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Abstract

In earlier work, we developed an approach for automated termination analysis
of C programs with explicit pointer arithmetic, which is based on symbolic ex-
ecution. However, similar to many other termination techniques, this approach
assumed the program variables to range over mathematical integers instead of
bitvectors. This eases mathematical reasoning but is unsound in general. In this
paper, we extend our approach in order to handle fixed-width bitvector inte-
gers. Thus, we present the first technique for termination analysis of C programs
that covers both byte-accurate pointer arithmetic and bit-precise modeling of
integers. Moreover, we show that our approach can also be used to analyze
the runtime complexity of bitvector programs. We implemented our contribu-
tions in the automated termination prover AProVE and evaluate its power by
extensive experiments.

Keywords: termination analysis, bitvectors, symbolic execution, LLVM,
runtime complexity

1. Introduction

In [27], we developed an approach for automated termination analysis of C
programs with explicit pointer arithmetic, which we implemented in our tool
AProVE [17, 21, 26]. AProVE won the termination category of the International
Competition on Software Verification (SV-COMP)1 at the TACAS conferences
in 2015 and 2016. However, similar to the other termination tools at SV-COMP,
up to now our approach was restricted to mathematical integers.

In general, this restriction is unsound: Consider the C functions f and g in
Fig. 1, which increment a variable j as long as the loop condition holds. For f,
one leaves the loop as soon as j exceeds the value of the parameter x. Thus, the
function f does not terminate if x has the maximum value of its type.2 But we

ISupported by the DFG grant GI 274/6-1.
1See http://sv-comp.sosy-lab.org/.
2In C, adding 1 to the maximal unsigned integer results in 0. In contrast, for signed

integers, adding 1 to the maximal signed integer results in undefined behavior. However,
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void f(unsigned int x) { void g(unsigned int j) {

unsigned int j = 0; while (j > 0)

while (j <= x) j++;

j++; }

}

Figure 1: C functions on bitvectors

can falsely prove termination if we treat x and j as mathematical integers. For g,
the loop terminates as soon as the value of j becomes zero. So when considering
mathematical integers, we would falsely conclude non-termination for positive
initial values of j, although g always terminates due to the wrap-around for
unsigned overflows.

In this paper, we adapt our approach for termination of C from [27] to handle
the bitvector semantics correctly. To avoid dealing with the intricacies of C, we
analyze programs in the platform-independent intermediate representation of
the LLVM compilation framework [24]. Our approach works in two steps: First,
a symbolic execution graph is automatically constructed that represents an over-
approximation of all possible program runs (Sect. 2 and 3). This graph can also
be used to prove that the program does not result in undefined behavior (so in
particular, it is memory safe). In a second step (Sect. 4), this graph is trans-
formed into an integer transition system (ITS), whose termination can be proved
by existing techniques. If the resulting ITS is terminating, then the original C
resp. LLVM program terminates as well. In Sect. 5 we show that our transfor-
mation into ITSs can also be adapted in order to derive upper bounds on the
program’s runtime, i.e., our approach can be used for complexity analysis of
bitvector programs as well. In Sect. 6, we compare our approach with related
work and evaluate our corresponding implementation in AProVE.3 Appendix A
gives further formal details on separation logic and on the abstract states used
for symbolic execution. Appendix B contains the proofs of the theorems.

To extend our approach to fixed-width integers, we express relations between
bitvectors by corresponding relations between mathematical integers Z. In this
way, we can use standard SMT solving over Z for all steps needed to construct
the symbolic execution graph. Moreover, this allows us to obtain ITSs over
mathematical integers from these graphs, and to use standard approaches for
generating ranking functions in order to prove the termination or to analyze
the complexity of these ITSs. So our contribution is a general technique to

most C implementations return the minimal signed integer as the result.
3Programs like f and g in Fig. 1 are often undesirable, since their termination behavior

depends on overflows. However, there are also programs where overflows are intended. In
such cases, only the results of verification techniques which handle bitvector semantics are
meaningful. The most important class of such algorithms uses modular arithmetic, which
can be implemented efficiently using unsigned integers and overflows. Our implementation
in AProVE could also be used to prove the absence of overflows in general (although this is
the not the main goal of our technique) and to detect programs whose termination behavior
depends on overflows, cf. Sect. 6.
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adapt byte-accurate symbolic execution to the handling of bitvectors, which
can also be used for many other program analyses besides proving termination
or complexity. The main characteristics of our adaption are:

(a) Handling Memory. In contrast to other approaches for bit-precise ter-
mination analysis, our rules for symbolic execution can also perform low-level
memory management, including explicit pointer arithmetic.

(b) Representation with Z. We represent the relation between bitvector vari-
ables by corresponding relations between integer variables, which allows us to
use standard techniques and tools for SMT solving and for analyzing integer
transition systems.

(c) Unsigned resp. Signed Representation. Based on a heuristic to classify
program variables as “unsigned” or “signed”, we represent information about
their unsigned or signed value in the abstract states for symbolic execution.
This simplifies the symbolic execution of instructions that differ for unsigned
and signed integers. Note that LLVM does not provide the information whether
a variable is signed or unsigned.

(d) Case Analysis vs. “Modulo”. Due to the wrap-around behavior of C
for overflows, representing bitvector relations by relations on mathematical in-
tegers can either be done by case analysis or by using “modulo” relations. For
reasons of efficiency, we developed a hybrid approach which uses case analysis
for instructions like addition and which uses “modulo” for operations like mul-
tiplication. To increase the precision of the resulting abstract states, we show
how to infer information about the ranges of variables, even if these ranges are
unions of disjoint intervals. For an efficient SMT reasoning during symbolic
execution, we developed an approach to express such “disjunctive properties”
by single inequalities.

Earlier Work. A preliminary version of parts of this paper was published in
[20]. The present paper extends [20] as follows:

• We added many more details and explanations throughout the paper.

• In [20], symbolic execution rules were only given for a small subset of
LLVM instructions. In contrast, we now present symbolic execution rules
for all (interesting) LLVM instructions that are affected by the bitvector
semantics:

– In the new Sect. 3.1, we show how the rule for the store instruction
is adapted in order to store unsigned or signed integer values.

– In [20], Sect. 3.2 only contained the rules for the unsigned greater-
than comparison, whereas we now also present the rules for the signed
greater-than comparison. Moreover, we give the rules for signed ad-
dition which were missing in [20].
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– In [20], Sect. 3.3 only contained the rule for unsigned multiplication.
We now also include rules for signed multiplication and for (signed
or unsigned) division.

– In Sect. 3.4, we now added the rule for unsigned and, as well as for
or and xor. Moreover, while [20] only contained a rule for signed
trunc, we now also present a rule for unsigned trunc. Finally, the
rules for shift instructions in Sect. 3.4.3 are also new compared to
[20].

• In [20] we only showed how to use our approach for termination analysis of
bitvector programs. Now we extended our approach such that it can also
be used to analyze the runtime complexity of bitvector programs. This
extension is described in the new Sect. 5 as well as in new corresponding
experiments in Sect. 6.

Limitations. To simplify the presentation and to concentrate on the issues re-
lated to bitvectors, we restrict ourselves to a single LLVM function without
function calls and to LLVM types of the form in (for n-bit integers), in* (for
pointers to values of type in), in**, in***, etc. Moreover, we assume a 1
byte data alignment (i.e., values may be stored at any address) and only han-
dle memory allocation using the LLVM instruction alloca. See [27] for an
extension of our approach to programs with several (non-recursive) LLVM func-
tions, arbitrary alignment, and external functions like malloc. As discussed in
[27], some LLVM concepts are not yet supported by our approach (e.g., undef,
floating point values, vectors, recursion, and dynamic data structures that are
realized as struct types). Another limitation is that our approach cannot di-
rectly disprove properties like memory safety or termination, as it is based on
over-approximating all possible program runs. We are currently working on a
corresponding extension of our approach in order to handle recursive programs
and to prove non-termination as well [21].

2. LLVM States for Symbolic Execution

In this section, we define concrete and abstract LLVM states that represent sets of
concrete states. These states will be needed for symbolic execution in Sect. 3. As
an example, consider the function g from Sect. 1. In the corresponding4 LLVM
code in Fig. 2, the integer variable j has the type i32, since it is represented as
a bitvector of length 32. The program is split into the basic blocks entry, cmp,
body, and done. We will explain this LLVM code in detail when constructing
the symbolic execution graph in Sect. 3.

4This LLVM program corresponds to the code obtained from g with the Clang compiler [8].
To ease readability, we wrote variables without “%” in front (i.e., we wrote “j” instead of “%j”
as in proper LLVM) and added line numbers.
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define i32 @g(i32 j) {

entry: 0: ad = alloca i32

1: store i32 j, i32* ad

2: br label cmp

cmp: 0: j1 = load i32* ad

1: j1pos = icmp ugt i32 j1, 0

2: br i1 j1pos, label body, label done

body: 0: j2 = load i32* ad

1: inc = add i32 j2, 1

2: store i32 inc, i32* ad

3: br label cmp

done: 0: ret void }

Figure 2: LLVM code for the function g

In our abstract domain, an LLVM state consists of the current program
position, the values of the local program variables, a knowledge base with in-
formation about the values of symbolic variables, and two sets which describe
memory allocations and the contents of memory. The program position is rep-
resented by a pair (b, k). Here, b is the name of the current basic block and k is
the index of the next instruction. So if Blks is the set of all basic blocks, then
the set of program positions is Pos = Blks × N. We represent an assignment
to the local program variables VP (e.g., VP = {j, ad, . . .}) by an injective func-
tion LV : VP → Vsym , where Vsym is an infinite set of symbolic variables with
Vsym ∩ VP = ∅. By using Vsym instead of concrete integers, we cannot only
represent concrete states, where all symbolic variables v ∈ Vsym are constrained
to concrete fixed numbers, but also abstract states, where v can stand for sev-
eral possible values. Let Vsym(LV ) ⊆ Vsym be the set of all symbolic variables
v where there exists some x ∈ VP with LV (x) = v.

The third component of states is the knowledge base KB ⊆ QF IA(Vsym), a
set of first-order quantifier-free integer arithmetic formulas. For concrete states,
KB uniquely determines the values of symbolic variables, whereas for abstract
states several values are possible. We identify sets of formulas {ϕ1, . . . , ϕn}
with their conjunction ϕ1 ∧ . . . ∧ ϕn and require that KB is just a conjunction
of equalities and inequalities in order to simplify and to speed up SMT-based
arithmetic reasoning.

The fourth component of a state is an allocation list AL. This list contains
expressions of the form Jv1, v2K for v1, v2 ∈ Vsym , which indicate that v1 ≤ v2
holds and that all addresses between v1 and v2 have been allocated by an alloca

instruction.
The fifth component PT is a set of “points-to” atoms v1 ↪→ty,i v2 where

v1, v2 ∈ Vsym , ty is an LLVM type, and i ∈ {u, s}. This means that the value
v2 of type ty is stored at the address v1, where i ∈ {u, s} indicates whether
v2 represents this value as an unsigned or signed integer. As each memory cell
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stores one byte, v1 ↪→i32,i v2 states that v2 is stored in the four cells v1, . . . , v1+3.
Finally, we use a special state ERR to be reached if we cannot prove absence

of undefined behavior (e.g., if a non-allowed overflow or a violation of memory
safety by accessing non-allocated memory might take place). Def. 1 introduces
our notion of (possibly abstract) LLVM states formally.

Definition 1 (States). LLVM states have the form (p,LV ,KB ,AL,PT ) where
p ∈ Pos, LV : VP → Vsym , KB ⊆ QF IA(Vsym), AL ⊆ {Jv1, v2K | v1, v2 ∈
Vsym}, and PT ⊆ {(v1 ↪→ty,i v2) | v1, v2∈Vsym , ty is an LLVM type, i∈{u, s}}.
In addition, there is a state ERR for undefined behavior. For a state a =
(p,LV,KB,AL,PT ), let Vsym(a) consist of Vsym(LV ) and of all symbolic vari-
ables occurring in KB, AL, or PT .

We often identify the mapping LV with the set of equations {x = LV (x) |
x ∈ VP}. As an example, consider the following abstract state for the function
g in our example:

((entry, 2), {j = vj, ad = vad}, {vend = vad + 3}, {Jvad, vendK}, {vad ↪→i32,u vj}) (1)

It represents states in the entry block immediately before executing the instruc-
tion in line 2. Here, LV (j) = vj, the memory cells between LV (ad) = vad and
vend = vad + 3 have been allocated, and vj is stored in the 4 cells vad, . . . , vend .

In contrast to [27], we partition the set of program variables VP into two
disjoint sets UP and SP (i.e., VP = UP ] SP). If x ∈ UP (resp. x ∈ SP), then
LV (x) is x’s value as an unsigned (resp. signed) integer. As will be shown in Sect.
3, this is advantageous when formulating rules to execute LLVM instructions like
icmp ugt and icmp sgt (for the integer comparisons “unsigned greater than” and
“signed greater than”). The reason is that the types of LLVM do not distinguish
between unsigned and signed integers. Instead, some LLVM instructions consider
their arguments as “unsigned” whereas others consider them as “signed”.

To determine UP and SP , we use the following heuristic which statically
scans the program P for variables which are (mainly) used in unsigned resp.
signed interpretation. We iteratively add a variable x to UP if

• x is an address (i.e., it has a type of the form ty*),

• x occurs in an unsigned comparison instruction (e.g., icmp ugt) or in another
unsigned operation (e.g., udiv or urem for “unsigned division” or “unsigned
remainder”),

• x occurs in a sign neutral comparison (icmp eq or icmp ne) or in a phi or
select instruction together with another variable y ∈ UP , where y is not
the condition,

• x occurs in an add, sub, mul, or shl instruction without nsw flag (“no signed
wrap-up” means that overflow of signed integers yields undefined behavior),

• x occurs in a binary or in a conversion instruction with another y ∈ UP ,
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• x is the result of icmp or the condition of a branch (br) or select instruction,

• x occurs in a lshr (“logical shift right”) instruction,

• x occurs in a zext instruction (the “zero extension” adds zero bits in front),

• x is loaded from an address where a variable y ∈ UP is stored to, or

• x is stored to an address where a variable y ∈ UP is loaded from.

Afterwards, we iteratively remove x from UP again if

• x is one of the two arguments of a signed comparison (e.g., icmp sgt) or x

occurs in another signed operation (e.g., sdiv or srem),

• x occurs in a comparison or in a phi or select instruction together with
another variable y ∈ VP \ UP , where x is not the condition,

• x occurs in an instruction flagged by nsw,

• x occurs in a binary or in a conversion instruction with another y ∈ VP \UP ,

• x occurs in an ashr (“arithmetic shift right”) instruction,

• x occurs in a sext instruction (the “sign extension” adds copies of the most
significant bit in front),

• x is loaded from an address where a variable y ∈ VP \ UP is stored to, or

• x is stored to an address where a variable y ∈ VP \ UP is loaded from.

We then define SP = VP \UP . In this way, we make sure that in each instruction
in the program P, all occurring program variables of type in with n > 1 are ei-
ther from UP or from SP . In our example, we obtain UP = VP = {j, ad, . . . , inc}
and SP = ∅. Note that there is no guarantee that all variables in UP resp. SP
are really used as unsigned resp. signed integers in the original C program (e.g.,
if y, z ∈ SP and the C program contains “unsigned int x = y + z;”, then
our heuristic would conclude x ∈ SP , since the resulting LLVM code has the
instruction “x = add i32 y, z”). Our analysis remains correct if there are
(un)signed variables that we do not recognize as being (un)signed (i.e., failure
of the above heuristic for UP and SP only affects the performance, but not the
soundness of our approach).

To construct symbolic execution graphs, for any state a we use a first-order
formula 〈a〉FO , which is a conjunction of equalities and inequalities containing
KB and obvious consequences of AL and PT . For example, 〈a〉FO contains the
constraint that v1 ≤ v2 holds for each pair Jv1, v2K in a’s allocation list and
that all addresses are positive numbers. Moreover, 〈a〉FO expresses that two
values at the same address must be equal and two addresses must be different
if they point to different (un)signed values of the same type. In addition, 〈a〉FO
states that all integers belong to intervals corresponding to their types. Here,
let umaxn = 2n− 1, sminn = −2n−1, and smaxn = 2n−1− 1. Moreover, size(ty)
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is the number of bits required for values of type ty (e.g., size(in) = n and
size(ty*) = 32 (resp. 64) on 32-bit (resp. 64-bit) architectures). As usual,
“v ∈ [k,m]” is a shorthand for “k ≤ v ∧ v ≤ m” and “|= ϕ” means that ϕ is a
tautology.

Definition 2 (FO Formulas for States). 〈a〉FO is the smallest set with5

〈a〉FO = KB ∪ {0 < v1 ≤ v2 | Jv1, v2K ∈ AL} ∪
{v2 = w2 | (v1 ↪→ty,i v2), (w1 ↪→ty,i w2) ∈ PT and |= 〈a〉FO ⇒ v1 = w1} ∪
{v1 6= w1 | (v1 ↪→ty,i v2), (w1 ↪→ty,i w2) ∈ PT and |= 〈a〉FO ⇒ v2 6= w2} ∪
{0 < v1 ∧ v2 ∈ [0, umaxsize(ty)] | (v1 ↪→ty,u v2) ∈ PT} ∪
{0 < v1 ∧ v2 ∈ [sminsize(ty), smaxsize(ty)] | (v1 ↪→ty,s v2) ∈ PT} ∪
{LV (x) ∈ [0, umaxsize(ty)] | x ∈ UP , x has type ty} ∪
{LV (x) ∈ [sminsize(ty), smaxsize(ty)] | x ∈ SP , x has type ty}.

Concrete states are abstract states of a particular form which determine
the values of variables and the contents of the memory uniquely. To enforce a
uniform representation, in concrete states we represent memory data byte-wise
and only allow statements of the form (w1 ↪→ty,i w2) in PT where ty = i8 and
i = u. In addition, concrete states (p,LV ,KB ,AL,PT ) must be well formed,
i.e., for every (w1 ↪→ty,i w2) ∈ PT , there is an allocated area Jv1, v2K ∈ AL such
that |= KB ⇒ v1 ≤ w1 ≤ v2. So PT only contains information about addresses
that are known to be allocated.

Definition 3 (Concrete States). An LLVM state c is concrete iff c = ERR
or c = (p,LV ,KB ,AL,PT ) is well formed, 〈c〉FO is satisfiable, and

• For all v ∈ Vsym(c) there exists an n ∈ Z such that |= 〈c〉FO ⇒ v = n.

• For all Jv1, v2K ∈ AL and for all integers n with |= 〈c〉FO ⇒ v1 ≤ n ≤
v2, there exists (w1 ↪→i8,u w2) ∈ PT for some w1, w2 ∈ Vsym such that
|= 〈c〉FO ⇒ w1 = n and |= 〈c〉FO ⇒ w2 = k, for some k ∈ [0, umax8].

• There is no (w1 ↪→ty,i w2) ∈ PT for ty 6= i8 or i = s.

To define the semantics of an abstract state a, in [27] we also introduced
a separation logic formula 〈a〉SL which extends 〈a〉FO by detailed information
about the memory (i.e., about AL and PT ). (In Appendix A we recapitulate the
formal definition of 〈a〉SL and the formal semantics of the fragment of separation
logic that we consider here.) For these semantics, we use interpretations of the
form (as,mem). Here, as : VP → Z is an assignment of the program variables,
where for x ∈ VP of type ty, we have as(x) ∈ [0, umaxsize(ty)] if x ∈ UP and
as(x) ∈ [sminsize(ty), smaxsize(ty)] if x ∈ SP . The partial function mem : N>0 ⇀

5Of course, 〈a〉FO can be extended by more formulas, e.g., on the connection between v2
and v′2 if (v1 ↪→in,u v2), (v1 ↪→im,u v′2) ∈ PT for n < m. Then we can also handle programs
which load an in integer from an address where an im integer was stored.
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{0, . . . , umax8} with finite domain describes the memory contents at allocated
addresses (as unsigned integers). Here, we use N>0 = N \ {0}. As usual, “|= ϕ”
means that (as,mem) |= ϕ holds for any interpretation (as,mem). Then we
have |= 〈a〉SL ⇒ 〈a〉FO for any abstract state a. So 〈a〉FO is a weakened version
of 〈a〉SL which we use to construct symbolic execution graphs. This allows us
to apply standard first-order SMT solving for all reasoning in our approach.

Now we define which concrete states are represented by an abstract state a.
We extract an interpretation (asc,memc) from every concrete state c 6= ERR.
Then we define that an abstract state a represents all those concrete states
c where (asc,memc) is a model of some concrete instantiation of 〈a〉SL. A
concrete instantiation is a function σ : Vsym → Z. Thus, σ does not instantiate
the program variables VP . Instantiations are extended to formulas in the usual
way, i.e., σ(ϕ) instantiates every free occurrence of v ∈ Vsym in ϕ by σ(v).

Definition 4 (Representing Concrete by Abstract States). Let c = (p,
LV c,KBc,ALc,PT c) be a concrete state. For every x ∈ VP , let asc(x) = n for
the number n ∈ Z with |= 〈c〉FO ⇒ LV c(x) = n. For n ∈ N>0, the function
memc(n) is defined iff there exists a (w1 ↪→i8,u w2) ∈ PT c such that |= 〈c〉FO ⇒
w1 = n. In this case, let |= 〈c〉FO ⇒ w2 = k, where k ∈ [0, umax8]. Then we
have memc(n) = k.

We say that an abstract state a = (p,LV a,KBa,ALa,PT a) represents a con-
crete state c = (p,LV c,KBc,ALc,PT c) iff a is well formed and (asc,memc) is
a model of σ(〈a〉SL) for some concrete instantiation σ of the symbolic variables.
The only state that represents the error state ERR is ERR itself.

So the abstract state (1) represents all concrete states c = ((entry, 2),LV ,
KB ,AL,PT ) where memc stores the 32-bit integer asc(j) at the address asc(ad).

3. From LLVM to Symbolic Execution Graphs

We now show how to automatically generate a symbolic execution graph that
over-approximates all possible executions of a program. To this end, we define
operations to convert any integer expression t into an unsigned resp. signed n-bit
integer:6

unsn(t) = t mod 2n sign(t) = ((t+ 2n−1) mod 2n)− 2n−1

The correctness of unsn is obvious. By Thm. 5, sign is correct as well, i.e., sign(t)
is indeed in the range [sminn, smaxn] of signed n-bit integers and t and sign(t)
are the same modulo 2n.

Theorem 5 (Converting Integers to Signed n-Bit Integers). Let n ∈ N
with n ≥ 1. Then sign(t) ∈ [sminn, smaxn] and t mod 2n = sign(t) mod 2n.

6As usual, mod is defined as follows: For any m ∈ Z and n ∈ N>0, we have t = m mod n
iff t ∈ [0, n− 1] and there exists a k ∈ Z such that t = k · n + m.
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(entry, 0), {j = vj, ...}, {vj ∈ [0, umax], ...}, ∅, ∅A

(entry, 1), {j = vj, ad = vad, ...}, {vend = vad +3, ...}, {Jvad, vendK}, ∅B

(entry, 2), {j = vj, ad = vad, ...}, {...}, {Jvad, vendK}, {vad ↪→i32 vj}C

(cmp, 0), {j = vj, ad = vad, ...}, {...}, {Jvad, vendK}, {vad ↪→i32 vj}D

(cmp, 1), {j = vj, ad = vad, j1 = vj, ...}, {...}, {...}, {vad ↪→i32 vj}E

(cmp, 1), {ad = vad, j1 = vj, ...},
{¬vj > 0, ...}, {...}, {vad ↪→i32 vj}

F (cmp, 1), {ad = vad, j1 = vj, ...},
{vj > 0, ...}, {...}, {vad ↪→i32 vj}

G

. . .

(cmp, 2), {ad = vad, j1 = vj, j1pos = 1, ...}, {vj > 0, ...}, {...}, {vad ↪→i32 vj}
H

(body, 0), {ad = vad, ...}, {vj > 0, ...}, {...}, {vad ↪→i32 vj}I

(body, 1), {ad = vad, j2 = vj, ...}, {vj > 0, ...}, {...}, {vad ↪→i32 vj}J

(body, 1), {ad = vad, j2 = umax, ...},
{...}, {...}, {vad ↪→i32 umax}

K (body, 1), {ad = vad, j2 = vj, ...},
{vj ∈ [1, umax− 1], ...}, {...}, {vad ↪→i32 vj}

L

(body, 2), {j2 = umax, inc = 0, ...},
{...}, {...}, {vad ↪→i32 umax}

M (body, 2), {inc = vinc, ...}, {vinc ∈ [2, umax],
vinc = vj + 1, ...}, {...}, {...}

N

. . .

(body, 3), {inc = vinc, ...}, {vinc ∈ [2, umax], vinc = vj +1, ...}, {Jvad, vendK}, {vad ↪→i32 vinc}O

(cmp, 0), {inc = vinc, ...}, {vinc ∈ [2, umax], vinc = vj+1, ...}, {Jvad, vendK}, {vad ↪→i32 vinc}P

(body, 1), {j2 = vinc, ...}, {vinc ∈ [2, umax], vinc = vj+1, ...}, {Jvad, vendK}, {vad ↪→i32 vinc}Q

(cmp, 0), {inc=vinc2, ...}, {vinc2∈ [3, umax], vinc2=vinc+1, ...}, {Jvad,vendK}, {vad ↪→i32 vinc2}R

. . .

Figure 3: Symbolic execution graph for the function g

To ease the formalization, we extend LV such that it can also be applied to
concrete integers. To this end, we use the functions LVu,n, LVs,n : VP ] Z →
Vsym ] Z, where LVu,n(t) (resp. LVs,n(t)) is t represented as an unsigned (resp.
signed) integer with n bits, for any t ∈ VP ] Z:

LVu,n(t) =


LV (t), if t ∈ UP
unsn(LV (t)), if t ∈ SP
unsn(t), if t ∈ Z

LVs,n(t) =


sign(LV (t)), if t ∈ UP
LV (t), if t ∈ SP
sign(t), if t ∈ Z

We developed symbolic execution rules for all LLVM instructions that are
affected by the adaption to bitvectors (rules for other LLVM instructions can be
found in [27]). After adapting the rule for the store instruction in Sect. 3.1,
we show how to handle overflows by appropriate case analyses (Sect. 3.2) or by
introducing “modulo” relations (Sect. 3.3). Finally, Sect. 3.4 presents rules for
bitwise binary and conversion instructions.
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3.1. Storing Unsigned or Signed Integer Values

We start with the initial state that one wants to analyze for termination, e.g.,
with the abstract state A where j has an unknown value. In the symbolic
execution graph for g in Fig. 3, we abbreviated parts by “. . . ” and wrote
↪→i32 and umax instead of ↪→i32,u and umax32. To ease readability, we replaced
some symbolic variables by their values (e.g., instead of j1pos = z in LV and
z = 1 in KB we directly wrote j1pos = 1 in LV ). Moreover, we explicitly
depicted formulas like vj ∈ [0, umax] that follow from 〈A〉FO since j ∈ UP and
LV (j) = vj.

The function g starts with allocating a memory area Jvad, vendK (cf. State
B) and then it stores the value vj of the parameter j at the address ad. The
following rule shows how to evaluate the store instruction symbolically, i.e., it
is used for the step from State B to C. This rule is affected by the change to
the bitvector semantics, because it has to take into account which values should
be stored as an unsigned or as a signed integer, respectively. For this reason,
we present two corresponding versions of the symbolic execution rule below.

Let “p : ins” denote that ins is the instruction at the program position p. We
now handle the case p : “store ty t, ty* ad”, i.e., the integer value t of type
ty should be stored at the address ad in the memory. In our rules, let a always
denote the abstract state before the execution step (i.e., above the horizontal
line of the rule), where we write 〈a〉 instead of 〈a〉FO . As each memory cell
stores one byte, in the store rule we first have to check whether the addresses
ad, . . . , adend are allocated, i.e., whether there is a Jv1, v2K ∈ AL such that
〈a〉 ⇒ (v1 ≤ LVu,n(ad) ∧ adend ≤ v2) is valid. Here, n = size(ty*) is the
bit-size of addresses and as addresses are stored as unsigned integers, the value
of ad is LV u,n(ad). The value adend can be computed from LVu,n(ad) by taking
into account how many bytes are needed to store a value of type ty. After
executing the instruction, we reach a new state where the previous position
p = (b, k) is updated to the position p+ = (b, k + 1) of the next instruction in
the same block.

In this new state we store a new value v at the address LVu,n(ad). Whether
this value corresponds to the unsigned or the signed value of t is decided accord-
ing to our heuristic from Sect. 2. If t ∈ UP or if t is an integer and no value from
SP is loaded from or stored to the address ad, then we extend PT by the infor-
mation that ad now points to the unsigned value of t and add v = LVu,size(ty)

to the knowledge base KB . Otherwise, we proceed analogously with the signed
value. All information in PT that is not influenced by this change is kept. Here,
for any terms t1, t2, “Jt1, t2K ⊥ Jt′1, t′2K” is a shorthand for t2 < t′1 ∨ t′2 < t1.
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unsigned store (p : “store ty t, ty* ad” with t ∈ VP ∪ Z, ad ∈ VP)

(p, LV , KB , AL, PT )

(p+, LV , KB ∪{v = LVu,size(ty)}, AL, PT ′ ∪{LVu,n(ad) ↪→ty,u v})
if

• t ∈ UP , or t ∈ Z and there is no t′ ∈ SP s.t. t′ is loaded from or stored to ad in P
• there is Jv1,v2K∈AL with |= 〈a〉⇒ (v1 ≤ LVu,n(ad) ∧ adend ≤ v2)

• n = size(ty*)

• adend = LVu,n(ad) + d size(ty)
8
e − 1 and w1end = w1 + d size(sy)

8
e − 1 for all w1

• PT ′ = {(w1 ↪→sy,i w2) ∈ PT | |= 〈a〉⇒(JLVu,n(ad), adendK⊥ Jw1, w1endK)}
• v ∈ Vsym is fresh

signed store (p : “store ty t, ty* ad” with t ∈ VP ∪ Z, ad ∈ VP)

(p, LV , KB , AL, PT )

(p+, LV , KB∪{v = LVs,size(ty)(t)}, AL, PT ′∪{LVu,n(ad) ↪→ty,s v})
if

• t ∈ SP , or t ∈ Z and there is a t′ ∈ SP s.t. t′ is loaded from or stored to ad in P
• there is Jv1,v2K∈AL with |= 〈a〉⇒ (v1 ≤ LVu,n(ad) ∧ adend ≤ v2)

• n = size(ty*)

• adend = LVu,n(ad) + d size(ty)
8
e − 1 and w1end = w1 + d size(sy)

8
e − 1 for all w1

• PT ′ = {(w1 ↪→sy,i w2) ∈ PT | |= 〈a〉⇒(JLVu,n(ad), adendK⊥ Jw1, w1endK)}
• v ∈ Vsym is fresh

In our example, j ∈ UP and thus, the “unsigned store” rule is used to
evaluate State B. We have Jvad, vendK ∈ AL, and 〈B〉 implies that LVu,32(ad) =
vad is in this allocated area. Instead of adding vad ↪→i32,u v to PT and v = vj
to KB , in Fig. 3 we directly extended PT by vad ↪→i32,u vj to ease readability.

Storing a value at an unallocated address violates memory safety and thus,
in this case we use a symbolic execution rule which reaches the ERR state.

store on unallocated memory (p : “store ty t, ty* ad”, t ∈ VP ∪ Z, ad ∈ VP)

(p, LV , KB , AL, PT )

ERR
if

• there is no Jv1,v2K∈AL with |= 〈a〉⇒ (v1 ≤ LVu,n(ad) ∧ adend ≤ v2)

• n = size(ty*)

• adend = LVu,n(ad) + d size(ty)
8
e − 1

3.2. Handling Bitvector Operations by Case Analysis

After executing the store instruction, our program branches to the block cmp

for the loop comparison. Now the value vj (stored at the address ad) is loaded to
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the program variable j1. Next, for the integer comparison instruction in State
E we have to check whether j1’s value in unsigned interpretation is greater
than 0 (icmp ugt). In the symbolic execution rule for this instruction, we write
LV [x := v] for the function where (LV [x := v])(x) = v and where (LV [x :=
v])(y) = LV (y) for all y 6= x.

icmp ugt (p : “x = icmp ugt ty t1, t2” with x ∈ VP , t1, t2 ∈ VP ∪ Z)

(p, LV , KB , AL, PT )

(p+, LV [x := v], KB ∪ {ϕ}, AL, PT )
if v ∈ Vsym is fresh and if

either |= 〈a〉⇒ (LVu,size(ty)(t1) > LVu,size(ty)(t2)) and ϕ is “v = 1”
or |= 〈a〉⇒ (LVu,size(ty)(t1) ≤ LVu,size(ty)(t2)) and ϕ is “v = 0”

However, in our example the value of LVu,32(j1) = LV (j1) = vj is unknown.
Thus, we first have to refine State E to the states F and G in such a way that
the comparison can be decided. For this case analysis, we use the following rule.

icmp ugt refinement (p : “x = icmp ugt ty t1, t2” with x ∈ VP , t1, t2 ∈ VP ∪ Z)

(p, LV , KB , AL, PT )

(p,LV ,KB ∪{ϕ},AL,PT ) | (p,LV ,KB ∪{¬ϕ},AL,PT )
if

ϕ is “LVu,size(ty)(t1) > LVu,size(ty)(t2)” and we have both 6|= 〈a〉⇒ ϕ and 6|= 〈a〉⇒ ¬ϕ

The rules for the signed “greater than” comparison (sgt) are similar to the
above rules, but they use LVs,size(ty) instead of LVu,size(ty).

icmp sgt (p : “x = icmp sgt ty t1, t2” with x ∈ VP , t1, t2 ∈ VP ∪ Z)

(p, LV , KB , AL, PT )

(p+, LV [x := v], KB ∪ {ϕ}, AL, PT )
if v ∈ Vsym is fresh and if

either |= 〈a〉⇒ (LVs,size(ty)(t1) > LVs,size(ty)(t2)) and ϕ is “v = 1”
or |= 〈a〉⇒ (LVs,size(ty)(t1) ≤ LVs,size(ty)(t2)) and ϕ is “v = 0”

icmp sgt refinement (p : “x = icmp sgt ty t1, t2” with x ∈ VP , t1, t2 ∈ VP ∪ Z)

(p, LV , KB , AL, PT )

(p,LV ,KB ∪{ϕ},AL,PT ) | (p,LV ,KB ∪{¬ϕ},AL,PT )
if

ϕ is “LVs,size(ty)(t1) > LVs,size(ty)(t2)” and we have both 6|= 〈a〉⇒ ϕ and 6|= 〈a〉⇒ ¬ϕ

The rules for icmp (uge|ult|ule|sge|slt|sle|eq|ne) are analogous.
When evaluating these icmp instructions symbolically, we benefit from the

fact that if a program variable y is compared by ugt and y ∈ UP , then the
symbolic variable LV (y) already represents y’s value as an unsigned integer,
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which makes the comparison very simple. (Similarly, LV (y) represents a signed
integer if y is compared by sgt.) In contrast, if LV represented the value of
all program variables as signed integers, then in the above case analysis for the
icmp ugt refinement we would have to consider more cases, which would result
in a significantly larger graph (and thus, in a less efficient approach).7

In our example, if ¬vj > 0 (State F ), then we return from the function. If
vj > 0 (State G), then the conditional branch instruction leads us to the block
body, which corresponds to the body of the while-loop. In the step from I to
J , again the value vj stored at the address vad is loaded to a program variable
j2. The next instruction is an overflow-sensitive addition: If vj < umax32, then
vj + 1 is assigned to inc. But if vj = umax32, then there is an overflow.

Therefore, we have to adapt the add rule for bitvectors. We only evaluate
the addition operation if KB contains enough information to decide whether an
overflow occurs or not. Otherwise, a case analysis needs to be performed, i.e.,
we refine the abstract state in order to distinguish all states where an overflow
occurs from those where no overflow occurs.

unsigned add refinement (p : “x = add in t1, t2” with x ∈ VP , t1, t2 ∈ VP ∪ Z)

(p, LV , KB , AL, PT )

(p,LV ,KB ∪{ϕ},AL,PT ) | (p,LV ,KB ∪{¬ϕ},AL,PT )
if x ∈ UP and

ϕ is “LVu,n(t1) + LVu,n(t2) ≤ umaxn”, where 6|= 〈a〉⇒ ϕ and 6|= 〈a〉⇒ ¬ϕ

Therefore, State J is refined to K and L. In K, j2 has the value umax32, i.e.,
adding 1 results in an overflow. In State L, j2 has a value smaller than umax32
such that an overflow cannot happen.

The rule for “signed add refinement” is analogous, but here we have x ∈ SP
and we obtain three instead of two cases.

signed add refinement (p : “x = add in t1, t2” with x ∈ VP , t1, t2 ∈ VP ∪ Z)

(p, LV , KB , AL, PT )

(p,LV,KB ∪{ϕ1},AL,PT) | (p,LV,KB ∪{ϕ2},AL,PT) | (p,LV,KB ∪{ϕ3},AL,PT)
if

• x ∈ SP
• ϕ1 is “LVs,n(t1) + LVs,n(t2) < sminn”

• ϕ2 is “LVs,n(t1) + LVs,n(t2) ∈ [sminn, smaxn]”

• ϕ3 is “LVs,n(t1) + LVs,n(t2) > smaxn”

• 6|= 〈a〉⇒ ϕ1, 6|= 〈a〉⇒ ϕ2, and 6|= 〈a〉⇒ ϕ3

7Then we would have to check first whether LVs,size(ty)(t1) < 0 and LVs,size(ty)(t2) ≥ 0.
In that case, “icmp ugt ty t1, t2” yields true, since the most significant bits of t1 and t2
are 1 and 0, respectively. The other cases are LVs,size(ty)(t1) ≥ 0 ∧ LVs,size(ty)(t2) < 0,
and the two cases where LVs,size(ty)(t1) and LVs,size(ty)(t2) have the same sign and either
LVs,size(ty)(t1) > LVs,size(ty)(t2) or LVs,size(ty)(t1) ≤ LVs,size(ty)(t2).
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Now we define rules for evaluating add. If no overflow can occur, then the
result is the addition of the operators. Thus, State L evaluates to N , where the
result value vinc may be any value in [2, umax32] and we know that vinc = vj+1.
Below, we give the rules for both the unsigned and the signed case.

add without overflow (p : “x = add [nsw] in t1, t2” with x ∈ VP , t1, t2 ∈ VP ∪ Z)

(p, LV , KB , AL, PT )

(p+, LV [x := v], KB ∪ {ϕ}, AL, PT )
if v ∈ Vsym is fresh and if

either x ∈ UP , |= 〈a〉⇒ (LVu,n(t1) + LVu,n(t2) ∈ [0, umaxn]),
and ϕ is “v = LVu,n(t1) + LVu,n(t2)”

or x ∈ SP , |= 〈a〉⇒ (LVs,n(t1) + LVs,n(t2) ∈ [sminn, smaxn]),
and ϕ is “v = LVs,n(t1) + LVs,n(t2)”

If an overflow occurs, then due to the wrap-around, the unsigned result
value is the sum of the operands minus the type size 2n. For example, in the
evaluation of State K to M , we add the relation vinc = umax32 + 1− 232 = 0.

unsigned add with overflow (p : “x = add in t1, t2” with x ∈ VP , t1, t2 ∈ VP∪Z)

(p, LV , KB , AL, PT )

(p+, LV [x := v], KB ∪ {v = LVu,n(t1) + LVu,n(t2)− 2n}, AL, PT )
if

x ∈ UP , v ∈ Vsym is fresh, and |= 〈a〉⇒ (LVu,n(t1) + LVu,n(t2) > umaxn)

When adding two signed integers in C, an overflow leads to undefined be-
havior. Thus, this is translated into an LLVM instruction with the flag nsw.
However, when adding an unsigned and a signed integer in C, an overflow does
not yield undefined behavior (i.e., the resulting LLVM instruction is not flagged
with nsw). Our heuristic for UP and SP would consider this to be “signed”
addition. Thus, we also need a rule for overflow of signed add without the flag
nsw.

Moreover, most C implementations use a wrap-around semantics also for
signed integers. Thus, they compile C to LLVM code where nsw is not used
at all. Our approach is independent of the actual C compiler, as it analyzes
termination of the resulting LLVM program instead and it can also handle signed
overflows. Thus, we use a similar rule for x ∈ SP . However, a potential signed
overflow that is flagged with nsw leads to ERR.

signed add with overflow (p : “x = add in t1, t2” with x ∈ VP , t1, t2 ∈ VP∪Z)

(p, LV , KB , AL, PT )

(p+, LV [x := v], KB ∪ {ϕ}, AL, PT )
if x ∈ SP , v ∈ Vsym is fresh, and either

|= 〈a〉⇒ (LVs,n(t1)+LVs,n(t2) > smaxn) and ϕ is “v = LVs,n(t1)+LVs,n(t2)− 2n”
or |= 〈a〉⇒ (LVs,n(t1)+LVs,n(t2) < sminn) and ϕ is “v = LVs,n(t1)+LVs,n(t2) + 2n”
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signed add with nsw overflow (p : “x = add nsw in t1, t2”, x∈VP , t1, t2 ∈ VP∪Z)

(p, LV , KB , AL, PT )

ERR
if

x∈SP and 6|= 〈a〉⇒(LVs,n(t1)+LVs,n(t2) ∈ [sminn, smaxn])

The rules for the subtraction instruction sub are analogous to the rules for add.
For M , the execution will end after some more steps, as the value used

for the comparison in the loop condition will be 0 the next time we reach the
corresponding program position (cmp, 1).

For N , after storing vinc to vad, we branch to block cmp again. State P is
like D (but ad points to j in D whereas ad points to inc in P ). Therefore, we
continue the execution, where the steps from P to Q are similar to the steps
from D to J . Here, dotted arrows abbreviate several execution steps. State Q
is again refined and in the case where no overflow occurs, we finally reach State
R at the same program position as D and P .

To obtain finite symbolic execution graphs, we can generalize states when-
ever an evaluation visits a program position (b, k) multiple times. We say that a′

is a generalization of a with the instantiation µ whenever the conditions (b) – (e)
of the following rule from [27] are satisfied. Again, let a denote the state before
the generalization step and a′ is the state resulting from the generalization.

generalization with µ

(p, LV , KB , AL, PT )

(p′, LV ′, KB ′, AL′, PT ′)
if

(a) a has an incoming “evaluation edge”
(not just refinement or generalization edges)

(b) LV (x) = µ(LV ′(x)) for all x ∈ VP
(c) |= 〈a〉 ⇒ µ(KB ′)

(d) if Jv1, v2K ∈ AL′, then Jµ(v1), µ(v2)K ∈ AL

(e) for i ∈ {u, s}, if (v1 ↪→ty,i v2) ∈ PT ′, then (µ(v1) ↪→ty,i µ(v2)) ∈ PT

Clearly, we have |= 〈a〉SL ⇒ µ(〈a′〉SL). Condition (a) is needed to avoid
cycles of refinement and generalization steps in the symbolic execution graph,
which would not correspond to any computation. See [27] for a heuristic to
compute suitable generalizations automatically.

In our graph in Fig. 3, P is a generalization of State R. If we use an
instantiation µ with µ(vj) = vinc and µ(vinc) = vinc2, then all conditions of the
rule are satisfied. Therefore, we can conclude the graph construction with a
(dashed) generalization edge from R to P . We say that a symbolic execution
graph is complete if all its leaves correspond to ret instructions (so in particular,
the graph does not contain ERR states). As shown in [27], any LLVM evaluation
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0 unsn(ub) ` u unsn(`b) umaxn `b umaxk ub

y y · zx1 x2

Figure 4: Multiplication of unsigned integers

of concrete states can be simulated by our symbolic execution rules. So in
particular, a program with a complete symbolic execution graph does not exhibit
undefined behavior (thus, it is memory safe).

3.3. Handling Bitvector Operations by Modulo Relations

We now consider further LLVM instructions whose symbolic execution rules have
to be adapted to bitvector arithmetic. A refinement with two cases was sufficient
to express the result of unsigned addition (or subtraction): if y+z exceeds umaxn
= 2n−1 for unsigned integers y and z, then the result of the addition is (y+z)−
2n ∈ [0, umaxn], since y + z can never exceed 2 · umaxn. But for multiplication,
if y · z exceeds umaxn, then (y · z) − 2n is not necessarily in [0, umaxn]. In
contrast, one might have to subtract 2n multiple times. Even worse, if one only
knows that y and z are values from some interval, then for some values of y · z
one may have to subtract 2n more often than for others in order to obtain a
result in [0, umaxn]. So for multiplication, performing case analysis to handle
overflows is not practical.8 Thus, we use modulo relations instead, which hold
regardless of whether an overflow occurs or not: for unsigned integers, if x is
the result of multiplying y and z, then the relation “x = y · z mod 2n” (i.e.,
x = unsn(y ·z)) correctly models the overflow of bitvectors of size n. In order to
apply standard SMT solvers for expressions that contain “modulo”, any equality
“t = m mod n” can be transformed into “t = k · n+m”, where 0 ≤ t < m and
k is an existentially quantified fresh variable.

In some cases, the result of a multiplication “x = mul in t1, t2” can be in
disjoint intervals. For example, if y ∈ [`, u] such that ` · z ≤ umaxk < u · z for
some k, then there can be two intervals (x1, x2 in Fig. 4) for x = y · z, when x

is regarded as an unsigned integer in [0, umaxn]. Here, it is useful to extend KB
by additional information on the intervals of the result. If LVu,n(t1) ∈ [`1, u1]
and LVu,n(t2) ∈ [`2, u2] for numbers `1, `2, u1, u2 ∈ N, then for `b = `1 · `2 and
ub = u1 · u2, we have LVu,n(t1) · LVu,n(t2) ∈ [`b, ub]. However, our goal is to
infer information on the possible value of unsn(LVu,n(t1) · LVu,n(t2)).

To this end, we compute the size of the interval [`b, ub]. If ub − `b + 1 ≥
2n, then [`b, ub] contains more numbers than those that can be represented
with n bits. Thus, LV (x) can be any unsigned n-bit integer and we cannot
infer any more specific information on its value. Otherwise, we check whether
unsn(`b) ≤ unsn(ub) holds. In this case, we add the information “LV (x) ∈
[unsn(`b), unsn(ub)]” to KB . Finally, if the size of the interval [`b, ub] is < 2n but

8If y, z ∈ [0, 2n − 1], then y · z ∈ [0, 22·n − 2n+1 + 1]. So there are O(2n) many potential
intervals of size 2n for the result, i.e., we would have to consider O(2n) many cases.
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min u ` max

x1 x2 x1

Figure 5: Expressing unions of intervals

unsn(`b) > unsn(ub), then LV (x) ∈ [0, unsn(ub)] ∪ [unsn(`b), umaxn], i.e., LV (x)
is not between the inner bounds unsn(ub) and unsn(`b), cf. Fig. 4. However, we
cannot add “LV (x) ≤ unsn(ub) ∨ LV (x) ≥ unsn(`b)” to KB as it contains “∨”,
but KB is a conjunction of (in)equalities.

Hence, Thm. 6 now shows how to express a condition of the form “t ∈
[min, u] ∪ [`,max]” for min ≤ u < ` ≤ max by just a single inequality. To this
end, we subtract ` so that the second subinterval [`,max] (x2 in Fig. 5) starts
with 0. Then we apply “mod 2n” (this results in moving the first subinterval
x1 as indicated by the dashed arrow in Fig. 5). Afterwards, we shift the whole
interval back (by adding ` again).

Theorem 6 (Expressing Unions of Intervals in a Single Inequality).
Let n ∈ N>0, min ∈ Z, max = min + 2n − 1, t ∈ [min,max], and min ≤ u <
` ≤ max. Let inBounds(t,min, u, `,max) be the formula “((t− `) mod 2n) + ` ≤
2n + u”. Then we have t ∈ [min, u] ∪ [`,max] iff inBounds(t,min, u, `,max)
holds.

unsigned mul (p : “x = mul in t1, t2” with x ∈ VP , t1, t2 ∈ VP ∪ Z)

(p, LV , KB , AL, PT )

(p+, LV [x := v], KB ∪ {ϕ,ψ}, AL, PT )
if x ∈ UP , v ∈ Vsym is fresh, and

• If |= 〈a〉⇒ (LVu,n(t1)·LVu,n(t2) ∈ [0, umaxn]), then ϕ is “v = LVu,n(t1)·LVu,n(t2)”.
Otherwise, ϕ is “v = unsn(LVu,n(t1)·LVu,n(t2))”.

• `1, `2, u1, u2 ∈ N such that |= 〈a〉⇒ (LVu,n(t1) ∈ [`1, u1] ∧ LVu,n(t2) ∈ [`2, u2])

• `b = `1 · `2 and ub = u1 · u2

• If ub− `b+ 1 ≥ 2n, then ψ is true.
Otherwise, if unsn(`b) ≤ unsn(ub), then ψ is “v ∈ [unsn(`b), unsn(ub)]”.
Otherwise, ψ is inBounds(v, 0, unsn(ub), unsn(`b), umaxn).

For signed integers, we use the operation sign to convert any integer number
into a corresponding signed n-bit integer. So for the signed instruction “x =

mul in t1, t2”, we know that LV (x) gets the value sign(LVs,n(t1) · LVs,n(t2)).
Moreover, this can be simplified to LVs,n(t1) ·LVs,n(t2) if LVs,n(t1) ·LVs,n(t2) ∈
[sminn, smaxn].

As for unsigned multiplication, we again extend KB by additional informa-
tion on the possible values of the result of a multiplication “x = mul in t1,
t2”. If LVs,n(t1) ∈ [`1, u1] and LVs,n(t2) ∈ [`2, u2] for numbers `1, `2, u1, u2 ∈ Z,
then we can compute `b = min{x1 · x2 | x1 ∈ [`1, u1], x2 ∈ [`2, u2]} and
ub = max{x1 · x2 | x1 ∈ [`1, u1], x2 ∈ [`2, u2]}, and obtain LVs,n(t1) · LVs,n(t2) ∈
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[`b, ub]. However, our goal is to infer information on the possible value of
sign(LVs,n(t1) · LVs,n(t2)).

Similar to the unsigned case, we compute the size of the interval [`b, ub]. If
ub− `b+ 1 < 2n and sign(`b) ≤ sign(ub), we add the information that LV (x) ∈
[sign(`b), sign(ub)] holds. If ub − `b + 1 < 2n and sign(`b) > sign(ub), then
LV (x) ∈ [sminn, sign(ub)] ∪ [sign(`b), smaxn]. Again we use Thm. 6 to encode
this as a single inequality without disjunction.

signed mul (p : “x = mul in t1, t2” with x ∈ VP , t1, t2 ∈ VP ∪ Z)

(p, LV , KB , AL, PT )

(p+, LV [x := v], KB ∪ {ϕ,ψ}, AL, PT )
if x ∈ SP , v ∈ Vsym is fresh, and

• If |= 〈a〉⇒ (LVs,n(t1)·LVs,n(t2) ∈ [sminn, smaxn]), ϕ is “v = LVs,n(t1)·LVs,n(t2)”.
Otherwise, ϕ is “v = sign(LVs,n(t1)·LVs,n(t2))”.

• `1, `2, u1, u2 ∈ Z such that |= 〈a〉⇒ (LVs,n(t1) ∈ [`1, u1] ∧ LVs,n(t2) ∈ [`2, u2])

• `b = min{x1 · x2 | x1 ∈ [`1, u1], x2 ∈ [`2, u2]}
ub = max{x1 · x2 | x1 ∈ [`1, u1], x2 ∈ [`2, u2]}
• If ub− `b+ 1 ≥ 2n, then ψ is true.

Otherwise, if sign(`b) ≤ sign(ub), then ψ is “v ∈ [sign(`b), sign(ub)]”.
Otherwise, ψ is inBounds(v, sminn, sign(ub), sign(`b), smaxn).

Similar to addition, we have corresponding rules for signed multiplication
with the flag “nsw”. They correspond to the above rule if |= 〈a〉⇒ LVs,n(t1) ·
LVs,n(t2) ∈ [sminn, smaxn] and otherwise, we reach the state ERR.

mul nsw without overflow (p : “x = mul nsw in t1, t2”, x ∈ VP , t1, t2 ∈ VP ∪ Z)

(p, LV , KB , AL, PT )

(p+, LV [x := v], KB ∪ {ϕ}, AL, PT )
if x ∈ SP , v ∈ Vsym is fresh,

|= 〈a〉⇒ (LVs,n(t1)·LVs,n(t2) ∈ [sminn, smaxn]), and ϕ is “v = LVs,n(t1)·LVs,n(t2)”.

mul nsw with overflow (p : “x = mul nsw in t1, t2”, x∈VP , t1, t2 ∈ VP∪Z)

(p, LV , KB , AL, PT )

ERR
if x∈SP and 6|= 〈a〉⇒(LVs,n(t1)·LVs,n(t2) ∈ [sminn, smaxn])

In contrast to addition, subtraction, and multiplication, signed and unsigned
division are operationally different and thus, LLVM has separate instructions for
them. For unsigned division, an error only occurs when dividing by 0.
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udiv (p : “x = udiv in t1, t2” with x ∈ VP , t1, t2 ∈ VP ∪ Z)

(p, LV , KB , AL, PT )

(p+, LV [x := v], KB ∪ {ϕ}, AL, PT )
if v ∈ Vsym is fresh and

• |= 〈a〉 ⇒ (LVu,n(t2) > 0)

• ϕ is “v · LVu,n(t2) ≤ LVu,n(t1) ∧ (v + 1) · LVu,n(t2) > LVu,n(t1)”

udiv by zero (p : “x = udiv in t1, t2”, x∈VP , t1, t2 ∈ VP∪Z)

(p, LV , KB , AL, PT )

ERR
if 6|= 〈a〉 ⇒ (LVu,n(t2) > 0)

The rules for signed division are analogous. Here, an overflow happens when
dividing sminn by −1. This instruction does not have the possible flag “nsw”,
but it always leads to undefined behavior in case of an overflow.

sdiv without overflow (p : “x = sdiv in t1, t2” with x ∈ VP , t1, t2 ∈ VP ∪ Z)

(p, LV , KB , AL, PT )

(p+, LV [x := v], KB ∪ {ϕ}, AL, PT )
if v ∈ Vsym is fresh and

• if |= 〈a〉⇒ (LVs,n(t1) ≥ 0 ∧ LVs,n(t2) > 0),
then ϕ is “v · LVs,n(t2) ≤ LVs,n(t1) ∧ (v + 1) · LVs,n(t2) > LVs,n(t1)”

• if |= 〈a〉⇒ (LVs,n(t1) < 0 ∧ LVs,n(t2) > 0),
then ϕ is “(v − 1) · LVs,n(t2) < LVs,n(t1) ∧ v · LVs,n(t2) ≥ LVs,n(t1)”

• if |= 〈a〉⇒ (LVs,n(t1) ≥ 0 ∧ LVs,n(t2) < 0),
then ϕ is “v · LVs,n(t2) ≤ LVs,n(t1) ∧ (v − 1) · LVs,n(t2) > LVs,n(t1)”

• if |= 〈a〉⇒ (LVs,n(t1) < 0 ∧ LVs,n(t2) < 0)
and |= 〈a〉⇒ (LVs,n(t1) 6= sminn ∨ LVs,n(t2) 6= −1),
then ϕ is “(v + 1) · LVs,n(t2) < LVs,n(t1) ∧ v · LVs,n(t2) ≥ LVs,n(t1)”

• otherwise, we must have |= 〈a〉⇒ (LVs,n(t2) 6= 0)
and |= 〈a〉⇒ (LVs,n(t1) 6= sminn ∨ LVs,n(t2) 6= −1),
and ϕ is true

sdiv with overflow (p : “x = sdiv in t1, t2”, x∈VP , t1, t2 ∈ VP∪Z)

(p, LV , KB , AL, PT )

ERR
if

6|= 〈a〉⇒ (LVs,n(t2) 6= 0) or
6|= 〈a〉⇒ (LVs,n(t1) 6= sminn ∨ LVs,n(t2) 6= −1)

The rules for unsigned and signed remainder (urem and srem) are analogous
to the rules for udiv and sdiv.
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3.4. Handling Bitwise Operations

We now handle bitwise binary LLVM operations like logical operators (Sect.
3.4.1), conversion instructions (Sect. 3.4.2), and shifts (Sect. 3.4.3). Again,
our aim is to infer knowledge about the range of the result of the operation.
Representing this information in the symbolic execution rules helps to improve
the precision of our analysis.

3.4.1. Logical Operations

The operation “and” computes bitwise logical conjunction. For instance, the
conjunction of 3 (0 1 1) and 5 (1 0 1) is 1 (0 0 1). So if “x = and in t1, t2” and
x ∈ UP , then LV (x) ≤ LVu,n(t1) and LV (x) ≤ LVu,n(t2), since a “1” on a
position of the bitvector always results in a larger number than a “0” on that
position.

The same is true for signed integers, if both are positive or negative. So the
conjunction of −1 (1 1 . . . 1 1) and −2 (1 1 . . . 1 0) is −2. The conjunction of a
negative and a positive signed integer is at most as large as the positive integer.
This results in the following two rules.

unsigned and (p : “x = and in t1, t2” with x ∈ VP , t1, t2 ∈ VP ∪ Z)

(p, LV , KB , AL, PT )

(p+, LV [x := v], KB ∪ {ϕ}, AL, PT )
if x ∈ UP , v ∈ Vsym is fresh, and

If 〈a〉⇒ (LVu,n(t1) = LVu,n(t2)), then ϕ is “v = LVu,n(t1)”.
Otherwise, ϕ is “v ≤ LVu,n(t1) ∧ v ≤ LVu,n(t2)”.

signed and (p : “x = and in t1, t2” with x ∈ VP , t1, t2 ∈ VP ∪ Z)

(p, LV , KB , AL, PT )

(p+, LV [x := v], KB ∪ {ϕ}, AL, PT )
if x ∈ SP , v ∈ Vsym is fresh, and

• `1, `2, u1, u2 ∈ Z such that |= 〈a〉⇒ (LVs,n(t1) ∈ [`1, u1] ∧ LVs,n(t2) ∈ [`2, u2])

• If 〈a〉⇒ (LVs,n(t1) = LVs,n(t2)), then ϕ is “v = LVs,n(t1)”.
Otherwise, if `1≥0 ∧ `2≥0 or u1<0 ∧ u2<0, ϕ is “v≤LVs,n(t1) ∧ v≤LVs,n(t2)”.
Otherwise, if `1≥0 then ϕ is “v≤LVs,n(t1)” and if `2≥0 then ϕ is “v≤LVs,n(t2)”.
Otherwise,ϕ is “v≤max(u1, u2)”.

In an analogous way, we also obtain two rules for logical disjunction, de-
pending on whether the result variable is considered to be unsigned or signed.

unsigned or (p : “x = or in t1, t2” with x ∈ VP , t1, t2 ∈ VP ∪ Z)

(p, LV , KB , AL, PT )

(p+, LV [x := v], KB ∪ {ϕ}, AL, PT )
if x ∈ UP , v ∈ Vsym is fresh, and

If 〈a〉⇒ (LVu,n(t1) = LVu,n(t2)), then ϕ is “v = LVu,n(t1)”.
Otherwise, ϕ is “v ≥ LVu,n(t1) ∧ v ≥ LVu,n(t2)”.
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signed or (p : “x = or in t1, t2” with x ∈ VP , t1, t2 ∈ VP ∪ Z)

(p, LV , KB , AL, PT )

(p+, LV [x := v], KB ∪ {ϕ}, AL, PT )
if x ∈ SP , v ∈ Vsym is fresh, and

• `1, `2, u1, u2 ∈ Z such that |= 〈a〉⇒ (LVs,n(t1) ∈ [`1, u1] ∧ LVs,n(t2) ∈ [`2, u2])

• If 〈a〉⇒ (LVs,n(t1) = LVs,n(t2)), then ϕ is “v = LVs,n(t1)”.
Otherwise, if `1≥0 ∧ `2≥0 or u1<0 ∧ u2<0, ϕ is “v≥LVs,n(t1) ∧ v≥LVs,n(t2)”.
Otherwise, if u1<0 then ϕ is “v≥LVs,n(t1)” and if u2<0, then ϕ is “v≥LVs,n(t2)”.
Otherwise,ϕ is “v≥min(`1, `2)”.

We also have a rule for exclusive disjunction. Here, we only infer the infor-
mation whether the resulting value is positive or negative when regarding it as
a signed integer.

xor (p : “x = xor in t1, t2” with x ∈ VP , t1, t2 ∈ VP ∪ Z)

(p, LV , KB , AL, PT )

(p+, LV [x := v], KB ∪ {ϕ}, AL, PT )
if v ∈ Vsym is fresh and

• If |= 〈a〉⇒ (LVs,n(t1) ≥ 0 ∧ LVs,n(t2) ≥ 0)
or |= 〈a〉⇒ (LVs,n(t1) < 0 ∧ LVs,n(t2) < 0),
then ϕ is “LVs,n(v) ≥ 0”.

• If |= 〈a〉⇒ (LVs,n(t1) ≥ 0 ∧ LVs,n(t2) < 0)
or |= 〈a〉⇒ (LVs,n(t1) < 0 ∧ LVs,n(t2) ≥ 0),
then ϕ is “LVs,n(v) < 0”.

• Otherwise, ϕ is “true”.

3.4.2. Conversion Instructions

Next we adapt the rules for conversion instructions (i.e., extension and trun-
cation). One distinguishes between zero extension (zext) and sign extension
(sext). For the sign extension, the sign bit (i.e., the most significant bit) is
copied to all extension bits until the desired bit size is reached. In contrast,
for the zero extension only zeros are used. So for 1 0 1, the sign extension is
1 . . . 1 1 0 1 and the zero extension is 0 . . . 0 1 0 1. The following rule for sext

(resp. zext) considers its argument as a signed (resp. unsigned) integer. Then
these instructions do not change the value of their operands.

extension (p : “x = sext/zext in t to im” with x ∈ VP , t ∈ VP ∪ Z, n < m)

(p, LV , KB , AL, PT )

(p+, LV [x := v], KB ∪ {ϕ}, AL, PT )
if v ∈ Vsym is fresh and if

either p : “x = sext in t to im”, x ∈ SP , and ϕ is “v = LVs,n(t)”
or p : “x = zext in t to im”, x ∈ UP , and ϕ is “v = LVu,n(t)”
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The instruction trunc truncates a value to the n least significant bits. Here,
the most interesting cases occur when this changes the sign of the operand
value when regarding signed integers. As illustrated below, truncating the 16-
bit signed integer 653 to a 8-bit signed integer yields -115.

0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 1

Indeed, if n = 8, then we have sig8(653) = −115. So similar to the rules for
multiplication, we can again use the operations unsn resp. sign and inBounds to
express our knowledge about the result of the truncation.

unsigned trunc (p : “x = trunc im t to in” with x ∈ VP , t ∈ VP ∪ Z, n < m)

(p, LV , KB , AL, PT )

(p+, LV [x := v], KB ∪ {ϕ,ψ}, AL, PT )
if x ∈ UP , v ∈ Vsym is fresh, and

• If |= 〈a〉⇒ (LVu,m(t) ∈ [0, umaxn]), then ϕ is “v = LVu,m(t)”.
Otherwise, ϕ is “v = unsn(LVu,m(t))”.

• `, u ∈ N such that |= 〈a〉⇒ (LVu,m(t) ∈ [`, u])

• If u− `+ 1 ≥ 2n, then ψ is true.
Otherwise, if unsn(`) ≤ unsn(u), then ψ is “v ∈ [unsn(`), unsn(u)]”.
Otherwise, ψ is inBounds(v, 0, unsn(u), unsn(`), umaxn).

signed trunc (p : “x = trunc im t to in” with x ∈ VP , t ∈ VP ∪ Z, n < m)

(p, LV , KB , AL, PT )

(p+, LV [x := v], KB ∪ {ϕ,ψ}, AL, PT )
if x ∈ SP , v ∈ Vsym is fresh, and

• If |= 〈a〉⇒ (LVs,m(t) ∈ [sminn, smaxn]), then ϕ is “v = LVs,m(t)”.
Otherwise, ϕ is “v = sign(LVs,m(t))”.

• `, u ∈ Z such that |= 〈a〉⇒ (LVs,m(t) ∈ [`, u])

• If u− `+ 1 ≥ 2n, then ψ is true.
Otherwise, if sign(`) ≤ sign(u), then ψ is “v ∈ [sign(`), sign(u)]”.
Otherwise, ψ is inBounds(v, sminn, sign(u), sign(`), smaxn).

3.4.3. Shift Instructions

Finally, we present rules for the shift instructions of LLVM. We start with the
logical right-shift (lshr). An operand of type in may be shifted by at most
n− 1 bits. After the shift, the (new) most significant bits are filled with zeros.

lshr (p : “x = lshr in t1, t2” with x ∈ VP , t1, t2 ∈ VP ∪ Z)

(p, LV , KB , AL, PT )

(p+, LV [x := v], KB ∪ {ϕ}, AL, PT )
if v ∈ Vsym is fresh and

• |= 〈a〉⇒ (LVu,n(t2) < n)

• ϕ is “v · 2LVu,n(t2) ≤ LVu,n(t1) ∧ (v + 1) · 2LVu,n(t2) > LVu,n(t1)”
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undefined lshr (p : “x = lshr in t1, t2”, x∈VP , t1, t2 ∈ VP∪Z)

(p, LV , KB , AL, PT )

ERR
if 6|= 〈a〉 ⇒ (LVu,n(t2) < n)

In the arithmetic right-shift (ashr), the new bits are filled with the most
significant bit. Note that although the second operand of a shift is always inter-
preted as an unsigned integer in LLVM, the correctness of our rule is not affected
if our heuristic regards the second operand t2 as “signed” (e.g., t2 could be a vari-
able y ∈ SP). The reason is that we consider LVu,n(t2) in the following rules for
ashr, where LVu,n converts its argument into the corresponding unsigned value.
In fact, the shift operation for an operand t1 of type in is again only defined if
LVu,n(t2) < n. Note that LVu,n(t2) < n even implies LVu,n(t2) = LVs,n(t2), i.e.,
t2 cannot be a value whose signed interpretation is negative.

ashr (p : “x = ashr in t1, t2” with x ∈ VP , t1, t2 ∈ VP ∪ Z)

(p, LV , KB , AL, PT )

(p+, LV [x := v], KB ∪ {ϕ}, AL, PT )
if v ∈ Vsym is fresh and

• |= 〈a〉⇒ (LVu,n(t2) < n)

• ϕ is “v · 2LVu,n(t2) ≤ LVs,n(t1) ∧ (v + 1) · 2LVu,n(t2) > LVs,n(t1)”

undefined ashr (p : “x = ashr in t1, t2”, x∈VP , t1, t2 ∈ VP∪Z)

(p, LV , KB , AL, PT )

ERR
if 6|= 〈a〉 ⇒ (LVu,n(t2) < n)

The corresponding rules for the left-shift instruction shl are similar.

undefined shl (p : “x = shl nsw in t1, t2” with x∈VP , t1, t2 ∈ VP∪Z)

(p, LV , KB , AL, PT )

ERR
if 6|= 〈a〉⇒ (LVu,n(t2) < n)

unsigned shl (p : “x = shl in t1, t2” with x ∈ VP , t1, t2 ∈ VP ∪ Z)

(p, LV , KB , AL, PT )

(p+, LV [x := v], KB ∪ {ϕ}, AL, PT )
if x ∈ UP , v ∈ Vsym is fresh, and

• |= 〈a〉⇒ (LVu,n(t2) < n)

• If |= 〈a〉⇒ (LVu,n(t1) · 2LVu,n(t2)∈ [0, umaxn]), then ϕ is “v = LVu,n(t1) · 2LVu,n(t2)”.
Otherwise, ϕ is “v = unsn(LVu,n(t1) · 2LVu,n(t2))”.
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signed shl (p : “x = shl in t1, t2” with x ∈ VP , t1, t2 ∈ VP ∪ Z)

(p, LV , KB , AL, PT )

(p+, LV [x := v], KB ∪ {ϕ}, AL, PT )
if x ∈ SP , v ∈ Vsym is fresh, and

• |= 〈a〉⇒ (LVu,n(t2) < n)

• If |= 〈a〉⇒ (LVs,n(t1) · 2LVu,n(t2)∈ [sminn, smaxn]), ϕ is “v = LVs,n(t1) · 2LVu,n(t2)”.
Otherwise, ϕ is “v = sign(LVs,n(t1) · 2LVu,n(t2))”.

shl nsw without overflow (p : “x = shl nsw in t1, t2”, x ∈ VP , t1, t2 ∈ VP ∪ Z)

(p, LV , KB , AL, PT )

(p+, LV [x := v], KB ∪ {ϕ}, AL, PT )
if x ∈ SP , v ∈ Vsym is fresh, and

• |= 〈a〉⇒ (LVu,n(t2) < n)

• |= 〈a〉⇒ (LVs,n(t1) · 2LVu,n(t2)∈ [sminn, smaxn]) and ϕ is “v = LVs,n(t1) · 2LVu,n(t2)”.

shl nsw with overflow (p : “x = shl nsw in t1, t2”, x∈VP , t1, t2 ∈ VP∪Z)

(p, LV , KB , AL, PT )

ERR
if 6|= 〈a〉⇒ (LVs,n(t1) · 2LVu,n(t2)∈ [sminn, smaxn])

4. From Symbolic Execution Graphs to Integer Transition Systems

After the construction of the symbolic execution graph has been completed, we
automatically extract an integer transition system (ITS) from the cycles of the
symbolic execution graph and then use existing tools to prove its termination.

ITSs can be represented as graphs whose nodes (program locations) corre-
spond to the abstract states and whose edges are transitions that are labeled
with conditions required for their application. Let V ⊆ Vsym be the finite set of
all symbolic variables occurring in the symbolic execution graph. Then formally,
an ITS transition is a tuple (a,CON , a) where a, a are abstract states and the
condition CON ⊆ QF IA(V]V ′) is a set of quantifier-free formulas over the vari-
ables V ]V ′. Here, V ′ = {v′ | v ∈ V} represents the values of the variables after
the transition. An ITS state (a, σ) consists of an abstract state a and a concrete
instantiation σ : V → Z. For any such σ, let σ′ : V ′ → Z with σ′(v′) = σ(v).
Given an ITS I, (a, σ) evaluates to (a, σ) (denoted “(a, σ)→I (a, σ)”) iff I has
a transition (a,CON , a) with |= (σ ∪σ′) (CON ). Here, (σ ∪σ′) is the instantia-
tion of the variables V ] V ′ which behaves like σ on V and like σ on V ′, i.e., we
have (σ ∪ σ′)(v) = σ(v) and (σ ∪ σ′)(v′) = σ′(v′) = σ(v) for all v ∈ V. An ITS
I is terminating iff →I is well founded. To convert symbolic execution graphs
to ITSs, we use the definition from [27].

Definition 7 (ITS from Symbolic Execution Graph). Let G be a symbo-
lic execution graph. Then the corresponding integer transition system IG has
one transition for each edge in G:
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P

R

vinc≤umax32
v′
inc = vinc

v′
inc2 = vinc2

. . .

vinc<umax32
vinc2=vinc+1
v′
inc=vinc2

. . .

Figure 6: ITS for function g

• If the edge from a to a is not a generalization edge, then IG has a transition
from a to a with the condition 〈a〉 ∪ {v′ = v | v ∈ Vsym(a)}.

• If there is a generalization edge from a to a with the instantiation µ, then
IG has a transition from a to a with the condition 〈a〉 ∪ {v′ = µ(v) | v ∈
Vsym(a)}.

The only cycle of the symbolic execution graph in Fig. 3 is the one leading
from P to R and via the only generalization edge back to P . The resulting
ITS is shown in Fig. 6. The values of the variables do not change in transitions
that correspond to evaluation edges of the symbolic execution graph. So the
edges from P to R in the symbolic execution graph yield transitions whose
conditions contain v′inc = vinc and v′inc2 = vinc2. For the generalization edge
from R to P with the instantiation µ, the corresponding transition in the ITS
gets the condition v′ = µ(v) for all v ∈ Vsym(P ). So we obtain the condition
v′inc = µ(vinc), i.e., v′inc = vinc2 = vinc + 1. In contrast, vinc2’s value can
change arbitrarily here, since vinc2 /∈ Vsym(P ). Moreover, the transitions of the
ITS contain conditions like vinc ≤ umax32, which are also present in the states
on the path from P to R. Thus, vinc is increased by 1 in the transition that
corresponds to the generalization edge from R to P , and it remains the same
in all other transitions of the cycle. Since the transitions are only executed
as long as vinc ≤ umax32 holds, termination of the resulting ITS can easily be
proved automatically (by standard termination tools for ITSs over mathematical
integers).

Recall that the bitvector arithmetic is covered by the rules to construct the
symbolic execution graph, whereas the variables in the symbolic execution graph
and in the resulting ITS range over mathematical integers Z. Therefore, the
following theorem from [27] also directly holds for the adaption of our approach
to bitvectors. The theorem states that if there is an infinite LLVM computation
starting with a concrete state that is represented in the symbolic execution
graph, then the ITS resulting from the graph is not terminating. In other words,
termination of the ITS implies termination of the analyzed LLVM program.

Theorem 8 (Termination of LLVM Programs). Let P be an LLVM program
with a complete symbolic execution graph G and let IG be the ITS corresponding
to G. If IG terminates, then P also terminates for all concrete states represented
by the states in G.
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5. Finding Upper Runtime Complexity Bounds

Often, one is not only interested in proving termination, but the runtime of the
program is crucial. We now show that our new approach for symbolic execution
of programs with bitvector arithmetic also allows us to analyze their runtime
complexity. In order to infer runtime bounds instead of proving termination, one
only has to adapt our technique to transform the symbolic execution graph into
an ITS. While there exists a wealth of recent techniques and tools for automated
complexity analysis of programs on mathematical integers (e.g., [1, 2, 4, 5, 6,
15, 16, 18, 22, 25]), to our knowledge our approach is the first which allows us
to use these tools to analyze the runtime of bitvector programs automatically.

Our approach for runtime complexity analysis mainly succeeds on arithmetic
programs. To analyze programs whose runtime depends on the memory, one
would have to extend the abstraction we used in our symbolic execution since
then the abstract states would also have to contain information on the sizes
of the allocated memory areas. Note that for a terminating arithmetic pro-
gram P with m instructions and k local variables VP = {x1, . . . , xk} of types

in1, . . . , ink, the runtime is bounded by m ·
∏k

j=1 2nj , which is the number
of possible concrete program states. The reason is that at each program posi-
tion, every variable xj may be assigned any value of its type (whose range is
2nj ). Whenever a program state is visited twice, the program must be non-
terminating. So since the state space is finite, every terminating arithmetic
bitvector program has constant complexity. Thus, for arithmetic programs on
bitvectors, asymptotic complexity is meaningless since all programs have a run-
time in O(1).

Therefore, our goal is to infer concrete (non-asymptotic) bounds which are

smaller than the maximum bound m ·
∏k

j=1 2nj . In particular, we aim to find
bounds that depend on the program’s input parameters, because such bounds
are usually more interesting than a huge constant that depends on the sizes
of the types in. We developed the following adaptions of our approach for
termination analysis in order to find runtime bounds for bitvector programs:

(1) For the runtime of a program, we count every execution step, which makes
it necessary to extract the ITS from the whole graph and not only from
its cycles. Moreover, this is required to infer correct runtime bounds for
subsequent cycles. The reason is that the first cycle might increase values
which are used afterwards when entering the next cycle.

(2) The initial abstract state a0 of the symbolic execution graph is also consid-
ered to be the initial node of the ITS. So only evaluation sequences of the
ITS that start with ITS states of the form (a0, σ) have to be considered.
Then the goal is to find a bound on the length of the ITS evaluations that
depends only on the values σ(v) for v ∈ Vsym(a0).

(3) For an efficient analysis, we always simplify the transitions of the ITS
by filtering away variables that do not influence the termination behavior
and by iteratively compressing several transitions into one, cf. [17]. This is
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unproblematic for termination analysis, but the compression of transitions
would distort a concrete complexity result if several evaluation steps are
counted as one. Therefore, we now assign a weight to each transition which
over-approximates the number of evaluation steps that are represented by
this transition. Refinement and generalization edges are transformed to
transitions with weight 0.

(4) Since all handling of bitvector arithmetic is done during the symbolic
execution, we generate ITSs over mathematical integers. Hence, their
complexity can be analyzed by existing tools for such ITSs. In our im-
plementation, we use the tool KoAT that we developed in earlier work [5]
in parallel with the tool CoFloCo [15, 16]. Such back-end tools can then
find an upper runtime bound for the extracted ITS, which is also a valid
bound for the original LLVM program.

Note that up to now, such complexity tools have not been used to analyze
the complexity of bitvector programs. In particular, some of these tools
are targeted towards the inference of small asymptotic bounds (i.e., for
a program with constant runtime, they would rather infer a huge con-
stant bound than a linear bound that depends on the program’s input
parameters).

To facilitate the deduction of a bound depending on the program’s pa-
rameters and to obtain more informative bounds, we therefore perform
the following modification of the ITS that is generated from the symbolic
execution graph. During the graph construction, we now keep track of all
constants that originate from the size bounds of a variable’s type. When
the ITS is extracted, these constants are transformed to terms containing
the respective size bounds as variables instead of constants. For exam-
ple, the constant umax32 in State K of Fig. 3 is translated to a variable
bumax32 . Similarly, the expression umax32 − 1 in State L is translated to
the term bumax32 − 1. Consequently, we now also have bumax32 ∈ Vsym(a)
for all abstract states a of the graph.

Thus, instead of Fig. 6, we now obtain the weighted ITS in Fig. 7 from g’s
symbolic execution graph in Fig. 3. Note that 14 instructions are executed
from State A to State Q. The loop (i.e., the blocks cmp and body) contains
7 instructions. To evaluate State Q symbolically, we use an “unsigned add

refinement” and if vinc = umax32 holds, then one exits the loop. In this
case, 7 further instructions are executed until the function g ends with a
return.

(5) To ensure that the ITS complexity tool prefers bounds that contain the
program’s parameters over bounds containing the size bound variables like
bumax32 , we first pass a modified ITS to the underlying ITS complexity tool
where the initial transitions (a0,CON , a) do not impose any conditions on
the size bound variables. In other words, while all other transitions have
requirements like b′umax32 = bumax32 in their condition, the conditions CON
of the initial transitions in this modified ITS do not contain variables like
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Figure 8: Modified weighted ITS for h

b′umax32 . Hence, now the size bound variables can change arbitrarily in the
initial transitions and the runtime would be unbounded if it depends on
one of these variables. Therefore, the complexity tool will try to find other
runtime bounds that only depend on the program’s parameters.

If the complexity analysis of this modified ITS fails, then instead we use
the ITS as before, where the size bound variables like bumax32 are considered
to be input parameters. In other words, now the initial transitions also
contain b′ = b for all size bound variables b and this ITS is now given to
the complexity tool in the back-end.

As an example, consider the function h in Fig. 9. Here, we modified our
leading example g from Fig. 1 and 2 by decreasing (instead of increasing)
j until we reach 0. The corresponding LLVM program is the same as
for g in Fig. 2, but in Line 1 of the block body, -1 is added instead of

void h(unsigned int j) {

while (j > 0)

j--;

}

define i32 @h(i32 j) {

entry: 0: ad = alloca i32

1: store i32 j, i32* ad

2: br label cmp

cmp: 0: j1 = load i32* ad

1: j1pos = icmp ugt i32 j1, 0

2: br i1 j1pos, label body,

label done

body: 0: j2 = load i32* ad

1: dec = add i32 j2, -1

2: store i32 dec, i32* ad

3: br label cmp

done: 0: ret void }

Figure 9: C and LLVM code for the function h
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1. Now we first construct a modified ITS where the size variable bumax32

is unbounded, i.e., where the conditions of the initial transitions do not
contain b′umax32 . This ITS is shown in Fig. 8. When giving this ITS to the
tool CoFloCo, it returns the upper bound max(14, 7 · vj + 7). Since vj is
the initial value of the input parameter j, this is indeed a useful bound,
since it shows that the runtime of this program is linear in the size of the
program parameter j. To understand the reasons for the numbers 7 and
14, note that the loop of the ITS in Fig. 8 consists of 7 instructions, it is
executed (vj − 1) times, and the remaining number of instructions on the
path of the loop is 11 + 3 = 14. Hence, the path of the loop consists of
7·(vj−1)+14 = 7·vj+7 instructions. While 7·vj+7 would be a tight upper
bound in this example, CoFloCo combines this with the maximum weight
of all paths that do not traverse loops, which results in max(14, 7 · vj + 7).

In contrast, for the function g from our leading example, no upper bound
is found if the size bound variables are treated as being unbounded (i.e., if
one deletes b′umax32 = bumax32 from the conditions of the initial transitions).
On the other hand, if one calls CoFloCo with the ITS where bumax32 is
considered to be an input parameter, then we obtain the bound max(21,
7 ·bumax32−7 ·vj+14). In fact, if 0 < vj < bumax32 holds at the beginning of
the program, then the loop is executed bumax32−vj−1 times. Since the loop
of the ITS consists of 7 instructions and the path of the loop has 14+7 = 21
remaining instructions, in this case we obtain 7 · (bumax32 − vj − 1) + 21 =
7 ·bumax32−7 ·vj +14 instructions for the path of the loop. Again, CoFloCo
combines this with the maximum weight of all paths that do not traverse
loops, which results in the bound max(21, 7 · bumax32 − 7 · vj + 14).

Note that the replacement of constants by corresponding terms with vari-
ables like bumax32 yields a more informative bound than the corresponding
term 30064771079− 7 · vj: the bound 7 · bumax32 − 7 · vj + 14 clearly shows
that the runtime depends on the range of the type i32. For this program,
there is indeed no reasonable upper bound that depends on vj but not on
umax32.

6. Related Work, Experiments, and Conclusion

We adapted our approach for proving memory safety and termination of C (resp.
LLVM) programs w.r.t. the bitvector semantics of these programs. While before,
program variables were treated as mathematical integers and overflows were
ignored, bitvector operations such as type conversions and overflow-sensitive
binary operations are now modeled correctly. To this end, we developed sym-
bolic execution rules for all LLVM instructions that are affected by the bitvector
semantics, including multiplication, division, truncation, shifts, etc., for both
unsigned and signed integers. Since we represent bitvectors by relations on
mathematical integers Z, we can use standard SMT solving and standard ter-
mination analysis on Z for the symbolic execution and the termination proofs
in our approach. Moreover, we showed that our adaption of symbolic execution
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can also be used for complexity analysis. So by using existing standard tools
for ITSs over mathematical integers, one can now infer upper runtime bounds
for bitvector programs.

There are few other methods and tools for termination of bitvector programs
(e.g., KITTeL [13, 14], TAN [9, 23], 2LS [7], Juggernaut [10], Ultimate [19]9).10

Compared to related work, our approach has the following characteristics:

(a) Handling Memory. KITTeL, TAN, 2LS, and Juggernaut either do not
handle dynamic data structures, strings, and arrays, or they abstract their
properties to arithmetic ones. Thus, they fail for programs whose termina-
tion depends on explicit pointer arithmetic. Note that without considering the
memory, termination of bitvector programs is decidable in PSPACE [9]. In con-
trast, our approach is the first which combines the handling of bitvectors with
the precise representation of low-level memory operations, by using symbolic
execution.

(b) Representation with Z. Similar to KITTeL and the first approach in [9],
we represent bitvectors by relations on Z. In contrast, 2LS, Juggernaut, and the
second approach in [9] use vectors of Boolean variables instead and reduce the
termination problem to second-order satisfiability. This would have drawbacks
when constructing symbolic execution graphs, where large numbers of SMT
queries have to be solved. Here, using Z instead of bitvectors often simplifies
the graph structure and lets us benefit from the efficiency of SMT solving over
Z.

(c) Unsigned resp. Signed Representation. We use a heuristic to deter-
mine whether we represent information about the unsigned or the signed value
of variables in the abstract states for symbolic execution. In contrast, KITTeL
resp. the first approach of [9] represent only the signed resp. the unsigned values.
The drawback is that then one needs a larger case analysis for instructions like
icmp ugt resp. icmp sgt which differ for unsigned and signed integers. Thus,
this affects efficiency.

(d) Case Analysis vs. “Modulo”. When representing bitvectors by rela-
tions on Z, the wrap-around for overflows can either be handled by case anal-
ysis or by “modulo” relations. We use a hybrid approach with case analysis
for instructions like addition (to avoid “modulo” which is less efficient for SMT
solving) and with “modulo” for operations like multiplication (where case anal-
ysis could lead to an exponential blow-up of the symbolic execution graph). In
contrast, KITTeL only uses case analysis. While [9] also applies “modulo”, our
approach infers more complex relations about the ranges of variables, even if
these ranges are unions of disjoint intervals. For an efficient SMT reasoning

9However, there is not yet any paper describing Ultimate’s adaption to bitvectors.
10Outside of termination analysis, there exist several tools for overflow detection. However,

we cannot easily apply such external tools in our approach, since we want to use the result of
potential overflows to continue our symbolic execution and analysis.
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signed overflow possible no signed overflow

T F TO RT T F TO RT %

AProVE 34 9 9 10.23 61 3 2 5.55 80.5

2LS 23 29 0 0.37 45 21 0 0.33 57.6

KITTeL 27 4 21 1.81 33 3 30 14.17 50.8

Juggernaut 10 19 23 34.12 22 26 18 6.22 27.1

Ultimate – – – – 11 54 1 12.77 16.7

Figure 10: Experimental evaluation for termination analysis

during symbolic execution, we express such “disjunctive properties” by single
inequalities, cf. the formula inBounds(t,min, u, `,max).

We implemented our approach in the termination prover AProVE [17, 21, 26]
using the SMT solvers Yices [12] and Z3 [11] in the back-end. The previous ver-
sion of AProVE won the SV-COMP 2015 and 2016 competitions for termination
of C programs (where tools were restricted to mathematical integers). To eval-
uate the new version of AProVE with bitvectors, we performed experiments on
118 C programs. We took the 61 Windows Driver Development Kit examples
used for the evaluation of [9] and [14], 61 of the 62 examples from the reposi-
tory of Juggernaut where we excluded one example containing float, 7 of the 9
examples of [10] where we excluded two examples with float, 4 new examples
where termination depends on overflows of multiplication, and 4 new examples
combining pointer and bitvector arithmetic. From these 137 examples, we re-
moved 19 examples which are known to be non-terminating. Since Ultimate does
not support bitvector arithmetic for signed integers yet, the right half of the ta-
ble in Fig. 10 consists of those examples where termination does not depend on
signed integers. We ran all tools in a mode where signed overflows are allowed
and result in a wrap-around behavior.

Fig. 10 shows the performance of the tools for a time limit of 300 seconds per
example on an Intel Core i7-950 with 6 GB memory. We did not compare with
TAN, since it was outperformed by its successor 2LS in [7]. “T” is the number of
examples where termination was proved, “F” states how often the termination
proof failed in ≤ 300 seconds, “TO” is the number of time-outs, “RT” is the
average runtime in seconds for the examples where the tool showed termination,
and “%” is the percentage of examples where termination was proved.

So on our collection (which mainly consists of the examples from the evalu-
ations of the other tools), AProVE is most powerful. For the examples without
signed overflow, there is only a single example where AProVE fails within the
given time limit and one of the other tools succeeds. For the examples with
signed overflows, AProVE fails or times out on 18 examples. For 10 of them,
some of the other tools can prove termination. Essentially, the reason is that
the symbolic execution of AProVE usually yields a more precise representation
of the possible runs than the abstractions used in other tools, which is often ad-
vantageous. However, the symbolic execution may sometimes lead to extremely
many nested case analyses which in turn result in a very large ITS that has to
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be analyzed for termination in the end. Moreover, sometimes the generalization
used to obtain finite symbolic execution graphs is too coarse such that one finally
obtains a non-terminating ITS although the original program is terminating.

To evaluate the benefit of representing both unsigned and signed values (cf.
(c)), we also ran AProVE in a mode where all values are represented as signed
integers (i.e., SP = VP). Here, we lost 11 termination proofs. To evaluate the
use of case analysis vs. “modulo” (cf. (d)), we tested a version of AProVE where
we used “modulo” also for operations like addition. Here, we failed on 13 more
examples.

As mentioned in Sect. 1, programs like f and g in Fig. 1 are often unde-
sirable, since their termination behavior depends on overflows. To detect such
programs, in our implementation in AProVE, the user can choose whether to
interpret integers as mathematical integers (as in [27]) or as bitvectors. If one
variant proves termination and the other proves non-termination, then the ter-
mination behavior indeed depends on overflows. Moreover, one could improve
this analysis by implementing a variant of AProVE that disregards all knowl-
edge about variables whenever our symbolic execution detects that they might
overflow. This variant would only infer results on the termination behavior that
are independent of overflows. At the same time, it would still benefit from the
precise modeling of bitvector integers when dealing with bitwise operations, cf.
Sect. 3.4.

To get an idea on how the termination proofs were influenced by the change
from mathematical integers to bitvectors, we also ran the variant of AProVE
where integers are treated as mathematical integers on the examples from our
experimental evaluation. For the 52 examples with potential signed overflow,
termination could be proved by both variants of AProVE for 30 examples. The
bitvector variant succeeded on only 4 more examples, whereas the variant with
mathematical integers could prove termination for 8 additional examples. In
fact, even if many examples terminate with both semantics for integers, proving
their termination with the bitvector semantics is considerably more difficult,
since one has to take the potential signed overflow into account.

For the 66 examples without signed overflow, the situation is quite different.
There are only 14 examples where the variant of AProVE with mathematical
integers proves termination. The bitvector variant succeeds on all of them as
well, and it can show termination for 47 additional examples. For one of these
examples, the variant with unbounded integers shows non-termination (i.e., this
example only terminates because of overflows). But for 37 of these examples, the
AProVE version with mathematical integers fails because it infers that variables
of type unsigned int could be negative or because the examples contain bitwise
operations (cf. Sect. 3.4) that can only be handled when considering bitvectors.
So the contributions of this paper are not only needed for the correct treatment
of overflows, but they are also crucial for the handling of logical operators,
conversion instructions, and shifts.

To evaluate our approach for runtime complexity presented in Sect. 5, finally
we also ran a version of AProVE that searches for upper runtime bounds. As
described in Sect. 5, to this end we adapted our generation of ITSs from the
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Figure 11: Actual runtimes and computed bound for the function g from Fig. 1

symbolic execution graph and used the tools KoAT [5] and CoFloCo [15, 16]
in the back-end to infer upper runtime bounds for these ITSs. We always ran
KoAT and CoFloCo in parallel and took the minimum of the bounds obtained
by the two tools. Note that the 118 programs in our example collection were
formulated according to the regulations of the SV-COMP competition, where
there is a function main() that may call other functions and all input is modeled
by non-deterministic values. To obtain meaningful results for runtime analysis,
we modified the example programs in such a way that all non-deterministically
initialized variables were moved to the parameter list of the respective functions.
Out of the 95 programs where AProVE could show termination (cf. Fig. 10),
AProVE infers an upper bound for 60 programs, where we again used a time-out
of 300 seconds per example. For 7 of these programs, AProVE finds a small
constant bound. For these 7 programs, the runtime indeed does not depend
on the input variables or on the sizes of the types. For 38 programs, an upper
bound is found that depends linearly on the input variable(s) and for 3 more
programs, a quadratic upper bound is obtained. Thus, the runtime of these
41 programs is independent of the sizes of the integer types. For 4 programs,
AProVE generates an upper bound that only depends on size bound variables.
For the remaining 8 programs, the inferred runtime bound depends on both size
bound variables and input variables of the function.

To evaluate the precision of the bounds computed by our approach, Fig. 11
and 12 compare these bounds with the actual runtime of the analyzed program
for several inputs. In Fig. 11 we consider the function g from our leading example
and indicate the measured runtime in ms for several values of the unsigned int

variable j (cf. the values on the left vertical axis). Moreover, the figure shows
the bound max(21, 7 ·bumax32−7 ·j+14) that is inferred by our implementation.
Since this is a bound on the number of LLVM instructions that are executed,
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int f(int x, int y){

int z, i;

z = 0;

i = x;

if(y<=0 || x<=0){

return 1;

}

while(i > 0){

i--;

z++;

}

while(i < y){

z--;

i++;

}

return z;

}
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Figure 12: Actual runtimes and computed bound for a function with two inputs

here we used the scale indicated on the right vertical axis. Thus, the figure
shows that up to a constant factor, the bound computed by AProVE is almost
the actual runtime needed by the program, except for the case where j has
the value 0. Nevertheless, the bound does not take into account that not all
instructions need the same runtime and thus, not all actual runtimes are exactly
on the line of the bound.

In Fig. 12, we consider a program from the SV-COMP competition with
two input parameters x and y. It computes the subtraction of x and y using
two while-loops that are executed x and y times, respectively. Here, AProVE
computes the bound 10 · |x| + 11 · |y| + 161. Fig. 12 shows that for positive
values of x and y, this bound is quite precise. Nevertheless, even for positive x

and y it again does not correspond to the exact runtime, because as before, our
bounds ignore that different LLVM instructions can require different runtimes.
Note that our bound is extremely imprecise if one of x or y is negative. The
problem is that the underlying ITS complexity tools may compute bounds w.r.t.
the absolute values of the integer input variables. Such bounds can lead to very
coarse over-approximations of the runtime for some classes of inputs, even if
the program terminates immediately for these inputs. This could be improved
by a case analysis which considers the different possible signs of integer inputs
separately when inferring runtime bounds.

For details on our experiments (including the results of each termination
analyzer for each example and the exact runtime bounds generated by AProVE)
and to access our implementation via a web interface, we refer to [3]. Moreover,
we also give download links for AProVE (including a version of AProVE which
allows to choose whether to interpret integers as bitvectors or as mathematical
integers). Note that AProVE is constantly developed further and therefore, the
results obtained by the download versions of AProVE may differ from the exper-
imental results in this section. To reproduce the experiments, the web interface
may be used. In future work, we plan to extend our approach to recursion,
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to inductive data structures defined via struct, and to a compositional treat-
ment of LLVM functions (the main challenge is to combine these tasks with the
handling of byte-precise explicit pointer arithmetic).
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disproving termination of memory-manipulating C programs (competition
contribution), in: Proc. TACAS ’17, LNCS 10206, 2017, pp. 350–354.

[22] J. Hoffmann, A. Das, S.-C. Weng, Towards automatic resource bound anal-
ysis for OCaml, in: Proc. POPL ’17, 2017, pp. 359–373.

[23] D. Kroening, N. Sharygina, A. Tsitovich, C. Wintersteiger, Termination
analysis with compositional transition invariants, in: Proc. CAV ’10, LNCS
6174, 2010, pp. 89–103.

[24] C. Lattner, V. S. Adve, LLVM: A compilation framework for lifelong pro-
gram analysis & transformation, in: Proc. CGO ’04, 2004, pp. 75–88.

[25] M. Sinn, F. Zuleger, H. Veith, Difference constraints: An adequate abstrac-
tion for complexity analysis of imperative programs, in: Proc. FMCAD ’15,
2015, pp. 144–151.
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Appendix A. Separation Logic Semantics of Abstract States

As mentioned in Sect. 2, to formalize the semantics of an abstract state a, in
[27] we introduced a separation logic formula 〈a〉SL, which extends 〈a〉FO by
information about the memory. We consider a fragment of separation logic
which augments first-order logic by a predicate symbol “↪→” for “points-to”
information and by the connective “∗” for the separating conjunction. As usual,
ϕ1 ∗ ϕ2 means that ϕ1 and ϕ2 hold for disjoint parts of the memory.

In 〈a〉SL, we combine the elements of AL with the separating conjunction “∗”
to express that different allocated memory blocks are disjoint. In contrast, the
elements of PT are combined by the ordinary conjunction “∧”. So (v1 ↪→ty,i

v2) ∈ PT does not imply that v1 is different from other addresses in PT .
Similarly, we also combine the two formulas resulting from AL and PT by “∧”,
as both express different properties of the same addresses.

Definition 9 (SL Formulas for States). For v1, v2 ∈ Vsym , let 〈Jv1, v2K〉SL
= (∀x.∃y. (v1 ≤ x ≤ v2)⇒ (x ↪→ y)). For any LLVM type ty, we define

〈v1 ↪→ty,u v2〉SL = 〈v1 ↪→size(ty) v2〉SL.

To handle the two’s complement representation of signed integers, we define
〈v1 ↪→ty,s v2〉SL =

〈v1 ↪→size(ty) v3〉SL ∧ (v2 ≥ 0 ⇒ v3 = v2) ∧ (v2 < 0 ⇒ v3 = v2 + 2size(ty)),

where v3 ∈ Vsym is fresh. We assume a little-endian data layout (where least sig-
nificant bytes are stored in the lowest address). Hence, we define 〈v1 ↪→0 v3〉SL =
true and 〈v1 ↪→n+8 v3〉SL = (v1 ↪→ (v3 mod 28)) ∧ 〈 (v1 + 1) ↪→n (v3 div 28) 〉SL.

Then a state a = (p,LV ,KB ,AL,PT ) is represented in separation logic by11

〈a〉SL = 〈a〉FO ∧ (∗ϕ∈AL 〈ϕ〉SL) ∧ (
∧

ϕ∈PT
〈ϕ〉SL).

We use interpretations (as,mem) for the semantics of separation logic. To
deal with symbolic variables in formulas, we use instantiations. Let T (Vsym)
be the set of all arithmetic terms containing only variables from Vsym . Any
function σ : Vsym → T (Vsym) is called an instantiation and as in Sect. 2, an
instantiation is concrete iff σ(v) ∈ Z for all v ∈ Vsym . Again, we write “⇀” for
partial functions.

11Here, we assume the empty separating conjunction to be true, i.e., if AL = ∅ then
∗ϕ∈AL 〈ϕ〉SL = true.
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Definition 10 (Semantics of Separation Logic). Let as :VP→Z be an as-
signment, mem : N>0 ⇀ {0, . . . , umax8}, and ϕ be a formula. Let as(ϕ) result
from replacing all local variables x in ϕ by the value as(x). By construction, local
variables x are never quantified in our formulas. Then we define (as,mem) |= ϕ
iff mem |= as(ϕ).

We now define mem |= ψ for formulas ψ that may contain symbolic variables
from Vsym . As usual, all free variables v1, . . . , vn in ψ are implicitly universally
quantified, i.e., mem |= ψ iff mem |= ∀v1, . . . , vn. ψ. The semantics of arith-
metic operations and predicates as well as of first-order connectives and quanti-
fiers are as usual. In particular, we define mem |= ∀v. ψ iff mem |= σ(ψ) holds
for all instantiations σ where σ(v) ∈ Z and σ(w) = w for all w ∈ Vsym \ {v}.

We still have to define the semantics of ↪→ and ∗ for variable-free formulas.
For n1, n2 ∈ Z, let mem |= n1 ↪→ n2 hold iff mem(n1) = n2.12 The semantics of
∗ is defined as usual in separation logic: For two partial functions mem1,mem2 :
N>0 ⇀ Z, we write mem1⊥mem2 to indicate that the domains of mem1 and
mem2 are disjoint. If mem1⊥mem2, then mem1 ]mem2 denotes the union of
mem1 and mem2. Now mem |= ϕ1 ∗ ϕ2 holds iff there exist mem1⊥mem2 such
that mem = mem1 ]mem2 where mem1 |= ϕ1 and mem2 |= ϕ2.

Appendix B. Proofs

Proof of Thm. 5. Since the result of “mod 2n” is always in the interval
[0, 2n − 1], we immediately obtain sign(t) = ((t+ 2n−1) mod 2n)− 2n−1 ∈ [0−
2n−1, 2n − 1− 2n−1] = [−2n−1, 2n−1 − 1] = [sminn, smaxn]. Moreover, we have

t mod 2n

= (t+ 2n−1 − 2n−1) mod 2n

= (((t+ 2n−1) mod 2n)− 2n−1) mod 2n

= sign(t) mod 2n.
�

Proof of Thm. 6. We consider three cases.

Case 1: t ∈ [min, u]

Clearly, u < ` implies u − ` < 0. Moreover, we also have u − ` ≥ min −max =
−2n + 1, which together implies

−2n < u− ` < 0. (B.1)

12We use “↪→” instead of “7→” in separation logic, since mem |= n1 7→ n2 would imply that
mem(n) is undefined for all n 6= n1. This would be inconvenient in our formalization, since
PT usually only contains information about a part of the allocated memory.
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Thus, we have:

t ≤ u ⇒ t− ` ≤ u− `
⇒ (t− `) mod 2n ≤ u− `+ 2n by (B.1)

⇒ ((t− `) mod 2n) + ` ≤ u+ 2n

⇒ inBounds(t,min, u, `,max) holds

Case 2: t ∈ [u+ 1, `− 1]

This entails u+ 1 ≤ `− 1, i.e., u− `+ 1 < 0. Moreover, we also have u− `+ 1 ≥
min−max + 1 = −2n + 2, which together implies

−2n < u− `+ 1 < 0. (B.2)

We obtain:

t ≥ u+ 1 ⇒ t− ` ≥ u− `+ 1

⇒ (t− `) mod 2n ≥ u− `+ 1 + 2n by (B.2)

⇒ ((t− `) mod 2n) + ` ≥ u+ 1 + 2n

⇒ inBounds(t,min, u, `,max) does not hold

Case 3: t ∈ [`,max]

Note that max− ` ≥ 0 and moreover, max− ` < max−min = 2n − 1, i.e.,

0 ≤ max− ` < 2n. (B.3)

In addition, we have

max = min + 2n − 1 ≤ u+ 2n − 1. (B.4)

Here, we obtain:

t ≤ max ⇒ t− ` ≤ max− `
⇒ (t− `) mod 2n ≤ max− ` by (B.3)

⇒ ((t− `) mod 2n) + ` ≤ max

⇒ ((t− `) mod 2n) + ` ≤ u+ 2n by (B.4)

⇒ inBounds(t,min, u, `,max) holds
�

Proof of Thm. 8. The proof of Thm. 8 is identical to the proofs of Thm. 10
and 13 in [27]. It relies on the fact that our symbolic execution rules correspond
to the actual execution of LLVM when they are applied to concrete states (this
also holds for the new bitvector rules of the current paper). So if a concrete
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state c is represented by some abstract state a in the symbolic execution graph
G, then every LLVM evaluation of c corresponds to a path in the graph. More
precisely, for every LLVM evaluation step c →LLVM c there is a path from a to
an abstract state a in G such that c is represented by a.

The generation of an ITS from the graph is done in such a way that termi-
nation of the ITS implies that there is no such infinite path in the graph. As all
integers in the symbolic execution graphs and in the ITSs are still mathematical
integers, the construction of ITSs has not changed in the current paper, i.e., the
corresponding proof of [27] directly carries over to the present setting. �
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