
Automated Termination Proofs with

Measure Functions

?

J�urgen Giesl

FB Informatik, Technische Hochschule Darmstadt,

Alexanderstr. 10, 64283 Darmstadt, Germany

Email: giesl@inferenzsysteme.informatik.th-darmstadt.de

Abstract. This paper deals with the automation of termination proofs

for recursively de�ned algorithms (i.e. algorithms in a pure functional

language). Previously developed methods for their termination proofs

either had a low degree of automation or they were restricted to one

single �xed measure function to compare data objects. To overcome these

drawbacks we introduce a calculus for automated termination proofs

which is able to handle arbitrary measure functions based on polynomial

norms.

1 Introduction

Termination of algorithms is a central problem in software development. For an

automation of program veri�cation, termination proofs have to be performed

mechanically, i.e. without human support. Of course, as the halting problem

is undecidable, there is no procedure to prove or disprove termination of all

algorithms.

In this paper we focus on recursively de�ned algorithms, i.e. algorithms in

a pure (eager) functional language without iterative loops. An algorithm f(x)

terminates, if there is a well-founded

1

relation such that in each recursive call

f(t), the argument t is smaller than the corresponding input x.

While most work on the automation of termination proofs has been done

in the areas of term rewriting systems (e.g. [Lan79], [Der87], [BL87], [Ste92])

and logic programs (e.g. [Pl�u90], [DSF93]), a well-known method for automated

termination proofs of lisp functions has been implemented in the nqthm system

of R. S. Boyer and J S. Moore [BM79]. For such an algorithm f(x) one has to

prove that in each recursive call f(t) a givenmeasure is decreased. More precisely,

Boyer and Moore use a measure function m which maps data objects to natural

numbers. Then their theorem prover has to verify that the numberm(t) is smaller

than the number m(x).

For this proof the user has to supply so-called induction lemmata. An in-

duction lemma points out that under a certain hypothesis � some operation

drives some measure down. For the termination proof of an algorithm f(x) with

a recursive call f(t), Boyer and Moore's theorem prover looks for an induction

?

Appeared in Proceedings of the 19th Annual German Conference on Arti�cial Intel-

ligence, Bielefeld, Germany, Springer{Verlag, LNAI 981, 1995.

1

A relation � is well-founded if there exists no in�nite descending chain : : : � x

2

� x

1

.

lemma with a conclusion saying that the measure m(t) is smaller than m(x), i.e.

an induction lemma of the form

�! m(t) < m(x):

The prover now only has to verify the hypothesis � of the induction lemma

under the assumptions of f 's case analysis. This is usually quite simple, i.e.

the termination proof for an algorithm f often succeeds using case analysis and

propositional reasoning only.

Boyer and Moore's technique for proving termination is very powerful, as

the methods works for arbitrary measure functions m. It has also been adapted

for termination proofs in other areas, e.g. an adaption of this technique for

termination proofs of general

2

conditional term rewriting systems can be found

in [BL93].

But a disadvantage of Boyer and Moore's induction lemma technique is a

low degree of automation. Induction lemmata which specify that certain opera-

tions decrease measures have to be formulated by the user of the system. So the

human has to �nd the idea why an algorithm terminates. Moreover, to ensure

the soundness of the user supplied induction lemmata, these lemmata have to be

veri�ed by the system. This veri�cation may be hard, as in general an inductive

proof is needed.

Therefore an alternative method for automated termination proofs of algo-

rithms has been developed by C. Walther [Wal88], [Wal94]. With this method

a certain class of induction lemmata can be synthesized automatically and the

soundness of these induction lemmata is guaranteed by construction. So com-

pared to the technique of Boyer and Moore the advantage of Walther's method

is a much higher degree of automation.

But a drawback of Walther's method is that it is restricted to one single

�xed measure function, viz. the so-called size measure function, while the system

of Boyer and Moore can use arbitrary measure functions m for termination

proofs. Using the size measure function, data objects x are compared by their

size jxj

#

, i.e. lists are compared by their length, trees are compared by the

number of their nodes etc. Although Walther's method is successful for many

algorithms, there are numerous interesting algorithms for whose termination

proof a measure function di�erent from size is needed and for these algorithms

Walther's approach always fails.

In this paper we therefore present an extension of Walther's method to ar-

bitrary measure functions (satisfying certain requirements). Walther's technique

consists of a calculus (the so-called estimation calculus) to prove that the size of

2

Recursively de�ned algorithms can be regarded as a special type of (conditional) term

rewriting systems with an innermost evaluation strategy. But due to their special

form and due to this evaluation strategy it is possible to use a di�erent approach

for termination proofs of algorithms than it is necessary for term rewriting systems

[Gie95b]. For instance, for algorithms it is su�cient to compare the input arguments

with the arguments in the recursive calls, while for term rewriting systems left and

right hand sides of all rules have to be compared.

an object x is smaller than the size of another object y (i.e. the calculus proves

statements of the form jxj

#

< jyj

#

). The central idea of our extension is to adapt

a technique from the area of term rewriting systems [Lan79] and to replace the

estimation calculus by a technique for proving polynomial inequalities automat-

ically. While the estimation calculus only works for the size measure function,

our approach allows the use of any measure function based on so-called poly-

nomial norms. For any given measure function our method synthesizes sound

induction lemmata and proves termination of algorithms fully automatically. So

the presented technique combines the high degree of automation of Walther's

technique with the powerful generality of Boyer and Moore's method.

The remainder of the paper is organized as follows: In Section 2 we introduce

our approach with two examples. Instead of Walther's estimation calculus we

de�ne a calculus for arbitrary polynomial norms in Section 3. Section 4 shows

how to derive sound induction lemmata. In Section 5 we comment on some

re�nements of the proposed method and Section 6 ends with a conclusion and

an outlook on future work.

2 Termination Proofs with Arbitrary Measure Functions

In this section we illustrate how techniques for proving polynomial inequalities

can be used for termination proofs of algorithms. As an example regard the fol-

lowing normalization algorithm for conditional expressions which constitutes one

of the hardest termination problems in [BM79]. To represent conditional expres-

sions we use a data structure cexpr whose objects are built with the constructors

atomic and cond. The nullary function atomic represents an atomic expression

and the function cond : cexpr � cexpr � cexpr ! cexpr is used to represent a

conditional. Here, cond(x; y; z) stands for \if x then y else z".

The aim of the algorithm normalize is to transform a conditional expression

into an equivalent expression whose conditions are atomic. The algorithm is

based on the fact that the expression \if (if u then v else w) then y else z" is

equivalent to \if u then (if v then y else z) else (if w then y else z)".

function normalize (x : cexpr) : cexpr (

if x = atomic then x

if x = cond(atomic; y; z) then cond(atomic; normalize(y); normalize(z))

if x = cond(cond(u; v;w); y; z) then normalize(cond(u; cond(v; y; z); cond(w;y; z)))

To prove the termination of this algorithm

3

, there has to be a well-founded

relation such that the arguments in the recursive calls are smaller than the

corresponding inputs. Using a measure function m one therefore has to prove

m(y) < m(cond(atomic; y; z)); (1)

m(z) < m(cond(atomic; y; z)); (2)

m(cond(u; cond(v; y; z); cond(w; y; z))) < m(cond(cond(u; v; w); y; z)): (3)

3

To ease readability we have used a formulation of the algorithm with pattern

matching instead of selectors (or destructors). For the handling of selectors the reader

is referred to Section 3.

The method of Walther compares objects by their size, where the size of a con-

ditional expression is the number of occurring conditionals. So the size measure

function maps atomic expressions to the number 0 (i.e. jatomicj

#

= 0) and

for conditionals we have jcond(x; y; z)j

#

= 1+ jxj

#

+ jyj

#

+ jzj

#

. Using the size

measure function the inequalities (1) and (2) can be veri�ed, as cond(atomic; y; z)

contains one more occurrence of cond than y or z. But the third inequality (3)

is not true for the size measure, as we have

jcond(u; cond(v; y; z); cond(w; y; z))j

#

= 3 + juj

#

+ jvj

#

+ jwj

#

+ 2jyj

#

+ 2jzj

#

which is greater than

jcond(cond(u; v; w); y; z)j

#

= 2 + juj

#

+ jvj

#

+ jwj

#

+ jyj

#

+ jzj

#

:

So the size measure function cannot be used for the termination proof of nor-

malize and therefore Walther's method fails.

When examining several methods to prove termination of normalize, L. Paul-

son suggested to use the following mapping j:j from objects of the data structure

cexpr to natural numbers [Pau86]. Atomic expressions should be mapped to the

number 1 (i.e. jatomicj = 1) and the mapping for conditionals is jcond(x; y; z)j =

jxj(1+ jyj+ jzj). So for example jcond(atomic; atomic; atomic)j = 1(1+1+1) = 3.

Using j:j as a measure function, the inequalities (1) - (3) become

jyj < 1 + jyj + jzj;

jzj < 1 + jyj + jzj;

juj(1 + (jvj+ jwj)(1 + jyj+ jzj)) < juj(1 + jvj+ jwj)(1 + jyj+ jzj):

Application of simple arithmetical laws transforms the above inequalities into

0 < 1 + jzj; (4)

0 < 1 + jyj; (5)

0 < juj(jyj+ jzj): (6)

These new inequalities are polynomial inequalities as on their right sides there are

polynomials over the \variables" juj; jyj; jzj. To prove termination of normalize

we have to verify that these polynomial inequalities are true for all instantiations

of u; y; z with conditional expressions. As objects of the data structure cexpr are

only mapped to numbers greater or equal than 1, it su�ces if (4) - (6) hold

for all juj; jyj; jzj � 1. So instead of the estimation calculus (which only works

for the special measure function j:j

#

) we now need a method to prove polyno-

mial inequalities. Note that in general it is undecidable whether a polynomial

inequality is true for all instantiations of its variables with naturals [Lan79].

The use of polynomial mappings j:j for termination proofs is a technique often

used for termination proofs of term rewriting systems [Lan79], [Der87]. Therefore

in this area several methods have been developed to automatically prove that

given polynomial inequalities hold for all instantiations of the variables with

natural numbers greater than some minimal value. One of the best known ap-

proaches has been developed by A. Ben Cherifa and P. Lescanne [BL87] and has

been re�ned by J. Steinbach [Ste92]. Recently, we have presented a simpler and

slightly more powerful alternative approach for proving polynomial inequalities

which is based on Lankford's partial derivative technique [Gie95a].

The main idea of this approach is that instead of proving inequality (6) for all

natural numbers juj; jyj; jzj � 1 it is su�cient if this inequality holds for juj = 1

and if juj(jyj+ jzj) is not decreasing when juj is increasing. In other words the

partial derivative of juj(jyj + jzj) with respect to juj should be non-negative.

Therefore we can replace (6) by

0 < jyj+ jzj (resulting from juj = 1) and (7)

0 � jyj+ jzj (resulting from partial derivation): (8)

By further application of this technique (i.e. demanding that (7) and (8) hold for

jyj = 1 and that the partial derivatives with respect to jyj are non-negative) (7)

is transformed into 0 < 1 + jzj and 0 � 1 and (8) is transformed into 0 � 1 + jzj

and 0 � 1. Finally the variable jzj is eliminated in the same way. This yields

the inequalities 0 < 2 and 0 � 1 resp. 0 � 2 and 0 � 1. As these resulting

inequalities (between numbers) are true, the original inequality (6) also holds for

all juj; jyj; jzj � 1. The validity of the other two inequalities (4) and (5) can be

veri�ed in the same way. Hence, the termination of normalize is proved.

So we replace Walther's estimation calculus by a (simple, e�cient and easy to

implement) method for proving polynomial inequalities. This results in a more

powerful technique, because instead of the size measure function our method can

use arbitrary polynomial norms.

Formally, a polynomial norm j:j is de�ned by associating an n-ary polynomial

POL(c) with each n-ary constructor c (e.g. in our example the nullary polynomial

1 is associated with the constructor atomic and the polynomial x(1 + yz) is

associated with cond). In this way each object c(x

1

; : : : ; x

n

) of a data structure

is mapped to a natural number POL(c) (jx

1

j; : : : ; jx

n

j), i.e. a polynomial norm

is a homomorphism from the data structure to the naturals.

To conclude this section let us extend our approach to algorithms with more

than one formal parameter. As an example consider the following multiplica-

tion algorithm by T. Kolbe which uses a data structure nat to represent natural

numbers. Objects of this data structure are built with the constructors zero and

succ : nat ! nat (for the successor function). The algorithm times has three

arguments, where the third argument is used as an accumulator. times(x; y; z)

computes xy + z (i.e. if z is zero, then times computes the multiplication of x

and y).

function times (x; y; z : nat) : nat (

if x = zero ^ z = zero then zero

if x = succ(u) ^ z = zero then times(u; y; y)

if z = succ(w) then succ(times(x; y; w))

To prove termination of times we must now use a measure function m on

tuples of data objects such that

m(u; y; y) < m(succ(u); y; zero); (9)

m(x; y; w) < m(x; y; succ(w)): (10)

In addition to a polynomial norm j:j which maps objects of the data struc-

ture nat to natural numbers, we therefore also have to use a polynomial map-

ping M : IN

3

! IN to map triples of natural numbers to one natural number.

So for algorithms with several formal parameters we use measure functions m

which measure data objects by a polynomial norm j:j and which measure tu-

ples of naturals by a polynomial mapping M . Then m(t

1

; : : : ; t

n

) is de�ned as

M (jt

1

j; : : : ; jt

n

j).

For instance, termination of times can be proved with the norm jzeroj = 0,

jsucc(x)j = 1 + jxj and the mapping M (x; y; z) = xy + x+ y + z. Then we have

m(u; y; y) = M (juj; jyj; jyj) = jujjyj+ juj+ 2jyj and

m(succ(u); y; zero) = M (jsucc(u)j; jyj; jzeroj) = jujjyj+ juj+ 2jyj+ 1:

By simple arithmetical laws (9) (and also (10)) are both transformed into the

obviously valid inequality 0 < 1. Therefore the termination of times is veri�ed.

3 A Calculus for Termination Proofs

The simple termination proof method sketched in Section 2 only works if the

examined algorithm does not call other algorithms in its recursive calls. We il-

lustrate this problem with an example by J. McCarthy, viz. the algorithm same-

fringe which calls the algorithm gopher. For gopher's termination proof a measure

function di�erent from size must be used. Therefore the method of Walther can-

not prove termination of gopher and consequently it cannot prove termination

of samefringe either.

The algorithm samefringe works on s-expressions, the data structure used in

the programming language lisp. The data structure sexpr has the nullary con-

structor nil, the unary constructor atom : nat ! sexpr and the binary constructor

cons : sexpr � sexpr ! sexpr to build pairs of s-expressions. To ease readability

we write cons(0; 0) instead of cons(atom(zero); atom(zero)) etc.

The \fringe" of an s-expression is the sequence of atoms obtained by reading

the s-expression from left to right. Therefore the s-expressions cons(cons(1; 2); 3)

and cons(1; cons(2; 3)) have the same fringe [1; 2; 3].

The algorithm samefringe examines whether two s-expressions have the same

fringe. It uses the algorithm gopher which \rotates" an s-expression until the

�rst argument of the outermost cons is an atom, i.e. gopher(cons(cons(1; 2); 3)) =

cons(1; cons(2; 3)).

function gopher (x : sexpr) : sexpr (

if x = cons(cons(u; v); w) then gopher(cons(u; cons(v; w)))

otherwise x

Termination of gopher can easily be proved using the polynomial norm jnilj =

0, jatom(n)j = 0, jcons(u; v)j = 1 + juj.

For each n-ary constructor c of a data structure we need n selector algorithms

(or destructors) d

1

; : : : ; d

n

which, given an object c(x

1

; : : : ; x

n

), return the cor-

responding arguments, i.e. d

i

(c(x

1

; : : : ; x

n

)) = x

i

. For the data structure sexpr

we therefore use the selectors car and cdr, where car returns the �rst element

of a cons-pair and cdr returns the second element (i.e. car(cons(u; v)) = u and

cdr(cons(u; v)) = v). If applied to nil or atom(: : :), car and cdr yield the result nil.

function samefringe (x; y : sexpr) : bool (

if x = y then true

if x 6= y ^ x = cons(: : :) ^ y = cons(: : :)

^ car(gopher(x)) = car(gopher(y)) then samefringe(cdr(gopher(x));cdr(gopher(y)))

otherwise false

We attempt to prove termination of samefringe

4

with the polynomial norm

jnilj = 1, jatom(n)j = 1, jcons(u; v)j = juj+ jvj. For termination we only consider

the �rst argument of samefringe, i.e. we use the polynomial mappingM (x; y) = x.

So our measure function is m(x; y) = M (jxj; jyj) = jxj. To prove samefringe's

termination we have to show that under the condition x 6= y^x = cons(: : :)^ : : :

the following inequality holds.

jcdr(gopher(x))j < jxj (11)

For the termination proofs of algorithms like normalize, times and gopher we

can directly apply the de�nition of the polynomial norm and obtain a set of

polynomial inequalities whose validity implies termination of the algorithm. For

these termination proofs two data objects built only with constructors have to be

compared. But for an algorithm like samefringe which calls two other algorithms

gopher and cdr, this simple transformation into polynomial inequalities is not

possible. The reason is that the polynomial norm is de�ned in terms of the

constructors nil, atom and cons. Therefore we cannot directly say which number

corresponds to the data object resulting from cdr(gopher(x)) by evaluation of

the algorithms gopher and cdr.

To solve this problem we need induction lemmata on the operations gopher

and cdr. The following two induction lemmata state that both gopher and cdr are

argument-bounded operations, i.e. under the given norm j:j the results of cdr(x)

and gopher(x) are always smaller or equal than the argument x.

jgopher(x)j � jxj; (12)

jcdr(x)j � jxj: (13)

In Section 4 we will illustrate how to synthesize such induction lemmata au-

tomatically. Induction lemma (12) states that jgopher(x)j is smaller or equal

than jxj and by induction lemma (13), jcdr(gopher(x))j is smaller or equal than

jgopher(x)j. Therefore we can conclude

jcdr(gopher(x))j � jgopher(x)j � jxj: (14)

4

In the above formulation of the algorithm samefringe, the condition \x = cons(: : :)"

is an abbreviation for \x = cons(u; v)" (or \x = cons(car(x);cdr(x))"), i.e. it ensures

that x is built with the constructor cons.

Hence by the transitivity of \�" the non-strict version of (11) is proved, i.e.

jcdr(gopher(x))j � jxj.

But for the termination of samefringe we have to prove that jcdr(gopher(x))j

is strictly smaller than jxj under the condition of samefringe's recursive case. So

under this condition one of the two inequalities in (14) has to be strict.

In the next section we will also demonstrate how to generate so-called dif-

ference algorithms �

gopher

and �

cdr

to indicate if jgopher(x)j resp. jcdr(x)j are

strictly smaller than x. For instance, we obtain the following di�erence algorithm

�

cdr

(for the above norm j:j).

function �

cdr

(x : sexpr) : bool (

if x = nil _ x = atom(n) then false

if x = cons(u; v) then true

Then the following induction lemmata hold as well.

�

gopher

(x)! jgopher(x)j < jxj; (15)

�

cdr

(x)! jcdr(x)j < jxj: (16)

Let hp � q; �i denote that the non-strict inequality p � q is true and that

the strict inequality p < q holds if the di�erence formula � is true. By the

induction lemmata (12) and (15) on the argument-boundedness of gopher we

can therefore derive

hjgopher(x)j � jxj; �

gopher

(x)i: (17)

Induction lemma (13) on the argument-boundedness of cdr implies that

jcdr(gopher(x))j is smaller or equal than jgopher(x)j and by the induction lemma

(16) we know that �

cdr

(gopher(x)) indicates if jcdr(gopher(x))j is strictly smaller

than jgopher(x)j. So using the induction lemmata (13) and (16) we can derive

the following fact from (17).

hjcdr(gopher(x))j � jxj; �

cdr

(gopher(x)) _�

gopher

(x)i (18)

To �nish the termination proof of samefringe we have to prove that the di�erence

formula �

cdr

(gopher(x)) _�

gopher

(x) is true under the condition of samefringe's

recursive case, i.e.

x 6= y ^ x = cons(: : :) ^ : : : ! �

cdr

(gopher(x)) _�

gopher

(x):

This theorem can easily be veri�ed by a theorem prover. The reason is that if x is

a cons-pair then gopher(x) also returns a data object built with cons and therefore

�

cdr

(gopher(x)) returns true under the above conditions.

Analyzing the termination proof for samefringe we obtain the following calcu-

lus for termination proofs with arbitrary measure functions. For each recursive

call f(t

1

; : : : ; t

n

) of an algorithm f(x

1

; : : : ; x

n

) we apply the calculus to derive

hM (jt

1

j; : : : ; jt

n

j) � M (jx

1

j; : : : ; jx

n

j); �i for some formula �. Then we use a

theorem prover to verify that the di�erence formula� holds under the condition

of the recursive case. Our calculus consists of the following three inference rules

to derive formulas of the form hp � q; �i.

Strict Inequality Rule

If p and q are polynomials then we can use the technique sketched in Section

2 to prove the polynomial inequality p < q. Validity of p < q implies the non-

strict inequality p � q and the corresponding di�erence formula is always

true. This results in the following rule.

hp � q; truei

; if p and q are polynomials and p < q holds.

Non-Strict Inequality Rule

If p and q are polynomials and we can prove p � q but we cannot prove p < q

then we can at least derive hp � q; falsei.

hp � q; falsei

; if p and q are polynomials and p � q holds.

Estimation Rule

This rule formalizes the estimation of an argument-bounded operation by its

argument. Let p contain

5

a call of an algorithm g, i.e. p = : : :+ jg(r)j+ : : :

If we know an induction lemma stating that g is argument-bounded (i.e.

jg(x)j � jxj) and if we know g's di�erence algorithm �

g

and the induction

lemma �

g

(x)! jg(x)j < jxj, then we can conclude

hjg(r)j � jrj; �

g

(r)i (19)

for all terms r. Assume that hjrj � q; �i holds. Then from (19) we can derive

hjg(r)j � q; �

g

(r) _�i. We formalize this reasoning step by the following

inference rule

h: : :+ jrj+ : : : � q; �i

h: : :+ jg(r)j+ : : : � q; �

g

(r) _�i

; if g is an argument-bounded operation.

With this calculus we can derive hjxj � jxj; falsei (by the non-strict inequal-

ity rule) and by two applications of the estimation rule we obtain the formula

(18) needed for the termination proof of samefringe. A proof procedure for this

calculus is obtained by using the inference rules in reverse direction, cf. [Wal94].

4 Synthesis of Induction Lemmata

Our termination proof calculus is based on induction lemmata stating that cer-

tain operations are argument-bounded under the given norm j:j. Unlike the

method of Boyer and Moore, our method is able to synthesize such induction

lemmata automatically. The obtained induction lemmata are sound by construc-

tion, i.e. they do not have to be veri�ed by a theorem prover. For the recognition

of argument-bounded operations we again adapt the approach of Walther and

extend it to arbitrary polynomial norms.

5

In general p can have the form p = : : :+m jg(r)j

n

+ : : :, where n is a natural number

and m is a monomial. The above formulation of the estimation rule is only used to

ease readability.

The main idea is to construct a meta-induction proof for the argument-

boundedness of an algorithm g. This meta-induction is based on the recur-

sions in the algorithm g. In parallel to the proof steps of the meta-induction,

the cases of the di�erence algorithm �

g

are generated. We illustrate this ap-

proach with the algorithm gopher. For each case of this algorithm we prove that

jgopher(x)j � jxj holds and we derive a di�erence formula which implies the

strict inequality jgopher(x)j < jxj. For that purpose we use the calculus de�ned

in Section 3.

In the non-recursive second case of the algorithm gopher the result of

gopher(x) is x. We can immediately derive hjxj � jxj; falsei. So in this case

gopher is argument-bounded and as the di�erence formula is false, in this case

the di�erence algorithm �

gopher

should also return false.

The step case of our meta-induction proof corresponds to the recursive �rst

case of gopher. In this case x is of the form cons(cons(u; v); w) and the result of

gopher(x) is gopher(cons(u; cons(v; w))). Hence we have to verify the inequality

jgopher(cons(u; cons(v; w)))j � jcons(cons(u; v); w)j:

By the non-strict inequality rule we can derive

hjcons(u; cons(v; w))j � jcons(cons(u; v); w)j; falsei: (20)

As induction hypothesis we can now assume that hjgopher(x)j � jxj; �

gopher

(x)i

holds for the argument of gopher's recursive call, i.e. for x = cons(u; cons(v; w)).

Then by the induction hypothesis and (20) we can derive

hjgopher(cons(u; cons(v; w)))j � jcons(cons(u; v); w)j;

�

gopher

(cons(u; cons(v; w))) _ falsei: (21)

The inference of (21) from (20) is an instance of the estimation rule in Section

3. So although the requirements for the application of the estimation rule are

not satis�ed (i.e. the argument-boundedness of gopher is not yet veri�ed), we

can nevertheless use this rule for the estimation of gopher due to an inductive

argument. Summing up, gopher is recognized as an argument-bounded operation

with the di�erence algorithm

function �

gopher

(x : sexpr) : bool (

if x = cons(cons(u; v); w) then �

gopher

(cons(u; cons(v; w))) _ false

otherwise false.

Of course the disjunction with false in the result of the �rst case can be

omitted and �

gopher

can be transformed into an algorithm without recursive

calls (which always returns false).

In general we use the following procedure to recognize argument-bounded

operations g and to synthesize their di�erence algorithm �

g

:

if for each case \if ' then r" of the algorithm g(x) we can derive

hjrj � jxj; �i for some formula �,

then g is argument-bounded and �

g

contains the case \if ' then �".

By an inductive argument, in the derivation of hjrj � jxj; �i the estimation rule

can also be used for g. In this way induction lemmata of the form \jg(x)j � jxj"

and \�

g

(x)! jg(x)j < jxj" can be synthesized automatically.

5 Re�nements of the Approach

In the preceding sections we only regarded unary argument-bounded operations.

Of course the method can be extended to operations with several arguments in

a straightforward way. Such operations can be argument-bounded by several of

their arguments. For the operation min(x; y) which computes the minimum of two

numbers we could for instance synthesize the induction lemmata jmin(x; y)j � jxj

and jmin(x; y)j � jyj. Then we would also generate two di�erence algorithms �

1

min

and �

2

min

which indicate whether jmin(x; y)j is strictly smaller than its �rst resp.

than its second argument.

There are several improvements Walther suggested for his method which

can be directly transferred to our approach. For instance, our calculus could be

extended by a fourth minimum rule which is only applicable if data objects built

with the constructor c

1

are the smallest ones under the current norm j:j and if all

objects built with the remaining constructors c

2

; : : : ; c

m

are mapped to greater

numbers (i.e. polynomial inequalities ensuring this condition have to be proved).

Then for any term r this rule would allow to derive

hjc

1

(t

1

; : : : ; t

n

)j � jrj; r = c

2

(: : :) _ : : :_ r = c

m

(: : :)i:

If our calculus is extended by this inference rule then Walther's technique can

be obtained as a special case of our method by using the size measure function.

Further improvements include a better exploitation of the information con-

tained in the condition of a recursive case. In the recursive case of samefringe

we know that x is of the form cons(u; v) and therefore instead of proving that

jcdr(gopher(x))j is smaller than jxj it su�ces to prove jcdr(gopher(cons(u; v)))j

< jcons(u; v)j.

Another re�nement concerns the optimization of di�erence algorithms. Sev-

eral techniques for their simpli�cation have been presented in [Wal94]. These

optimizations considerably ease the proof that the di�erence formula � is valid

under the condition of the algorithm's recursive case.

It is also possible to use measure functions based on lexicographic combina-

tions of polynomial norms. This would for instance enable a termination proof

for Ackermann's well-known function. Nevertheless we found no frequent need

for such an extension of our approach. (Note that to prove termination of times

in Section 2 with the size norm j:j

#

a lexicographic ordering would be necessary.)

6 Conclusion and Outlook

We have presented a technique for automated termination proofs of algorithms in

a pure functional language. The main idea of this technique is to extend the ap-

proach of Walther [Wal94] by a procedure for proving polynomial inequalities. In

this way our technique combines the advantages of the methods of Walther and

of Boyer and Moore [BM79], i.e. it is a fully automated procedure which works

for arbitrary measure functions based on polynomial norms. The technique has

been implemented within the induction theorem prover inka and proved suc-

cessful, i.e. termination of all 82 algorithms in the data base of [BM79] could be

proved automatically

6

.

While in the system of Boyer and Moore any measure function de�ned by

an algorithm can be used, up to now our approach can only deal with measure

functions which are based on polynomial norms. Future work will include an

examination on how our method could be extended to other measure functions.

For Boyer and Moore's method the user has to supply both the measure

function and the induction lemmata. In this paper we introduced a technique

to synthesize induction lemmata for given measure functions automatically. To

increase the level of automation we are also working on a method to generate

suited measure functions by machine [Gie95b].

Acknowledgements

I would like to thank J�urgen Brauburger, Stefan Gerberding, Thomas Kolbe, Martin

Protzen, Christoph Walther and the referees for helpful comments.

References

[BL87] A. Ben Cherifa & P. Lescanne. Termination of Rewriting Systems by Polyno-

mial Interpretations and its Implementation. Science of Computer Program-

ming, 9(2):137-159, 1987.

[BL93] E. Bevers & J. Lewi. Proving Termination of (Conditional) Rewrite Systems.

Acta Informatica, 30:537-568, 1993.

[BM79] R. S. Boyer & J S. Moore. A Computational Logic. Academic Press, 1979.

[DSF93] S. Decorte, D. De Schreye & M. Fabris. Automatic Inference of Norms: A

Missing Link in Automatic Termination Analysis. In Proc. Int. Logic Pro-

gramming Symp., Vancouver, Canada, 1993.

[Der87] N. Dershowitz. Termination of Rewriting. Journal of Symbolic Computation,

3(1, 2):69-115, 1987.

[Gie95a] J. Giesl. Generating Polynomial Orderings for Termination Proofs. Proc. 6th

Int. Conf. Rewriting Tech. & Applications, Kaiserslautern, Germany, 1995.

[Gie95b] J. Giesl. Termination Analysis for Functional Programs using Term Order-

ings. Proc. 2nd Int. Static Analysis Symposium, Glasgow, Scotland, 1995.

[Lan79] D. S. Lankford. On Proving Term Rewriting Systems are Noetherian. Tech-

nical Report Memo MTP-3, Louisiana Tech. Univ., Ruston, LA, 1979.

[Pau86] L. C. Paulson. Proving Termination of Normalization Functions for Condi-

tional Expressions. Journal of Automated Reasoning, 2(1):63-74, 1986.

[Pl�u90] L. Pl�umer. Termination Proofs for Logic Programs. Springer, 1990.

[Ste92] J. Steinbach. Proving Polynomials Positive. In Proc. 12th Conf. Foundations

Software Technology & Theoretical Comp. Sc., New Delhi, India, 1992.

[Wal88] C. Walther. Argument-Bounded Algorithms as as Basis for Automated Ter-

mination Proofs. Proc. 9th Int. Conf. Aut. Deduction, Argonne, Illinois, 1988.

[Wal94] C. Walther. On Proving the Termination of Algorithms by Machine. Arti�cial

Intelligence, 71(1):101-157, 1994.

6

As mentioned in [Wal94] one algorithm (greatest.factor) must be slightly modi�ed.

