
Context-Moving Transformations

for Fun
tion Veri�
ation

?

J�urgen Giesl

Computer S
ien
e Dept., University of New Mexi
o, Albuquerque, NM 87131, USA,

E-mail: giesl�
s.unm.edu

Abstra
t. Several indu
tion theorem provers have been developed

whi
h support me
hanized veri�
ation of fun
tional programs. Unfor-

tunately, a major problem is that they often fail in verifying tail re
ur-

sive fun
tions (whi
h 
orrespond to imperative programs). However, in

pra
ti
e imperative programs are used almost ex
lusively.

We present an automati
 transformation to ta
kle this problem. It trans-

forms fun
tions whi
h are hard to verify into fun
tions whose 
orre
tness


an be shown by the existing provers. In 
ontrast to 
lassi
al program

transformations, the aim of our te
hnique is not to in
rease eÆ
ien
y, but

to in
rease veri�ability. Therefore, this paper introdu
es a novel appli
a-

tion area for program transformations and it shows that su
h te
hniques


an in fa
t solve some of the most urgent 
urrent 
hallenge problems in

automated veri�
ation and indu
tion theorem proving.

1 Introdu
tion

To guarantee the 
orre
tness of programs, a formal veri�
ation is required. How-

ever, mathemati
al 
orre
tness proofs are usually very expensive and time-
on-

suming. Therefore, program veri�
ation should be automated as far as possible.

As indu
tion

1

is the essential proof method for veri�
ation, several systems

have been developed for automated indu
tion proving. These systems are su
-


essfully used for fun
tional programs, but a major problem for their pra
ti
al

appli
ation is that they are often not suitable for verifying imperative programs.

The reason is that the translation of imperative programs into the fun
tional

input language of these systems always yields tail re
ursive fun
tions whi
h are

parti
ularly hard to verify. Thus, developing te
hniques for proofs about tail

re
ursive fun
tions is one of the most important resear
h topi
s in this area.

In Se
t. 2 we present our fun
tional programming language and give a brief

introdu
tion to indu
tion proving. We illustrate that the reason for the diÆ
ul-

ties in verifying tail re
ursive fun
tions is that their a

umulator parameter is

usually initialized with a �xed value, but this value is 
hanged in re
ursive 
alls.

?

Pro
eedings of the 9th International Workshop on Logi
-based Program Synthesis and

Transformation (LOPSTR '99), Veni
e, Italy, Le
ture Notes in Computer S
ien
e

1817, pages 293-312, Springer, 2000. This work was supported by the DFG under

grant GI 274/4-1.

1

In this paper, \indu
tion" stands for mathemati
al indu
tion, i.e., it should not be


onfused with indu
tion in the sense of ma
hine learning.



This paper introdu
es a new framework for me
hanized veri�
ation of su
h

fun
tions by �rst transforming them into fun
tions whi
h are better suitable for

veri�
ation and by afterwards applying the existing indu
tion provers for their

veri�
ation. To solve the veri�
ation problems with tail re
ursive fun
tions, the


ontext around re
ursive a

umulator arguments has to be shifted away, su
h

that the a

umulator parameter is no longer 
hanged in re
ursive 
alls. For that

purpose, we introdu
e two automati
 transformation te
hniques in Se
t. 3 - 5.

While of 
ourse our transformations are not always appli
able, they proved su
-


essful on a representative 
olle
tion of tail re
ursive fun
tions, 
f. [Gie99b℄. In

this way, 
orre
tness of many imperative programs 
an be proved automati
ally

without inventing loop invariants or generalizations.

2 Fun
tional Programs and their Veri�
ation

We 
onsider a �rst order fun
tional language with eager semanti
s and (non-

parameterized and free) algebrai
 data types. As an example, regard the data

type nat for natural numbers whose obje
ts are built with the 
onstru
tors 0

and s : nat ! nat (for the su

essor fun
tion). Thus, the 
onstru
tor ground

terms represent the data obje
ts of the respe
tive data type. In the following,

we often write \1" instead of \s(0)", et
. For every n-ary 
onstru
tor 
 there

are n sele
tor fun
tions d

1

; : : : ; d

n

whi
h serve as inverse fun
tions to 
 (i.e.,

d

i

(
(x

1

; : : : ; x

n

)) � x

i

). For example, for the unary 
onstru
tor s we have the

sele
tor fun
tion p su
h that p(s(m)) � m (i.e., p is the prede
essor fun
tion).

In parti
ular, every program F 
ontains the type bool whose obje
ts are

built with the (nullary) 
onstru
tors true and false. Moreover, there is a built-in

equality fun
tion = : � � � ! bool for every data type � . To distinguish the

fun
tion symbol = from the equality predi
ate symbol, we denote the latter by

\�". The fun
tions of a fun
tional program F have the following form.

fun
tion f (x

1

: �

1

; : : : ; x

n

: �

n

) : � (

if b

1

then r

1

.

.

.

if b

m

then r

m

Here, \if b

i

then r

i

" is 
alled the i-th 
ase of f with 
ondition b

i

and result r

i

.

For fun
tions with just one 
ase of the form \if true then r" we write \fun
tion

f (x

1

: �

1

; : : : ; x

n

: �

n

) : � ( r". To ease readability, if b

m

is true, then we

often denote the last 
ase by \else r

m

". As an example, 
onsider the following

fun
tion (whi
h 
alls an auxiliary algorithm + for addition).

fun
tion times (x; y : nat) : nat (

if x 6= 0 then y + times(p(x); y)

else 0

If a fun
tion f is 
alled with a tuple of ground terms t

�

as arguments, then t

�

is evaluated �rst (to 
onstru
tor ground terms q

�

). Now the 
ondition b

1

[x

�

=q

�

℄

2



of the �rst 
ase is 
he
ked. If it evaluates to true, then r

1

[x

�

=q

�

℄ is evaluated.

Otherwise, the 
ondition of the se
ond 
ase is 
he
ked, et
. So the 
onditions of

a fun
tional program as above are tested from top to bottom.

Our aim is to verify statements about the algorithms of a fun
tional program.

We only 
onsider universally quanti�ed equations 8... s � t and we often omit

the quanti�ers to ease readability. Let s; t 
ontain the tuple of variables x

�

. Then

s � t is indu
tively true for the program F , denoted F j=

ind

s � t, if for all those

data obje
ts q

�

where evaluation of s[x

�

=q

�

℄ or evaluation of t[x

�

=q

�

℄ is de�ned,

evaluation of the other term t[x

�

=q

�

℄ resp. s[x

�

=q

�

℄ is de�ned as well, and if both

evaluations yield the same result. For example, the 
onje
ture

times(times(x; y); z) � times(x; times(y; z)) (1)

is indu
tively true, sin
e times(times(x; y); z) and times(x; times(y; z)) evaluate

to the same result for all instantiations with data obje
ts. Similar notions of

indu
tive truth are widely used in program veri�
ation and indu
tion theorem

proving. For an extension of indu
tive truth to more general formulas and for a

model theoreti
 
hara
terization see e.g. [ZKK88,Wal94,BR95,Gie99
℄.

To prove indu
tive truth automati
ally, several indu
tion theorem provers

have been developed, e.g. [BM79,KM87,ZKK88,BSH

+

93,Wal94,BR95,BM98℄.

For instan
e, these systems 
an prove 
onje
ture (1) by stru
tural indu
tion

on the variable x. If we abbreviate (1) by '(x; y; z), then in the indu
tion base


ase they would prove '(0; y; z) and in the step 
ase (where x 6= 0), they would

show that the indu
tion hypothesis '(p(x); y; z) implies the indu
tion 
on
lusion

'(x; y; z).

However, one of the main problems for the appli
ation of these indu
tion

theorem provers in pra
ti
e is that most of them 
an only handle fun
tional

algorithms with re
ursion, but they are not designed to verify imperative algo-

rithms 
ontaining loops.

The 
lassi
al te
hniques for the veri�
ation of imperative programs (like the

so-
alled Hoare-
al
ulus [Hoa69℄) allow the proof of partial 
orre
tness state-

ments of the form f'

pre

g P f'

post

g. The semanti
s of this expression is that in


ase of termination, the program P transforms all program states whi
h satisfy

the pre
ondition '

pre

into program states satisfying the post
ondition '

post

. As

an example, regard the following imperative program for multipli
ation.

pro
edure multiply (x; y; z : nat)(

z := 0;

while x 6= 0 do x := p(x);

z := y + z od

To verify that this imperative program is equivalent to the fun
tional program

times, one has to prove the statement

fx�x

0

^ y�y

0

^ z�0g while x 6= 0 do x := p(x); z := y + z od fz� times(x

0

; y

0

)g:

Here, x

0

and y

0

are additional variables whi
h represent the initial values of

the variables x and y. However, in the Hoare-
al
ulus, for that purpose one

3



needs a loop invariant whi
h is a 
onsequen
e of the pre
ondition and whi
h

(together with the exit 
ondition x = 0 of the loop) implies the post
ondition

z � times(x

0

; y

0

). In our example, the proof su

eeds with the loop invariant

z + times(x; y) � times(x

0

; y

0

): (2)

The sear
h for loop invariants is the main diÆ
ulty when verifying imperative

programs. Of 
ourse, it would be desirable that programmers develop suitable

loop invariants while writing their programs, but in reality this is still often

not the 
ase. Thus, for an automation of program veri�
ation, suitable loop

invariants would have to be dis
overed me
hani
ally. However, while there exist

some heuristi
s and te
hniques for the 
hoi
e of loop invariants [SI98℄, in general

this task seems diÆ
ult to me
hanize [Dij85℄.

Therefore, in the following we present an alternative approa
h for automated

veri�
ation of imperative programs. For that purpose our aim was to use the

existing powerful indu
tion theorem provers. As the input language of these sys-

tems is restri
ted to fun
tional programs, one �rst has to translate imperative

programs into fun
tional ones. Su
h a translation 
an easily be done automati-


ally, 
f. [M
C60,Gie99a℄.

In this translation, every while-loop is transformed into a separate fun
tion.

For the loop of the pro
edure multiply we obtain the following algorithm mult

whi
h takes the input values of x, y, and z as arguments. If the loop-
ondition is

satis�ed (i.e., if x 6= 0), then mult is 
alled re
ursively with the new values of x,

y, and z. Otherwise, mult returns the value of z. The whole imperative pro
edure

multiply 
orresponds to the following fun
tional algorithm with the same name

whi
h 
alls the auxiliary fun
tion mult with the initial value z � 0.

fun
tion multiply (x; y : nat) : nat (

mult(x; y; 0)

fun
tion mult (x; y; z : nat) : nat (

if x 6= 0 then mult(p(x); y; y + z)

else z

Thus, while the above fun
tions may look unnatural on their own, veri�
ation

of su
h fun
tions is indeed an important pra
ti
al problem, sin
e this is required

in order to verify (very natural) imperative pro
edures like multiply.

Now indu
tion provers may be used to prove 
onje
tures about the fun
tions

multiply and mult. However, it turns out that the fun
tional algorithms resulting

from this translation have a 
ertain 
hara
teristi
 form whi
h makes them un-

suitable for veri�
ation tasks. In fa
t, this diÆ
ulty 
orresponds to the problem

of �nding loop invariants for the original imperative program.

To verify the equivalen
e of multiply and times using the transformed fun
-

tions multiply and mult, one now has to prove multiply(x; y) � times(x; y), i.e.,

mult(x; y; 0) � times(x; y): (3)

Using stru
tural indu
tion on x, the base formula mult(0; y; 0) � times(0; y)


an easily be proved, but there is a problem with the indu
tion step. In the 
ase

x 6= 0 we have to show that the indu
tion hypothesis

4



mult(p(x); y; 0) � times(p(x); y) (IH)

implies the indu
tion 
on
lusion mult(x; y; 0) � times(x; y). Using the algorithms

of mult and times, the indu
tion 
on
lusion 
an be transformed into

mult(p(x); y; y) � y + times(p(x); y). (IC)

However, the desired proof fails, sin
e the indu
tion hypothesis (IH) 
annot be

su

essfully used for the proof of (IC).

The reason for this failure is due to the tail re
ursive form of mult (i.e., there

is no 
ontext around mult's re
ursive 
all). Instead, its result is 
omputed in the

a

umulator parameter z. The a

umulator z is initialized with 0, but this value

is 
hanged in the re
ursive 
alls of mult. For that reason the indu
tion hypothesis

(where z � 0) does not 
orrespond to the indu
tion 
on
lusion (where z � y).

The 
lassi
al solution for this problem is to generalize the 
onje
ture (3) to

a stronger 
onje
ture whi
h is easier to prove. For instan
e, in our example one

needs the following generalization whi
h 
an be proved by a suitable indu
tion.

mult(x; y; z) � z + times(x; y) (4)

Thus, developing generalization te
hniques is one of the main 
hallenges in

indu
tion theorem proving [Aub79,BM79,HBS92,Wal94,IS97,IB99℄. Note that

the generalization (4) 
orresponds to the loop invariant (2) that one would need

for a dire
t veri�
ation of the imperative program multiply in the Hoare-
al
ulus.

So in fa
t, �nding suitable generalizations is 
losely related to the sear
h for loop

invariants.

2

In this paper we propose a new approa
h to avoid the need for generaliza-

tions or loop invariants. The idea is to transform fun
tions like mult, whi
h are

diÆ
ult to verify, into algorithms like times whi
h are mu
h better amenable

to automated indu
tion proofs. For example, the well-known indu
tion theorem

proving system nqthm [BM79,BM98℄ fails in proving (3), whereas after a trans-

formation of multiply and mult into times this 
onje
ture be
omes trivial. This

approa
h of verifying imperative programs via a translation into fun
tional pro-

grams is based on the observation that in fun
tional languages there often exists

a formulation of the algorithms whi
h is easy to verify (whereas this formulation


annot be expressed in iterative form). The aim of our te
hnique is to �nd su
h

a formulation automati
ally.

Our approa
h has the advantage that the transformation solves the veri�
a-

tion problems resulting from a tail re
ursive algorithm on
e and for all. On the

other hand, when using generalizations or loop invariants one has to �nd a new

generalization (or a new loop invariant, respe
tively) for every new 
onje
ture

2

A di�eren
e between verifying fun
tional programs by indu
tion and verifying im-

perative programs by loop invariants and indu
tive assertions is that for imperative

programs one uses a \forward" indu
tion starting with the initial values of the pro-

gram variables and for fun
tional programs a \reversed" indu
tion is used whi
h goes

ba
k from their �nal values to the initial ones. However, the required loop invariants

resp. the 
orresponding generalizations are easily inter
hangeable, 
f. [RY76℄.

5



about su
h an algorithm. Moreover, most te
hniques for �nding generalizations

or loop invariants have to be guided by the system user, sin
e they rely on the

presen
e of suitable lemmata. By these lemmata the user often has to provide

the main idea for the generalization resp. the loop invariant. In 
ontrast, our

transformation works automati
ally.

In parti
ular, automati
 generalization te
hniques fail for many 
onje
tures

whi
h 
ontain several o

urren
es of a tail re
ursive fun
tion. As an example,

regard the asso
iativity of multiply or, in other words,

mult(mult(x; y; 0); z; 0) � mult(x;mult(y; z; 0); 0): (5)

Similar to (3), a dire
t proof by stru
tural indu
tion on x does not su

eed.

So again, the standard solution would be to generalize the 
onje
ture (5) by

repla
ing the �xed value 0 by suitable terms. For example, one may generalize

(5) to

mult(mult(x; y; v); z; 0) � mult(x;mult(y; z; 0);mult(v; z; 0)):

To ease readability, we have underlined those terms where the generalization took

pla
e. While the proof of this 
onje
ture is not too hard (using the distributivity

of + over multiply), we are not aware of any te
hnique whi
h would �nd this

generalization (or the 
orresponding loop invariant) automati
ally, be
ause it is

diÆ
ult to synthesize the 
orre
t repla
ement of the third argument in the right-

hand side (by mult(v; z; 0)). The problem is that the disturbing 0's o

urring in

(5) 
annot just be generalized to new variables, sin
e this would yield a 
awed


onje
ture. Thus, �nding generalizations for 
onje
tures with several o

urren
es

of a tail re
ursive fun
tion is often parti
ularly hard, as di�erent o

urren
es of an

instantiated a

umulator may have to be generalized to di�erent new terms.

3

On

the other hand, our transformation allows us to prove su
h 
onje
tures without

user intera
tion. Essentially, the reason is that while generalizations and loop

invariants depend on both the algorithms and the 
onje
tures to be proved, the

transformation only depends on the algorithms.

The area of program transformation is a well examined �eld whi
h has found

many appli
ations in software engineering, program synthesis, and 
ompiler 
on-

stru
tion. For surveys see e.g. [BW82,Par90,MPS93,PP96,PP98℄. However, the

transformations developed for these appli
ations had a goal whi
h is fundamen-

tally di�erent from ours. Our aim is to transform programs into new programs

whi
h are easier to verify. In 
ontrast to that, the 
lassi
al transformation meth-

ods aim to in
rease eÆ
ien
y. Su
h transformations are unsuitable for our pur-

pose, sin
e a more eÆ
ient algorithm is often harder to verify than a less eÆ
ient

easier algorithm. Moreover, we want to transform tail re
ursive algorithms into

non-tail re
ursive ones, but in the usual appli
ations of program transformation,

3

An alternative generalization of (5) is mult(mult(x; y; 0); z; v) � mult(x;mult(y; z; 0);

v): This generalization is easier to �nd (as we just repla
ed both third arguments of

the left- and right-hand side by the same new variable v). However, it is not easy to

verify (its proof is essentially as hard as the proof of the original 
onje
ture (5)).

6



non-tail re
ursive programs are transformed into tail re
ursive ones (\re
ursion

removal", 
f. e.g. [Coo66,DB76,BD77,Wan80,BW82,AK82,HK92℄).

As the goals of the existing program transformations are often opposite to

ours, a promising approa
h is to use these 
lassi
al transformations in the reverse

dire
tion. To our knowledge, su
h an appli
ation of these transformations for the

purpose of veri�
ation has rarely been investigated before. In this way, we indeed

obtained valuable inspirations for the development of our transformation rules

in Se
t. 3 - 5. However, our rules go far beyond the reversed standard program

transformation methods, be
ause these methods had to be modi�ed substantially

to be appli
able for the programs resulting in our 
ontext.

3 Context Moving

The only di�eren
e betweenmult and times is that the 
ontext y+ : : : to 
ompute

times' result is outside of the re
ursive 
all, whereas in mult the 
ontext y+ : : : is

in the re
ursive argument for the a

umulator z. This 
hange of the a

umulator

in re
ursive 
alls is responsible for the veri�
ation problems with mult.

For that reason, we now introdu
e a transformation rule whi
h allows tomove

the 
ontext away from re
ursive a

umulator arguments to a position outside

of the re
ursive 
all. In this way, the former result mult(p(x); y; y+ z) 
an be

repla
ed by y+mult(p(x); y; z). So the algorithm mult is transformed into

fun
tion mult (x; y; z : nat) : nat (

if x 6= 0 then y + mult(p(x); y; z)

else z.

To develop a rule for 
ontext moving, we have to �nd suÆ
ient 
riteria whi
h

ensure that su
h a transformation is equivalen
e preserving. For our rule, we

regard algorithms of the form (6) where the last argument z is used as an a

u-

mulator. Our aim is to move the 
ontexts r

1

; : : : ; r

k

of the re
ursive a

umulator

arguments to the top, i.e., to transform the algorithm (6) into (7).

fun
tion f (x

�

: �

�

; z : �) : � (

if b

1

then f(r

�

1

; r

1

)

.

.

.

if b

k

then f(r

�

k

; r

k

) (6)

if b

k+1

then r

k+1

.

.

.

if b

m

then r

m

fun
tion f (x

�

: �

�

; z : �) : � (

if b

1

then r

1

[z=f(r

�

1

; z)℄

.

.

.

if b

k

then r

k

[z=f(r

�

k

; z)℄ (7)

if b

k+1

then r

k+1

.

.

.

if b

m

then r

m

.

We demand m > k � 1, but the order of the f -
ases is irrelevant and the

transformation may also be applied if the a

umulator z is not f 's last parameter.

(We just used the above formulation to ease readability.)

First of all, note that the intermediate values of the parameter z are not

the same in the two versions of f . Thus, to guarantee that evaluation of both

versions of f leads to the same 
ases in the same order, we must demand that

the a

umulator z does not o

ur in the 
onditions b

1

; : : : ; b

m

or in r

�

1

; : : : ; r

�

k

.

7



Let u

�

; w be 
onstru
tor ground terms. Now for both versions of f , evaluation

of f(u

�

; w) leads to the same f -
ases i

1

; : : : ; i

d

where i

1

; : : : ; i

d�1

2 f1; : : : ; kg

and i

d

2 fk + 1; : : : ;mg (provided that the evaluation is de�ned). Let t[r

�

; s℄

abbreviate t[x

�

=r

�

; z=s℄ (where for terms t 
ontaining at most the variables x

�

,

we also write t[r

�

℄) and let a

�

h

= r

�

i

h

[r

�

i

h�1

[: : : [r

�

i

1

[u

�

℄℄ : : :℄℄, where a

�

0

= u

�

. Then

with the old de�nition of f we obtain the result (8) and with the new de�nition

we obtain (9).

r

i

d

[a

�

d�1

; r

i

d�1

[a

�

d�2

; : : : r

i

2

[a

�

1

; r

i

1

[a

�

0

; w℄℄ : : :℄℄ (8)

r

i

1

[a

�

0

; r

i

2

[a

�

1

; : : : r

i

d�1

[a

�

d�2

; r

i

d

[a

�

d�1

; w℄℄ : : :℄℄: (9)

For example, the original algorithm mult 
omputes a result of the form

y

x

+ (y

x�1

+ (: : : (y

2

+ (y

1

+ z)) : : :))

where y

i

denotes the number whi
h is added in the i-th exe
ution of the algo-

rithm. On the other hand, the new version of mult 
omputes the result

y

1

+ (y

2

+ (: : : (y

x�1

+ (y

x

+ z)) : : :)):

Therefore, the 
ru
ial 
ondition for the soundness of this transformation is the

left-
ommutativity of the 
ontexts r

1

; : : : ; r

k

moved, 
f. [BW82℄. In other words,

for all i 2 f1; : : : ;mg and all i

0

2 f1; : : : ; kg we demand

r

i

[x

�

; r

i

0

[y

�

; z℄℄ � r

i

0

[y

�

; r

i

[x

�

; z℄℄:

Then (8) and (9) are indeed equal as 
an be proved by subsequently moving the

inner r

i

j

[a

�

j�1

; : : :℄ 
ontexts of (8) to the top. So for mult, we only have to prove

x+ (y + z) � y + (x+ z) and y + z � y + z (whi
h 
an easily be veri�ed by the

existing indu
tion theorem provers).

Note also that sin
e in the s
hema (6), r

1

; : : : ; r

m

denote arbitrary terms, su
h

a 
ontext moving would also be possible if one would ex
hange the arguments

of + in mult's re
ursive 
all. Then r

1

would be z + y and the required left-


ommutativity 
onditions would read (z+y)+x � (z+x)+y and z+y � z+y.

However, 
ontext moving may only be done, if all terms r

1

; : : : ; r

m


ontain

the a

umulator z. Otherwise f 's new de�nition 
ould be total although the

original de�nition was partial. For example, if f has the (�rst) 
ase

if x 6= 0 then f(x; 0)

then f(x; z) does not terminate for x 6= 0. However, if we would not demand that

z o

urred in the re
ursive a

umulator argument, then 
ontext moving 
ould

transform this 
ase into \if x 6= 0 then 0". The resulting fun
tion is 
learly not

equivalent to the original one, be
ause now the result of f(x; z) is 0 for x 6= 0.

Finally, we also have to demand that in r

1

; : : : ; r

m

, the a

umulator z may

not o

ur within arguments of fun
tions dependent on f . Here, every fun
tion

is dependent on itself and moreover, if g is dependent on f and g o

urs in the

8



algorithm h, then h is also dependent on f . So in parti
ular, this requirement ex-


ludes nested re
ursive 
alls with the argument z. Otherwise, the transformation

would not preserve the semanti
s. As an example regard the following fun
tion,

where the algorithm one(z) returns 1 for all arguments z.

fun
tion f (x; z : nat) : nat (

if x 6= 0 then f(p(x); f(z; 0))

else one(z)

By moving the 
ontext f(: : : ; 0) to the top, the result of the �rst 
ase would be

transformed into f(f(p(x); z); 0). The original algorithm satis�es all previously

developed 
onditions. However, the original algorithm is total, whereas after the

transformation f(x; z) does not terminate any more for x 6= 0. Under the above

requirements, the transformation of (6) into (7) is sound.

Theorem 1 (Soundness of Context Moving). Let F be a fun
tional pro-

gram 
ontaining the algorithm (6) and let F

0

result from F by repla
ing (6) with

(7). Then for all data obje
ts t

�

, t, and q, f(t

�

; t) evaluates to q in the program

F i� it does so in F

0

, provided that the following requirements are ful�lled:

(A) z 62 V(b

1

) [ : : : [ V(b

m

)

(B) z 62 V(r

�

1

) [ : : : [ V(r

�

k

)

(C) For all i 2 f1; : : :;mg, i

0

2 f1; : : :; kg: F j=

ind

r

i

[x

�

; r

i

0

[y

�

; z℄℄ � r

i

0

[y

�

; r

i

[x

�

; z℄℄

(D) z 2 V(r

1

) \ : : : \ V(r

m

)

(E) In r

1

; : : :; r

m

, z does not o

ur in arguments of fun
tions dependent on f .

Proof. We �rst prove the following 
ontext moving lemma for all 
onstru
tor

ground terms u

�

, v

�

, w and all i

0

2 f1; : : : ; kg:

F j=

ind

r

i

0

[v

�

; f(u

�

; w)℄ � f(u

�

; r

i

0

[v

�

; w℄): (10)

We use an indu
tion on u

�

w.r.t. the relation �

f

. Here, u

�

�

f

q

�

holds for

the 
onstru
tor ground terms u

�

and q

�

i� there exists a 
onstru
tor ground

term u su
h that f(u

�

; u) is de�ned in F and su
h that F -evaluation of f(u

�

; u)

leads to a re
ursive 
all f(q

�

; q) for some 
onstru
tor ground term q. The well-

foundedness of �

f

is due to the requirements (A), (B), and (E).

If one of the two terms in the equation (10) is de�ned, then there is an

i 2 f1; : : : ;mg su
h that b

i

[u

�

℄ �

F

true and b

j

[u

�

℄ �

F

false for all 1 � j < i,

where s �

F

t abbreviates F j=

ind

s � t. (Here we need 
ondition (D) to infer

the de�nedness of f(u

�

; w) from the de�nedness of r

i

0

[v

�

; f(u

�

; w)℄.)

If i � k + 1, then

r

i

0

[v

�

; f(u

�

; w)℄ �

F

r

i

0

[v

�

; r

i

[u

�

; w℄℄

�

F

r

i

[u

�

; r

i

0

[v

�

; w℄℄; by (C)

�

F

f(u

�

; r

i

0

[v

�

; w℄); sin
e z 2 V(r

i

) (by (D)).

If i � k, then we have

r

i

0

[v

�

; f(u

�

; w)℄ �

F

r

i

0

[v

�

; f(r

�

i

[u

�

℄; r

i

[u

�

; w℄)℄

�

F

f(r

�

i

[u

�

℄; r

i

0

[v

�

; r

i

[u

�

; w℄℄); by the indu
tion hypothesis

�

F

f(r

�

i

[u

�

℄; r

i

[u

�

; r

i

0

[v

�

; w℄℄); by (C)

�

F

f(u

�

; r

i

0

[v

�

; w℄); sin
e z 2 V(r

i

) (by (D)).

9



Thus, Lemma (10) is proved and now the \only if"-dire
tion of Thm. 1 
an

also be shown by indu
tion w.r.t. �

f

. There must be an i

0

2 f1; : : : ;mg su
h that

b

i

0

[t

�

℄ �

F

true and b

j

0

[t

�

℄ �

F

false for all 1 � j

0

< i

0

. The indu
tion hypothesis

implies b

i

0

[t

�

℄ �

F

0

true and b

j

0

[t

�

℄ �

F

0

false as well.

If i

0

� k+1, then the 
onje
ture follows from f(t

�

; t) �

F

r

i

0

[t

�

; t℄, f(t

�

; t) �

F

0

r

i

0

[t

�

; t℄, and the indu
tion hypothesis. If i

0

� k, then we have f(t

�

; t) �

F

f(r

�

i

0

[t

�

℄; r

i

0

[t

�

; t℄) �

F

q for some 
onstru
tor ground term q. By Lemma (10)

we obtain r

i

0

[t

�

; f(r

�

i

0

[t

�

℄; t)℄ �

F

q. Note that for all f -subterms f(s

�

; s) in this

term, s

�

evaluates to 
onstru
tor ground terms q

�

with t

�

�

f

q

�

. For f -subterms

where the root is in r

i

0

, this follows from Condition (E). Thus, the indu
tion hy-

pothesis implies r

i

0

[t

�

; f(r

�

i

0

[t

�

℄; t)℄ �

F

0

q and hen
e, we also have f(t

�

; t) �

F

0

q.

So the \only if"-dire
tion of Thm. 1 is proved. The proof for the \if"-dire
tion

of Thm. 1 is 
ompletely analogous (where instead of �

f

one uses an indu
tion

on the length of f(t

�

; t)'s evaluation in F

0

). ut

The algorithm obtained from mult by 
ontext moving is signi�
antly easier

to verify. As mult's (former) a

umulator z is no longer 
hanged, it 
an now

be eliminated by repla
ing all its o

urren
es by 0. The semanti
s of the main

fun
tion multiply remains un
hanged by this transformation.

fun
tion multiply (x; y : nat) : nat (

mult(x; y)

fun
tion mult (x; y : nat) : nat (

if x 6= 0 then y +mult(p(x); y)

else 0

Now mult indeed 
orresponds to the algorithm times and thus, the 
ompli
ated

generalizations or loop invariants of Se
t. 2 are no longer required. Thus, the

veri�
ation problems for this algorithm are solved.

Similarly, 
ontext moving 
an also be applied to transform an algorithm like

fun
tion plus (x; z : nat) : nat (

if x 6= 0 then plus(p(x); s(z))

else z

into

fun
tion plus (x; z : nat) : nat (

if x 6= 0 then s(plus(p(x); z))

else z,

whi
h is mu
h better suited for veri�
ation tasks. Here, for 
ondition (C) we

only have to prove s(s(z)) � s(s(z)) and s(z) � s(z) (whi
h is trivial).

To apply 
ontext moving me
hani
ally, the 
onditions (A) - (E) for its appli-


ation have to be 
he
ked automati
ally. While the 
onditions (A), (B), (D), and

(E) are just synta
ti
, the left-
ommutativity 
ondition (C) has to be 
he
ked

by an underlying indu
tion theorem prover. In many 
ases, this is not a hard

task, sin
e for algorithms like plus the terms r

i

[x

�

; r

i

0

[y

�

; z℄℄ and r

i

0

[y

�

; r

i

[x

�

; z℄℄

are already synta
ti
ally equal and for algorithms like mult, the required left-


ommutativity follows from the asso
iativity and 
ommutativity of \+". To ease

the proof of su
h 
onje
tures about auxiliary algorithms, we follow the strategy

to apply our transformations to those algorithms �rst whi
h depend on few other

algorithms. Thus, we would attempt to transform \+" before transforming mult.

In this way, one 
an usually avoid the need for generalizations when perform-

ing the required left-
ommutativity proofs. Finally, note that of 
ourse, 
ontext

10



moving should only be done if at least one of the re
ursive arguments r

1

; : : : ; r

k

is di�erent from z (otherwise the algorithm would not 
hange).

Our 
ontext moving rule has some similarities to the reversal of a te
hnique

known in program transformation (operand 
ommutation, 
f. e.g. [Coo66,DB76,

BW82℄). However, our rule generalizes this (reversed) te
hnique substantially.

For example, dire
tly reversing the formulation in [BW82℄ would result in a

rule whi
h would also impose appli
ability 
onditions on the fun
tions that 
all

the transformed fun
tion f (by demanding that f 's a

umulator would have to

be initialized in a 
ertain way). In this way, the appli
ability of the reversed rule

would be unne
essarily restri
ted (and unne
essarily diÆ
ult to 
he
k). There-

fore, we developed a rule where 
ontext moving is separated from the subsequent

repla
ement of the (former) a

umulator by initial values like 0. Moreover, in

[BW82℄ the problems 
on
erning the o

urren
e of the a

umulator z and of

nested re
ursive 
alls are not examined (i.e., the requirements (D) and (E) are

missing there). Another important di�eren
e is that our rule allows the use of sev-

eral di�erent re
ursive arguments r

1

; : : : ; r

k

and the use of several non-re
ursive


ases with arbitrary results (whereas reversing the formulation in [BW82℄ would

only allow one single re
ursive 
ase and it would only allow the non-re
ursive

result z instead of the arbitrary terms r

k+1

; : : : ; r

m

). Note that for this reason

in our rule we have to regard all 
ases of an algorithm at on
e.

As an example where this 
exibility of our transformation rule is needed


onsider the following algorithm to 
ompute the multipli
ation of all elements

in a list, where however o

urring 0's are ignored. We use a data type list for

lists of naturals with the 
onstru
tors nil : list and 
ons : nat� list! list, where


ar : list ! nat and 
dr : list ! list are the sele
tors to 
ons. Moreover, \�"

abbreviates a multipli
ation algorithm like times or multiply.

pro
edure prod (l : list; z : nat)(

z := s(0);

while l 6= nil do if 
ar(l) 6= 0 then z := 
ar(l) � z;

l := 
dr(l) od

This pro
edure 
an be translated automati
ally into the following fun
tions

(here, we re-ordered the 
ases of pr to ease readability).

fun
tion prod (l : list) : nat (

pr(l; s(0))

fun
tion pr (l : list; z : nat) : nat (

if l = nil then z

if 
ar(l) 6= 0 then pr(
dr(l); 
ar(l) � z)

else pr(
dr(l); z)

To transform the algorithm pr, we indeed need a te
hnique whi
h 
an han-

dle algorithms with several re
ursive 
ases. Sin
e � is left-
ommutative, 
ontext

moving and repla
ing z with s(0) results in

fun
tion prod (l : list) : nat (

pr(l)

fun
tion pr (l : list) : nat (

if l = nil then s(0)

if 
ar(l) 6= 0 then 
ar(l) � pr(
dr(l))

else pr(
dr(l)).

11



Further algorithms with several re
ursive and non-re
ursive 
ases where 
ontext

moving is required are presented in [Gie99b℄.

Context moving is also related to a te
hnique in [Moo75℄. However, in 
ontrast

to our rule, his transformation is not equivalen
e-preserving, but it 
orresponds

to a generalization of the 
onje
ture. For that reason this approa
h fa
es the

danger of over-generalization (e.g., the asso
iativity law formultiply is generalized

into a 
awed 
onje
ture). It turns out that for almost all algorithms 
onsidered in

[Moo75℄ our transformation te
hniques 
an generate equivalent algorithms that

are easy to verify. So for su
h examples, generalizations are no longer needed.

4 Context Splitting

Be
ause of the required left-
ommutativity, 
ontext moving is not always appli-


able. As an example regard the following imperative pro
edure for uniting lists.

We use a data type llist for lists of list's. Its 
onstru
tors are empty and add with

the sele
tors hd and tl. So add(z; k) represents the insertion of the list z in front

of the list of lists k and hd(add(z; k)) yields z. Moreover, we use an algorithm

app for list-
on
atenation. Then after exe
ution of union(k; z), the value of z is

the union of all lists in k.

pro
edure union(k : llist; z : list)(

z := nil;

while k 6= empty do z := app(hd(k); z);

k := tl(k) od

Translation of union into fun
tional algorithms yields

fun
tion union (k : llist) : list (

uni(k; nil)

fun
tion uni (k : llist; z : list) : list (

if k 6= empty then uni(tl(k); app(hd(k); z))

else z.

These fun
tions are again unsuited for veri�
ation, be
ause the a

umulator

z of uni is initially 
alled with nil, but this value is 
hanged in the re
ursive 
alls.

Context moving is not possible, be
ause the 
ontext app(hd(k); : : :) is not left-


ommutative. This motivates the development of the following 
ontext splitting

transformation. Given a list of lists k = [z

1

; : : :; z

n

℄, the result of uni(k; nil) is

app(z

n

; app(z

n�1

; : : : app(z

3

; app(z

2

; z

1

)) : : :)): (11)

In order to move the 
ontext of uni's re
ursive a

umulator argument to the

top, our aim is to 
ompute this result in a way su
h that z

1

is moved as far to the

\outside" in this term as possible (whereas z

n

may be moved to the \inside").

Although app is not 
ommutative, it is at least asso
iative. So (11) is equal to

app(app(: : : app(app(z

n

; z

n�1

); z

n�2

) : : : ; z

2

); z

1

): (12)

This gives an idea on how the algorithm uni may be transformed into a new

(unary) algorithm uni

0

su
h that uni

0

(k) 
omputes uni(k; nil). The result of

12



uni

0

([z

1

; : : :; z

n

℄) should be app(uni

0

([z

2

; : : :; z

n

℄); z

1

). Similarly, uni

0

([z

2

; : : :; z

n

℄)

should yield app(uni

0

([z

3

; : : :; z

n

℄); z

2

), et
. Finally, uni

0

([z

n

℄) is app(uni

0

(empty);

z

n

). To obtain the result (12), app(uni

0

(empty); z

n

) must be equal to z

n

. Hen
e,

uni

0

(empty) should yield app's neutral argument nil. Thus, we obtain the follow-

ing new algorithms, whi
h are well suited for veri�
ation tasks.

fun
tion union (k : llist) : list (

uni

0

(k)

fun
tion uni

0

(k : llist) : list (

if k 6= empty then app(uni

0

(tl(k)); hd(k))

else nil

So the idea is to split up the former 
ontext app(hd(k); : : :) into an outer part

app(: : :; : : :) and an inner part hd(k). If the outer 
ontext is asso
iative, then one


an transform tail re
ursive results of the form f(: : :; app(hd(k); z)) into results

of the form app(f

0

(: : :); hd(k)). In general, our 
ontext splitting rule generates a

new algorithm (14) from an algorithm of the form (13).

fun
tion f (x

�

: �

�

; z : �) : � (

if b

1

then f(r

�

1

; p[r

1

; z℄)

.

.

.

if b

k

then f(r

�

k

; p[r

k

; z℄) (13)

if b

k+1

then p[r

k+1

; z℄

.

.

.

if b

m

then p[r

m

; z℄

fun
tion f

0

(x

�

: �

�

) : � (

if b

1

then p[f

0

(r

�

1

); r

1

℄

.

.

.

if b

k

then p[f

0

(r

�

k

); r

k

℄ (14)

if b

k+1

then r

k+1

.

.

.

if b

m

then r

m

.

Here, p is a term of type � 
ontaining exa
tly the two new variables x

1

and x

2

of type � and p[t

1

; t

2

℄ abbreviates p[x

1

=t

1

; x

2

=t

2

℄. Then our transformation splits

the 
ontexts into their 
ommon top part p and their spe
i�
 part r

i

and it moves

the 
ommon part p to the top of re
ursive results. (This allows an elimination

of the a

umulator z.) If there are several possible 
hoi
es for p, then we use the

heuristi
 to 
hoose p as small and r

i

as big as possible. Let e be a 
onstru
tor

ground term whi
h is a neutral argument of p, i.e., F j=

ind

p[x; e℄ � x and

F j=

ind

p[e; x℄ � x. Then in (13), one may also have z instead of p[e; z℄. For

example, in uni we had the non-re
ursive result z instead of app(nil; z). Moreover

we demand m > k � 1, but the order of the f -
ases is again irrelevant and the

rule may also be applied if z is not the last parameter of f .

We want to ensure that all o

urren
es of f(t

�

; e) in other algorithms g (that

f is not dependent on) may be repla
ed by f

0

(t

�

). For the soundness of this

transformation, similar to 
ontext moving, the a

umulator z must not o

ur

in 
onditions or in the subterms r

�

1

; : : : ; r

�

k

or r

1

; : : : ; r

m

. Then for 
onstru
tor

ground terms u

�

, the evaluation of f(u

�

; e) and of f

0

(u

�

) leads to the same 
ases

i

1

; : : : ; i

d

where i

1

; : : : ; i

d�1

2 f1; : : : ; kg and i

d

2 fk + 1; : : : ;mg. For 1 � h � d

let a

h

be r

i

h

[r

�

i

h�1

[: : : [r

�

i

1

[u

�

℄℄ : : :℄℄. Then the result of f(u

�

; e) is (15) and the

result of f

0

(u

�

) is (16).

p[a

d

; p[a

d�1

; : : : p[a

2

; a

1

℄ : : :℄℄ (15)

p[p[: : : p[p[a

d

; a

d�1

℄; a

d�2

℄ : : : a

2

℄; a

1

℄ (16)

13



To ensure the equality of these two results, p must be asso
iative. The following

theorem summarizes our rule for 
ontext splitting.

Theorem 2 (Soundness of Context Splitting). Let F be a fun
tional pro-

gram 
ontaining (13) and let F

0

result from F by adding the algorithm (14). Then

for all data obje
ts t

�

and q, f(t

�

; e) evaluates to q in F i� f

0

(t

�

) evaluates to q

in F

0

, provided that the following requirements are ful�lled:

(A) z 62 V(b

1

) [ : : : [ V(b

m

)

(B) z 62 V(r

�

1

) [ : : : [ V(r

�

k

) [ V(r

1

) [ : : : [ V(r

m

)

(C) F j=

ind

p[p[x

1

; x

2

℄; x

3

℄ � p[x

1

; p[x

2

; x

3

℄℄

(D) F j=

ind

p[x; e℄ � x and F j=

ind

p[e; x℄ � x.

Proof. Note that evaluation of f is the same in F and F

0

. Moreover, Conditions

(C) and (D) also hold for F

0

. We prove the (stronger) 
onje
ture

f(t

�

; t) �

F

0

q i� p[f

0

(t

�

); t℄ �

F

0

q (17)

for all 
onstru
tor ground terms t

�

, t, and q.

For the \only if"-dire
tion of (17) we use indu
tion on the length of f(t

�

; t)'s

evaluation. There must be a 
ase i su
h that b

i

[t

�

℄ �

F

0

true and b

j

[t

�

℄ �

F

0

false

for all 1 � j < i. If i � k+1, then we have f(t

�

; t) �

F

0

p[r

i

[t

�

℄; t℄ �

F

0

p[f

0

(t

�

); t℄:

If i � k, then f(t

�

; t) �

F

0

f(r

�

i

[t

�

℄; p[r

i

[t

�

℄; t℄) �

F

0

p[f

0

(r

�

i

[t

�

℄); p[r

i

[t

�

℄; t℄℄ by

the indu
tion hypothesis. By (C), this is �

F

0

-equal to p[p[f

0

(r

�

i

[t

�

℄); r

i

[t

�

℄℄; t℄

whi
h in turn is is �

F

0

-equal to p[f

0

(t

�

); t℄. The \if"-dire
tion of (17) is proved

analogously (by indu
tion w.r.t. the relation �

f

0

, where u

�

�

f

0

q

�

holds for two

tuples of 
onstru
tor ground terms u

�

and q

�

i� evaluation of f

0

(u

�

) is de�ned

and it leads to the evaluation of f

0

(q

�

)). ut

Context splitting is only applied if there is a term f(t

�

; e) in some other algo-

rithm g that f is not dependent on. In this 
ase, the 
onditions (C) and (D) are


he
ked by an underlying indu
tion theorem prover (where usually asso
iativity

is even easier to prove than (left-)
ommutativity). Conditions (A) and (B) are

just synta
ti
. In 
ase of su

ess, f

0

is generated and the term f(t

�

; e) in the

algorithm g is repla
ed by f

0

(t

�

).

Similar to 
ontext moving, a variant of the above rule if often used in the re-

verse dire
tion (re-bra
keting, 
f. e.g. [Coo66,DB76,BD77,Wan80,BW82,PP96℄).

Again, instead of dire
tly reversing the te
hnique, we modi�ed and generalized it,

e.g., by regarding several tail re
ursive and non-tail re
ursive 
ases. An algorithm

where this general form of our rule is needed will be presented in Se
t. 5 and

several others 
an be found in [Gie99b℄. Moreover, the next se
tion also intro-

du
es important re�nements whi
h in
rease the appli
ability of 
ontext splitting


onsiderably and whi
h have no 
ounterpart in the 
lassi
al re-bra
keting rules.

5 Pre-Pro
essing Transformations for Context Splitting

In examples where the 
ontext p is not yet in the right form, one 
an use suitable

pre-pro
essing transformations whi
h in turn enable the appli
ation of 
ontext

splitting. Regard the following imperative pro
edure for reversing lists.

14



pro
edure reverse(l; z : list)(

z := nil;

while l 6= nil do z := 
ons(
ar(l); z);

l := 
dr(l) od

By translating reverse into fun
tional form one obtains

fun
tion reverse(l : list) : list(

rev(l; nil)

fun
tion rev(l; z : list) : list(

if l 6= nil then rev(
dr(l); 
ons(
ar(l); z))

else z.

In order to eliminate the a

umulator z, we would like to apply 
ontext

splitting. Here, the term p in (13) would be 
ons(x

1

; x

2

). But then x

1

would be

a variable of type nat (instead of list as required) and hen
e, the asso
iativity

law is not even well typed.

Whenever p has the form 
(x

1

; : : : ; x

1

; x

2

) for some 
onstru
tor 
, where x

1

is of the \wrong" type, then one may use the following reformulation of the

algorithm. (Of 
ourse, here x

2

does not have to be the last argument of 
.) The

idea is to \lift" x

1

; : : : ; x

1

to an obje
t lift




(x

1

; : : : ; x

1

) of type � and to de�ne a

new fun
tion 


0

: � � � ! � su
h that 


0

(lift




(x

1

; : : : ; x

1

); x

2

) � 
(x

1

; : : : ; x

1

; x

2

).

Moreover, in order to split 
ontexts afterwards, 


0

should be asso
iative.

As a heuristi
, we use the following 
onstru
tion for lift




and 


0

, provided that

apart from 
 the data type � just has a 
onstant 
onstru
tor 



on

. The fun
tion

lift




(x

1

; : : : ; x

n

) should yield the term 
(x

1

; : : : ; x

n

; 



on

) and the fun
tion 


0

is

de�ned by the following algorithm (where d

1

; : : : ; d

n+1

are the sele
tors to 
).

fun
tion 


0

(x; z : �) : � (

if x = 
(d

1

(x); : : :; d

n

(x); d

n+1

(x)) then 
(d

1

(x); : : :; d

n

(x); 


0

(d

n+1

(x); z))

else z

Then 


0

(lift




(x

1

; : : : ; x

n

); z) � 
(x

1

; : : : ; x

n

; z), 



on

is a neutral argument for




0

, and 


0

is asso
iative. So for rev, we obtain lift


ons

(x

1

) � 
ons(x

1

; nil) and

fun
tion 
ons

0

(x; z : list) : list (

if x = 
ons(
ar(x); 
dr(x)) then 
ons(
ar(x); 
ons

0

(
dr(x); z))

else z.

Note that in this example, 
ons

0


orresponds to the 
on
atenation fun
tion app.

Thus, the term 
ons(
ar(l); z) in the algorithm rev may be repla
ed by


ons

0

(lift


ons

(
ar(l)); z), i.e., by 
ons

0

(
ons(
ar(l); nil); z). Now the rule for 
ontext

splitting is appli
able whi
h yields

fun
tion reverse(l : list) : list(

rev

0

(l)

fun
tion rev

0

(l : list) : list(

if l 6= nil then 
ons

0

(rev

0

(
dr(l)); 
ons(
ar(l); nil))

else nil.

In 
ontrast to the original versions of reverse and rev, these algorithms are well

suited for veri�
ation.

15



Of 
ourse, there are also examples where the 
ontext p has the form g(x

1

; x

2

)

for some algorithm g (instead of a 
onstru
tor 
) and where x

1

has the \wrong"

type. For instan
e, regard the following imperative pro
edure to �lter all even

elements out of a list l. It uses an auxiliary algorithm even and an algorithm

atend(x; z) whi
h inserts an element x at the end of a list z.

fun
tion atend(x : nat; z : list) : list(

if z = nil then 
ons(x; nil)

else 
ons(
ar(z); atend(x; 
dr(z)))

Now the pro
edure �lter reads as follows.

pro
edure �lter(l; z : list)(

z := nil;

while l 6= nil do if even(
ar(l)) then z := atend(
ar(l); z);

l := 
dr(l) od

Translating this pro
edure into fun
tional algorithms yields

fun
tion �lter(l : list) : list(

�l(l; nil)

fun
tion �l(l; z : list) : list(

if l = nil then z

if even(
ar(l)) then �l(
dr(l); atend(
ar(l); z))

else �l(
dr(l); z).

To apply 
ontext splitting for �l, p would be atend(x

1

; x

2

) and thus, x

1

would

be of type nat instead of list as required. While for 
onstru
tors like 
ons, su
h a

problem 
an be solved by the lifting te
hnique des
ribed above, now the root of p

is the algorithm atend. For su
h examples, the following parameter enlargement

transformation often helps.

In the algorithm atend, outside of its own re
ursive argument the parameter

x only o

urs in the term 
ons(x; nil) and the value of 
ons(x; nil) does not 
hange

throughout the whole exe
ution of atend (as the value of x does not 
hange in any

re
ursive 
all). Hen
e, the parameter x 
an be \enlarged" into a new parameter

y whi
h 
orresponds to the value of 
ons(x; nil). Thus, we result in the following

algorithm atend

0

, where atend

0

(
ons(x; nil); z) � atend(x; z).

fun
tion atend

0

(y; z : list) : list(

if z = nil then y

else 
ons(
ar(z); atend

0

(y; 
dr(z)))

In general, let h(x

�

; z

�

) be a fun
tion where the parameters x

�

are not


hanged in re
ursive 
alls and where x

�

only o

ur within the terms t

1

; : : : ; t

m

outside of their re
ursive 
alls in the algorithm h. If V(t

i

) � fx

�

g for all i and if

the t

i

only 
ontain total fun
tions (like 
onstru
tors), then one may 
onstru
t a

new algorithm h

0

(y

1

; : : :; y

m

; z

�

) by enlarging the parameters x

�

into y

1

; : : : ; y

m

.

The algorithm h

0

results from h by repla
ing all t

i

by y

i

, where the param-

eters y

i

again remain un
hanged in their re
ursive arguments. Then we have

h

0

(t

1

; : : :; t

m

; z

�

) � h(x

�

; z

�

). Thus, in all algorithms f that h is not dependent on,

16



we may repla
e any subterm h(s

�

; p

�

) by h

0

(t

1

[x

�

=s

�

℄; : : : ; t

m

[x

�

=s

�

℄; p

�

). (The

only restri
tion for this repla
ement is that all possibly unde�ned subterms of

s

�

must still o

ur in some t

i

[x

�

=s

�

℄.)

Hen
e, in the algorithm �l, the term atend(
ar(l); z) 
an be repla
ed by

atend

0

(
ons(
ar(l); nil); z). It turns out that atend

0

(l

1

; l

2

) 
on
atenates the lists

l

2

and l

1

(i.e., it 
orresponds to app(l

2

; l

1

)). Therefore, atend

0

is asso
iative and

thus, 
ontext splitting 
an be applied to �l now. This yields the following algo-

rithms whi
h are well suited for veri�
ation.

fun
tion �lter(l : list) : list(

�l

0

(l)

fun
tion �l

0

(l : list) : list(

if l = nil then nil

if even(
ar(l)) then atend

0

(�l

0

(
dr(l)); 
ons(
ar(l); nil))

else atend

0

(�l

0

(
dr(l)); nil)

Of 
ourse, by subsequent unfolding (or \symboli
 evaluation") of atend

0

, the

algorithm �l

0


an be simpli�ed to

fun
tion �l

0

(l : list) : list(

if l = nil then nil

if even(
ar(l)) then 
ons(
ar(l); �l

0

(
dr(l)))

else �l

0

(
dr(l)).

Note that here we indeed needed a 
ontext splitting rule whi
h 
an handle

algorithms with several tail re
ursive 
ases. Thus, a dire
t reversal of the 
lassi
al

re-bra
keting rules [BW82℄ would fail for both reverse and �lter (sin
e these rules

are restri
ted to just one re
ursive 
ase and moreover, they la
k the 
on
epts of

lifting and of parameter enlargement).

The examples union, reverse, and �lter show that 
ontext splitting 
an help in


ases where 
ontext moving is not appli
able. On the other hand for algorithms

like plus, 
ontext moving is su

essful, but 
ontext splitting is not possible. So

none of these two transformations subsumes the other and to obtain a powerful

approa
h, we indeed need both of them. But there are also several algorithms

where the veri�
ation problems 
an be solved by both 
ontext moving and split-

ting. For example, the algorithms resulting from mult by 
ontext moving or

splitting only di�er in the order of the arguments of + in mult's �rst re
ursive


ase. Thus, both resulting algorithms are well suited for veri�
ation tasks.

6 Con
lusion

We have presented a new transformational approa
h for the me
hanized veri�-


ation of imperative programs and tail re
ursive fun
tions, whi
h 
onsists of the

following transformations:

� 
ontext moving for left-
ommutative 
ontexts of a

umulators (Se
t. 3)

� 
ontext splitting for (partly) asso
iative 
ontexts of a

umulators (Se
t. 4)

� lifting of arguments in order to enable 
ontext splitting (Se
t. 5)

� parameter enlargement to enable 
ontext splitting (Se
t. 5)

17



By our te
hnique, fun
tions that are hard to verify are automati
ally trans-

formed into fun
tions where veri�
ation is signi�
antly easier. Hen
e, for many

programs the invention of loop invariants or of generalizations is no longer

required and an automated veri�
ation is possible by the existing indu
tion

theorem provers. As our transformations generate equivalent fun
tions, this

transformational veri�
ation approa
h is not restri
ted to partial 
orre
tness,

but it 
an also be used to simplify total 
orre
tness and termination proofs

[Gie95,Gie97,GWB98,BG99,AG00℄. See [Gie99b℄ for a 
olle
tion of examples

that demonstrates the power of our approa
h. It shows that our transforma-

tion indeed simpli�es the veri�
ation tasks substantially for many pra
ti
ally

relevant algorithms from di�erent areas of 
omputer s
ien
e (e.g., arithmeti
al

algorithms or pro
edures for pro
essing (possibly multidimensional) lists in
lud-

ing algorithms for matrix multipli
ation and sorting algorithms like sele
tion-,

insertion-, and merge-sort, et
.). Based on the rules and heuristi
s presented, we

implemented a system to perform su
h transformations automati
ally [Gie99a℄.

The �eld of me
hanized veri�
ation and indu
tion theorem proving repre-

sents a new appli
ation area for program transformation te
hniques. It turns

out that our approa
h of transforming algorithms often seems to be superior to

the 
lassi
al solution of generalizing theorems. For instan
e, our te
hnique auto-

mati
ally transforms all (�rst order) tail re
ursive fun
tions treated in re
ent gen-

eralization te
hniques [IS97,IB99℄ into non-tail re
ursive ones whose veri�
ation

is very simple. On the other hand, the te
hniques for �nding generalizations are

mostly semi-automati
 (sin
e they are guided by the system user who has to pro-

vide suitable lemmata). Obviously, by formulating the right lemmata (intera
-

tively), in prin
iple generalization te
hniques 
an deal with almost every 
onje
-

ture to be proved. But in parti
ular for 
onje
tures whi
h involve several o

ur-

ren
es of a tail re
ursive fun
tion, �nding suitable generalizations is often im-

possible for fully automati
 te
hniques. Therefore, our approa
h represents a

signi�
ant 
ontribution for me
hanized veri�
ation of imperative and tail re
ur-

sive fun
tional programs. Nevertheless, of 
ourse there also exist tail re
ursive

algorithms where our automati
 transformations are not appli
able. For su
h

examples, (intera
tive) generalizations are still required.

Further work will in
lude an examination of other existing program trans-

formation te
hniques in order to determine whether they 
an be modi�ed into

transformations suitable for an appli
ation in the program veri�
ation domain.

Moreover, in future work the appli
ation area of program veri�
ation may also

give rise to new transformations whi
h have no 
ounterpart at all in 
lassi
al

program transformations.

Referen
es

[AK82℄ J. Arsa
 and Y. Kodrato�. Some te
hniques for re
ursion removal from

re
ursive fun
tions. ACM Trans. Prog. Languages Systems, 4:295{322, 1982.

[AG00℄ T. Arts and J. Giesl. Termination of term rewriting using dependen
y pairs.

Theoreti
al Computer S
ien
e, 2000. To appear.

[Aub79℄ R. Aubin. Me
hanizing stru
tural indu
tion. TCS, 9:347{362, 1979.

18



[BW82℄ F. L. Bauer and H. W�ossner. Algorithmi
 Language and Program Develop-

ment. Springer, 1982.

[BR95℄ A. Bouhoula and M. Rusinowit
h. Impli
it indu
tion in 
onditional theories.

Journal of Automated Reasoning, 14:189{235, 1995.

[BM79℄ R. S. Boyer and J S. Moore. A Computational Logi
. A
ademi
 Press, 1979.

[BM98℄ R. S. Boyer and J S. Moore. A Computational Logi
 Handbook. A
ademi


Press, 2nd edition, 1998.

[BG99℄ J. Brauburger and J. Giesl. Approximating the domains of fun
tional and

imperative programs. S
ien
e of Computer Programming, 35:113-136, 1999.

[BSH

+

93℄ A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Smaill. Rippling:

A heuristi
 for guiding indu
tive proofs. Artif. Int., 62:185{253, 1993.

[BD77℄ R. M. Burstall and J. Darlington. A transformation system for developing

re
ursive programs. Journal of the ACM, 24:44{67, 1977.

[Coo66℄ D. Cooper. The equivalen
e of 
ertain 
omputations. Comp. J., 9:45{52, 66.

[DB76℄ J. Darlington and R. M. Burstall. A system whi
h automati
ally improves

programs. A
ta Informati
a, 6:41{60, 1976.

[Dij85℄ E. W. Dijkstra. Invarian
e and non-determina
y. InMathemati
al Logi
 and

Programming Languages, 
hapter 9, pages 157{165. Prenti
e-Hall, 1985.

[Gie95℄ J. Giesl. Termination analysis for fun
tional programs using term orderings.

In Pro
. SAS' 95, LNCS 983, pages 154{171, Glasgow, UK, 1995.

[Gie97℄ J. Giesl. Termination of nested and mutually re
ursive algorithms. Journal

of Automated Reasoning, 19:1{29, 1997.

[GWB98℄ J. Giesl, C. Walther, and J. Brauburger. Termination analysis for fun
tional

programs. In Bibel and S
hmitt, eds., Automated Dedu
tion { A Basis for

Appli
ations, Vol. III, Applied Logi
 Series 10, pages 135{164. Kluwer, 1998.

[Gie99a℄ J. Giesl. Me
hanized veri�
ation of imperative and fun
tional programs.

Habilitation Thesis, TU Darmstadt, 1999.

[Gie99b℄ J. Giesl. Context-moving transformations for fun
tion veri�
ation. Te
h-

ni
al Report IBN 99/51, TU Darmstadt. Available from http://www.

inferenzsysteme.informatik.tu-darmstadt.de/~giesl/ibn-99-51.ps

[Gie99
℄ J. Giesl. Indu
tion proofs with partial fun
tions. Journal of Automated

Reasoning. To appear. Preliminary version appeared as Te
hni
al Report

IBN 98/48, TU Darmstadt. Available from http://www.inferenzsysteme.

informatik.tu-darmstadt.de/~giesl/ibn-98-48.ps

[HK92℄ P. Harrison and H. Khoshnevisan. A new approa
h to re
ursion removal.

Theoreti
al Computer S
ien
e, 93:91{113, 1992.

[HBS92℄ J. Hesketh, A. Bundy, and A. Smaill. Using middle-out reasoning to 
ontrol

the synthesis of tail-re
ursive programs. In Pro
. CADE-11, LNAI 607,

pages 310{324, Saratoga Springs, NY, 1992.

[Hoa69℄ C. A. R. Hoare. An axiomati
 basis for 
omputer programming. Commu-

ni
ations of the ACM, 12:576{583, 1969.

[IS97℄ A. Ireland and J. Stark. On the automati
 dis
overy of loop invariants. 4th

NASA Langley Formal Methods Workshop, NASA Conf. Publ. 3356, 1997.

[IB99℄ A. Ireland and A. Bundy. Automati
 veri�
ation of fun
tions with a

umu-

lating parameters. Journal of Fun
tional Programming, 9:225-245, 1999.

[KM87℄ D. Kapur and D. R. Musser. Proof by 
onsisten
y. AI, 31:125{158, 1987.

[M
C60℄ J. M
Carthy. Re
ursive fun
tions of symboli
 expressions and their 
ompu-

tation by ma
hine. Communi
ations of the ACM, 3, 1960.

[MPS93℄ B. M�oller, H. Parts
h, and S. S
human. Formal Program Development.

LNCS 755, Springer, 1993.

19



[Moo75℄ J S. Moore. Introdu
ing iteration into the Pure lisp theorem prover. IEEE

Transa
tions on Software Engineering, 1:328{338, 1975.

[Par90℄ H. Parts
h. Spe
i�
ation and Transformation of Programs. Springer, 1990.

[PP96℄ A. Pettorossi and M. Proietti. Rules and strategies for transforming fun
-

tional and logi
 programs. ACM Computing Surveys, 28:360{414, 1996.

[PP98℄ A. Pettorossi and M. Proietti. Transformations of logi
 programs. Handbook

of Logi
 in AI and Logi
 Programming, Vol. 5, Oxford University Pr., 1998.

[RY76℄ C. Reynolds and R. T. Yeh. Indu
tion as the Basis for Program Veri�
ation.

IEEE Transa
tions on Software Engineering, SE-2(4):244{252, 1976.

[SI98℄ J. Stark and A. Ireland. Invariant dis
overy via failed proof attempts. In

Pro
. LOPSTR '98, LNCS 1559, Man
hester, UK, 1998.

[Wal94℄ C. Walther. Mathemati
al indu
tion. Handbook of Logi
 in Arti�
ial Intel-

ligen
e and Logi
 Programming, Vol. 2. Oxford University Press, 1994.

[Wan80℄ M. Wand. Continuation-based program transformation strategies. Journal

of the ACM, 27:164{180, 1980.

[ZKK88℄ H. Zhang, D. Kapur, and M. S. Krishnamoorthy. A me
hanizable indu
tion

prin
iple for equational spe
i�
ations. CADE-9, LNCS 310, Argonne, 1988.

20


