrowing for case analyses, we use narrowing as
a stand-alone technique for runtime complexity analysis.

In [7] we investigated lower bounds and showed that rcR(m)∈ Ω(m) is not
semi-decidable. Here, we also used a connection between runtime bounds and
narrowing. The proof in [7] shows that rcR(m) /∈ O(1) is not semi-decidable
either. So with Cor. 11, rcR(m) ∈ O(1) is semi-decidable, but not decidable.

Our technique can also be used to prove that a TRS has the finite variant

2Without Proc. 1, the leading tools for complexity of term rewriting at TermComp (AProVE
and TcT [3]) also fail to prove a constant upper bound for the variant of SK90/4.51 in Ex. 1.

3An exception is the tool Oops [16] which was used to detect TRSs with constant bounds
at TermComp 2010. However, it only handles TRSs where there are only finitely many basic
terms (as all constructors or all defined symbols are constants) or where there is no rule whose
left-hand side is basic. Clearly, our technique succeeds in both cases and hence subsumes Oops.

7

property, which is, e.g., of interest for equational unification. The reason is that
constant runtime complexity implies the finite variant property [5, Section 9].

In [2, 13] a semi-decision procedure for termination of basic narrowing is dis-
cussed, which is similar to Proc. 1. While termination of basic and constructor-
based narrowing coincides for left-linear constructor systems where all left-hand
sides are basic terms that do not contain the same variable twice, in general the
two notions differ.4 Moreover, [2, 13] does not discuss the relationship between
narrowing and runtime complexity (i.e., it contains no result like Thm. 10).

Experiments. We evaluated our technique on all 959 examples from the cate-
gory “Runtime Complexity – Full Rewriting” and all 1022 examples from the
category “Runtime Complexity – Innermost Rewriting” of the TPDB 10.4 [18],
the example collection used at TermComp 2016 [17]. For these categories, the
TPDB 10.5 used at TermComp 2017 is a subset of the TPDB 10.4, as all non-
left-linear and all non-constructor systems were removed from the innermost
rewriting category. We used a timeout of 60 s per example and compared the
performance of our semi-decision procedure with TcT [3] and various versions
of AProVE [9] where we disabled the new technique from this paper. These are
the most powerful complexity tools for TRSs at TermComp since many years.

For full rewriting, our procedure infers a constant upper bound for 57 ex-
amples. For 6 of them, neither AProVE nor TcT can show rcR(m) ∈ O(1). The
average runtime of our procedure on successfully analyzed examples was 1.8 s.
For all but 5 TRSs where our procedure fails, AProVE can disprove constant com-
plexity (by inferring a non-constant lower bound for rcR(m)). A manual anal-
ysis [1] reveals that the remaining 5 TRSs have non-constant complexity, too.

For innermost rewriting, the numbers are almost identical. Here, our tech-
nique succeeds in 58 cases, including an example whose runtime is constant
w.r.t. innermost, but not w.r.t. full rewriting. So our procedure indeed detects
all (standard) TRSs with constant runtime in these categories of the TPDB. On
the other hand, it fails for one non-constant example with relative rules, where
it is clearly still sound, but no longer a semi-decision procedure.

See [1] for a discussion of our experiments including a detailed comparison
between our new semi-decision procedure and existing techniques for the infer-
ence of constant bounds, as well as a web interface to access our implementation.

Acknowledgement. We are grateful to Carsten Fuhs for many helpful com-
ments. The work was supported by the DFG grant GI 274/6-1.

References

[1] https://aprove-developers.github.io/trs-constant-bounds/.

4Basic narrowing disallows narrowing steps that reduce subterms which were introduced
by preceding narrowing substitutions. Thus, basic narrowing does not terminate for R =
{f(a) → f(a), a → b} due to the infinite basic narrowing sequence f(a) R f(a) R · · · In
contrast, all constructor-based narrowing sequences w.r.t. R have at most length 1.

8

[2] M. Alpuente, S. Escobar, J. Iborra, Termination of narrowing revisited,
TCS 410 (46) (2009) 4608–4625.

[3] M. Avanzini, G. Moser, M. Schaper, TcT: Tyrolean complexity tool, in:
TACAS’16, LNCS 9636, 2016, pp. 407–423.

[4] F. Baader, T. Nipkow, Term Rewriting and All That, Cambridge, 1998.

[5] C. Bouchard, K. A. Gero, C. Lynch, P. Narendran, On forward closure and
the finite variant property, in: FroCoS’13, LNCS 8152, 2013, pp. 327–342.

[6] F. Frohn, J. Giesl, Complexity analysis for Java with AProVE, in: iFM’17,
LNCS 10510, 2017, pp. 85–101.

[7] F. Frohn, J. Giesl, J. Hensel, C. Aschermann, T. Ströder, Lower bounds
for runtime complexity of term rewriting, JAR 59 (1) (2017) 121–163.

[8] J. Giesl, T. Ströder, P. Schneider-Kamp, F. Emmes, C. Fuhs, Symbolic
evaluation graphs and term rewriting: A general methodology for analyzing
logic programs, in: PPDP’12, 2012, pp. 1–12.

[9] J. Giesl, C. Aschermann, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs,
J. Hensel, C. Otto, M. Plücker, P. Schneider-Kamp, T. Ströder, S. Swider-
ski, R. Thiemann, Analyzing program termination and complexity auto-
matically with AProVE, JAR 58 (1) (2017) 3–31.

[10] N. Hirokawa, G. Moser, Automated complexity analysis based on the de-
pendency pair method, in: IJCAR’08, LNCS 5195, 2008, pp. 364–379.

[11] D. Hofbauer, C. Lautemann, Termination proofs and the length of deriva-
tions, in: RTA’89, LNCS 355, 1989, pp. 167–177.

[12] C. E. Hughes, S. M. Selkow, The finite power property for context-free
languages, TCS 15 (1981) 111–114.

[13] J. M. Hullot, Canonical forms and unification, in: CADE’80, LNCS 87,
1980, pp. 318–334.

[14] G. Moser, M. Schaper, From Jinja Bytecode to term rewriting: A complex-
ity reflecting transformation, cbr.uibk.ac.at/publications/ic16.pdf.

[15] L. Noschinski, F. Emmes, J. Giesl, Analyzing innermost runtime complexity
of term rewriting by dependency pairs, JAR 51 (1) (2013) 27–56.

[16] Oops, http://www.termination-portal.org/wiki/Tools:Oops.

[17] TermComp, http://termination-portal.org/wiki/Termination Competition.

[18] TPDB, http://termination-portal.org/wiki/TPDB.

[19] H. Zankl, M. Korp, Modular complexity analysis for term rewriting, LMCS
10 (1:19) (2014) 1–33.

9

