
Annotated Dependency Pairs for
Full Almost-Sure Termination of
Probabilistic Term Rewriting⋆

Jan-Christoph Kassing(B) and Jürgen Giesl(B)

RWTH Aachen University, Aachen, Germany
{kassing,giesl}@cs.rwth-aachen.de

Abstract. Dependency pairs (DPs) are one of the most powerful tech-
niques for automated termination analysis of term rewrite systems. Re-
cently, we adapted the DP framework to the probabilistic setting to prove
almost-sure termination (AST) via annotated DPs (ADPs). However, this
adaption only handled AST w.r.t. the innermost evaluation strategy. In
this paper, we improve the ADP framework to prove AST for full rewriting.
Moreover, we refine the framework for rewrite sequences that start with
basic terms containing a single defined function symbol. We implemented
and evaluated the new framework in our tool AProVE.

1 Introduction

Term rewrite systems (TRSs) are used for automated termination analysis of
many programming languages. There exist numerous powerful tools to prove
termination of TRSs, e.g., [19, 22, 33, 48]. Dependency pairs (DPs, see e.g., [2,
17, 18, 23, 24]) are one of the main concepts used in all these tools.

In [4, 9, 10, 14], TRSs were extended to the probabilistic setting. Probabilistic
programs describe randomized algorithms and probability distributions, with
applications in many areas, see, e.g., [21]. Instead of only considering ordinary
termination (i.e., absence of infinite evaluation sequences), in the probabilistic
setting one is interested in almost-sure termination (AST), where infinite evalua-
tion sequences are allowed, but their probability is 0. A strictly stronger notion
is positive AST (PAST), which requires that the expected runtime is finite [10, 42].

There exist numerous techniques to prove (P)AST of imperative programs
on numbers (like the probabilistic guarded command language pGCL [34, 37]),
e.g., [1, 5, 11, 15, 20, 25–27, 38–41]. In contrast, probabilistic TRSs (PTRSs)
are especially suitable for modeling and analyzing functional programs and
algorithms operating on (user-defined) data structures like lists, trees, etc. Up to
now, there exist only few automatic approaches to analyze (P)AST of probabilistic
programs with complex non-tail recursive structure [8, 12, 13]. The approaches
that are suitable for algorithms on recursive data structures [7, 36, 47] are mostly
specialized for specific data structures and cannot easily be adjusted to other
(possibly user-defined) ones, or are not yet fully automated. In contrast, our goal

⋆ funded by the DFG Research Training Group 2236 UnRAVeL

mailto:kassing@cs.rwth-aachen.de
http://orcid.org/0009-0001-9972-2470
mailto:giesl@cs.rwth-aachen.de
http://orcid.org/0000-0003-0283-8520

2 J.-C. Kassing, J. Giesl

is a fully automatic termination analysis for arbitrary PTRSs.

For PTRSs, orderings based on interpretations were adapted to prove PAST of
full rewriting (w.r.t. any evaluation strategy) in [4], and we presented a related
technique to prove AST in [28]. However, already for non-probabilistic TRSs, such a
direct application of orderings is limited in power. To obtain a powerful approach,
one should combine orderings in a modular way, as in the DP framework.

Indeed, based on initial work in [28], in [30] we adapted the DP framework to
the probabilistic setting to prove innermost AST (iAST) of PTRSs via so-called
annotated dependency pairs (ADPs). However, this adaption is restricted to inner-
most rewriting, i.e., one only considers sequences that rewrite at innermost posi-
tions of terms. Already for non-probabilistic TRSs, innermost termination is easier
to prove than full termination, and this remains true in the probabilistic setting.

Algorithm 1:

x← 0
while x = 0 do
{
x← 0⊕1/2 x← 1;
y ← 2 · y;
}□{
x← 0⊕1/3 x← 1;
y ← 3 · y;
}

while y > 0 do
y ← y − 1;

In the current paper, we adapt the definition of
ADPs to use them for any evaluation strategy. As our
running example, we transform Alg. 1 on the right (writ-
ten in pGCL) into an equivalent PTRS and show how
our new ADP framework proves AST. Here, ⊕1/2 de-
notes probabilistic choice, and □ denotes demonic non-
determinism. Note that there are proof rules (e.g., [38])
and tools (e.g., [40]) that can prove AST for both loops of
Alg. 1 individually, and hence for the whole algorithm.
Moreover, the tool Caesar [43] can prove AST if one
provides super-martingales for the two loops. However,
to the best of our knowledge there exist no automatic
techniques to handle similar algorithms on arbitrary
algebraic data structures, i.e., (non-deterministic) algo-
rithms that first create a random data object y in a first loop and then access or
modify it in a second loop, whereas this is possible with our new ADP framework.1

Note that while Alg. 1 is AST, its expected runtime is infinite, i.e., it is not PAST.2

In [29], we developed the first criteria for classes of PTRSs where iAST implies
AST. So for PTRSs from these classes, one can use our ADP framework for
iAST in order to conclude AST. However, these criteria exclude non-probabilistic
non-determinism, i.e., they require that the rules of the PTRS must be non-
overlapping. In addition, they impose linearity restrictions on both sides of the
rewrite rules. In contrast, our novel ADP framework can be applied to overlapping
PTRSs and it also weakens the linearity requirements considerably.

We start with preliminaries on (probabilistic) term rewriting in Sect. 2. In
Sect. 3 we recapitulate annotated dependency pairs for innermost AST [30], explain
why they cannot prove AST for full rewriting, and adapt them accordingly. We
present the probabilistic ADP framework in Sect. 4, illustrate its main processors,

1 Such examples can be found in our benchmark set, see Sect. 5 and App. A.
2 This already holds for the program where only the first possibility of the first while-
loop is considered (i.e., where y is always doubled in its body). Then for the initial
value y = 1, the expected number of iterations of the second while-loop which
decrements y is 1

2
· 2 + 1

4
· 4 + 1

8
· 8 + . . . = 1 + 1 + 1 + . . . = ∞.

Annotated DPs for Full AST of Probabilistic Term Rewriting 3

and show how to adapt them from iAST to AST. Finally, in Sect. 5 we evaluate
the implementation of our approach in the tool AProVE [19]. We refer to App. A
to illustrate our approach on examples with non-numerical data structures like
lists or trees, and to [32] for all proofs.

2 Preliminaries

Sect. 2.1 to 2.3 recapitulate classic [6] and probabilistic [4, 9, 10, 28] term
rewriting, and results on PTRSs where iAST and AST are equivalent, respectively.

2.1 Term Rewriting

We regard a (finite) signature Σ =
⊎

n∈N Σn and a set of variables V. The set
of terms T (Σ,V) (or simply T) is the smallest set with V ⊆ T (Σ,V), and if
f ∈ Σn and t1, . . . , tn ∈ T (Σ,V) then f(t1, . . . , tn) ∈ T (Σ,V). We say that s
is a subterm of t (denoted s ⊴ t) if s = t, or t = f(t1, . . . , tn) and s ⊴ ti for
some 1 ≤ i ≤ n. It is a proper subterm (denoted s ◁ t) if s ⊴ t and s ̸= t. A
substitution is a function σ : V → T with σ(x) = x for all but finitely many
x ∈ V. We often write xσ instead of σ(x). Substitutions can also be applied to
terms: If t = f(t1, . . . , tn) ∈ T then tσ = f(t1σ, . . . , tnσ). For a term t ∈ T , the
set of positions Pos(t) is the smallest subset of N∗ satisfying ε ∈ Pos(t), and if
t = f(t1, . . . , tn) then for all 1 ≤ i ≤ n and all π ∈ Pos(ti) we have i.π ∈ Pos(t).
If π ∈ Pos(t) then t|π denotes the subterm at position π, where we have t|ε = t
for the root position ε and f(t1, . . . , tn)|i.π = ti|π. The root symbol at position ε
is also denoted by root(t). If r ∈ T and π ∈ Pos(t) then t[r]π denotes the term
that results from replacing the subterm t|π with the term r.

A rewrite rule ℓ → r ∈ T × T is a pair with ℓ ̸∈ V and V(r) ⊆ V(ℓ). A
term rewrite system (TRS) is a (finite) set of rewrite rules. For example, Rd

with the only rule d(x)→ c(x, x) is a TRS. A TRS R induces a rewrite relation
→R ⊆ T × T where s →R t holds if there are an ℓ → r ∈ R, a substitution
σ, and a π ∈ Pos(s) such that s|π = ℓσ and t = s[rσ]π. A term s is in normal
form w.r.t. R (denoted s ∈ NFR) if there is no term t with s →R t, and in
argument normal form w.r.t. R (denoted s ∈ ANFR) if s′ ∈ NFR for all proper
subterms s′ ◁ s. A rewrite step s →R t is innermost (denoted s

i→R t) if the
used redex ℓσ is in argument normal form. For example, d(d(0))

i→Rd
d(c(0, 0)),

but d(d(0))→Rd
c(d(0), d(0)) is not an innermost step. A TRS R is (innermost)

terminating if (
i→R) →R is well founded.

Two rules ℓ1 → r1, ℓ2 → r2 ∈ R with renamed variables such that V(ℓ1)∩V(ℓ2)
= ∅ are overlapping if there exists a non-variable position π of ℓ1 such that ℓ1|π
and ℓ2 are unifiable, i.e., there exists a substitution σ such that ℓ1|πσ = ℓ2σ. If
(ℓ1 → r1) = (ℓ2 → r2), then we require that π ̸= ε. R is non-overlapping if it has
no overlapping rules (e.g., Rd is non-overlapping). A TRS is left-linear (right-
linear) if every variable occurs at most once in the left-hand side (right-hand
side) of a rule. Finally, a TRS is non-duplicating if for every rule, every variable
occurs at most as often in the right-hand side as in the left-hand side. As an
example, Rd is left-linear, not right-linear, and hence duplicating.

4 J.-C. Kassing, J. Giesl

2.2 Probabilistic Term Rewriting

In contrast to TRSs, a probabilistic TRS (PTRS) [4, 9, 10, 28] has (finite)
multi-distributions on the right-hand sides of its rewrite rules. A finite multi-
distribution µ on a set A ̸= ∅ is a finite multiset of pairs (p : a), where 0 < p ≤ 1
is a probability and a ∈ A, such that

∑
(p:a)∈µ p = 1. FDist(A) is the set

of all finite multi-distributions on A. For µ ∈ FDist(A), its support is the
multiset Supp(µ) = {a | (p : a) ∈ µ for some p}. A probabilistic rewrite rule
ℓ → µ ∈ T × FDist(T) is a pair such that ℓ ̸∈ V and V(r) ⊆ V(ℓ) for every
r ∈ Supp(µ). Examples for probabilistic rewrite rules are

g→ {3/4 : d(g), 1/4 : 0} (1) d(x)→ {1 : c(x, x)} (2)

d(d(x))→ {1 : c(x, g)} (3) d(x)→ {1 : 0} (4)

A probabilistic TRS is a finite set R of probabilistic rewrite rules, e.g., R1 = {(1)},
R2 = {(1), (2)}, or R3 = {(1), (3), (4)}. Similar to TRSs, a PTRS R induces
a rewrite relation →R ⊆ T × FDist(T) where s →R {p1 : t1, . . . , pk : tk} if
there are an ℓ → {p1 : r1, . . . , pk : rk} ∈ R, a substitution σ, and a π ∈
Pos(s) such that s|π = ℓσ and tj = s[rjσ]π for all 1 ≤ j ≤ k. The step is inner-
most (denoted s

i→R {p1 : r1, . . . , pk : rk}) if ℓσ ∈ ANFR. So the PTRS R1 can be
interpreted as a biased coin flip that terminates in each step with a chance of 1/4.

To track all possible rewrite sequences (up to non-determinism) with their
corresponding probabilities, as in [30] we lift →R to rewrite sequence trees
(RSTs). The nodes v of an R-RST are labeled by pairs (pv : tv) of a probability
pv and a term tv, where the root is always labeled with the probability 1.
For each node v with the successors w1, . . . , wk, the edge relation represents
a probabilistic rewrite step, i.e., tv →R {

pw1

pv
: tw1

, . . . ,
pwk

pv
: twk

}. An R-RST
is an innermost R-RST if the edge relation represents only innermost steps.
For an R-RST T we define |T|Leaf =

∑
v∈Leaf pv, where Leaf is the set of

all its leaves, and we say that a PTRS R is almost-surely terminating (AST)
(almost-surely innermost terminating (iAST)) if |T|Leaf = 1 holds for all R-RSTs
(innermost R-RSTs) T. While |T|Leaf = 1 for every finite RST T, for infinite
RSTs T we may have |T|Leaf < 1 or even |T|Leaf = 0 if T has no leaf at all.

1 g

3/4 d(g) 1/4 0

NFR1
9/16 d(d(g)) 3/16 d(0)

NFR1.

This notion of AST is equivalent to the ones in
[4, 10, 28], where AST is defined via a lifting of
→R to multisets or via stochastic processes. The
infinite R1-RST T on the side has |T|Leaf = 1.
As this holds for all R1-RSTs, R1 is AST.

Example 1. R2 is not AST. If we always apply
(2) directly after (1), this corresponds to the rule g→ {3/4 : c(g, g), 1/4 : 0}, which
represents a random walk on the number of g’s in a term biased towards non-
termination (as 3

4 > 1
4). R3 is not AST either, because if we always apply (3) after

two applications of (1), this corresponds to g→ {9/16 : c(g, g), 3/16 : 0, 1/4 : 0},
which is also biased towards non-termination (as 9

16 > 3
16 + 1

4).
However, in innermost evaluations, the d-rule (2) can only duplicate normal

forms, and henceR2 is iAST, see [29].R3 is iAST as well, as (3) is not applicable in

Annotated DPs for Full AST of Probabilistic Term Rewriting 5

innermost evaluations. For both R2 and R3, iAST can also be proved automatical-
ly by our implementation of the ADP framework for iAST in AProVE [28, 30].

Example 2. The following PTRS Ralg corresponds to Alg. 1. Here, the non-deter-
minism is modeled by the non-deterministic choice between the overlapping rules
(5) and (6). In Sect. 4, we will prove that Ralg is AST via our new notion of ADPs.

loop1(y) → {1/2 : loop1(double(y)), 1/2 : loop2(double(y))} (5)

loop1(y) → {1/3 : loop1(triple(y)), 2/3 : loop2(triple(y))} (6)

loop2(s(y)) → {1 : loop2(y)}
double(s(y)) → {1 : s(s(double(y)))}

double(0) → {1 : 0}

triple(s(y)) → {1 : s(s(s(triple(y))))}
triple(0) → {1 : 0}

A PTRS R is right-linear iff the TRS {ℓ → r | ℓ → µ ∈ R, r ∈ Supp(µ)}
is right-linear. Left-linearity and being non-overlapping can be lifted to PTRSs
directly, as their rules also have just a single term on their left-hand sides.

For a PTRS R, we decompose its signature Σ = C ⊎ D such that f ∈ D iff
f = root(ℓ) for some ℓ→ µ ∈ R. The symbols in C and D are called constructors
and defined symbols, respectively. For R2 we have C = {c, 0} and D = {g, d}.
A term t ∈ T is basic if t = f(t1, . . . , tn) with f ∈ D and ti ∈ T (C,V) for all
1 ≤ i ≤ n. So a basic term represents an algorithm f applied to arguments ti
which only represent data and do not contain executable functions.

Finally, we define spareness [16], which prevents the duplication of redexes
if the evaluation starts with a basic term. A rewrite step ℓσ →R µσ is spare if
σ(x) ∈ NFR for every x ∈ V that occurs more than once in some r ∈ Supp(µ). An
R-RST is spare if all rewrite steps corresponding to its edges are spare. A PTRS
R is spare if each R-RST that starts with {1 : t} for a basic term t is spare. So
for example, R2 is not spare, because the basic term g starts a rewrite sequence
where the redex g is duplicated by Rule (2). Computable sufficient conditions for
spareness were presented in [16].

2.3 Existing Techniques for Proving Full AST

In order to prove AST automatically, one can either use orderings directly on the
whole PTRS [4, 28], or check whether the PTRS R belongs to a class where it is
known that R is AST iff R is iAST. Then, it suffices to analyze iAST, and to this
end, one can use the existing ADP framework [30]. In [29], we introduced the
following first criteria for classes of PTRSs where iAST is equivalent to AST.

Theorem 3 (From iAST to AST (1) [29]). If a PTRS R is non-overlapping,
left-linear, and right-linear, then R is AST iff R is iAST.

Moreover, if one restricts the analysis to basic start terms, then we can weaken
right-linearity to spareness. In the following, “b(i)AST” (basic (i)AST) means
that one only considers rewrite sequences that start with {1 : t} for basic terms t.

Theorem 4 (From iAST to AST (2) [29]). If a PTRS R is non-overlapping,
left-linear, and spare, then R is bAST iff R is biAST.

6 J.-C. Kassing, J. Giesl

Since iAST obviously implies biAST, under the conditions of Thm. 4 it suffices
to analyze iAST to prove bAST.3 In addition to Thm. 3 and 4, [29] presented ano-
ther criterion to weaken the left-linearity condition. We do not recapitulate it here,
as our novel approach in Sect. 3 and 4 will not require left-linearity anyway.
Ralg from Ex. 2 is left- and right-linear, but overlapping. Hence, Ralg does

not belong to any known class of PTRSs where iAST is equivalent to AST. Thus,
to prove AST of such PTRSs, one needs a new approach, e.g., as in Sect. 3 and 4.

3 Probabilistic Annotated Dependency Pairs

In Sect. 3.1 we recapitulate annotated dependency pairs (ADPs) [30] which adapt
DPs in order to prove iAST. Then in Sect. 3.2 we introduce our novel adaption
of ADPs for full probabilistic rewriting w.r.t. any evaluation strategy.

3.1 ADPs and Chains - Innermost Rewriting

Instead of comparing left- and right-hand sides of rules to prove termination, ADPs
only consider the subterms with defined root symbols in the right-hand sides, as
only these subterms might be evaluated further. In the probabilistic setting, we use
annotations to mark which subterms in right-hand sides could potentially lead to a
non-(i)AST evaluation. For every f ∈ D, we introduce a fresh annotated symbol f#

of the same arity. Let D# denote the set of all annotated symbols, Σ# = D#⊎Σ,
and T # = T

(
Σ#,V

)
. To ease readability, we often use capital letters like F

instead of f#. For any t = f(t1, . . . , tn) ∈ T with f ∈ D, let t# = f#(t1, . . . , tn).
For t ∈ T # and X ⊆ Σ# ∪ V, let PosX (t) be all positions of t with symbols or
variables from X . For a set of positions Φ ⊆ PosD∪D#(t), let #Φ(t) be the variant
of t where the symbols at positions from Φ in t are annotated, and all other anno-
tations are removed. Thus, PosD#(#Φ(t)) = Φ, and #∅(t) removes all annotations
from t, where we often write ♭(t) instead of #∅(t). Moreover, let ♭↑π(t) result from
removing all annotations from t that are strictly above the position π. So for R2,
we have #{1}(d(g)) = #{1}(D(G)) = d(G), ♭(D(G)) = d(g), and ♭↑1(D(G)) = d(G).
To transform the rules of a PTRS into ADPs, initially we annotate all f ∈ D
occurring in right-hand sides.

Every ADP also has a flag m ∈ {true, false} to indicate whether this ADP
may be applied to rewrite at a position below an annotated symbol in non-(i)AST
evaluations. This flag will be modified and used by the processors in Sect. 4.

Definition 5 (ADPs). An annotated dependency pair (ADP) has the form
ℓ −→ {p1 : r1, . . . , pk : rk}m, where ℓ ∈ T with ℓ /∈ V, m ∈ {true, false}, and for
all 1 ≤ j ≤ k we have rj ∈T # with V(rj) ⊆ V(ℓ).
3 Instead of restricting start terms to basic terms, one could allow start terms in argu-
ment normal form (denoted ANF-AST). Both Thm. 4 as well as our results on the ADP
framework in Sect. 3 and 4 also hold for ANF-AST (ANF-iAST) instead of bAST (biAST).
While ANF-iAST is equivalent to iAST, the requirement of start terms in ANFR is a real
restriction for AST. Already in the non-probabilistic setting there are non-terminating
TRSs R where all terms in ANFR are terminating (e.g., the well-known example of
[45] with the rules f(a, b, x) → f(x, x, x), h(x, y) → x, and h(x, y) → y).

Annotated DPs for Full AST of Probabilistic Term Rewriting 7

For a rule ℓ→ µ = {p1 : r1, . . . , pk : rk}, its canonical annotated dependency
pair is DP(ℓ → µ) = ℓ → {p1 : #PosD(r1)(r1), . . . , pk : #PosD(rk)(rk)}true. The
canonical ADPs of a PTRS R are DP(R) = {DP(ℓ→ µ) | ℓ→ µ ∈ R}.

Example 6. We obtain DP(R2) = {(7), (8)} and DP(R3) = {(7), (9), (10)} with

g → {3/4 : D(G), 1/4 : 0}true (7) d(x) → {1 : c(x, x)}true (8)

d(d(x)) → {1 : c(x,G)}true (9) d(x) → {1 : 0}true (10)

Example 7. For Ralg, the canonical ADPs are

loop1(y) → {1/2 : L1(D(y)), 1/2 : L2(D(y))}true (11)

loop1(y) → {1/3 : L1(T(y)), 2/3 : L2(T(y))}true (12)

loop2(s(y)) → {1 : L2(y)}true (13)

double(s(y)) → {1 : s(s(D(y)))}true (14)

double(0) → {1 : 0}true (15)

triple(s(y)) → {1 : s(s(s(T(y))))}true (16)

triple(0) → {1 : 0}true (17)

We use the following rewrite relation in the ADP framework for iAST.

Definition 8 (Innermost Rewriting with ADPs,
i
↪→P). Let P be a finite

set of ADPs (a so-called ADP problem). We define t ∈ ANFP if there are no
t′ ◁ t, ℓ→ µm ∈ P, and substitution σ with ℓσ = ♭(t′) (i.e., no left-hand side ℓ
matches a proper subterm t′ of t when removing its annotations).

A term s ∈ T # rewrites innermost with P to µ = {p1 : t1, . . . , pk : tk} (deno-
ted s

i
↪→P µ) if there are ℓ −→ {p1 : r1, . . . , pk : rk}m ∈ P, a substitution σ, and a

π ∈ PosD∪D#(s) such that ♭(s|π) = ℓσ ∈ ANFP , and for all 1 ≤ j ≤ k we have:

tj = s[rjσ]π if π ∈ PosD#(s) and m = true (at)
tj = ♭↑π(s[rjσ]π) if π ∈ PosD#(s) and m = false (af)
tj = s[♭(rj)σ]π if π ̸∈ PosD#(s) and m = true (nt)
tj = ♭↑π(s[♭(rj)σ]π) if π ̸∈ PosD#(s) and m = false (nf)

Rewriting with P is like ordinary probabilistic term rewriting while considering
and modifying annotations that indicate where a non-iAST evaluation may arise.
A step of the form (at) (for annotation and true) is performed at the position of an
annotation, i.e., this can potentially lead to a non-iAST evaluation. Hence, all an-
notations from the right-hand side rj of the used ADP are kept during the rewrite
step. However, annotations of subterms that correspond to variables of the ADP
are removed, as these subterms are in normal form due to the innermost strategy.
An example is the rewrite step D(G)

i
↪→DP(R3)

{3/4 : D(D(G)), 1/4 : D(0)} using the
ADP (7). A step of the form (af) (for annotation and false) is similar but due to
the flag m = false this ADP cannot be used below an annotation in a non-iAST
evaluation. Hence, we remove all annotations above the used redex. So using
an ADP of the form g → {3/4 : D(G), 1/4 : 0}false on the term D(G) would yield
D(G)

i
↪→ {3/4 : d(D(G)), 1/4 : d(0)}, i.e., we remove the annotation of D at the root.

A step of the form (nt) (for no annotation and true) is performed at the po-
sition of a subterm without annotation. Hence, the subterm cannot lead to a

8 J.-C. Kassing, J. Giesl

non-iAST evaluation, but this rewrite step may be needed for an annotation at a
position above. As an example, one could rewrite the non-annotated subterm g
in D(g)

i
↪→DP(R3)

{3/4 : D(d(g)), 1/4 : D(0)} using the ADP (7). Finally, a step of

the form (nf) (for no annotation and false) is irrelevant for non-iAST evalu-
ations, because the redex is not annotated and due to m = false, afterwards
one cannot rewrite an annotated term at a position above. For example, if one
had the ADP g → {3/4 : D(G), 1/4 : 0}false, then we would obtain D(g)

i
↪→ {3/4 :

d(d(g)), 1/4 : d(0)}. The case (nf) is only needed to ensure that normal forms
always remain the same, even if we remove or add annotations in rules.

Due to the annotations, we now consider specific RSTs, called chain trees [28,
30]. Chain trees are defined analogously to RSTs, but the crucial requirement is
that every infinite path of the tree must contain infinitely many steps of the forms
(at) or (af), as we specifically want to analyze the rewrite steps at annotated
positions. We say that T = (V,E, L,A) is a P-innermost chain tree (iCT) if

1. (V,E) is a (possibly infinite) directed tree with nodes V ≠ ∅ and directed
edges E ⊆ V × V where vE = {w | (v, w) ∈ E} is finite for every v ∈ V .

2. L : V → (0, 1]× T # labels every node v by a probability pv and a term tv.
For the root v ∈ V of the tree, we have pv = 1.

3. A ⊆ V \ Leaf (where Leaf are all leaves) is a subset of the inner nodes to
indicate that we use (at) or (af) for the next step. N = V \ (Leaf ∪A) are
all other inner nodes, i.e., where we rewrite using (nt) or (nf).

4. If vE = {w1, . . . , wk}, then tv
i
↪→P {

pw1

pv
: tw1

, . . . ,
pwk

pv
: twk

}, where we use

Case (at) or (af) if v ∈ A, and where we use Case (nt) or (nf) if v ∈ N .
5. Every infinite path in T contains infinitely many nodes from A.

1 G

3/4 D(G) 1/4 0

9/16 D(D(G)) 3/16 D(0)

.

Let |T|Leaf =
∑

v∈Leaf pv. Then a PTRS P
is iAST if |T|Leaf = 1 for all P-iCTs T. The
corresponding DP(R1)-chain tree for the R1-
RST from Sect. 2.2 is shown on the right. Here,
we again have |T|Leaf = 1. With these definitions,
in [30] we obtained the following result.

Theorem 9 (Chain Criterion for iAST).A PTRS R is iAST iff DP(R) is iAST.

So for iAST, one can analyze the canonical ADPs instead of the original PTRS.

3.2 ADPs and Chains - Full Rewriting

When adapting ADPs from innermost to full rewriting, the most crucial part is
to define how to handle annotations if we rewrite above them. For innermost
ADPs, we removed the annotations below the position of the redex, as such terms
are always in normal form. However, this is not the case for full rewriting.

Example 10. Reconsider R3 and its canonical ADPs DP(R3) = {(7), (9), (10)}
from Ex. 6. As noted in Ex. 1, R3 is iAST, but not AST. To adapt Def. 8 to
full rewriting, clearly we have to omit the requirement that the redex is in ANF.

Annotated DPs for Full AST of Probabilistic Term Rewriting 9

However, this is not sufficient for soundness for full AST: Applying two rewrite
steps with (7) to G would result in a chain tree with the leaves 9/16 : D(D(G)),
3/16 : D(0) (which can be extended by the child 3/16 : 0), and 1/4 : 0. However, by
Def. 8, every application of the ADP (9) removes the annotations of its arguments.
So when applying (9) to D(D(G)), we obtain {1 : c(g,G)}. But this would mean
that the number of G-symbols is never increased. However, for all such chain
trees T we have |T|Leaf = 1, i.e., we would falsely conclude that R3 is AST.

Ex. 10 shows that for full rewriting, we have to keep certain annotations
below the used redex. After rewriting above a subterm like G (which starts a
non-AST evaluation), it should still be possible to continue the evaluation of G if
this subterm was “completely inside” the substitution of the applied rewrite step.

We use variable reposition functions (VRFs) to relate positions of variables
in the left-hand side of an ADP to those positions of the same variables in
the right-hand sides where we want to keep the annotations of the instantiated
variables. So for an ADP ℓ→ µ with ℓ|π = x, we indicate which occurrence of
x in r ∈ Supp(µ) should keep the annotations if one rewrites an instance of ℓ
where the subterm at position π contains annotations.4

Definition 11 (Variable Reposition Functions). Let ℓ→ {p1 : r1, . . . , pk :
rk}m be an ADP. A family of functions φj : PosV(ℓ) → PosV(rj) ⊎ {⊥} with
1 ≤ j ≤ k is called a family of variable reposition functions (VRF) for the ADP
iff for all 1 ≤ j ≤ k we have ℓ|π = rj |φj(π) whenever φj(π) ̸= ⊥.

Now we can define arbitrary (possibly non-innermost) rewriting with ADPs.

Definition 12 (Rewriting with ADPs, ↪−→P). ADPs and canonical ADPs
are defined as in the innermost case. Let P be an ADP problem. A term s ∈ T #

rewrites with P to µ = {p1 : t1, . . . , pk : tk} (denoted s ↪−→P µ) if there are an
ℓ −→ {p1 : r1, . . . , pk : rk}m ∈ P, a VRF (φj)1≤j≤k for this ADP, a substitution
σ, and a π ∈ PosD∪D#(s) such that ♭(s|π) = ℓσ, and for all 1 ≤ j ≤ k we have:

tj = s[#Φj
(rjσ)]π if π ∈ PosD#(s) and m = true (at)

tj = ♭↑π(s[#Φj
(rjσ)]π) if π ∈ PosD#(s) and m = false (af)

tj = s[#Ψj
(rjσ)]π if π ̸∈ PosD#(s) and m = true (nt)

Here, Ψj ={φj(ρ).τ | ρ∈PosV(ℓ), φj(ρ) ̸=⊥, ρ.τ ∈PosD#(s|π)} and Φj =PosD#(rj)∪Ψj .

So Ψj considers all positions ρ.τ of annotated symbols in s|π that are below
positions ρ of variables in ℓ. If φj maps ρ to a variable position ρ′ in rj , then the
annotations below π.ρ in s are kept in the resulting subterm at position π.ρ′ after
the rewriting. As an example, consider D(D(G)) ↪−→DP(R3)

{1 : c(G,G)}. Here,

we use the ADP d(d(x))→ {1 : c(x,G)}true (9), with π = ε, σ(x) = g, and the
VRF φ1(1.1) = 1. We get ♭(D(D(G))|ε) = d(d(g)) = ℓσ, 1.1 ∈ PosV(ℓ), 1.1.ε ∈
PosD#(s|π), and thus Ψ1 = {φ1(1.1).ε} = {1} and Φ1 = PosD#(r1) ∪ Ψ1 = {1, 2}.

The case (nf) from Def. 8 is missing in Def. 12, as we do not consider
(argument) normal forms anymore. ADPs without annotations in the right-hand

4 VRFs were introduced in [31] when adapting ADPs to full relative rewriting. However,
due to the probabilistic setting, our definition is slightly different.

10 J.-C. Kassing, J. Giesl

side and with the flag false are not needed for non-AST chain trees and thus, they
could simply be removed from ADP problems.

Note that our VRFs in Def. 11 map a position of the left-hand side ℓ to at
most one position in each right-hand side rj of an ADP, even if the ADP is
duplicating. A probabilistic rule or ADP ℓ→ µ is non-duplicating if all rules in
{ℓ→ r | r ∈ Supp(µ)} are, and a PTRS or ADP problem is non-duplicating if all
of its rules are (disregarding the flag for ADPs). For example, for the duplicating
ADP d(x) → {1 : c(x, x)}true (8), we have three different VRFs which map
position 1 to either ⊥, 1, or 2, but we cannot map it to both positions 1 and 2.

Therefore, our VRFs cannot handle duplicating rules and ADPs correctly.
With VRFs as in Def. 11, DP(R2) would be considered to be AST, as D(G) only
rewrites to {1 : c(G, g)} or {1 : c(g,G)}, but the annotation cannot be duplicated.
Hence, the chain criterion would be unsound for duplicating PTRSs like R2.

To handle duplicating rules, one can adapt the direct application of orderings
to prove AST from [28] and try to remove the duplicating rules of the PTRS
before constructing the canonical ADPs.

Alternatively, one could modify the definition of the rewrite relation ↪−→P
and use generalized VRFs (GVRFs) which can duplicate annotations instead
of VRFs. This would yield a sound and complete chain criterion for full AST
of possibly duplicating PTRSs, but then one would also have to consider this
modified definition of ↪−→P for the processors of the ADP framework in Sect. 4.
Unfortunately, almost all processors would become unsound when defining the
rewrite relation ↪−→P via GVRFs (see Ex. 22, 35, and 37). Therefore, we use VRFs
instead and restrict ourselves to non-duplicating PTRSs for the soundness of the
chain criterion.5

Chain trees (CTs) are now defined like iCTs, where instead of
i
↪→P we only

require steps with ↪−→P . Then an ADP problem P is AST if |T|Leaf = 1 for all
P-CTs T. This leads to our desired chain criterion for AST.

Theorem 13 (Chain Criterion for AST). A non-duplicating PTRS R is AST
iff DP(R) is AST.

The above chain criterion allows us to analyze full AST for a significantly
larger class of PTRSs than Thm. 3: we do not impose non-overlappingness and
left-linearity anymore, and only require non-duplication instead of right-linearity.

Similar to Thm. 4, the ADP framework becomes more powerful if we restrict
ourselves to basic start terms. Then it suffices if the PTRS is spare (instead of
non-duplicating), since then redexes are never duplicated. In fact, weak spareness
is sufficient, which subsumes both spareness and non-duplication. A rewrite step
ℓσ →R µσ is weakly spare if σ(x) ∈ NFR for every x ∈ V where x occurs less
often in ℓ than in some r ∈ Supp(µ). An R-RST is weakly spare if all rewrite
steps corresponding to its edges are weakly spare. A PTRS R is weakly spare
if each R-RST that starts with {1 : t} for a basic term t is weakly spare. The
sufficient conditions for spareness in [16] can easily be adapted to weak spareness.

5 A related restriction is needed in the setting of (non-probabilistic) relative termination
due to the VRFs [31].

Annotated DPs for Full AST of Probabilistic Term Rewriting 11

In the ADP framework for bAST, we only have to prove that no term starting a
non-AST evaluation can be reached from a basic start term. Here we use basic ADP
problems (I,P), where I and P are finite sets of ADPs. P are again the ADPs
which we analyze for AST and the reachability component I contains so-called
initial ADPs. A basic ADP problem (I,P) is bAST if |T|Leaf = 1 holds for all
those (I ∪ P)-CTs T that start with a term t# where t ∈ T is basic, and where
ADPs from I \P are only used finitely often within the tree T. Thus, every basic
ADP problem (I,P) can be replaced by (I \P,P). For a PTRS R, the canonical
basic ADP problem is (∅,DP(R)).

Theorem 14 (Chain Criterion for bAST). A weakly spare PTRS R is bAST
iff (∅,DP(R)) is bAST.

Remark 15. In the chain criterion for non-probabilistic DPs, it suffices to regard
only instantiations where all terms below an annotated symbol are terminating.
The reason is the minimality property of non-probabilistic term rewriting, i.e.,
whenever a term starts an infinite rewrite sequence, then it also starts an infinite
sequence where all proper subterms of every used redex are terminating. However,
in the probabilistic setting the minimality property does not hold [29]. For R3, g
starts a non-AST RST, but in this RST, one has to apply Rule (3) to the redex
d(d(g)), although it contains the proper subterm g that starts a non-AST RST.

4 The Probabilistic ADP Framework for Full Rewriting

The idea of the DP framework for non-probabilistic TRSs is to apply processors
repeatedly which transform a DP problem into simpler sub-problems [17, 18].
Since different techniques can be applied to different sub-problems, this results in a
modular approach for termination analysis. This idea is also used in the ADP
framework. An ADP processor Proc has the form Proc(P) = {P1, . . . ,Pn} for
ADP problems P,P1, . . . ,Pn. Let Z ∈ {AST, iAST}. Proc is sound for Z if P is Z
whenever Pi is Z for all 1 ≤ i ≤ n. It is complete for Z if Pi is Z for all 1 ≤ i ≤ n
whenever P is Z. The definitions for bAST are analogous, but with basic ADP
problems (I,P). Thus, one starts with the canonical (basic) ADP problem and
applies sound (and preferably complete) ADP processors repeatedly until there
are no more remaining ADP problems. This implies that the canonical (basic)
ADP problem is Z and by the chain criterion, the original PTRS is Z as well.

An ADP problem without annotations is always AST, because then no rewrite
step increases the number of annotations (recall that VRFs cannot duplicate
annotations). Hence, then any term with n annotations only starts rewrite
sequences with at most n steps of the form (at) or (af), i.e., all P-CTs are finite.

In the following, we recapitulate the main processors for iAST from [30] and
adapt them to our new framework for AST and bAST.

4.1 Dependency Graph Processor

The innermost P-dependency graph is a control flow graph whose nodes are the
ADPs from P. It indicates whether an ADP α may lead to an application of

12 J.-C. Kassing, J. Giesl

another ADP α′ on an annotated subterm introduced by α. This possibility is
not related to the probabilities. Hence, here we use the non-probabilistic variant
np(P) = {ℓ → ♭(rj) | ℓ → {p1 : r1, . . . , pk : rk}true ∈ P, 1 ≤ j ≤ k}, which is an
ordinary TRS over the original signature Σ. For np(P) we only consider rules
with the flag true, since only they are needed for rewriting below annotations.
We define t ⊴# s if there is a π ∈ PosD#(s) and t = ♭(s|π), i.e., t results from a
subterm of s with annotated root symbol by removing its annotations.

Definition 16 (Innermost Dependency Graph).The innermost P-dependen-
cy graph has the set of nodes P, and there is an edge from ℓ1 −→ {p1 : r1, . . . , pk :
rk}m to ℓ2 → . . . if there are substitutions σ1, σ2 and a t ⊴# rj for some

1 ≤ j ≤ k such that t#σ1
i→∗
np(P) ℓ

#
2 σ2 and both ℓ1σ1 and ℓ2σ2 are in ANFP .

So there is an edge from an ADP α to an ADP α′ if after a
i
↪→P -step of the

form (at) or (af) with α at position π there may eventually come another
i
↪→P -step

of the form (at) or (af) with α′ on or below π. Since every infinite path in an iCT
contains infinitely many nodes from A, every such path traverses a cycle of the in-
nermost dependency graph infinitely often. Thus, it suffices to consider its strongly
connected components (SCCs)6 separately. In our framework, this means that we
remove the annotations from all ADPs except those in the SCC that we want to
analyze. Since checking whether there exist σ1, σ2 as in Def. 16 is undecidable, to
automate the following processor, the same over-approximation techniques as for
the non-probabilistic dependency graph can be used, see, e.g., [2, 18, 23]. In the
following, ♭(P) denotes the ADP problem P where all annotations are removed.

Theorem 17 (Dependency Graph Processor for iAST). For the SCCs
P1, . . . ,Pn of the innermost P-dependency graph, the processor ProcDG(P) =
{P1 ∪ ♭(P \ P1), . . . ,Pn ∪ ♭(P \ Pn)} is sound and complete for iAST.

Example 18. Consider the PTRS R2 and its canonical ADPs from Ex. 6. The in-

(7)

(8)

nermost DP(R2)-dependency graph is on the right. As the only SCC
{(7)} does not contain (8), we can remove all annotations from (8). How-
ever, (8) has no annotations. Thus, ProcDG does not change DP(R2).

Adaption for AST: To handle full rewriting, we have to change the definition of
the dependency graph as we can now also perform non-innermost steps.

Definition 19 (Dependency Graph). The P-dependency graph has the nodes
P and there is an edge from ℓ1 −→ {p1 : r1, . . . , pk : rk}m to ℓ2 → . . . if there are

substitutions σ1, σ2 and a t ⊴# rj for some 1 ≤ j ≤ k with t#σ1 →∗
np(P) ℓ

#
2 σ2.

Theorem 20 (Dependency Graph Processor for AST). For the SCCs
P1, . . . ,Pn of the P-dependency graph, ProcDG(P) = {P1 ∪ ♭(P \ P1), . . . ,Pn ∪
♭(P \ Pn)} is sound and complete for AST.

Example 21. Consider Ralg and its canonical ADPs from Ex. 7. The DP(Ralg)-de-
pendency graph is given below. Its SCCs are {(11), (12)}, {(13)}, {(14)}, {(16)}.

6 A set P ′ of ADPs is an SCC if it is a maximal cycle, i.e., a maximal set where for any
α, α′ in P ′ there is a non-empty path from α to α′ only traversing nodes from P ′.

Annotated DPs for Full AST of Probabilistic Term Rewriting 13

(11)

(12)

(14)

(16)

(15)

(13)

(17)

For each SCC we create a separate ADP problem, where all
annotations outside the SCC are removed. This leads to the
ADP problems {(11), (12), ♭(13) - ♭(17)}, {(13), ♭(11), ♭(12), ♭(14)
- ♭(17)}, {(14), ♭(11) - ♭(13), ♭(15) - ♭(17)}, and {(16), ♭(11) -
♭(15), ♭(17)}.

Example 22. If we used GVRFs that can duplicate annotations,
then the dependency graph processor would not be sound. The
reason is that ProcDG maps ADP problems without annotations
to the empty set. However, this would be unsound if we had GVRFs, because
then the ADP problem with a→ {1 : b}true and d(x)→ {1 : c(x, d(x))}true would
not be AST. Here, the use of GVRFs would lead to the following CT with an
infinite number of (at) steps that rewrite A to b.

1 : d(A) 1 : c(A, d(A)) 1 : c(b, d(A)) . . .

Adaption for bAST: Here, ADPs that are not in the considered SCC Pi may
still be necessary for the initial steps from the basic start term to the SCC. Thus,
while we remove the annotations of ADPs outside the SCC Pi in the second
component P of a basic ADP problem (I,P), we add (the original versions of)
those ADPs to I that reach the SCC Pi in the (I ∪ P)-dependency graph. Let
Pi↑ be the set of all J ⊆ (I ∪ P) \ Pi such that all ADPs of J reach Pi in the
(I ∪ P)-dependency graph, and for all pairs of ADPs α, β ∈ J with α ̸= β, α
reaches β or β reaches α in the (I ∪P)-dependency graph. Furthermore, J must
be maximal w.r.t. these properties, i.e., if α ̸∈ J then α does not reach Pi or
there exists a β ∈ J such that α does not reach β and β does not reach α.

Theorem 23 (Dependency Graph Processor for bAST). For the SCCs P1,
. . . ,Pn of the P-dependency graph, the processor ProcDG(I,P) = {(J ∪ ♭(I \ J),
Pi ∪ ♭(P \ Pi)) | 1 ≤ i ≤ n, J ∈ Pi↑} is sound and complete for bAST.

As remarked in Sect. 3.2, every basic ADP problem (I,P) can be replaced
by (I \ P,P). Thus, this should be done after every application of a processor.

Example 24. To prove bAST of Ralg, we start with (∅,DP(Ralg)). The SCC
{(16)} is only reachable from (11) and (12), leading to the basic ADP problem
({(11), (12)}, {(16), ♭(11) - ♭(15), ♭(17)}). The SCC {(11), (12)} is not reachable
from other ADPs and thus, here we obtain (∅, {(11), (12), ♭(13) - ♭(17)}), etc.

Example 25. The next ADP problem Pg illustrates the reachability component.

init→ {1 : F(g)}true (18) g→ {1/2 : c(g, g, g, g), 1/2 : 0}true (19)

f(c(x1, x2, x3, x4))→ {1 : c(F(x1),F(x2),F(x3),F(x4))}true (20)

Although (19) has no annotations, the basic ADP problem (∅,Pg) is not bAST:

1 : Init 1 : F(g)

1/2 : F(0)

1/2 : F(c(g, g, g, g)) 1/2 : c(F(g), F(g), F(g), F(g)) . . .

14 J.-C. Kassing, J. Giesl

This is a random walk biased towards non-termination, where the number of F(g)
subterms increases by 3 or decreases by 1, both with probability 1/2.

(18)

(20)

(19)Since the only SCC of the Pg-dependency graph on the right
is {(20)}, ProcDG replaces F(g) by f(g) in (18) and obtains P ′

g =
{♭(18), (19), (20)}. However, (∅,P ′

g) would be bAST. So for the sound-
ness of the dependency graph processor, we have to add the original ADP (18)
to the reachability component and obtain ({(18)},P ′

g) which is again not bAST.

4.2 Usable Terms Processor

The dependency graph processor removes either all annotations from an ADP or
none. But an ADP can still contain terms t with annotated root where no instance
tσ1 rewrites to an instance ℓ#σ2 of a left-hand side ℓ of an ADP with annotations.
The usable terms processor removes the annotation from the root of such non-
usable terms like D(. . .) in DP(R2) = {(7), (8)}. So instead of whole ADPs, here
we consider the subterms in the right-hand sides of an ADP individually.

Theorem 26 (Usable Terms Processor for iAST). Let ℓ1 ∈ T and P be
an ADP problem. We call t ∈ T # with root(t) ∈ D# innermost usable w.r.t. ℓ1
and P if there are substitutions σ1, σ2 and an ℓ2 −→ µ2 ∈ P where µ2 contains

an annotated symbol, such that #{ε}(t)σ1
i→∗
np(P) ℓ

#
2 σ2 and both ℓ1σ1 and ℓ2σ2

are in ANFP . Let ∆ℓ,P(s) = {π ∈ PosD#(s) | s|π is innermost usable w.r.t. ℓ and
P }. The transformation that removes the annotations from the roots of all non-
usable terms in the right-hand sides is TUT(P)={ℓ→{p1 : #∆ℓ,P(r1)(r1), . . . , pk :
#∆ℓ,P(rk)(rk)}m | ℓ→{p1 : r1, . . . , pk : rk}m ∈P}. Then ProcUT(P) = {TUT(P)}
is sound and complete for iAST.

So for DP(R2), ProcUT replaces (7) by g→ {3/4 : d(G), 1/4 : 0}true (7′).

Adaption for AST and bAST: Similar to the dependency graph, for full rewriting,
we remove the ANF requirement and allow non-innermost steps to reach the next
ADP. To adapt the processor to bAST, in the reachability component we consider
usability w.r.t. I ∪ P, since one may use both I and P in the initial steps.

Theorem 27 (Usable Terms Processor for AST and bAST). We call t ∈ T #

with root(t) ∈ D# usable w.r.t. an ADP problem P if there are substitutions
σ1, σ2 and an ℓ2 −→ µ2 ∈ P where µ2 contains an annotated symbol, such that

#{ε}(t)σ1 →∗
np(P) ℓ#2 σ2. Let ∆P(s) = {π ∈ PosD#(s) | s|π is usable w.r.t.

P } and TUT(P) = {ℓ→ {p1 : #∆P(r1)(r1), . . . , pk : #∆P(rk)(rk)}m | ℓ→ {p1 :
r1, . . . , pk : rk}m ∈P}. Then ProcUT(P) = {TUT(P)} is sound and complete for
AST and ProcUT(I,P) = {(TUT(I ∪ P), TUT(P))} is sound and complete for bAST.

Example 28. For AST, ProcUT transforms {(11), (12), ♭(13) - ♭(17)} from Ex. 21
into {(11′), (12′), ♭(13) - ♭(17)} with

loop1(y)→ {1/2 : L1(double(y)), 1/2 : loop2(double(y))}true (11′)

Annotated DPs for Full AST of Probabilistic Term Rewriting 15

loop1(y)→ {1/3 : L1(triple(y)), 2/3 : loop2(triple(y))}true (12′)

The reason is that the left-hand sides of the only ADPs with annotations in the
ADP problem have the root loop1. Thus, L2-, D-, or T-terms are not usable.

For bAST, applying ProcUT to ({(11), (12)}, {(16), ♭(11) - ♭(15), ♭(17)}) and
afterwards removing those ADPs from the reachability component that also occur
in the second component yields ({(11′), (12′′)}, {(16), ♭(11) - ♭(15), ♭(17)}) with

loop1(y)→ {1/3 : L1(T(y)), 2/3 : loop2(T(y))}true (12′′)

The reason is that the left-hand sides of ADPs with annotations in their right-hand
sides have the root symbols loop1 (in (11) and (12)) or triple (in (16)).

4.3 Usable Rules Processor

In an innermost rewrite step, all variables of the used rule are instantiated with
normal forms. The usable rules processor detects rules that cannot be used below
annotations in right-hand sides of ADPs when their variables are instantiated
with normal forms. For these rules we can set their flag to false, indicating that
the annotated subterms on their right-hand sides may still lead to a non-iAST
sequence, but the context of these annotations is irrelevant.

Theorem 29 (Usable Rules Processor for iAST). Let P be an ADP problem
and for f ∈ Σ#, let RulesP(f) = {ℓ→ µtrue ∈ P | root(ℓ) = f}. For t ∈ T #,
its usable rules UP(t) are the smallest set with UP(x) = ∅ for all x ∈ V and
UP(f(t1, ..., tn))=RulesP(f)∪

⋃n
i=1UP(ti)∪

⋃
ℓ→µtrue∈RulesP(f),r∈Supp(µ) UP(♭(r)),

otherwise. The usable rules of P are U(P) =
⋃

ℓ→µm∈P,r∈Supp(µ),t⊴#r UP(t#).
Then ProcUR(P) = {U(P) ∪ {ℓ → µfalse | ℓ → µm ∈ P \ U(P)}} is sound and
complete, i.e., we turn the flag of all non-usable rules to false.

Example 30. The ADP problem {(7′), (8)} has no subterms below annotations. So
both rules are not usable and we set their flags to false which leads to

g→ {3/4 : d(G), 1/4 : 0}false (7′′) d(x)→ {1 : c(x, x)}false (8′)

Adaption for AST: For full rewriting and arbitrary start terms, the usable rules
processor is unsound. This is already the case for non-probabilistic rewriting,
but in the classical DP framework there nevertheless exist processors for full
rewriting based on usable rules which rely on taking the Cε-rules h(x, y) → x
and h(x, y)→ y for a fresh function symbol h into account, see, e.g., [17, 18, 24,
46]. However, the following example shows that this is not possible for AST.

Example 31. The ADP problem P ′
g from Ex. 25 is not AST. It has no usable rules

and thus, ProcUR would transform P ′
g into P ′′

g where the flag of all ADPs is false.
However, then we can no longer rewrite the argument g of F(g). Similarly, if
we start with F(G), rewriting G would remove the annotation of F above, i.e.,
F(G) ↪−→P′′

g
{1/2 : f(c(g, g, g, g)), 1/2 : f(0)}. Hence, then all CTs are finite. This also

holds when adding the Cε-ADPs h(x, y)→ {1 : x}true and h(x, y)→ {1 : y}true.

16 J.-C. Kassing, J. Giesl

Thus, even integrating the Cε-rules to represent non-determinism would not
allow a usable rule processor for AST with arbitrary start terms. Moreover, the
corresponding proofs in the non-probabilistic setting rely on the minimality
property, which does not hold in the probabilistic setting, see Remark 15.

Adaption for bAST: For bAST, we can apply the usable rules processor as for
innermost rewriting. Since the start term is basic, in the first application of an
ADP all variables are instantiated with normal forms. Hence, the only rules
that can be applied for rewrite steps below annotated symbols are the ones that
are introduced in right-hand sides of ADPs. Therefore, we can use the same
definitions as in Thm. 29 to over-approximate the set of ADPs that can be used
below an annotated symbol in a CT that starts with a basic term. Here, we
have to consider the reachability component as well for the usable rules, as these
ADPs can also be used in the initial rewrite steps.

Theorem 32 (Usable Rules Processor for bAST). The following processor
is sound and complete for bAST:

ProcUR(I,P) = {
((
I ∩ U(I ∪ P)

)
∪ {ℓ→ µfalse | ℓ→ µm ∈ I \ U(I ∪ P)},(

P ∩ U(I ∪ P)
)
∪ {ℓ→ µfalse | ℓ→ µm ∈ P \ U(I ∪ P)}

)
}.

Example 33. For the basic ADP problem ({(11′), (12′′)}, {(16), ♭(11) - ♭(15),
♭(17)}) from Ex. 28, only the double- and triple-ADPs ♭(14), ♭(15), (16), ♭(17) are
usable. So we can set the flag of all other ADPs in this problem to false. The
same holds for the other basic ADPs resulting from the dependency graph and
the usable terms processor in this example, i.e., here the usable rules processor
also sets the flags of all ADPs except the double- and triple-ADPs to false.

Example 34. To see why we use P∩U(I∪P) instead of U(P) in Thm. 32 (whereas
TUT(P) instead of TUT(I ∪ P) suffices for the second component in Thm. 27),
consider the basic ADP problem ({(18)},P ′

g) from Ex. 25 which is not bAST. As
noted in Ex. 31, U(P ′

g) = ∅, but if one sets the flags of all ADPs in P ′
g to false,

then all CTs are finite (i.e., then ProcUR would be unsound). In contrast, for
I = {(18)}, we have U(I ∪ P ′

g) = {(19)}, because g occurs below the annotated
symbol F in (18). Hence, ProcUR({(18)},P ′

g) only sets the flags of all ADPs except
(19) to false and thus, the resulting basic ADP problem is still not bAST.

Example 35. Note that if one used GVRFs, then the usable rules processor
would be unsound on ADP problems that are not weakly spare. For instance,
it would transform the ADP problem (∅, {(7′), (8)}) (which is not bAST when
using GVRFs) into (∅, {(7′′), (8′)}) (see Ex. 30). However, as (8′) has the flag
false, it cannot be applied at the position of the non-annotated symbol d, since
Def. 8 does not have a case of the form (nf). Hence, (∅, {(7′′), (8′)}) is bAST.

4.4 Reduction Pair Processor

Next we adapt the reduction pair processor which lifts the direct use of orderings
from PTRSs to ADP problems. This processor is the same for iAST and AST.

Annotated DPs for Full AST of Probabilistic Term Rewriting 17

To handle expected values, as in [28, 30] we only consider orderings based on
polynomial interpretations [35]. A polynomial interpretation Pol is a Σ#-algebra
which maps every function f ∈ Σ# to a polynomial fPol ∈ N[V]. It is monotonic if
x > y implies fPol(. . . , x, . . .) > fPol(. . . , y, . . .) for all f ∈ Σ#. Pol(t) denotes
the interpretation of a term t ∈ T # by Pol. An arithmetic inequation Pol(t1) >
Pol(t2) holds if it is true for all instantiations of its variables by natural numbers.

The constraints (1) - (3) in Thm. 36 are based on the conditions of a ranking
function for AST as in [38]. If we prove AST by considering the rules ℓ → {p1 :
r1, . . . , pk : rk} of a PTRS directly, then we need a monotonic polynomial interpre-
tation Pol and require a weak decrease when comparing Pol(ℓ) to the expected
value

∑
1≤j≤k pj · Pol(rj) of the right-hand side, and additionally, at least one

Pol(rj) must be strictly smaller than Pol(ℓ) [28]. For ADPs, we adapt these con-
straints by comparing the value Pol(ℓ#) of the annotated left-hand side with the
#-sum of the right-hand sides rj , i.e., the sum of the polynomial values of their
annotated subterms Sum(rj) =

∑
t⊴#rj

Pol(t#). This allows us to remove the

requirement of (strong) monotonicity (every polynomial fPol with natural coeffi-
cients is weakly monotonic, i.e., x ≥ y implies fPol(. . . , x, . . .) ≥ fPol(. . . , y, . . .)).

Here, (1) we require a weak decrease when comparing the annotated left-hand
side with the expected value of #-sums in the right-hand side. The processor
then removes the annotations from those ADPs where (2) in addition there is
at least one right-hand side rj whose #-sum is strictly decreasing.7 Finally, (3)
for every rule with the flag true (which can therefore be used for steps below
annotations), the expected value must be weakly decreasing when removing the
annotations. As in [4, 28, 30], to ensure “monotonicity” w.r.t. expected values,
we restrict ourselves to interpretations with multilinear polynomials, i.e., all
monomials must have the form c ·xe1

1 · . . . ·xen
n with c ∈ N and e1, . . . , en ∈ {0, 1}.

Theorem 36 (Reduction Pair Processor for iAST & AST). Let Pol :T # → N[V]
be a multilinear polynomial interpretation. Let P=P≥⊎P> with P> ̸=∅where:

(1) ∀ℓ −→ {p1 : r1, . . . , pk : rk}m ∈ P : Pol(ℓ#) ≥
∑

1≤j≤k pj · Sum(rj).

(2) ∀ℓ −→ {p1 : r1, . . . , pk : rk}m ∈ P> : ∃j ∈ {1, . . . , k} : Pol(ℓ#) > Sum(rj).
If m = true, then we additionally have Pol(ℓ) ≥ Pol(♭(rj)).

(3) ∀ℓ −→ {p1 : r1, . . . , pk : rk}true ∈ P : Pol(ℓ) ≥
∑

1≤j≤k pj · Pol(♭(rj)).

Then ProcRP(P) = {P≥ ∪ ♭(P>)} is sound and complete for iAST and AST.

Example 37. To conclude iAST for R2 we have to remove all remaining annota-
tions in the ADP problem {(7′′), (8′)} from Ex. 30 (then another application of the
dependency graph processor yields the empty set of ADP problems). Here, we can
use the reduction pair processor with the polynomial interpretation that maps G

7 In addition, the corresponding non-annotated right-hand side ♭(rj) must be at least
weakly decreasing. This ensures that nested annotations behave “monotonically”.
So we have to ensure that Pol(A) > Pol(B) also implies that the #-sum of F (A) is
greater than F (B), i.e., Pol(A) > Pol(B) must imply that Sum(F (A)) = Pol(F (a))+
Pol(A) > Pol(F (b)) + Pol(B) = Sum(F (B)), which is ensured by Pol(a) ≥ Pol(b).

18 J.-C. Kassing, J. Giesl

to 1, and all other symbols to 0. Then (8′) is weakly decreasing, and (7′′) is strictly
decreasing, since (1) Pol(G) = 1 ≥ 3/4·Sum(d(G))+1/4·Sum(0) = 3/4·Pol(G) = 3/4
and (2) Pol(G) = 1 > Sum(0) = 0. Thus, the annotation of G in (7′′) is deleted.

Note that this polynomial interpretation would also satisfy the constraints for
DP(R2) = {(7), (8)} from Ex. 6, i.e., it would allow us to remove the annotations
from the canonical ADP directly. Hence, if we extended our approach for AST to
GVRFs that can duplicate annotations, then the reduction pair processor would
be unsound, as it would allow us to falsely “prove” AST of DP(R2). The problem
is that we compare terms with annotations via their #-sum, but for duplicating
ADPs like (8), Pol(d(x)) ≥ Pol(c(x, x)) does not imply Sum(d(G)) ≥ Sum(c(G,G))
since Sum(d(G)) = Pol(G) and Sum(c(G,G)) = Pol(G) + Pol(G).

Example 38. To prove AST for Ralg, we also have to remove all annotations from
all remaining sub-problems. For instance, for the sub-problem {(11′), (12′), ♭(13) -
♭(17)} from Ex. 28, we can use the reduction pair processor with the polynomial
interpretation that maps s(x) to x + 1, double(x) to 2x, triple(x) to 3x, L1(x)
to 1, and all other symbols to 0. Then (12′) is strictly decreasing, since (1)
Pol(L1(y)) = 1 ≥ 1/3 · Sum(L1(triple(y))) + 2/3 · Sum(loop2(triple(y))) = 1/3 and
(2) Pol(L1(y)) = 1 > Sum(loop2(triple(y))) = 0. Similarly, (11′) is also strictly
decreasing and we can remove all annotations from this ADP problem. One can
find similar interpretations to delete the remaining annotations also from the
other remaining sub-problems. This proves AST for DP(Ralg), and hence for Ralg.

Adaption for bAST: To adapt the reduction pair processor to bAST, we only
have to require the conditions of Thm. 36 for the second component P of a basic
ADP problem (I,P). So the reachability component I is needed to determine
which rules are usable in the usable rules processor, but it does not result in any
additional constraints for the reduction pair processor. Thus, proving bAST is
never harder than proving AST, since the second component changes in the same
way for AST and bAST in all processors except for the usable rules processor, which
is not applicable for AST. The conditions of Thm. 36 ensure that to prove AST,
infinitely many (at) or (af) steps with ADPs from P> do not have to be regarded
anymore and thus, we can remove their annotations in P. However, these ADPs
may still be applied in finitely many initial (at) or (af) steps. Thus, similar to
the dependency graph processor, we have to keep the original annotated ADPs
from P> in the reachability component I.

Theorem 39 (Reduction Pair Processor for bAST). Let Pol : T # → N[V]
be a multilinear polynomial interpretation and let P = P≥ ⊎ P> with P> ̸= ∅
satisfy the conditions of Thm. 36. Then ProcRP(I,P) = {(I ∪ P>,P≥ ∪ ♭(P>))}
is sound and complete for bAST.

Example 40. If we only want to prove bAST of Ralg, then the application of the
reduction pair processor is easier than in Ex. 38, as we have less constraints.
For instance, consider the basic ADP problem from Ex. 33 which results from
({(11′), (12′′)}, {(16), ♭(11) - ♭(15), ♭(17)}) by setting the flags of all ADPs except

Annotated DPs for Full AST of Probabilistic Term Rewriting 19

the double- and triple-ADPs ♭(14), ♭(15), (16), ♭(17) to false. When using the
polynomial interpretation Pol(T(x)) = x, Pol(s(x)) = x+1, Pol(double(x)) = 2x,
and Pol(triple(x)) = 3x, the ADP (16) is strictly decreasing and ♭(14) - ♭(17) are
weakly decreasing. Thus, we can remove all annotations without having to regard
any of the other (probabilistic) ADPs. In contrast, when proving AST instead of
bAST, all ADPs in the corresponding ADP problem {(16), ♭(11) - ♭(15), ♭(17)}
have the flag true and thus, here we have to find a polynomial interpretation
which also makes the ADPs ♭(11) - ♭(13) weakly decreasing.

4.5 Probability Removal Processor

Finally, in proofs with the ADP framework, one may obtain ADP problems P
with a non-probabilistic structure, i.e., every ADP has the form ℓ → {1 : r}m.
Then the probability removal processor allows us to switch to ordinary (non-
probabilistic) DPs. Ordinary DP problems for termination of TRSs have two
components (D,R): a set of dependency pairs D, i.e., rules with annotations
only at the roots of both sides, and a TRS R containing rules that can be used
below the annotations. Such a DP problem is considered to be (innermost) non-
terminating if there exists an infinite chain t0, t1, t2, . . . with ti →D ◦ →∗

R ti+1

(ti
i→D,R ◦

i→∗
R ti+1) for all i ∈ N. Here, “◦” denotes composition and

i→D,R
is the restriction of →D to rewrite steps where the used redex is in NFR. This
definition corresponds to an infinite chain tree consisting of only a single path.

Theorem 41 (Probability Removal Processor for iAST). Let P be an ADP
problem where every ADP in P has the form ℓ→ {1 : r}m. Let dp(P) = {ℓ# →
t# | ℓ → {1 : r}m ∈ P, t ⊴# r}. Then P is iAST iff the non-probabilistic DP
problem (dp(P),np(P)) is innermost terminating. So the processor ProcPR(P) =
∅ is sound and complete for iAST iff (dp(P),np(P)) is innermost terminating.

Adaption for AST and bAST: ProcPR works in an analogous way for (b)AST, i.e.,
for both AST and bAST, we can switch to ordinary DPs for full rewriting. Of course,
here the “only if” direction does not hold for bAST because the non-probabilistic
DP framework considers arbitrary (possibly non-basic) start terms.

Theorem 42 (Probability Removal Processor for bAST and AST). Let P be
an ADP problem where every ADP in P has the form ℓ→ {1 : r}m. Then P is AST
iff the non-probabilistic DP problem (dp(P),np(P)) is terminating. So the proces-
sor ProcPR(P) = ∅ is sound and complete for AST iff (dp(P),np(P)) is terminat-
ing. Similarly, (I,P) is bAST if (dp(P),np(P)) is terminating. So ProcPR(I,P)
= ∅ is sound and complete for bAST if (dp(P),np(P)) is terminating.

4.6 Switching From Full to Innermost AST

In the non-probabilistic DP framework for analyzing termination of TRSs, there
is a processor to switch from full to innermost rewriting if the DP problem
satisfies certain conditions [17, Thm. 32]. This is useful as the DP framework for

20 J.-C. Kassing, J. Giesl

innermost termination is more powerful than the one for full termination and in
this way, one can switch to the innermost case for certain sub-problems, even if
the whole TRS does not belong to any class where innermost termination implies
termination. However, the soundness of this processor relies on the minimality
property, which does not hold in the probabilistic setting, see Remark 15. Indeed,
the following example which corresponds to [44, Ex. 3.15] shows that a similar
processor in the ADP framework would be unsound.

Example 43. The ADP problem with f(x)→ {1 : F(a)}true and a→ {1 : a}true is
not AST as we can rewrite F(a) to itself with the f-ADP. However, it is iAST as in
innermost evaluations, we have to rewrite the inner a, which does not terminate
but does not use any annotations, i.e., any (at) or (af) steps. The ADPs are
non-overlapping, and left- and right-linear. Thus, Thm. 3 to switch from full to
innermost AST cannot be applied on the level of ADP problems.

Hence, for AST of PTRSs that satisfy the conditions of Thm. 3 or 4, one
should apply the ADP framework for iAST [30], because its processors are more
powerful. But otherwise, one has to use our novel ADP framework for full AST.

5 Conclusion and Evaluation

In this paper, we introduced the first DP framework for AST and bAST of PTRSs,
which is based on the existing ADP framework from [30] for iAST. It is particularly
useful when analyzing (b)AST of overlapping PTRSs, as for such PTRSs we cannot
use the criteria of [29] for classes of PTRSs where iAST implies (b)AST.

Compared to the non-probabilistic DP framework for termination of TRSs
[2, 17, 18, 23, 24], analyzing AST automatically is significantly more difficult due to
the lack of a “minimality property” in the probabilistic setting, which would allow
several further processors. Moreover, the ADP framework for PTRSs is restricted
to multilinear reduction pairs. The following table compares the ADP frameworks
for AST, bAST, and iAST. The parts in italics show the differences to the non-
probabilistic DP framework. Here, “S” and “C” stand for “sound” and “complete”.

Processor ADP for AST ADP for bAST ADP for iAST

Chain Crit. S & C for non-duplicating S & C for weakly spare S & C

Dep. Graph S & C S & C S & C
Usable Terms S & C S & C S & C
Usable Rules ¬ S (even with Cε-Rules) S & C S & C

Reduction Pairs S & C (multilinearity) S & C (multilinearity) S & C (multilinearity)
Probability Removal S & C S & C S & C

For our experimental evaluation, we compared all existing approaches to
prove (b)AST of PTRSs. More precisely, we compared our implementation of the
novel ADP framework for (b)AST in a new version of AProVE [19] with the old
version of AProVE that only implements the techniques from [28–30], and with
the direct application of polynomial interpretations from [28].8

8 In addition, an alternative technique to analyze PTRSs via a direct application of
interpretations was presented in [4]. However, [4] analyzes PAST (or rather strong
AST), and a comparison with their technique can be found in [28].

Annotated DPs for Full AST of Probabilistic Term Rewriting 21

To this end, we extended the existing benchmark set of 118 PTRSs from [29]
by 12 new examples including all PTRSs presented in this paper and PTRSs for
typical probabilistic algorithms on lists and trees. Of these 130 examples, the
direct application of polynomials can find 37 (1) AST proofs, old AProVE shows
AST for 50 (1) PTRSs, and our new AProVE version proves AST for 58 (6) examples.
In brackets we indicate the number of AST proofs when only regarding the 12 new
examples. The 118 benchmarks from [29] lack non-determinism by overlapping
rules and thus, here we are only able to prove AST for three more examples than old
AProVE. In contrast, our new 12 examples contain non-determinism and create
random data objects, which are accessed or modified afterwards (see App. A).
Our experiments show that our novel ADP framework can for the first time prove
AST of such PTRSs. If we consider basic start terms, the numbers rise to 62 (1)
for old AProVE and 74 (8) for new AProVE. For details on our experiments and
for instructions on how to run our implementation in AProVE via its web interface
or locally, see https://aprove-developers.github.io/ADPFrameworkFullAST.

Reduction pairs were also adapted to disprove reachability [49], and thus, in the
future we will also integrate reachability analysis into the ADP framework for bAST.
Moreover, we aim to analyze stronger properties like PAST via DPs. Here, we will
again start with innermost evaluation, which is easier to analyze. Furthermore,
we want to develop methods to automatically disprove (P)AST of PTRSs.

Acknowledgments. This paper is dedicated to Joost-Pieter Katoen whose ground-
breaking work on verification of probabilistic programs laid the foundations for
this whole research area. His scientific excellence, his enthusiasm in develop-
ing outstanding new research results, and his energy and commitment in the
establishment of new research projects (like, e.g., the DFG research training
group UnRAVeL) are outstanding. While originally we only analyzed “classical”
(non-probabilistic) programs, it is due to Joost-Pieter and this research training
group that we extended the focus of our research towards probabilistic programs.
Joost-Pieter is not only a major inspiration for our work and a fantastic chair of
the research training group UnRAVeL, but he is a great and close colleague, and
we look forward to many more joint years together in Aachen at the Chair i2.

References

[1] S. Agrawal, K. Chatterjee, and P. Novotný. “Lexicographic Ranking Su-
permartingales: An Efficient Approach to Termination of Probabilistic
Programs”. In: Proc. ACM Program. Lang. 2.POPL (2017). doi: 10.1145/
3158122.

[2] T. Arts and J. Giesl. “Termination of Term Rewriting Using Dependency
Pairs”. In: Theor. Comput. Sc. 236.1-2 (2000), pp. 133–178. doi: 10.1016/
S0304-3975(99)00207-8.

[3] T. Arts and J. Giesl. A Collection of Examples for Termination of Term
Rewriting Using Dependency Pairs. Tech. rep. https://verify.rwth-aachen.
de/giesl/papers/examples.pdf. RWTH Aachen University, 2001.

https://aprove-developers.github.io/ADPFrameworkFullAST
https://doi.org/10.1145/3158122
https://doi.org/10.1145/3158122
https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.1016/S0304-3975(99)00207-8
https://verify.rwth-aachen.de/giesl/papers/examples.pdf
https://verify.rwth-aachen.de/giesl/papers/examples.pdf

22 J.-C. Kassing, J. Giesl

[4] M. Avanzini, U. Dal Lago, and A. Yamada. “On Probabilistic Term Rewrit-
ing”. In: Sci. Comput. Program. 185 (2020). doi: 10.1016/j.scico.2019.
102338.

[5] M. Avanzini, G. Moser, and M. Schaper. “A Modular Cost Analysis for
Probabilistic Programs”. In: Proc. ACM Program. Lang. 4.OOPSLA (2020).
doi: 10.1145/3428240.

[6] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998. doi: 10.1017/CBO9781139172752.

[7] K. Batz, B. L. Kaminski, J.-P. Katoen, C. Matheja, and L. Verscht. “A
Calculus for Amortized Expected Runtimes”. In: Proc. ACM Program.
Lang. 7.POPL (2023). doi: 10.1145/3571260.

[8] R. Beutner and L. Ong. “On Probabilistic Termination of Functional Pro-
grams with Continuous Distributions”. In: Proc. PLDI ’21. 2021, pp. 1312–
1326. doi: 10.1145/3453483.3454111.

[9] O. Bournez and C. Kirchner. “Probabilistic Rewrite Strategies. Applications
to ELAN”. In: Proc. RTA ’02. LNCS 2378. 2002, pp. 252–266. doi: 10.1007/3-
540-45610-4 18.

[10] O. Bournez and F. Garnier. “Proving Positive Almost-Sure Termination”.
In: Proc. RTA ’05. LNCS 3467. 2005, pp. 323–337. doi: 10.1007/978-3-540-
32033-3 24.

[11] K. Chatterjee, H. Fu, and P. Novotný. “Termination Analysis of Prob-
abilistic Programs with Martingales”. In: Foundations of Probabilistic
Programming. Ed. by G. Barthe, J.-P. Katoen, and A. Silva. Cambridge
University Press, 2020, 221–258. doi: 10.1017/9781108770750.008.

[12] U. Dal Lago and C. Grellois. “Probabilistic Termination by Monadic Affine
Sized Typing”. In: Proc. ESOP ’17. LNCS 10201. 2017, pp. 393–419. doi:
10.1007/978-3-662-54434-1 15.

[13] U. Dal Lago, C. Faggian, and S. R. Della Rocca. “Intersection Types
and (Positive) Almost-Sure Termination”. In: Proc. ACM Program. Lang.
5.POPL (2021). doi: 10.1145/3434313.

[14] C. Faggian. “Probabilistic Rewriting and Asymptotic Behaviour: On Ter-
mination and Unique Normal Forms”. In: Log. Methods in Comput. Sci.
18.2 (2022). doi: 10.46298/lmcs-18(2:5)2022.

[15] L. M. Ferrer Fioriti and H. Hermanns. “Probabilistic Termination: Sound-
ness, Completeness, and Compositionality”. In: Proc. POPL ’15. 2015,
pp. 489–501. doi: 10.1145/2676726.2677001.

[16] F. Frohn and J. Giesl. “Analyzing Runtime Complexity via Innermost
Runtime Complexity”. In: Proc. LPAR ’17. EPiC 46. 2017, pp. 249–228.
doi: 10.29007/1nbh.

[17] J. Giesl, R. Thiemann, and P. Schneider-Kamp. “The Dependency Pair
Framework: Combining Techniques for Automated Termination Proofs”.
In: Proc. LPAR ’04. LNCS 3452. 2004, pp. 301–331. doi: 10.1007/978-3-
540-32275-7 21.

https://doi.org/10.1016/j.scico.2019.102338
https://doi.org/10.1016/j.scico.2019.102338
https://doi.org/10.1145/3428240
https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.1145/3571260
https://doi.org/10.1145/3453483.3454111
https://doi.org/10.1007/3-540-45610-4_18
https://doi.org/10.1007/3-540-45610-4_18
https://doi.org/10.1007/978-3-540-32033-3_24
https://doi.org/10.1007/978-3-540-32033-3_24
https://doi.org/10.1017/9781108770750.008
https://doi.org/10.1007/978-3-662-54434-1_15
https://doi.org/10.1145/3434313
https://doi.org/10.46298/lmcs-18(2:5)2022
https://doi.org/10.1145/2676726.2677001
https://doi.org/10.29007/1nbh
https://doi.org/10.1007/978-3-540-32275-7_21
https://doi.org/10.1007/978-3-540-32275-7_21

Annotated DPs for Full AST of Probabilistic Term Rewriting 23

[18] J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. “Mechanizing
and Improving Dependency Pairs”. In: J. Autom. Reason. 37.3 (2006),
pp. 155–203. doi: 10.1007/s10817-006-9057-7.

[19] J. Giesl, C. Aschermann, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs,
J. Hensel, C. Otto, M. Plücker, P. Schneider-Kamp, T. Ströder, S. Swider-
ski, and R. Thiemann. “Analyzing Program Termination and Complexity
Automatically with AProVE”. In: J. Autom. Reason. 58.1 (2017), pp. 3–31.
doi: 10.1007/s10817-016-9388-y.

[20] J. Giesl, P. Giesl, and M. Hark. “Computing Expected Runtimes for
Constant Probability Programs”. In: Proc. CADE ’19. LNCS 11716. 2019,
pp. 269–286. doi: 10.1007/978-3-030-29436-6 16.

[21] A. D. Gordon, T. A. Henzinger, A. V. Nori, and S. K. Rajamani. “Prob-
abilistic Programming”. In: Proc. FOSE ’14. 2014, pp. 167–181. doi:
10.1145/2593882.2593900.

[22] R. Gutiérrez and S. Lucas. “MU-TERM: Verify Termination Properties
Automatically (System Description)”. In: Proc. IJCAR ’20. LNCS 12167.
2020, pp. 436–447. doi: 10.1007/978-3-030-51054-1 28.

[23] N. Hirokawa and A. Middeldorp. “Automating the Dependency Pair
Method”. In: Inf. Comput. 199.1-2 (2005), pp. 172–199. doi: 10.1016/
j.ic.2004.10.004.

[24] N. Hirokawa and A. Middeldorp. “Tyrolean Termination Tool: Techniques
and Features”. In: Inf. Comput. 205.4 (2007), pp. 474–511. doi: 10.1016/J.
IC.2006.08.010.

[25] M. Huang, H. Fu, K. Chatterjee, and A. K. Goharshady. “Modular Verifi-
cation for Almost-Sure Termination of Probabilistic Programs”. In: Proc.
ACM Program. Lang. 3.OOPSLA (2019). doi: 10.1145/3360555.

[26] B. L. Kaminski, J.-P. Katoen, C. Matheja, and F. Olmedo. “Weakest
Precondition Reasoning for Expected Runtimes of Randomized Algorithms”.
In: J. ACM 65 (2018), pp. 1–68. doi: 10.1145/3208102.

[27] B. L. Kaminski, J.-P. Katoen, and C. Matheja. “Expected Runtime Analyis
by Program Verification”. In: Foundations of Probabilistic Programming.
Ed. by G. Barthe, J.-P. Katoen, and A. Silva. Cambridge University Press,
2020, 185–220. doi: 10.1017/9781108770750.007.

[28] J.-C. Kassing and J. Giesl. “Proving Almost-Sure Innermost Termination of
Probabilistic Term Rewriting Using Dependency Pairs”. In: Proc. CADE ’23.
LNCS 14132. 2023, pp. 344–364. doi: 10.1007/978-3-031-38499-8 20.

[29] J.-C. Kassing, F. Frohn, and J. Giesl. “From Innermost to Full Almost-
Sure Termination of Probabilistic Term Rewriting”. In: Proc. FoSSaCS ’24.
LNCS 14575. 2024, pp. 206–228. doi: 10.1007/978-3-031-57231-9 10.

[30] J.-C. Kassing, S. Dollase, and J. Giesl. “A Complete Dependency Pair
Framework for Almost-Sure Innermost Termination of Probabilistic Term
Rewriting”. In: Proc. FLOPS ’24. LNCS 14659. 2024, pp. 62–80. doi:
10.1007/978-981-97-2300-3 4.

https://doi.org/10.1007/s10817-006-9057-7
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/978-3-030-29436-6_16
https://doi.org/10.1145/2593882.2593900
https://doi.org/10.1007/978-3-030-51054-1_28
https://doi.org/10.1016/j.ic.2004.10.004
https://doi.org/10.1016/j.ic.2004.10.004
https://doi.org/10.1016/J.IC.2006.08.010
https://doi.org/10.1016/J.IC.2006.08.010
https://doi.org/10.1145/3360555
https://doi.org/10.1145/3208102
https://doi.org/10.1017/9781108770750.007
https://doi.org/10.1007/978-3-031-38499-8_20
https://doi.org/10.1007/978-3-031-57231-9_10
https://doi.org/10.1007/978-981-97-2300-3_4

24 J.-C. Kassing, J. Giesl

[31] J.-C. Kassing, G. Vartanyan, and J. Giesl. “A Dependency Pair Framework
for Relative Termination of Term Rewriting”. In: Proc. IJCAR ’24. LNCS
14740. 2024, pp. 360–380. doi: 10.1007/978-3-031-63501-4 19.

[32] J.-C. Kassing and J. Giesl. “Annotated Dependency Pairs for Full Almost-
Sure Termination of Probabilistic Term Rewriting”. In: CoRR abs/2408.
06768 (2024). doi: 10.48550/arXiv.2408.06768.

[33] M. Korp, C. Sternagel, H. Zankl, and A. Middeldorp. “Tyrolean Termination
Tool 2”. In: Proc. RTA ’09. LNCS 5595. 2009, pp. 295–304. doi: 10.1007/978-
3-642-02348-4 21.

[34] D. Kozen. “A Probabilistic PDL”. In: J. Comput. Syst. Sci. 30.2 (1985),
pp. 162–178. doi: 10.1016/0022-0000(85)90012-1.

[35] D. S. Lankford. On Proving Term Rewriting Systems are Noetherian. Memo
MTP-3, Math. Dept., Louisiana Technical University, Ruston, LA, 1979.
url: https://www.ens- lyon.fr/LIP/REWRITING/TERMINATION/
Lankford Poly Term.pdf.

[36] L. Leutgeb, G. Moser, and F. Zuleger. “Automated Expected Amortised
Cost Analysis of Probabilistic Data Structures”. In: Proc. CAV ’22. LNCS
13372. 2022, pp. 70–91. doi: 10.1007/978-3-031-13188-2 4.

[37] A. McIver and C. Morgan. Abstraction, Refinement and Proof for Proba-
bilistic Systems. Springer, 2005. doi: 10.1007/B138392.

[38] A. McIver, C. Morgan, B. L. Kaminski, and J.-P. Katoen. “A New Proof
Rule for Almost-Sure Termination”. In: Proc. ACM Program. Lang. 2.POPL
(2018). doi: 10.1145/3158121.

[39] F. Meyer, M. Hark, and J. Giesl. “Inferring Expected Runtimes of Prob-
abilistic Integer Programs Using Expected Sizes”. In: Proc. TACAS ’21.
LNCS 12651. 2021, pp. 250–269. doi: 10.1007/978-3-030-72016-2 14.

[40] M. Moosbrugger, E. Bartocci, J.-P. Katoen, and L. Kovács. “Automated
Termination Analysis of Polynomial Probabilistic Programs”. In: Proc.
ESOP ’21. LNCS 12648. 2021, pp. 491–518. doi: 10.1007/978-3-030-72019-
3 18.

[41] V. C. Ngo, Q. Carbonneaux, and J. Hoffmann. “Bounded Expectations:
Resource Analysis for Probabilistic Programs”. In: Proc. PLDI ’18. 2018,
pp. 496–512. doi: 10.1145/3192366.3192394.

[42] N. Saheb-Djahromi. “Probabilistic LCF”. In: Proc. MFCS ’78. LNCS 64.
1978, pp. 442–451. doi: 10.1007/3-540-08921-7 92.

[43] P. Schröer, K. Batz, B. L. Kaminski, J. Katoen, and C. Matheja. “A
Deductive Verification Infrastructure for Probabilistic Programs”. In: Proc.
ACM Program. Lang. 7.OOPSLA2 (2023), pp. 2052–2082. doi: 10.1145/
3622870.

[44] R. Thiemann. “The DP Framework for Proving Termination of Term
Rewriting”. PhD thesis. RWTH Aachen University, 2007. url: https :
//verify.rwth-aachen.de/da/thiemann-diss.pdf.

[45] Y. Toyama. “Counterexamples to Termination for the Direct Sum of Term
Rewriting Systems”. In: Inf. Process. Lett. 25.3 (1987), pp. 141–143. doi:
10.1016/0020-0190(87)90122-0.

https://doi.org/10.1007/978-3-031-63501-4_19
https://doi.org/10.48550/arXiv.2408.06768
https://doi.org/10.1007/978-3-642-02348-4_21
https://doi.org/10.1007/978-3-642-02348-4_21
https://doi.org/10.1016/0022-0000(85)90012-1
https://www.ens-lyon.fr/LIP/REWRITING/TERMINATION/Lankford_Poly_Term.pdf
https://www.ens-lyon.fr/LIP/REWRITING/TERMINATION/Lankford_Poly_Term.pdf
https://doi.org/10.1007/978-3-031-13188-2_4
https://doi.org/10.1007/B138392
https://doi.org/10.1145/3158121
https://doi.org/10.1007/978-3-030-72016-2_14
https://doi.org/10.1007/978-3-030-72019-3_18
https://doi.org/10.1007/978-3-030-72019-3_18
https://doi.org/10.1145/3192366.3192394
https://doi.org/10.1007/3-540-08921-7_92
https://doi.org/10.1145/3622870
https://doi.org/10.1145/3622870
https://verify.rwth-aachen.de/da/thiemann-diss.pdf
https://verify.rwth-aachen.de/da/thiemann-diss.pdf
https://doi.org/10.1016/0020-0190(87)90122-0

Annotated DPs for Full AST of Probabilistic Term Rewriting 25

[46] X. Urbain. “Modular and Incremental Automated Termination Proofs”. In:
J. Autom. Reason. 32.4 (2004), pp. 315–355. doi: 10.1007/BF03177743.

[47] D. Wang, D. M. Kahn, and J. Hoffmann. “Raising Expectations: Automat-
ing Expected Cost Analysis with Types”. In: Proc. ACM Program. Lang.
4.ICFP (2020). doi: 10.1145/3408992.

[48] A. Yamada, K. Kusakari, and T. Sakabe. “Nagoya Termination Tool”. In:
Proc. RTA-TLCA ’14. LNCS 8560. 2014, pp. 466–475. doi: 10.1007/978-3-
319-08918-8 32.

[49] A. Yamada. “Term Orderings for Non-reachability of (Conditional) Rewrit-
ing”. In: Proc. IJCAR ’22. 2022, pp. 248–267. doi: 10.1007/978-3-031-
10769-6 15.

A Appendix

In this appendix, we present three examples to demonstrate how our novel ADP
framework can be used for full rewriting on data structures like lists or trees.
They show that in contrast to most other techniques for analyzing AST, due to
probabilistic term rewriting, our approach is also suitable for the analysis of
algorithms on algebraic data structures other than numbers.

A.1 Lists

We start with algorithms on lists. Similar to Alg. 1, the following algorithm first
creates a random list, filled with random numbers, and afterwards uses the list
for further computation. In general, algorithms that access or modify randomly
generated lists can be analyzed by our new ADP framework.

The algorithm below computes the sum of all numbers in the generated list.
Here, natural numbers are again represented via the constructors 0 and s, and
lists are represented via nil (for the empty list) and cons, where, e.g., cons(s(0),
cons(s(0), cons(0, nil))) represents the list [1, 1, 0]. The function createL(xs) adds
a prefix of arbitrary length filled with arbitrary natural numbers in front of the
list xs. Moreover, app(xs, ys) concatenates the two lists xs and ys. Finally, for
a non-empty list xs of numbers, sum(xs) computes a singleton list whose only
element is the sum of all numbers in xs . So sum(cons(s(0), cons(s(0), cons(0, nil))))
evaluates to sum(s(s(0)), nil).

init → {1 : sum(createL(nil))}
addNum(x, xs) → {1/2 : cons(x, xs), 1/2 : addNum(s(x), xs)}

createL(xs) → {1/2 : addNum(0, xs), 1/2 : createL(addNum(0, xs))}
plus(0, y) → {1 : y}

plus(s(x), y) → {1 : s(plus(x, y))}
sum(cons(x, nil)) → {1 : cons(x, nil)}

sum(cons(x, cons(y, ys))) → {1 : sum(cons(plus(x, y), ys))}
sum(app(xs, cons(x, cons(y, ys)))) → {1 : sum(app(xs, sum(cons(x, cons(y, ys)))))}

app(cons(x, xs), ys) → {1 : cons(x, app(xs, ys))}
app(nil, ys) → {1 : ys}

https://doi.org/10.1007/BF03177743
https://doi.org/10.1145/3408992
https://doi.org/10.1007/978-3-319-08918-8_32
https://doi.org/10.1007/978-3-319-08918-8_32
https://doi.org/10.1007/978-3-031-10769-6_15
https://doi.org/10.1007/978-3-031-10769-6_15

26 J.-C. Kassing, J. Giesl

app(xs, nil) → {1 : xs}

Note that the left-hand sides of the two rules app(nil, ys) → {1 : ys} and
app(xs, nil)→ {1 : xs} overlap and moreover, the last sum-rule overlaps with the
first app-rule. Hence, we cannot use the techniques from [29] to analyze full AST
of this PTRS. Furthermore, there exists no polynomial ordering that proves AST
for this example directly (i.e., without the use of DPs), because the left-hand
side of the last sum-rule is embedded in its right-hand side. With our new ADP
framework, AProVE can now prove AST of this example automatically.

Next, consider the following adaption of this example. Here, we only create
lists of even numbers.

init → {1 : sum(createL(nil))}
addNum(x, xs) → {1/2 : cons(plus(x, x), xs), 1/2 : addNum(s(x), xs)}

createL(xs) → {1/2 : addNum(0, xs), 1/2 : createL(addNum(0, xs))}
plus(0, y) → {1 : y}

plus(s(x), y) → {1 : s(plus(x, y))}
sum(cons(x, nil)) → {1 : cons(x, nil)}

sum(cons(x, cons(y, xs))) → {1 : sum(cons(plus(x, y), xs))}
sum(app(xs, cons(x, cons(y, ys)))) → {1 : sum(app(xs, sum(cons(x, cons(y, ys)))))}

app(cons(x, xs), ys) → {1 : cons(x, app(xs, ys))}
app(nil, ys) → {1 : ys}
app(xs, nil) → {1 : xs}

Due to the subterm plus(x, x) in the right-hand side, the addNum-rule is
duplicating. Hence, we cannot use the ADP framework for AST. However, the
PTRS is weakly spare, as the arguments of plus cannot contain defined function
symbols if we start with a basic term. Hence, AProVE can use the ADP framework
for bAST and successfully prove bAST of this example.

A.2 Trees

As another example, our new ADP framework can also deal with trees. In the
following algorithm (adapted from [3]), we consider binary trees represented via
leaf and tree(x, y), where concat(x, y) replaces the rightmost leaf of the tree x
by y. The algorithm first creates two random trees and then checks whether the
first tree has less leaves than the second one.

init → {1 : lessleaves(createT(leaf), createT(leaf))}
concat(leaf, y) → {1 : y}

concat(tree(u, v), y) → {1 : tree(u, concat(v, y))}
lessleaves(x, leaf) → {1 : false}

lessleaves(leaf, tree(x, y)) → {1 : true}
lessleaves(tree(u, v), tree(x, y)) → {1 : lessleaves(concat(u, v), concat(x, y))}

createT(xs) → {1 : xs}
createT(xs) → {1/3 : xs, 1/3 : createT(tree(xs, leaf)), 1/3 : createT(tree(leaf, xs))}

Note that the last two rules are overlapping. Again, our new ADP framework
is able to prove AST for this example, while both [29] and the direct application
of polynomial interpretations fail.

	Annotated Dependency Pairs forFull Almost-Sure Termination ofProbabilistic Term Rewriting

