
The Dependency Pair Framework: Combining

Techniques for Automated Termination Proofs⋆

Jürgen Giesl, René Thiemann, Peter Schneider-Kamp

LuFG Informatik II, RWTH Aachen, Ahornstr. 55, 52074 Aachen, Germany
{giesl|thiemann|psk}@informatik.rwth-aachen.de

Abstract. The dependency pair approach is one of the most powerful
techniques for automated termination proofs of term rewrite systems. Up
to now, it was regarded as one of several possible methods to prove ter-
mination. In this paper, we show that dependency pairs can instead be
used as a general concept to integrate arbitrary techniques for termina-
tion analysis. In this way, the benefits of different techniques can be
combined and their modularity and power are increased significantly. We
refer to this new concept as the “dependency pair framework” to distin-
guish it from the old “dependency pair approach”. Moreover, this frame-
work facilitates the development of new methods for termination analy-
sis. To demonstrate this, we present several new techniques within the
dependency pair framework which simplify termination problems consid-
erably. We implemented the dependency pair framework in our termina-
tion prover AProVE and evaluated it on large collections of examples.

1 Introduction

Termination of term rewrite systems (TRSs) has been studied for decades and
several methods were developed to prove termination of TRSs automatically
(one of the most powerful techniques is the dependency pair approach [1, 6, 7]).
Up to now, all these methods were seen as separate approaches on their own.

In contrast, this paper shows that dependency pairs are suitable as a general
framework to integrate arbitrary techniques for termination proofs. In this way,
the benefits of all available methods can be combined and the classical depen-
dency pair approach is just a special case of this new dependency pair framework.
By combining termination techniques within the dependency pair framework (in-
stead of trying to apply them on a TRS directly, one after another), the flexibility,
modularity, and power of these techniques are increased significantly.

We introduce the dependency pair framework in Sect. 2. Here, each tech-
nique for termination proofs is seen as a dependency pair processor that trans-
forms a dependency pair problem into a set of new (and hopefully, simpler) ones.
Sect. 3 shows how to formulate the components of the classical dependency pair
approach as processors. This increases their applicability substantially and it
demonstrates that the dependency pair approach is indeed a special case of the
dependency pair framework. In Sect. 4 we introduce new processors which sim-
plify dependency pair problems significantly and which are only possible due to
the new formulation of the dependency pair framework. This demonstrates that

⋆ Proceedings of the 11th International Conference on Logic for Programming, Artifi-
cial Intelligence, and Reasoning (LPAR 2004), LNCS 3452, pp. 301-331, 2005.

the dependency pair framework is particularly well suitable as a basis for future
developments in automated termination proving. In Sect. 5 we discuss how to
integrate other (existing) methods for automated termination proofs into the
dependency pair framework by formulating them as processors as well.

Finally, to construct an automatic termination prover using the dependency
pair framework, a main problem is to develop strategies to decide which pro-
cessors should be applied to a given DP problem. Suitable heuristics and our
implementation in the termination prover AProVE are discussed in Sect. 6.

2 The Dependency Pair Framework

We extend the dependency pair approach to a framework for the combination of
arbitrary termination techniques. The reader is referred to [2] for the basics of
term rewriting and to [1, 7] for further details on the dependency pair approach.

We restrict ourselves to finite signatures F and TRSs. T (F ,V) denotes the
set of terms over F and the infinite set of variables V . A TRS over F is a set of
rules l → r where l and r are from T (F ,V), V(r) ⊆ V(l), and l /∈ V . To handle
different evaluation strategies (like innermost or full rewriting) in a uniform way,
we introduce the new notion of Q-restricted rewriting. In Q-restricted rewriting,
one may only perform a rewrite step if the proper subterms of the redex are not
reducible w.r.t. Q (i.e., if they are Q-normal forms). This notion is particularly
useful when defining techniques for innermost termination proofs later on.

Definition 1 (Q-restricted Rewriting). Let R and Q be TRSs. We define
the Q-restricted rewrite relation as s

Q
→R,p t iff p is a position of s, s|p = lσ for

some rule l → r ∈ R and some substitution σ, t = s[rσ]p, and all proper subterms
of the redex s|p are in Q-normal form. Moreover, s

Q
→R t means that s

Q
→R,p t

for some position p. A TRS R is Q-terminating iff
Q
→R is well founded.1

Example 2. Consider R = {f(a) → f(a), a → b}. If Q contains the rule a → b,
then the step from f(a) to f(a) is no longer possible with

Q
→R since the proper

subterm a of the redex f(a) is not a Q-normal form. Thus, R is Q-terminating.

Q-restricted rewriting subsumes both innermost and ordinary rewriting. Or-
dinary rewriting is Q-restricted rewriting for Q = ∅ and innermost rewriting is
Q-restricted rewriting with Q = R (→R =

∅

→R and i→R =
R
→R). The following

lemma shows that
Q
→R is “increasing” if R is “increasing” and Q is “decreasing”.

Lemma 3 (Monotonicity of
Q
→R). R′ ⊆ R and Q′ ⊇ Q implies

Q′

→R′ ⊆
Q
→R.

Proof. Obvious. ⊓⊔

This lemma already indicates why Q-restricted rewriting is better suitable
for termination analysis than innermost rewriting. There exist several techniques
which can simplify termination proofs by removing rules from the TRS R. For
full rewriting and also for Q-restricted rewriting, removal of rules is always ad-
vantageous, since it can never introduce non-termination (termination of

Q
→R

1 Since the right-hand sides of Q’s rules are not needed to define Q-restricted rewriting,
Def. 1 could also be formulated if Q is a set of terms instead of rules.

2

implies termination of
Q
→R′ if R′ ⊆ R). But for innermost rewriting, this is not

true. For instance, by removing the rule a → b from the innermost terminating
TRS R of Ex. 2, we result in a TRS R′ that is not innermost terminating (hence,
i→R′ 6⊆ i→R). Here, Q-restricted rewriting has the advantage that the rules Q
which restrict the set of possible redexes are separated from the rules R used for
rewriting and thus, R and Q can be changed independently.

Now we present a termination criterion for Q-restricted rewriting based on
dependency pairs. For a TRS R over F , the defined symbols are D = {root(l) |
l → r ∈ R} and the constructors are C = F \D. For every f ∈ D we extend the
signature F by a fresh tuple symbol f ♯, where f ♯ has the same arity as f and we
often write F for f ♯. If t=g(t1, . . . , tm) with g∈D, we let t♯ denote g♯(t1, . . . , tm).

Definition 4 (Dependency Pair). The set of dependency pairs for a TRS
R is DP (R) = {l♯ → t♯ | l → r ∈ R, root(t) ∈ D, t is a subterm of r}.2

Example 5. The following TRS computes subtraction and division, cf. [1, Ex. 2].

minus(x, 0) → x (1)

minus(0, s(y)) → 0 (2)

minus(s(x), s(y)) → minus(x, y) (3)

div(0, s(y)) → 0 (4)

div(s(x), s(y)) → s(div(minus(x, y), s(y))) (5)

Here, the defined symbols are minus and div and the symbols 0 and s are con-
structors. We obtain the following dependency pairs:

MINUS(s(x), s(y)) → MINUS(x, y) (6) DIV(s(x), s(y)) → MINUS(x, y) (7)

DIV(s(x), s(y)) → DIV(minus(x, y), s(y)) (8)

To verify Q-termination, we use the notion of chains. Intuitively, a depen-
dency pair corresponds to a function call and a chain represents a possible se-
quence of calls that can occur in a reduction. For termination, we try to prove
that there are no infinite chains. We always assume that different occurrences of
dependency pairs are variable disjoint and consider substitutions whose domains
may be infinite. In the following definition, P is usually a set of dependency pairs.

Definition 6 (Chain). Let P ,Q,R be TRSs. A (possibly infinite) sequence of
pairs s1 → t1, s2 → t2, . . . from P is a (P ,Q,R)-chain iff there is a substitution
σ such that tiσ

Q
→∗

R si+1σ for all i and all siσ are in Q-normal form. A chain
is minimal iff there is a σ as above where all tiσ are terminating w.r.t.

Q
→R.

Example 7. If Q ⊆ R, then the TRS of Ex. 5 has the following chain which
consists of two occurrences of the dependency pair (8).

DIV(s(x1), s(y1)) → DIV(minus(x1, y1), s(y1)),

DIV(s(x2), s(y2)) → DIV(minus(x2, y2), s(y2))

The reason is that DIV(minus(x1, y1), s(y1))σ
Q
→∗

R DIV(s(x2), s(y2))σ holds for
some substitution σ (e.g., σ(x1) = s(0) and σ(x2) = σ(yi) = 0 for i ∈ {1, 2})
such that all instantiated left-hand sides DIV(s(xi), s(yi))σ are in Q-normal form.
Moreover, the chain is minimal, since all instantiated right-hand sides of the

2 It even suffices only to regard dependency pairs where t is no proper subterm of l [4].

3

dependency pairs are terminating w.r.t.
Q
→R.

As mentioned above, termination corresponds to absence of infinite chains.
Here, it suffices to consider minimal chains, since minimal non-terminating terms
(whose proper subterms are terminating) correspond to infinite minimal chains.
The following termination criterion is immediately obtained from [1, Thm. 6].

Theorem 8 (Termination Criterion). These three properties are equivalent:

• R is Q-terminating
• there is no infinite (DP (R),Q,R)-chain
• there is no infinite minimal (DP (R),Q,R)-chain

With this criterion, we can now state the dependency pair framework. The ba-
sic idea of this framework is to examine a set of dependency pairs P together with
the TRSs Q and R and to prove absence of (minimal) infinite (P ,Q,R)-chains
instead of examining the relation

Q
→R directly. The advantages of this approach

will become clear in the sequel. For example, it will be possible to decompose
this so-called dependency pair problem into several independent sub-problems.
These problems can then be solved separately using different techniques, which
leads to a very modular approach to termination proving.

More precisely, a dependency pair problem (“DP problem”, for short) consists
of three TRSs P , Q, and R (where initially, P = DP (R)) and a flag f ∈ {m,a}
which stands for “minimal” or “arbitrary”. Initially, we have f = m. Our goal
is to show that there is no infinite minimal (P ,Q,R)-chain if f = m and that
there is no infinite (possibly non-minimal) (P ,Q,R)-chain if f = a. If this is
possible, then we call the problem finite.

A DP problem (P ,Q,R, f) that is not finite is called infinite. But in ad-
dition, (P ,Q,R, f) is already infinite whenever R is not Q-terminating. So in
particular, the existence of any (possibly non-minimal) infinite (P ,Q,R)-chain
suffices to conclude that (P ,Q,R, f) is infinite, even if f = m. While the initial
DP problem (DP (R),Q,R,m) is either finite or infinite, other DP problems
(P ,Q,R, f) which can occur in termination proofs can be both finite and infi-
nite. For example, the DP problem (P ,Q,R,m) with P = {A → B}, Q = ∅

and R = {a → a, a → b, b → c} is finite since there is no infinite minimal
(P ,Q,R)-chain, but also infinite since R is not (Q-)terminating.

Such DP problems do not cause difficulties. If one detects an infinite problem
during a termination proof, one can always abort the proof, since termination
has been disproved (provided that all proof steps were “complete”, i.e., that they
preserved the termination behavior). If the problem is both finite and infinite,
then even if one only considers it as being finite, the proof is still correct, since
then there exists another resulting DP problem which is infinite and not finite.
The reason is that by Thm. 8, non-termination implies that there is an infinite
(minimal) chain. Indeed, when proving termination of the TRS R above one also
obtains a DP problem with the infinite minimal chain A → A, A → A, . . .

Termination techniques should now operate on DP problems instead of TRSs.
They should transform a DP problem into a new set of problems which then have
to be solved instead. Alternatively, they can also return the answer “no”. We

4

refer to such techniques as dependency pair processors (“DP processors”).

Definition 9 (DP Problems and Processors). A DP problem (P ,Q,R, f)
consists of three TRSs P, Q, R and a flag f ∈ {m,a}. A DP problem (P ,Q,
R,m) is finite iff there is no infinite minimal (P ,Q,R)-chain and (P ,Q,R,a)
is finite iff there is no infinite (P ,Q,R)-chain. A DP problem (P ,Q,R, f) is
infinite iff it is not finite or if R is not Q-terminating.

A DP processor is a function Proc which takes a DP problem as input and
returns either a set of DP problems or the result “no”. A DP processor Proc is
sound if for all DP problems d, d is finite whenever Proc(d) is not “no” and all
DP problems in Proc(d) are finite. A DP processor Proc is complete if for all
DP problems d, d is infinite whenever Proc(d) is “no” or when Proc(d) contains
an infinite DP problem.

Thus, soundness is required in order to use a DP processor Proc to prove
termination (in particular, to conclude that d is finite if Proc(d) = ∅). Com-
pleteness is needed in order to use Proc to prove non-termination (in particular,
to conclude that d is infinite if Proc(d) = no). Even if one is only interested in
proving termination, completeness is still advantageous, since it ensures that one
does not transform non-infinite DP problems into infinite ones (i.e., applying the
processor does not “harm”). The reason for the above non-symmetric definition
of “finite” and “infinite” is that in this way there are more finite resp. infinite DP
problems and therefore, it becomes easier to detect (in)finiteness of a problem.3

The following corollary introduces the dependency pair framework (“DP
framework”, for short). The idea is to start with the initial DP problem where
P = DP (R) and f = m. Then this problem is transformed repeatedly by sound
DP processors. If the final processors return empty sets of DP problems, then
termination is proved. If one of the processors returns “no” and all processors
used before were complete, then one has proved that the original TRS is not
terminating. The proof of Cor. 10 is immediate from Def. 9 and Thm. 8.

Corollary 10 (Dependency Pair Framework). Let R and Q be TRSs. We
construct a tree whose nodes are labelled with DP problems or “yes” or “no” and
whose root is labelled with (DP (R),Q,R,m). For every inner node labelled with
d, there is a sound DP processor Proc satisfying one of the following conditions:

• Proc(d) = no and the node has just one child, labelled with “no”
• Proc(d) = ∅ and the node has just one child, labelled with “yes”
• Proc(d) 6= no, Proc(d) 6= ∅, and the children of the node are labelled with

the DP problems in Proc(d)

If all leaves of the tree are labelled with “yes”, then R is Q-terminating.
Otherwise, if there is a leaf labelled with “no” and if all processors used on the
path from the root to this leaf are complete, then R is not Q-terminating.

3 That a DP problem (P ,Q,R, m) is already “finite” if there are no infinite minimal
chains will be required for the soundness of many processors (cf. Thm. 19, Thm. 28,
Thm. 32, and Thm. 37) and that a DP problem is already “infinite” if R is not Q-
terminating will be required for the completeness of most processors for dependency
pair transformations (cf. Ex. 24 in Sect. 3.3).

5

Example 11. If d0 is the initial problem (DP (R),Q,R,m), Proc0, Proc1, Proc2

are sound DP processors, and Proc0(d0) = {d1, d2}, Proc1(d1) = ∅, Proc2(d2) =
∅, then one could obtain the first tree below and conclude termination.

d0

||
| BB

B

d1 d2

yes yes

d0

}}
} AA

A

d1

}}
} AA

A
d2

d3 d4 d5 no

But if Proc1(d1) = {d3, d4, d5} and Proc2(d2) = no, one could get the second tree.
If both Proc0 and Proc2 are complete, then one could conclude non-termination.

In the remainder of the paper, we present several sound DP processors which
can be used for termination proofs within the DP framework. Of course, it is
desirable to find DP processors which transform a DP problem (P ,Q,R, f) into
a set of “simpler” problems and whose application can never “harm”. Therefore,
we are particularly interested in processors which decrease P and R and which
increase Q. As stated by Lemma 3, decreasing the set of rules R and increasing
Q leads to a more restricted rewrite relation and thus, it can never transform a
non-infinite DP problem into an infinite one. In other words, any DP processor
which removes rules from P and R and which adds rules to Q is complete.

Lemma 12 (Completeness of DP Processors). Let Proc be a DP processor
where for all DP problems (P ,Q,R, f) and all (P ′,Q′,R′, f ′)∈Proc((P ,Q,R, f))
we have P ′ ⊆ P, R′ ⊆ R, and Q′ ⊇ Q. Then Proc is complete.

Proof. Let some (P ′,Q′,R′, f ′) ∈ Proc((P ,Q,R, f)) be infinite and suppose
that (P ,Q,R, f) is not infinite. Thus, R is Q-terminating and (P ,Q,R, f) is
finite. Due to Q-termination of R, every (P ,Q,R)-chain is minimal and thus,
there is no infinite (P ,Q,R)-chain, even if f = m.

Note that Q′-termination of R′ follows from Q-termination of R by Lemma 3.
So if (P ′,Q′,R′, f ′) is infinite, there must be an infinite (P ′,Q′,R′)-chain. But
then this is also an infinite (P ,Q,R)-chain which contradicts the observation
above. The reason is that tiσ

Q′

→∗
R′ si+1σ implies tiσ

Q
→∗

R si+1σ by Lemma 3
and if siσ is a Q′-normal form then it is also a Q-normal form. ⊓⊔

3 DP Processors From the Dependency Pair Approach

In the classical dependency pair approach, finiteness of a DP problem was shown
by first modularizing the proof using the dependency graph (cf. Sect. 3.1.) Af-
terwards, a set of inequalities was generated and one tried to find certain orders
satisfying these inequalities (cf. Sect. 3.2). Moreover, before constructing the de-
pendency graph, it was possible to transform dependency pairs (cf. Sect. 3.3). In
this section, we develop DP processors which perform these three tasks. Thus,
the whole dependency pair approach is now presented as a set of processors work-
ing on DP problems. Each step of the dependency pair approach is formulated
as a DP processor on its own. In this way, flexibility is increased substantially:
now these DP processors may be applied repeatedly and in any order, whereas

6

their order of application was fixed in the original dependency pair approach.
All processors in this section only modify the set of pairs P in a DP problem

(P ,Q,R, f). Processors which also modify the sets Q and R will be discussed
in Sect. 4 and processors which also modify f will be shown in Sect. 5.

3.1 A DP Processor Based on the Dependency Graph

We now present a processor to decompose a DP problem into several separate
sub-problems. To this end, one tries to determine which pairs can follow each
other in chains by constructing a so-called dependency graph.

Definition 13 (Dependency Graph). Let (P ,Q,R, f) be a DP problem. The
nodes of the (P ,Q,R)-dependency graph are the pairs of P and there is an arc
from s → t to u → v iff s → t, u → v is a (P ,Q,R)-chain.

Example 14. We regard the TRS for subtraction and division from Ex. 5 again.
Here we obtain the following (P ,Q,R)-dependency graph for all Q ⊆ R.

DIV(s(x), s(y)) → MINUS(x, y) (7)

DIV(s(x), s(y))→DIV(minus(x, y), s(y)) (8) MINUS(s(x), s(y))→MINUS(x, y) (6)

Obviously, every infinite chain corresponds to a cycle in the dependency
graph. Since this graph is in general not computable, for automation one con-
structs an estimated graph. To this end, one has to approximate whether two
pairs s → t, u → v form a (P ,Q,R)-chain. In this case, one draws an arc from
s → t to u → v. As long as the approximation is sound (i.e., as long as it is
an over-approximation), the resulting graph contains the real dependency graph
and thus, every infinite chain also corresponds to a cycle in the estimated graph.

In the classical dependency pair approach, several such approximations were
developed (e.g., [1, 11]) and for example, all of them would be able to compute
the graph given in Ex. 14. However, instead of (P ,Q,R)-chains, here one only
considered chains where Q = ∅ (for full termination) or where Q = R (for in-
nermost termination). The latter were called “innermost chains”. By Lemma 3,
every (P ,Q,R)-chain is also a (P , ∅,R)-chain (i.e., an ordinary chain in the
classical dependency pair approach) and if Q ⊇ R, it is also an innermost chain.
Thus, all existing methods to (over-)approximate chains in the dependency pair
approach can also be used to approximate (P ,Q,R)-chains for any Q. More-
over, if Q ⊇ R, then all approximations for innermost chains can be applied as
well. Hence, one can still use the existing estimation techniques for (innermost)
dependency graphs in order to estimate (P ,Q,R)-dependency graphs.

Now it is sufficient to prove absence of infinite (minimal) chains for maximal
cycles (so-called strongly connected components, SCCs) of the dependency graph.
Here, a subset P ′ of dependency pairs is called a cycle iff for all pairs s → t and
u → v in P ′, there is a path from s → t to u → v traversing only pairs from P ′.
A cycle P ′ is called an SCC if P ′ is not a proper subset of any other cycle.

7

Theorem 15 (DP Processor Based on the Dependency Graph). The fol-
lowing DP Processor Proc is sound and complete. For a DP problem (P ,Q,R, f)
Proc returns {(P1,Q,R, f), . . . , (Pn,Q,R, f)}, where P1, . . . ,Pn are the SCCs
of the (estimated) (P ,Q,R)-dependency graph.

Proof. Completeness follows from Lemma 12, since Pi ⊆ P for all i. Proc is
sound since after a finite number of pairs in the beginning, any infinite (minimal)
(P ,Q,R)-chain only contains pairs from some SCC. Hence, there would also be
an infinite (minimal) (Pi,Q,R)-chain for some Pi. ⊓⊔

Example 16. To prove Q-termination of the TRS R for subtraction and division
from Ex. 5, we start with the initial DP problem (P ,Q,R,m), where P is the set
of dependency pairs {(6), (7), (8)}. As shown in Ex. 14, the SCCs of the depen-
dency graph consist of (6) and (8), respectively. Hence, the above DP processor
transforms the initial DP problem into the two new problems ({(6)},Q,R,m)
and ({(8)},Q,R,m). These two problems can now be solved independently. In
other words, we can now prove termination of minus and div separately.

In contrast to the classical dependency pair approach, now the dependency
graph can be (re-)computed at any time during the termination proof. This leads
to very modular proofs, since one may always decompose DP problems into sub-
problems which can be solved independently, e.g., by different DP processors.

3.2 A DP Processor Based on Orders

Classical techniques for automated termination proofs try to find a reduction or-
der ≻, i.e., an order which is well-founded, monotonic, and stable (closed under
contexts and substitutions), such that l ≻ r holds for all rules l → r of the TRS.
In practice, one mainly uses simplification orders, where a term is always greater
than its proper subterms [3, 19]. Examples for such orders are the lexicographic or
recursive path order [3, 14], the Knuth-Bendix order [15], and (most) polynomial
orders [17]. However, the power of this approach is limited, since termination of
many important TRSs cannot be proved with simplification orders. For instance,
simplification orders fail on the TRS of Ex. 5, since the left-hand side of Rule
(5) is embedded in its right-hand side if y is instantiated with s(x).

The dependency pair approach was introduced to overcome the limitations
of classical simplification orders. For any TRS, it generates a set of inequality
constraints and if there exists a well-founded order satisfying the constraints,
then termination is proved. Hence, one can use existing techniques to search for
suitable orders and it turns out that in this way, classical simplification orders
can prove termination of numerous TRSs where they would have failed otherwise.

We now formalize this idea in the context of the DP framework. To remove
pairs from P in a DP problem (P ,Q,R, f), one can generate constraints which
should be satisfied by a reduction pair [16] (%,≻) where % is reflexive, transitive,
monotonic, and stable and ≻ is a stable well-founded order compatible with %

(i.e., % ◦ ≻ ⊆ ≻ and ≻ ◦ % ⊆ ≻). But ≻ does not have to be monotonic. The
constraints require that at least one pair in P is strictly decreasing (w.r.t. ≻)
and all remaining pairs in P and all rules in R are weakly decreasing (w.r.t. %).

8

Requiring l % r for all rules l → r ∈ R ensures that in chains s1 → t1, s2 → t2, . . .
with tiσ

Q
→∗

R si+1σ, we have tiσ % si+1σ. Hence, the existence of such a reduction
pair implies that there is no chain which contains the strictly decreasing pairs
of P infinitely often. Thus, all of these pairs can be deleted from P .

If the Q-restricted rewrite relation is contained in the innermost rewrite
relation (i.e., if Q ⊇ R), this approach can be improved. Now a weak decrease
l % r is not required for all rules but only for the usable rules. For any term t,
all function symbols occurring in t are “usable”. Moreover, if some symbol f is
usable and there is a rule f(. . .) → r in R whose right-hand side r contains a
symbol g, then g is usable as well. Let US(t,R) denote the set of usable symbols
and we define the usable rules U(t,R) as the set of those rules f(. . .) → . . . from
R where f ∈ US(t,R). Analogously, for a TRS P , the usable symbols and rules
are defined as US(P ,R) =

⋃
s→t∈P US(t,R) and U(P ,R) =

⋃
s→t∈P U(t,R).

Further refinements to reduce the set of usable rules can be found in [8, 12, 21].

Example 17. Let R be the TRS of Ex. 5. For the problem ({MINUS(s(x), s(y))
→ MINUS(x, y)},Q,R,m) one would now have to find a reduction pair (%,≻)
such that MINUS(s(x), s(y)) ≻ MINUS(x, y) and l % r for all rules. But if one
only wants to prove innermost termination (or Q-termination for Q ⊇ R), it
suffices to require l % r just for the usable rules. Since the only usable symbol
of the dependency pair’s right-hand side MINUS(x, y) is MINUS, there are no
usable rules. So for this DP problem, one only has to find a stable well-founded
order ≻ satisfying MINUS(s(x), s(y)) ≻ MINUS(x, y). This can easily be done
with any of the existing classical reduction orders. Thus, the dependency pair
can be deleted and the resulting DP problem (∅,Q,R,m) is transformed into
the empty set by the dependency graph processor of Thm. 15.

In [21], we recently extended previous results of [8, 23] and showed that if one
only has to prove absence of minimal chains (i.e., if f = m), then usable rules
can also be used for proving full instead of just innermost termination, provided
that % is Cε-compatible (i.e., c(x, y) % x and c(x, y) % y for a fresh function
symbol c). This holds for virtually all relations % generated automatically by
standard techniques. Then, to prove Q-termination (for arbitrary Q) it is enough
to require l % r just for the usable rules. In this way, the DP problem for minus

can be solved as in Ex. 17 for arbitrary Q.
To generate reduction pairs (%,≻) automatically, one often uses classical

(monotonic) simplification orders. However, ≻ does not have to be monotonic.
To benefit from this possibility and to build non-monotonic orders from sim-
plification orders, one may pre-process the constraints first and delete certain
function symbols and arguments by an argument filtering π [1]. For example,
if π1 eliminates the second argument of the function symbol minus, then for
any term t, π1(t) results from replacing all subterms minus(t1, t2) by minus(t1).
Moreover, one can also use argument filterings which collapse function symbols
to one of their arguments (i.e., one could also define an argument filtering π2 with
π2(minus(t1, t2)) = t1). Now instead of a reduction pair (%,≻), one may use the
reduction pair (%π, ≻π) with s %π t iff π(s) % π(t) and s ≻π t iff π(s) ≻ π(t).
Techniques to search for argument filterings efficiently were developed in [8, 11].

9

Example 18. Regard the other DP problem ({DIV(s(x), s(y))→DIV(minus(x, y),
s(y))},Q,R,m) resulting from the TRS R of Ex. 5. The usable rules of the term
DIV(minus(x, y), s(y)) are just the minus-rules. Thus, if we use Cε-compatible re-
lations %, it suffices to find a reduction pair (%,≻) and an argument filtering π
such that DIV(s(x), s(y)) ≻π DIV(minus(x, y), s(y)) and l %π r for all minus-rules.

If we apply the argument filtering π1 above, the constraint from the de-
pendency pair becomes DIV(s(x), s(y)) ≻ DIV(minus(x), s(y)) and if we use the
argument filtering π2, it becomes DIV(s(x), s(y)) ≻ DIV(x, s(y)). In both cases,
all resulting constraints can easily be satisfied (e.g., by the lexicographic path or-
der). Thus, the dependency pair can be deleted from this DP problem as well and
in this way, termination of the TRS in Ex. 5 can easily be shown automatically.

For any TRS P and any relation ≻, let P≻ = {s → t ∈ P | s ≻ t}, i.e.,
P≻ contains those rules of P which decrease w.r.t. ≻. Now we can define a DP
processor which deletes all pairs from P which are strictly decreasing w.r.t. a
reduction pair and an argument filtering (i.e., all pairs of P≻π

). The reason is
that they cannot occur infinitely many times in a chain.

Theorem 19 (DP Processor Based on Reduction Pairs). Let (%,≻) be a
reduction pair and π be an argument filtering. Then the following DP processor
Proc is sound and complete. For a DP problem (P ,Q,R, f), Proc returns

• {(P \ P≻π
,Q,R, f)}, if

– P≻π
∪ P%π

= P and

– R%π
⊇ U(P ,R) and

– Q ⊇ R or R%π
= R or (% is Cε-compatible and f = m)

• {(P ,Q,R, f)}, otherwise

Proof. Completeness follows from Lemma 12. If % is Cε-compatible, soundness
is proved as in [21, Thm. 22]. (The extension from ordinary to Q-restricted
rewriting is completely straightforward.) The case R%π

=R is the classical de-
pendency pair approach for termination and its soundness is proved in [7, Thm.
3.5] and [1, Thm. 11]. Finally, for the case Q ⊇ R recall that the Q-restricted
rewrite relation is contained in the innermost rewrite relation and thus, every
(P ,Q,R)-chain is an innermost chain. Hence, then the soundness follows from
the corresponding result of [7, Thm. 5.6] for innermost termination. ⊓⊔

Whenever a processor modifies a DP problem, it is usually advantageous to
apply the dependency graph processor of Thm. 15 afterwards. The reason is that
in this way one can split the DP problem into new subproblems and probably
also remove further rules of P . This is a generalization of a strategy which was
originally suggested within the classical dependency pair approach in [11]. Here,
SCCs of the dependency graph were re-computed whenever some dependency
pairs were strictly oriented and therefore removed. In the DP framework, this
would now correspond to a repeated alternating application of the processors in
Thm. 15 and in Thm. 19. However, by formalizing termination techniques as DP
processors, many additional strategies can now easily be formulated as well, cf.
Sect. 6.

10

3.3 DP Processors Based on Dependency Pair Transformations

As shown in [1, 6, 8], to increase the power of the dependency pair approach, a
dependency pair may be transformed by rewriting, narrowing, or instantiation.
We now adapt these transformations to the DP framework. Given a DP problem
(P ,Q,R, f), they replace one of the pairs s → t in P by several new ones (i.e.,
the result is of the form (P ′,Q,R, f)). In contrast to the previous processors,
we usually do not have P ′ ⊆ P , but P ′ is obtained by replacing s → t with new
pairs resulting from rewriting, narrowing, or instantiating s → t.

Compared to the original versions of these transformations in the dependency
pair approach, they are now improved and modularized considerably. The reason
is that now these transformations can be applied at any time during the proof
and the conditions for their applicability only have to take the pairs and rules
in the current DP problem into account. In this way, these conditions are much
more often satisfied than in the original dependency pair approach, where such
transformations were only permitted in the very beginning.

In the dependency pair approach, there were two variants of the narrowing
and the instantiation transformation (for termination and for innermost termi-
nation, respectively), cf. [8]. The DP processors for narrowing and instantiation
are immediately obtained from the original transformations, by applying the
variants for termination if Q = ∅ and by applying the variants for innermost
termination if Q ⊇ R.4 The soundness and completeness results for these trans-
formations directly carry over from the classical dependency pair approach to
their versions in the DP framework: instantiation is sound and complete and
narrowing is sound. Completeness of narrowing holds as well in the termination
case (i.e., if Q = ∅), but not if Q ⊇ R, cf. [1, Ex. 43]. The proofs for these
results are completely analogous to the ones in the dependency pair approach
(i.e., to [1, Thm. 27 and 42] for narrowing and to [6, Thm. 20] for instantiation).

While adapting narrowing and instantiation to the DP framework is straight-
forward, the adaption of the rewriting transformation is more problematic. In
the classical dependency pair approach, rewriting is only applicable for inner-
most termination proofs (i.e., if Q = R). The problem is that the original proofs
for its soundness and completeness [6, Thm. 14, 15, 18, 19] do not extend to the
case where Q ⊇ R.5 However, such an extension is urgently required in the DP
framework, since in Sect. 4 we will introduce new powerful DP processors which
reduce the set of rules R in a DP problem. Thus, even if one starts with an inner-
most termination problem (P ,Q,R, f) where Q = R, after application of some

4 Of course, when applying the transformations for Q ⊇ R instead of “normal forms”
in [8] one always has to regard “Q-normal forms”.

5 In contrast to the narrowing and instantiation transformations which perform all
possible narrowings or instantiations, here one may replace s → t by any pair result-
ing from rewriting t. The soundness proof relies on the result that weak innermost
termination and non-overlappingness imply confluence and termination [10] and the
completeness proof relies on the result that innermost termination implies normaliza-
tion. Obviously, these results do not extend to Q ⊇ R, i.e., in general Q-termination
and non-overlappingness do not imply confluence, termination, or normalization.

11

DP processors one might result in a problem (P ′,Q′,R′, f ′) where Q′ ⊃ R′. Now
it would be desirable if one could still apply the rewriting transformation (this
will be demonstrated in Ex. 29). Therefore, we now present a new proof to show
that the rewriting transformation is sound for any Q ⊇ R in the DP framework.
Moreover, if for all subterms q below the position where the rewriting took place
we have U(q,Q) ⊆ R, then it is also complete. So q’s usable rules w.r.t. Q also
have to be contained in R. In the special case of innermost termination where
Q = R, this completeness condition is always fulfilled (i.e., our results encompass
the completeness result for innermost termination from [6, Thm. 19]).6

For the proof, we need the following sufficient criterion for confluence of the
Q-restricted rewrite relation. It states that if there are no critical pairs on the
root level, then we even have the diamond property (i.e., if t

Q
→R t1 and t

Q
→R t2,

then t1 = t2 or there exists a t′ such that t1
Q
→R t′ and t2

Q
→R t′).

Lemma 20 (Confluence of
Q
→R). Let Q ⊇ R and let R be non-overlaying

(i.e., left-hand sides of different R-rules do not unify after variable renaming).
Then

Q
→R has the diamond property and hence, it is confluent.

Proof. Let t
Q
→R,p1 t1 and t

Q
→R,p2 t2. Since t|p1 and t|p2 are no R-normal forms

and thus no Q-normal forms (by Q ⊇ R), p2 cannot be strictly above p1 and p1

cannot be strictly above p2. If p1 = p2, then t1 = t2, as we used the same rule in
both reductions since R is non-overlaying. Otherwise, p1 and p2 are not above
each other, and thus, t1 and t2 can obviously be joined in one step. ⊓⊔

Now we introduce the rewriting processor. It states that in a DP problem
(P ,Q,R, f) with Q ⊇ R, any s → t ∈ P can be replaced by s → t′ if t rewrites
to t′ at some position p. The only applicability condition is that the usable rules
for the redex t|p must be non-overlapping (i.e., they must not have critical pairs).

Theorem 21 (Rewriting Processor). Let Proc be a processor which trans-
forms a DP problem (P ∪{s → t},Q,R, f) either into {(P ∪{s → t′},Q,R, f)}
or into {(P ∪ {s → t},Q,R, f)} again. In the first case, the following two con-
ditions must be satisfied:

• t →R,p t′ and U(t|p,R) is non-overlapping
• Q ⊇ R

Proc is sound, and it is complete if U(q,Q)⊆R for all proper subterms q of t|p.

Proof. Let t = t[lµ]p →R t[rµ]p = t′ for some l → r ∈ R and a substitution µ.
We first prove the soundness and only consider the case where f = m. The

case f = a is analogous. Let s → t, u → v be a minimal (P ,Q,R)-chain. Thus,
tσ

Q
→∗

R uσ, both sσ and uσ are in Q-normal form, and tσ and vσ are terminating
w.r.t.

Q
→R. We want to show that t′σ

Q
→∗

R uσ and that t′σ is also terminating
w.r.t.

Q
→R. Then we can exchange all occurrences of s → t in chains by s → t′.

6 A similar completeness result also holds for narrowing: if Q ⊇ R, then the narrowing
processor is still complete if for all narrowed subterms, the usable rules w.r.t. R are
non-overlapping and for all subterms q below those positions that were narrowed we
have U(q,Q) ⊆ R. Again, the latter condition is always satisfied if Q = R. Thus,
this encompasses the completeness result of [6, Thm. 17] for innermost termination.

12

We consider the reduction tσ = tσ[lµσ]p
Q
→∗

R uσ. As uσ is in Q-normal form
and as

Q
→R-reductions cannot take place above Q-redexes, w.l.o.g. we first reduce

lµσ to some Q-normal form w. Thus, tσ = tσ[lµσ]p
Q
→∗

R tσ[w]p
Q
→∗

R uσ where
lµσ

Q
→∗

R w. Since σ instantiates all variables by normal forms w.r.t. Q ⊇ R,
the only rules applicable to t|pσ = lµσ or its reducts are from U(t|p,R). For
readability, we abbreviate U(t|p,R) by U . Hence, lµσ

Q
→∗

U w. As w is a Q-normal
form, w.l.o.g. one first reduces all terms xµσ with x ∈ V(l) to Q-normal forms.
As U is non-overlapping and Q ⊇ R ⊇ U , by Lemma 20 these normal forms are
unique. Thus, lµσ

Q
→∗

U lδ
Q
→∗

U w for some Q-normal substitution δ (i.e., δ(x) is in
Q-normal form for all x ∈ V) and for all x ∈ V(l) we have xµσ

Q
→∗

U xδ. Note that
lδ is not yet a Q-normal form as l → r ∈ R ⊆ Q. Thus, we need at least one more
step to get from lδ to w. As δ is a Q-normal substitution, the reduction is above
δ and as U is non-overlapping, the only possible reduction is lδ

Q
→U rδ

Q
→∗

U w.
This finally proves t′σ = tσ[rµσ]p

Q
→∗

R tσ[rδ]p
Q
→∗

R tσ[w]p
Q
→∗

R uσ.

Now minimality (i.e., termination of t′σ w.r.t.
Q
→R), can be proved in an

analogous way. As before, w.l.o.g. any infinite
Q
→R-reduction of t′σ = tσ[rµσ]p

first reduces all redexes in xµσ for x ∈ V(r). These reductions either lead to
non-termination or they end in some

Q
→R-normal forms. Since x ∈ V(r) ⊆ V(l),

all xµ are contained in t|p. As σ instantiates variables by normal forms w.r.t.
Q ⊇ R, again the only rules applicable to subterms of t|pσ (like xµσ) are from
U . As

Q
→U is confluent by Lemma 20, the reduction must begin with rµσ

Q
→∗

R rδ.
Hence, whenever t′σ is non-terminating w.r.t.

Q
→R then so is tσ[rδ]p. But this

would contradict the termination of t w.r.t.
Q
→R as we know that t

Q
→∗

R tσ[rδ]p.

The completeness of the rewriting processor is obvious if R is not Q-termina-
ting. Otherwise, we show that if there is a reduction t′σ

Q
→∗

R uσ such that sσ
and uσ are in Q-normal form, then tσ

Q
→∗

R uσ also holds. We use the same
way of reasoning as for the soundness proof. So if t′σ = tσ[rµσ]p

Q
→∗

R uσ,
we may assume that we first reduce rµσ to some Q-normal form w which is
again done with

Q
→U reductions. By the confluence of

Q
→U (Lemma 20), we have

rµσ
Q
→∗

U rδ
Q
→∗

U w for some Q-normal substitution δ. In the same way as before
we obtain t′σ = tσ[rµσ]p

Q
→∗

R tσ[rδ]p
Q
→∗

R tσ[w]p
Q
→∗

R uσ. It remains to show
that lµσ

Q
→R

∗ rδ, as this implies tσ = tσ[lµσ]p
Q
→∗

R tσ[rδ]p
Q
→∗

R tσ[w]p
Q
→∗

R uσ.

We know that xµσ
Q
→∗

R xδ for all x ∈ V(r), where xδ is in Q-normal form.
By Q ⊇ R, xδ is in normal form w.r.t.

Q
→R, too. As R is Q-terminating, we

can extend δ such that xδ is a normal form of xµσ w.r.t.
Q
→R for every variable

x ∈ V(l)\V(r). Then we have lµσ
Q
→R

∗ lδ. To prove the desired result lδ
Q
→R rδ,

we show that lδ does not contain Q-redexes as proper subterms.

First suppose that lδ contains a Q-redex at a position o of l where l|o /∈ V .
If a rule l′ → r′ ∈ Q can be applied to l|oδ at root position, then we have
l′ → r′ ∈ U(l|o,Q) ⊆ U(l|oµ,Q) ⊆ R, by the prerequisite of the theorem. Since
root(l′) occurs in l|o and hence in l, we also have l′ → r′ ∈ U(t|p,R). But then
l′ → r′ and l → r are two rules from U(t|p,R) which form a critical pair. This
contradicts the requirement that U(t|p,R) is non-overlapping.

Now we show that xδ cannot contain a Q-redex for x ∈ V(l). Note that if xδ
is not a Q-normal form, it is also not a normal form w.r.t.

Q
→Q. Thus, there is a

13

term w′ such that xµσ
Q
→∗

Q xδ
Q
→Q w′. We now show that Q-reductions starting

from xµσ can only use rules from R. Then we also have xµσ
Q
→∗

R xδ
Q
→R w′.

But this contradicts the fact that xδ is in normal form w.r.t.
Q
→R.

Any Q-reduction starting from xµσ only uses rules from U(xµ,Q), since σ
is a Q-normal substitution. As xµ is a subterm of t|p, by the prerequisite of the
theorem we have U(xµ,Q) ⊆ R. Thus, any Q-reduction starting from xµσ can
indeed only use rules from R. ⊓⊔

Example 22. We replace the minus-rule (3) of Ex. 5 by the following rules:

minus(s(x), s(y)) → minus(p(s(x)),p(s(y))) (9)

minus(x, plus(y, z)) → minus(minus(x, y), z) (10)

p(s(x)) → x (11)

plus(0, y) → y (12)

plus(s(x), y) → s(plus(x, y)) (13)

Now (innermost) termination cannot be shown by the previous processors (if
one uses reduction pairs based on (quasi-)simplification orders in Thm. 19).7 The
reason is that the dependency pair MINUS(s(x), s(y)) → MINUS(p(s(x)), p(s(y)))
from Rule (9) is not strictly decreasing w.r.t. any classical reduction order.

However, by the rewrite processor, the right-hand side of this dependency
pair can be rewritten twice to obtain MINUS(s(x), s(y)) → MINUS(x, y). The
processor is applicable, since the only usable rule of the redexes p(s(x)) and
p(s(y)) is (11) which is non-overlapping (although the whole TRS is overlapping).
Afterwards, innermost termination can easily be shown. However, since rewriting
is only possible for Q ⊇ R, this step is not permitted if one wants to prove
termination (where Q = ∅). Note that this TRSs does not belong to those classes
of TRSs where it is known that innermost termination implies termination. (A
well-known such class are locally confluent overlay systems [10], but due to Rule
(10) this system is neither locally confluent nor an overlay system.) In Sect. 4,
we will introduce new DP processors to simplify DP problems and it will turn
out that then the termination of this example is very easy to prove, cf. Ex. 29
and 31.8

The following examples show why straightforward extensions of the rewriting
processor would destroy soundness or completeness, respectively.

Example 23. Since non-overlayingness already implies confluence of the Q-re-
stricted rewrite relation by Lemma 20, a natural question is whether the rewrite

7 Here, % is a quasi-simplification order if s % t for all subterms t of s. However, a
proof with Thm. 19 using the very recently developed negative polynomial orders of
[13] would be possible. An example where negative polynomials fail as well is Ex. 33.

8 Alternatively, termination can also be proved using the narrowing transforma-
tion. Then the right-hand side MINUS(p(s(x)),p(s(y))) would be replaced by its
narrowings MINUS(x,p(s(y))) and MINUS(p(s(x)), y). However, narrowing is only
permitted for right-hand sides of dependency pairs which do not unify with left-
hand sides. Thus, narrowing would no longer be possible if one adds the rule
minus(p(x), y) → p(minus(x, y)), since MINUS(p(s(x)), p(s(y))) unifies with the left-
hand side of the new dependency pair MINUS(p(x), y) → MINUS(x, y). In contrast,
the termination proof with the new DP processors in Ex. 29 and 31 would still work.

14

processor in Thm. 21 would already be sound if the usable rules U(t|p,R) are
just non-overlaying instead of non-overlapping. This is refuted by the following
counterexample. Let R = Q = {f(c) → d, f(h(x)) → a, h(b) → c, g(d, x) →
g(f(h(x)), x)}. Then R is not innermost terminating (i.e., not Q-terminating):

g(d, b) i→R g(f(h(b)), b) i→R g(f(c), b) i→R g(d, b) i→R . . .

The dependency graph has only one SCC {G(d, x) → G(f(h(x)), x)}. Since R
is non-overlaying and G(f(h(x)), x) →R G(a, x), rewriting would transform the
dependency pair of the SCC into the new pair G(d, x) → G(a, x). Now the de-
pendency graph processor would delete this pair, since it is obviously not on any
cycle of the (new) dependency graph. Thus, we could falsely “prove” termination.

The problem is that although the dependency pair was rewritten by a Q-
restricted step, it is no longer Q-restricted if one instantiates x with b. So to guar-
antee that any reduction from G(f(h(x)), x)σ to an instantiated left-hand side of
a dependency pair is also possible from G(a, x)σ, one needs non-overlappingness
and not just confluence of U(t|p,R)’s Q-restricted rewrite relation.

Example 24. This processor shows why we defined a DP problem (P ,Q,R, f) to
be “infinite” if it is not finite or if R is not Q-terminating, cf. Def. 9. The reason
is that if “infinite” would be defined as “not finite”, then the rewriting pro-
cessor would be incomplete, i.e., it could transform DP problems that are not
infinite into problems with infinite chains, even if Q = R. Let P = {F(x, x) →
F(b, g(a(x), x))} and Q = R = {g(x, y) → y, a(b) → a(b)}. Obviously, R is not
Q-terminating. But there is no infinite (P,Q,R)-chain as F(b, g(a(x1), x1))σ

Q
→R

∗

F(x2, x2)σ implies σ(x2) = b. Thus F(b, g(a(x2), x2))σ = F(b, g(a(b), b)) can only
be reduced by

Q
→R to itself, but it does not unify with F(x3, x3).

However, the rewriting processor could rewrite the right-hand side F(b,
g(a(x), x)) of the dependency pair to F(b, x). This results in P ′ = {F(x, x) →
F(b, x)}. Now there is clearly an infinite (minimal) (P ′,Q,R)-chain.

Example 25. Finally, we also show that the condition U(q,Q) ⊆ R for all proper
subterms q of t|p is required for completeness. We again let P = {F(x, x) →
F(b, g(a(x), x))}. Moreover, R = {g(x, y) → y} and Q = R ∪ {a(b) → a(b)}.
Now R is Q-terminating. As in Ex. 24, there is no infinite (P ,Q,R)-chain. But
the rewriting processor would replace P by P ′ = {F(x, x) → F(b, x)} and there is
again a minimal infinite (P ′,Q,R)-chain. Note however, that the redex g(a(x), x)
of the reduction has a proper subterm a(x) whose usable rules w.r.t. Q are not
contained in R. So the condition for completeness in Thm. 21 is violated.

4 New Dependency Pair Processors

Now we introduce new processors which improve the power of termination analy-
sis considerably. The techniques of the classical dependency pair approach from
Sect. 3 only modify the pairs P in a DP problem (P ,Q,R, f). In contrast, we
now present techniques to decrease the underlying set of rules R (Sect. 4.1 and
4.2) or to increase the set Q that restricts possible redexes (Sect. 4.3).

15

4.1 DP Processors Based on Usable Rules

The first processor shows that in a DP problem (P ,Q,R, f) one can remove all
non-usable rules from R if Q ⊇ R (i.e., if

Q
→R ⊆ i→R).

Example 26. After applying the dependency graph processor, the TRS R for
division from Ex. 5 results in the problems ({MINUS(s(x), s(y)) → MINUS(x, y)},
Q,R,m) and ({DIV(s(x), s(y)) → DIV(minus(x, y), s(y))},Q,R,m), cf. Ex. 14.

When proving innermost termination (or if Q ⊇ R), one can replace R by
the usable rules of MINUS(x, y) and DIV(minus(x, y), s(y)), respectively. So the
problems become ({MINUS(s(x), s(y))→MINUS(x, y)},Q, ∅,m) and ({DIV(s(x),
s(y)) → DIV(minus(x, y), s(y))},Q,R′,m), where R′ are the minus-rules.

A similar restriction to the usable rules was already possible with the DP
processor based on reduction pairs in Thm. 19. However, with that processor
one immediately had to find a reduction pair which orients the usable rules
U(P ,R) and the pairs in P , and afterwards one remained with a DP problem
(P\P≻π

,Q,R, f) which still contains the full set of rules R. In contrast, this new
processor requires no orientation with reduction pairs and it has the advantage
that subsequent DP processors can benefit from the removal of non-usable rules.
Therefore whenever Q ⊇ R, this processor should be applied first.

Theorem 27 (DP Processor Based on Usable Rules). The following DP
processor Proc is sound and complete. For a DP problem (P ,Q,R, f), Proc
returns { (P , Q, U(P ,R), f) } if Q ⊇ R and { (P ,Q,R, f) } otherwise.

Proof. Completeness follows from Lemma 12. For soundness, let s1 → t1, s2 →
t2, . . . be an infinite (P ,Q,R)-chain. Thus there is a σ such that tiσ

Q
→∗

R si+1σ,
siσ is in Q-normal form, and if the chain is minimal then tiσ is terminating
w.r.t.

Q
→R for all i. By Lemma 3 then tiσ also terminates w.r.t.

Q
→U(P,R).

Since σ instantiates all variables by normal forms w.r.t. Q ⊇ R, the only rules
applicable to tiσ or its reducts are from U(P ,R). Hence, tiσ

Q
→∗

U(P,R) si+1σ. So

s1 → t1, s2 → t2, . . . is also an infinite (minimal) (P , Q, U(P ,R))-chain. ⊓⊔

Note that completeness of this processor is due to our new notions of “Q-
restricted rewriting” and of “(P ,Q,R)-chains”, which use two different TRSs
Q and R to restrict potential redexes and to determine possible rewrite steps,
respectively. In other words, this processor would be incomplete in the origi-
nal dependency pair approach, where one regarded innermost termination and
“innermost chains”. As an example let P = {F(a, x) → F(x, x)} and R =
{f(a, x) → f(x, x), a → b}. Now there is no infinite innermost chain (i.e., no
infinite (P ,R,R)-chain), since the left-hand side of the dependency pair in P is
not in R-normal form. As there are no usable rules, this processor would replace
R by the empty set. In the DP framework, one would obtain the DP problem
(P ,R, ∅, f) which still has no infinite chain, but in the classical dependency
pair approach, the second component of this DP problem would be disregarded.
Since there is an infinite (minimal) innermost chain of P ’s dependency pair if
the underlying TRS is empty, then this processor would be incomplete.

A similar processor can also be defined in the general case (for arbitrary Q).

16

Thus, this processor is also suitable for full (instead of just innermost) termina-
tion proofs. In contrast to Thm. 27, in order to apply this processor one has to
satisfy a set of constraints and one can only use it if one tries to prove absence
of minimal chains. On the other hand, this processor does not only delete non-
usable rules, but it also removes all rules from P and R that contain non-usable
symbols on their left-hand sides. To this end, for any TRS P and any subset F ′ of
the signature we define P¬F ′ as the set of those rules of P which contain symbols
on left-hand sides that are not in F ′, i.e., P¬F ′ = {s → t ∈ P | s /∈ T (F ′,V)}.

As in Thm. 19, to apply this processor, all pairs in P and all their usable rules
have to be (weakly) decreasing. But in contrast to Thm. 19, none of the pairs in
P has to be strictly decreasing. On the other hand, now we require monotonicity
and Cε-compatibility of the order ≻ and one may not use argument filterings.

Theorem 28 (DP Processor Based on Usable Rules and Reduction
Pairs). Let (%,≻) be a reduction pair where ≻ is monotonic and Cε-compatible.
The following DP processor Proc is sound and complete. For a DP problem
(P ,Q,R, f), Proc returns

• { (P \ P¬US(P,R), Q, U(P ,R) \ R¬US(P,R), f) }, if

– P% = P and

– R% ⊇ U(P ,R) and

– f = m

• { (P ,Q,R, f) }, otherwise

Proof. Completeness follows by Lemma 12. For soundness, let s1 → t1, s2 →
t2, . . . be an infinite minimal (P ,Q,R)-chain. So there is a substitution σ and
rules {li,1→ri,1, . . . , li,mi

→ri,mi
} ⊆ R with mi ≥ 0 where tiσ = vi,0

Q
→{li,1→ri,1}

vi,1
Q
→{li,2→ri,2} . . .

Q
→{li,mi

→ri,mi
} vi,mi

= si+1σ, siσ is in Q-normal form, and
the term tiσ is terminating w.r.t.

Q
→R for all i. We now show that this chain

ends in an infinite minimal (P \ P¬US(P,R),Q,U(P ,R) \ R¬US(P,R))-chain.
By [21, Lemma 16], there exists a mapping I : T (F ,V) → T (F ∪ {c},V)

such that9 we have ti I(σ) = I(tiσ) = I(vi,0) →+
Cε∪(U(P,R)∩{li,1→ri,1})

I(vi,1)

→+
Cε∪(U(P,R)∩{li,2→ri,2})

. . . →+
Cε∪(U(P,R)∩{li,mi

→ri,mi
}) I(vi,mi

) = I(si+1σ) →∗
Cε

si+1 I(σ). Here, “→Cε∪(U(P,R)∩{li,j→ri,j})” denotes a reduction with Cε ∪{li,j →
ri,j}, where the rule li,j → ri,j may only be used if it is contained in U(P ,R).
Moreover, I(σ) is the substitution with I(σ) (x) = I(σ(x)) for all x ∈ V .

As P∪U(P ,R)⊆% and ≻ is Cε-compatible, the reduction s1I(σ) →P t1I(σ)
→∗

Cε∪U(P,R) s2I(σ)→P t2I(σ) →∗
Cε∪U(P,R) . . . only has finitely many →Cε

-steps.

So there is an n where for all i ≥ n we have ti I(σ) = I(tiσ) = I(vi,0) →
+
{li,1→ri,1}

I(vi,1) →
+
{li,2→ri,2}

. . . →+
{li,mi

→ri,mi
} I(vi,mi

) = I(si+1σ) = si+1 I(σ).

Due to the definition of I [21, Def. 14], for any term s ∈ T (F ,V) one proves by
structural induction that symbols from F\US(P ,R) only occur below c-symbols
in I(s). So since si I(σ) = I(siσ) for i > n, symbols from F \ US(P ,R) only

9 As in the proof of Thm. 19, the lemma and the mapping I have to be adapted to
Q-restricted instead of full rewriting, which however is completely straightforward.

17

occur below c in si I(σ). As si does not contain c, we have si ∈ T (US(P ,R),V).
Thus, si → ti ∈ P \ P¬US(P,R) for all i ≥ n.

Inspection of the proof of [21, Lemma 16] reveals that the reductions from
I(tiσ) to I(si+1σ) never take place below any c-symbol. Hence by the observa-
tion above, in the redexes of this reduction, symbols from F \ US(P ,R) only
occur below c-symbols. Thus the rules li,1 → ri,1, . . . , li,mi

→ ri,mi
used for the

reductions are from U(P ,R) \ R¬US(P,R).
Hence, even if one uses the original substitution σ instead of I(σ), all rules

li,j → ri,j used in the reduction from tiσ to si+1σ are from U(P ,R)\R¬US(P,R).
Since these reductions were performed with Q-restricted rewriting, the tail sn+1

→ tn+1, sn+2 → tn+2, . . . of the chain is an infinite (P \P¬US(P,R),Q,U(P ,R) \
R¬US(P,R))-chain. The chain is also minimal: since all tiσ are terminating w.r.t.
Q
→R, they are also terminating w.r.t.

Q
→U(P,R)\R¬US(P,R)

by Lemma 3. ⊓⊔

Example 29. We regard the termination proof of the TRS R from Ex. 22, i.e.

minus(x, 0) → x (1) p(s(x)) → x (11)
minus(0, s(y)) → 0 (2) plus(0, y) → y (12)

minus(s(x), s(y)) → minus(p(s(x)), p(s(y))) (9) plus(s(x), y) → s(plus(x, y)) (13)
minus(x, plus(y, z)) → minus(minus(x, y), z) (10)

together with the rules (4) and (5) for division. By the dependency graph proces-
sor (Thm. 15) we get two DP problems corresponding to the termination of div

and plus (which can easily be solved) and the problem ({(14), (15), (16)}, ∅,R,
m) with the following dependency pairs:

MINUS(s(x), s(y)) → MINUS(p(s(x)), p(s(y))) (14)

MINUS(x, plus(y, z)) → MINUS(minus(x, y), z) (15)

MINUS(x, plus(y, z)) → MINUS(x, y) (16)

As discussed in Ex. 22, this problem cannot be solved by the previous processors
if one uses reduction pairs based on (quasi-)simplification orders.

We now show how the processor of Thm. 28 simplifies this DP problem. An
efficient approach to mechanize this processor is to use reduction pairs (%,≻)
based on linear polynomial interpretations Pol with coefficients from {0, 1}. Due
to the monotonicity of ≻, for an n-ary function symbol f ∈ F , we either have
Pol(f(t1, . . . , tn)) = Pol(t1)+. . .+Pol(tn) or Pol(f(t1, . . . , tn)) = Pol(t1)+. . .+
Pol(tn) + 1. Since there are just two possible interpretations for each function
symbol, the search space is small and our experiments show that with these
orders, the processor of Thm. 28 is already very successful.

Here, we use the polynomial interpretation Pol with Pol(f(t1, . . . , tn)) =
Pol(t1) + . . . + Pol(tn) for every function symbol f ∈ F (i.e., Pol(f) = 0 for
constants f). With this reduction pair, the conditions of Thm. 28 are satisfied
whenever P and U(P ,R) are non-duplicating. Therefore, we can now remove
the dependency pairs (15) and (16) and the rule (10) which contain the non-
usable symbol plus on their left-hand sides. Moreover, we can delete all non-
usable rules (i.e., all rules except the ones for p and minus). So the DP problem
({(14), (15), (16)}, ∅,R,m) is transformed to ({(14)}, ∅, {(1), (2), (9), (11)},m).

18

The only defined usable symbol in (14) is p. Hence, if we apply the processor
again with the same reduction pair as above, we can remove the non-usable
minus-rules. Thus, we obtain the DP problem ({(14)}, ∅, {(11)},m). To solve
such DP problems, we will introduce another processor in the next section.

Obviously, the processor of Thm. 28 can also be applied for innermost ter-
mination proofs in the same way. Then we would obtain the resulting DP
problem ({(14)},R, {(11)},m) instead, i.e., then the second component would
be the original TRS. Note that since the processor of Thm. 28 removes rules
from the third component of the DP problem, the resulting problem is not a
real “innermost termination problem” anymore. In other words, now the sec-
ond component R is a proper superset of the third component {(11)}. Due
to our extension of the rewriting transformation to this case in Thm. 21, we
can still apply the rewriting processor and replace the dependency pair (14) by
MINUS(s(x), s(y)) → MINUS(x, y) as in Ex. 22. Afterwards, the proof can be
completed immediately. But if we would only have the classical rewrite transfor-
mation from the dependency pair approach, this step would not be possible.

4.2 A DP Processor Based on Removal of Rules

Now we introduce a processor to remove further rules from R. As in Thm. 19,
for a DP problem (P ,Q,R, f), all rules in P and R are oriented with a reduction
pair (%,≻). The processor in Thm. 19 was used to remove pairs from P which
could be oriented with ≻. In contrast, the present processor removes rules from
both P and R if they can be oriented with ≻. On the other hand, here we are
again restricted to monotonic orders ≻ and we may not use argument filterings.

Theorem 30 (DP Processor Based on Rule Removal). Let (%,≻) be a
reduction pair where ≻ is monotonic. The following DP processor Proc is sound
and complete. For a DP problem (P ,Q,R, f), Proc returns

• { (P \ P≻, Q, R \R≻, f) }, if

– P≻ ∪ P% = P and
– R≻ ∪R% = R

• { (P ,Q,R, f) }, otherwise

Proof. Completeness follows by Lemma 12. For soundness, let s1 → t1, s2 →
t2, . . . be an infinite (P ,Q,R)-chain. So there is a σ with tiσ

Q
→∗

R si+1σ and if
the chain is minimal, then tiσ is terminating w.r.t.

Q
→R for all i.

As in the proof of [21, Thm. 23], one can show that in the reductions tiσ
Q
→R

∗

si+1σ, R≻-rules are only applied for finitely many i and that si → ti ∈ P≻ only
holds for finitely many i as well. So si → ti ∈ P \ P≻ and tiσ

Q
→∗

R\R≻
si+1σ for

all i ≥ n for some n ∈ IN. Moreover, if all tiσ are terminating w.r.t.
Q
→R, then

by Lemma 3 they are terminating w.r.t.
Q
→R\R≻

as well. Thus, sn → tn, sn+1 →
tn+1, . . . is an infinite (minimal) (P \ P≻,Q,R \R≻)-chain. ⊓⊔

Example 31. We continue the termination proof of Ex. 29. To finish the proof, we
only have to solve the problem ({(14)}, ∅, {(11)}, m), i.e., ({MINUS(s(x), s(y))
→ MINUS(p(s(x)), p(s(y)))}, ∅, {p(s(x)) → x},m). With the DP processor of

19

Thm. 30 this can easily be done, whereas it is difficult with the previous pro-
cessors. As with Thm. 28, for efficiency it is often enough to restrict oneself
to linear polynomial interpretations with coefficients from {0, 1}. We use the
reduction pair based on the interpretation Pol with Pol(s(t)) = Pol(t) + 1
and Pol(f(t1, . . . , tn)) = Pol(t1) + . . . + Pol(tn) for every other symbol f ∈
F . In general, this reduction pair satisfies l % r whenever a rule l → r is
non-duplicating and the number of s-symbols in l is greater than or equal
to the number of s-symbols in r. By Thm. 30, those rules where l contains
more s-symbols than r can be removed. So in our example, the rule (11) (i.e.,
p(s(x)) → x) can be deleted. The resulting DP problem is ({MINUS(s(x), s(y)) →
MINUS(p(s(x)), p(s(y)))}, ∅, ∅,m).

Note that now p is not a defined symbol anymore. Therefore, the dependency
pair MINUS(s(x), s(y)) → MINUS(p(s(x)), p(s(y))) is no longer on a cycle of the
dependency graph (since now terms starting with p cannot reduce to terms
starting with s anymore). This can be detected by all existing estimations of
dependency graphs (e.g., [1, 11]). Hence by the the dependency graph processor
of Thm. 15, we obtain the empty set of DP problems, i.e., the termination proof
is completed. This demonstrates an advantage of the DP framework, since now
it is possible to apply techniques like the dependency graph repeatedly at any
point during the termination proof. In contrast, in the classical dependency pair
approach this technique was only applied at the beginning.

Note that similar to Thm. 27, in the classical dependency pair approach the
processor of Thm. 30 would not be complete for innermost termination. This is
shown by the example P = {F(a) → F(a)} and Q = R = {a → b}. There is no
infinite innermost chain, but if one uses an order where a ≻ b, one can replace R
by the empty set. Obviously, now one obtains an infinite innermost chain (i.e.,
an infinite (P , ∅, ∅, f)-chain), but there is no infinite (P ,R, ∅, f)-chain.

In [21, Thm. 23] we presented a first method within the dependency pair
approach to remove rules of the TRS R that are not relevant for termination.
The processors in Thm. 28 and 30 are significant improvements of this earlier
technique: there one could only eliminate strictly decreasing (usable) rules as
in Thm. 30, but it was impossible to remove non-usable rules and rules with
non-usable symbols in their left-hand sides as in Thm. 28. This removal of non-
usable rules is often crucial, since these rules often block the application of other
important processors, as will be shown in the next section (cf. Ex. 33).

4.3 A DP Processor to Switch to Innermost Termination

The following processor replaces a DP problem (P ,Q,R,m) with Q ⊂ R by
(P ,R,R,m), i.e., under certain conditions it suffices to prove innermost instead
of full termination. Proving innermost termination is significantly simpler: the
dependency graph is smaller (Sect. 3.1), there are less restrictions when applying
reduction pairs (Sect. 3.2), more dependency pair transformations are applicable
(Sect. 3.3), one may directly remove all non-usable rules (Sect. 4.1), etc.

So while the previous processors modified the first and third components P
and R in a DP problem (P ,Q,R, f), this processor modifies the second compo-

20

nent Q. As shown in Lemma 12, while for P and R it is advantageous to remove
rules, for Q it is advantageous to add rules.

In the classical dependency pair approach, a switch from termination to in-
nermost termination was only possible if the whole TRS belongs to a class where
innermost termination implies termination. An example for such a class are lo-
cally confluent overlay systems [10] or in particular, non-overlapping TRSs.

Instead, the following processor only requires local confluence for the rules R
of the current DP problem. After applying the processors of Sect. 4.1 and 4.2, R
is usually just a small subset of the whole TRS. Moreover, R does not have to
be an overlay system. One only requires that R may not overlap with the pairs
in P . But the rules R themselves may have arbitrary critical pairs. This clearly
extends the known classes where innermost termination implies termination.

Theorem 32 (DP Processor for Modular Non-Overlap Check). The fol-
lowing processor is sound and complete. For a problem (P ,Q,R, f), Proc returns

• {(P ,R,R, f)}, if

– for all s → t ∈ P, non-variable subterms of s do not unify with
left-hand sides of rules from R (after variable renaming) and

–

Q
→R is locally confluent and

– Q ⊆ R and
– f = m

• {(P ,Q,R, f)}, otherwise

Proof. Completeness follows from Lemma 12. For soundness, we prove that un-
der the conditions of the first case in Thm. 32, every minimal (P ,Q,R)-chain
s1 → t1, s2 → t2, . . . also results in a minimal (P ,R,R)-chain. There is a sub-
stitution σ such that we have the following conditions for all i:

(a) tiσ
Q
→∗

R si+1σ
(b) siσ is in Q-normal form
(c) tiσ is terminating w.r.t.

Q
→R

By (a) and (c), σ(x) is terminating w.r.t.
Q
→R for all x ∈ V(s2) ∪ V(s3) ∪ . . .

Since
Q
→R is locally confluent, every σ(x) has a unique normal form σ(x)↓ w.r.t.

Q
→R by Newman’s lemma. Let σ′ be a substitution with σ′(x) = σ(x)↓ for all
x ∈ V(s2) ∪ V(s3) ∪ . . . and σ′(x) = σ(x) otherwise. For all i > 1 we obtain:

(i) For all terms t we have tσ
Q
→∗

R tσ′.
(ii) If non-variable subterms of si do not unify with left-hand sides

of rules from R, then siσ
′ is a normal form w.r.t.

Q
→R.

(iii) A term is an R-normal form iff it is a normal form w.r.t.
Q
→R.

The observations (i) and (ii) are obvious. For (iii), the “only if” direction follows
from

Q
→R ⊆ →R (by Lemma 3). For the “if” direction, let t be a normal form

w.r.t.
Q
→R and assume that t contains R-redexes. Let t′ be an “innermost” R-

redex, i.e., all proper subterms of t′ are in R-normal form. Since Q ⊆ R, they are
also in Q-normal form. But then t′ is also a redex w.r.t.

Q
→R. This contradicts

the assumption that t is a normal form w.r.t.
Q
→R.

21

Now we show that s2 → t2, s3 → t3, . . . is also a minimal (P ,R,R)-chain. To
this end, we use the substitution σ′ instead of σ. For all i > 1 we have to prove:

(a′) tiσ
′ R
→∗

R si+1σ
′

(b′) siσ
′ is in normal form w.r.t. R

(c′) tiσ
′ is terminating w.r.t.

R
→R

For (a′), note that tiσ
Q
→∗

R si+1σ
Q
→∗

R si+1σ
′ by (a) and (i), where si+1σ

′ is
a normal form w.r.t.

Q
→R by (ii). Moreover, since tiσ is terminating w.r.t.

Q
→R

and since
Q
→R is locally confluent, si+1σ

′ is the unique normal form of tiσ w.r.t.
Q
→R by Newman’s lemma. Since tiσ

Q
→∗

R tiσ
′ by (i), tiσ

′ is terminating w.r.t.
Q
→R by (c) and since

R
→R ⊆

Q
→R by Lemma 3, tiσ

′ is also terminating w.r.t.
R
→R. Let w be a normal form of tiσ

′ w.r.t.
R
→R. As tiσ

Q
→∗

R w and as w is also
a normal form w.r.t.

Q
→R by (iii), w must be the unique normal form si+1σ

′.
Hence, tiσ

′ R
→∗

R si+1σ
′.

For (b′), siσ
′ is a normal form w.r.t.

Q
→R by (ii). Thus, (iii) implies that it

is also a normal form w.r.t. R.
For (c′), we have tiσ

Q
→∗

R tiσ
′ by (i). Thus, tiσ

′ is terminating w.r.t.
Q
→R by

(c). Hence, tiσ
′ is also terminating w.r.t.

R
→R since

R
→R ⊆

Q
→R by Lemma 3. ⊓⊔

To apply this processor to a DP problem (P ,Q,R,m), one only has to check
that R does not overlap with P and one has to prove local confluence of

Q
→R. In

practice, Thm. 32 is usually applied for Q = ∅ (i.e., to switch from full to inner-
most termination). Then local confluence is equivalent to joinability of critical
pairs and, for example, it suffices if R is non-overlapping. With such syntactic
sufficient conditions for its applicability, Thm. 32 can easily be automated.

Example 33. R results from replacing the plus-rules (12) and (13) in Ex. 29 by

plus(0, y) → y (17) plus(s(x), y) → s(plus(y, minus(s(x), s(0)))) (18)

and by adding the rule div(plus(x, y), z) → plus(div(x, z), div(y, z)).
To prove termination, now the dependency graph processor of Thm. 15 results

in three DP problems (corresponding to the termination of div, minus, and plus).
While the DP problems for div and minus can be solved as before, the DP problem
({(19)}, ∅,R, m) for plus cannot be handled with the existing processors if one
uses base orders based on (quasi-)simplification orders or on (possibly negative)
polynomial interpretations. In contrast, innermost termination of the TRS is
easy to show. Here, (19) is the following dependency pair from Rule (18).

PLUS(s(x), y) → PLUS(y, minus(s(x), s(0))) (19)

Since R is non-duplicating, we can apply the usable rule processor of Thm. 28
with the same polynomial interpretation as in Ex. 29 (i.e., Pol(f(t1, . . . , tn)) =
Pol(t1) + . . . +Pol(tn) for all f ∈ F) and replace R by the usable rules, i.e., by
the p- and minus-rules. Moreover, Rule (10) can also be deleted, since it contains
the non-usable symbol plus on its left-hand side. Thus, the DP problem is trans-
formed into ({(19)}, ∅, {(1), (2), (9), (11)}, m). The TRS {(1), (2), (9), (11)} is
non-overlapping and thus, locally confluent. Moreover, no non-variable subterm

22

of the left-hand side of (19) unifies with a left-hand side of these rules after vari-
able renaming. Hence, we can apply the new DP processor of Thm. 32 to switch
to an innermost termination problem.10 To this end, we enlarge the second com-
ponent of the DP problem from the empty set to {(1), (2), (9), (11)}. So now we
have to solve the problem ({(19)}, {(1), (2), (9), (11)}, {(1), (2), (9), (11)}, m).

Note that the whole TRS R is overlapping and not locally confluent. Thus,
it does not belong to a known class where innermost termination implies termi-
nation. Hence, this switch would not have been possible with existing results.

Since we now have an innermost termination problem, we may use the rewrit-
ing processor of Thm. 21 repeatedly to transform the pair (19) to PLUS(s(x), y)
→ PLUS(y, x). Then the usable rule processor of Thm. 27 allows us to delete all
rules, since they are not usable anymore. Hence, we obtain the problem ({(19)},
∅, ∅,m). By Thm. 19, now it suffices to solve the constraint PLUS(s(x), y) ≻
PLUS(y, x) which is trivial by polynomial orders or recursive path orders.

By using Thm. 32 instead of removing rules as in Thm. 30, one also obtains
an alternative proof for the DP problem of minus. As seen in Ex. 29, after re-
moving all non-usable rules, one obtains the DP problem ({MINUS(s(x), s(y)) →
MINUS(p(s(s)), p(s(y)))}, ∅, {p(s(x)) → x},m). Since the rule is locally conflu-
ent and does not overlap with the remaining dependency pair, now one can use
Thm. 32 to switch to the innermost case and easily solve the DP problem.

Ex. 31 already showed the advantages of re-computing the dependency graph
later during the termination proof. Now we have demonstrated that it can also
be beneficial to use dependency pair transformations after some other processors
have been applied (like the usable rule processor of Thm. 28 and the processor
for the modular non-overlap check of Thm. 32). In contrast, in the classical
dependency pair approach, transformations could only be used in the very be-
ginning of a proof, but not after deleting rules, pairs, etc. This demonstrates an
advantage of the new modular DP framework.

Note that by Thm. 32, the observation that innermost termination implies
termination for locally confluent overlay systems is obtained as a corollary. While
the original proof for this important result of Gramlich [10] is not at all trivial,
the proof of Thm. 32 is quite simple. While there already exists another easy
proof [18], in this way we get an alternative simple proof for this crucial result.

Corollary 34 (Thm. 3.23. in [10]). Let R be a locally confluent overlay sys-
tem. If R is innermost terminating, then it is terminating.

10 Deleting all non-usable rules with Thm. 28 is often needed to enable an application of
the modular non-overlap check from Thm. 32 afterwards. In this example, the non-
usable rules are not locally confluent due to the new additional div-rule and there is
no other processor which can remove these rules (if one uses reduction pairs based
on (quasi-)simplification orders). Therefore, if one would replace the new processor
of Thm. 28 with our previous related technique in [21, Thm. 23], then one cannot
switch to an innermost termination problem with Thm. 32 anymore and thus, the
termination proof would fail.

23

Proof. R terminates if the DP problem (DP (R), ∅,R,m) is finite by Thm. 8.
For overlay systems, no non-variable subterms of left-hand sides from DP (R)
unify with variable-renamed left-hand sides from R. Thus by Thm. 32, it is suffi-
cient if the DP problem (DP (R),R,R,m) is finite. This follows from innermost
termination (i.e., R-termination) of R by Thm. 8. ⊓⊔

However, Thm. 32 improves Gramlich’s result significantly. Even if R is
not a locally confluent overlay system, by representing the termination task
as a DP problem, one may first apply other processors to obtain sub-problems
(P ′, ∅,R′,m) where R′ is indeed locally confluent and does not overlap with
P ′. For these sub-problems, one can now switch to the innermost case, whereas
Gramlich’s result would not be applicable. As demonstrated in Ex. 33, this switch
can be crucial for the termination proof.

5 DP Processors From Other Techniques

Now we show how to integrate existing termination techniques in the DP frame-
work. In this way, these techniques can benefit from other DP processors which
were applied before. This increases their applicability and power considerably.

Definition 35 (Termination Technique). A termination technique TT maps
TRSs to TRSs such that termination of TT (R) implies termination of R.

Note that the above definition captures both transformational techniques
(which transform a TRS R into a new TRS R′ whose termination is sufficient
for termination of R) and traditional techniques which simply give a “yes” or
“no” answer when trying to prove termination. For those techniques, we would
define TT (R) = ∅ if termination of R can be proved and TT (R) = R, otherwise.

Now at any point during the termination proof, instead of solving a DP
problem (P ,Q,R, f) one can use a termination technique and verify termination
of TT (P ∪ R). To this end, one should of course use the DP framework again.
Hence, we now define a processor to integrate arbitrary termination techniques.

Theorem 36 (DP Processor for Termination Techniques). Let TT be a
termination technique and let Proc be a DP processor with Proc((P ,Q,R, f)) =
{(DP (R′), ∅,R′,m)} where TT (P ∪R) = R′. Then Proc is sound.

Proof. Obvious from Thm. 8. ⊓⊔

It is easy to show that if P ’s rules have tuple symbols on their root posi-
tions,11 if Q = ∅, and if TT is “complete” (i.e., TT (P ∪R) terminates iff P ∪R
terminates), then the above processor is also complete.

Of course, if a termination technique TT is capable of handling Q-restricted
rewriting, then one could easily take this into account: Now TT would be applied
to pairs (Q,R) and return a pair (Q′,R′) such that Q′-termination of R′ is
sufficient for Q-termination of R. Hence, a DP problem (P ,Q,R, f) may now
be transformed into (DP (R′),Q′,R′,m) where TT (Q,P ∪R) = (Q′,R′).

11 More precisely, one requires root(s), root(t) ∈ F ′ for all s → t ∈ P and some F ′ ⊆ F ,
while F ′-symbols do not occur anywhere else in P and they also do not occur in R.

24

To improve the applicability of termination techniques, one may pre-process
a DP problem (P ,Q,R, f) before. The reason is that there exist powerful termi-
nation techniques which can only be applied to subclasses of TRSs. For example,
the RFC matchbounds technique of [5] or the method of string reversal only op-
erate on string rewrite systems (SRSs), i.e., on TRSs where all occurring function
symbols have arity 1. To make such techniques applicable, one may perform a
pre-processing step which transforms a DP problem with non-unary symbols
into a problem on SRSs.

Note that the processors of the previous sections never change the flag f when
transforming a DP problem (P ,Q,R, f). Thus, when starting with the initial DP
problem (DP (R),Q,R,m), all resulting problems have the flag f = m. However,
for the pre-processing mentioned above, we will also introduce processors which
modify the flag by changing it to a. In other words, while for the original DP
problem it was sufficient to prove absence of minimal chains, for the problems
resulting from these processors one has to prove absence of all arbitrary chains.

Applying such processors usually has the disadvantage that afterwards, many
other processors are no longer applicable, since they only work on DP problems
with f = m, i.e., on problems where one only examines minimal chains. However,
if one re-builds the dependency pairs afterwards as in Thm. 36, then any DP
problem is changed back again into a problem with the flag f = m. For this
reason, if one has obtained a DP problem with the flag a, it can even be useful
to apply Thm. 36 with the “empty” termination technique where TT (P ∪R) =
P ∪R, since afterwards it is again sufficient to regard only minimal chains.

We now introduce two processors which are very useful as pre-processing
steps before applying termination techniques. The first processor ProcU removes
all non-usable rules from a reduction pair (without checking any further condi-
tions as in Thm. 28). This corresponds to the usable rule processor of Thm. 27,
but in contrast to Thm. 27 the new processor is applicable for arbitrary Q, not
just for Q ⊇ R. However, one now has to add Cε = {c(x, y) → x, c(x, y) → y}
to the usable rules. Moreover, we introduce a processor which allows us to ap-
ply argument filterings to the rules and pairs in a DP problem. Here, we define
π(R) = {π(l) → π(r) | l → r ∈ R} for any TRS R.

Theorem 37 (Pre-Processing DP Processors). The following DP proces-
sors ProcU and Procπ are sound.

• For a DP problem (P ,Q,R, f), ProcU returns

– { (P , ∅, U(P ,R) ∪ Cε, a) }, if f = m
– {(P ,Q,R, f)}, otherwise

• Let π be an argument filtering. For a DP problem (P ,Q,R, f), Procπ returns

– {(π(P), ∅, π(R),a)}, if π(P) and π(R) are TRSs
– {(P ,Q,R, f)}, otherwise

Proof. ProcU is sound since every minimal (P ,Q,R)-chain is a (not necessarily
minimal) (P , ∅, U(P ,R) ∪ Cε)-chain, cf. [21, Thm. 17].12

12 The extension from ordinary to Q-restricted rewriting is again straightforward.

25

We now show soundness of Procπ: If s1 → t1, s2 → t2, . . . is an infinite
(P ,Q,R)-chain, then there is a substitution σ with tiσ→∗

R si+1σ for all i. Hence,
π(ti)σπ →∗

π(R) π(si+1)σπ for the substitution σπ with σπ(x) = π(σ(x)) for all x

∈ V . So π(s1)→π(t1), π(s2)→π(t2), . . . is an infinite (π(P), ∅, π(R))-chain. ⊓⊔

The following example shows that the processors are incomplete, even if Q = ∅.

Example 38. Let R = {f(a, b, x) → f(x, x, x)} [22]. R is terminating and thus,
the resulting DP problem ({F(a, b, x) → F(x, x, x)}, ∅,R,m) is not infinite. How-
ever, by the processor ProcU we obtain the infinite DP problem ({F(a, b, x) →
F(x, x, x)}, ∅, Cε,a), since now the instantiated right-hand side of the depen-
dency pair reduces to the instantiated left-hand side if x is substituted by c(a, b).

Incompleteness of Procπ is shown by ({F(a)→F(b)},∅,∅,f) which is not infi-
nite, but the filtering π(F(x))=F produces the infinite problem ({F→F},∅,∅,a).

Now we demonstrate why the argument filtering processor Procπ has to set
the flag f to a, i.e., we show why one has to prove absence of arbitrary (pos-
sibly non-minimal) chains after the filtering. For the processor ProcU it is cur-
rently open whether changing f to a is really needed for soundness. In other
words, it is not known whether a processor which transforms (P ,Q,R,m) into
{ (P , ∅, U(P ,R) ∪ Cε, m) } would be sound.

Example 39. An argument filtering processor which replaces (P ,Q,R,m) by
{(π(P), ∅, π(R),m)} is not sound, even if Q = ∅ and if π does not modify the
function symbols of R: The DP problem (P , ∅,R,m) with P = {F(g(s(a))) →
F(g(s(a)))} and R = {g(a) → g(a)} has an infinite minimal chain, but if one
filters P with π(s(x)) = x, then there is no infinite minimal chain anymore. The
reason is that then the filtered right-hand side F(g(a)) of the pair in π(P) is no
longer terminating w.r.t. R.

However, it is easy to show that if P ’s rules have tuple symbols on their
root positions (as in Footnote 11) and if the filtering π only modifies these
tuple symbols, then one could define Procπ((P ,Q,R, f)) = {(π(P),Q,R, f)}
if π(P) is a TRS. In other words, then both the TRS Q and the flag f could
remain unchanged and the resulting processor Procπ would still be sound. (This
observation can also be extended to more general forms of P .)

The next example shows that replacing Q by ∅ after the filtering is needed
for the soundness of Procπ, even if π does not modify any symbols of Q.

Example 40. Consider the problem (P ,Q,R,m) with P = {F(x) → F(g(s(x)))},
Q = {g(g(x)) → x}, and R = ∅. Clearly, there is a (minimal) infinite (P ,Q,R)-
chain as F(x) → F(g(s(x))), F(g(s(x))) → F(g(s(g(s(x))))), . . . , are instantiations
of the pair in P which are in Q-normal form. However, if one uses the argument
filtering with π(s(x)) = x, we would replace P by π(P) = {F(x) → F(g(x))}
whereas Q would remain unchanged. Now there is no infinite (π(P),Q,R)-chain
anymore, since terms of the form F(g(g(. . .))) are not in Q-normal form.

26

As a larger last example, we now demonstrate the benefits of Thm. 37 for the
integration of string reversal into the DP framework. As mentioned before, string
reversal is a transformational termination technique which is only applicable to
SRSs. The reversal t−1 of a term t with only unary symbols is obtained by
reversing the order of its function symbols (e.g., the reversal of f(g(h(x))) is
h(g(f(x)))). For a TRS R, its reversal is R−1 = {l−1 → r−1 | l → r ∈ R}. It is
well known that an SRS R is terminating iff R−1 is terminating. Thus, we can
use the termination technique TTREV with TTREV (R) = R−1 if R is an SRS
and TTREV (R) = R, otherwise.

Example 41. The TRS R contains the following rules together with the plus-rules
(12) and (13) from Ex. 22. Here, mult(x, y, z) computes x ∗ y + z.

times(x, y) → mult(x, y, 0) (20)

mult(0, y, z) → z (21)

mult(s(x), y, z) → mult(p(s(x)), y,plus(y, z)) (22)

times(plus(x, y), z) → plus(times(x, z), times(y, z)) (23)

p(s(0)) → 0 (24)

p(s(s(x))) → s(p(s(x))) (25)

By the processor based on the dependency graph of Thm. 15, we obtain four DP
problems corresponding to the termination of p, plus, times, and mult. The first
three are easy to handle, but the problem ({MULT(s(x), y, z) → MULT(p(s(x)),
y, plus(y, z))}, ∅,R,m) cannot be solved by the processors of the previous sec-
tions if one uses reduction pairs based on (quasi-)simplification orders.

However, by applying the new processors of this section, we can transform
this DP problem into an SRS and apply the termination technique “string re-
versal”. Afterwards, it can easily be solved. We first apply the processor ProcU
of Thm. 37 to remove the non-usable rules for times and mult which results in
({MULT(s(x), y, z)→MULT(p(s(x)), y, plus(y, z))}, ∅, {(12), (13), (24), (25)}∪Cε,
a). Next we eliminate the second and third argument of MULT by the argu-
ment filtering processor Procπ of Thm. 37 and replace the dependency pair by
MULT(s(x)) → MULT(p(s(x))). Now the processor for removal of rules from
Thm. 30 is used with a polynomial interpretation where Pol(c(x, y)) = x+y+1,
Pol(plus(x, y)) = 2 x + y + 1, Pol(p(x)) = x, and Pol(s(x)) = x + 1. Then the
rules (12), (13), and (24) are strictly decreasing and can be removed, i.e., we
result in ({MULT(s(x)) → MULT(p(s(x)))}, ∅, {p(s(s(x))) → s(p(s(x)))},a).

Note that we have obtained a DP problem containing only symbols of arity 1.
Therefore, we can apply the termination technique TTREV and try to prove ter-
mination of the reversed TRS R′ = {s(MULT(x)) → s(p(MULT(x))), s(s(p(x)))
→ s(p(s(x)))}. The resulting DP problem (DP (R′), ∅,R′,m) is easy to solve:
the dependency graph processor yields ({S(s(p(x))) → S(x)}, ∅,R′,m) and by
the usable rule processor we can delete all rules of R′ and also the remaining
pair S(s(p(x))) → S(x) which contains the non-usable symbol p on the left-hand
side.

To summarize, the advantage of integrating termination techniques like string
reversal into the DP framework is that they can solve certain parts of the termi-
nation proof, whereas different techniques are used for other parts (e.g., because

27

these parts do not correspond to an SRS). Moreover, as shown in the above
example, since one can modify DP problems by argument filterings, one can also
apply SRS-termination techniques for DP problems which originally contained
non-unary function symbols. So in general, the applicability, modularity, and
power of existing termination techniques is increased significantly by the inte-
gration into the DP framework. While Thm. 36 shows how to integrate arbitrary
techniques, certain termination techniques may also be adapted in order to oper-
ate on DP problems directly instead of TRSs. Then instead of integrating them
with Thm. 36, they could be directly used as processors in the DP framework.

6 Strategies for the Dependency Pair Framework

The DP framework allows us to combine DP processors in a completely modular
and flexible way. A system for termination proofs with the DP framework tries
to prove Q-termination of R for two TRSs Q and R. It starts with the initial
DP problem (DP (R),Q,R,m) and then constructs a tree as in Cor. 10. As long
as there is a DP problem d left, it chooses a DP processor Proc and computes
Proc(d). If Proc(d) = no, the proof is stopped. Then the system returns “no” if
Proc and all processors used on the path from the initial DP problem to d are
complete and otherwise it returns “maybe”. If Proc(d) 6= no, then d is replaced
by Proc(d) and the procedure continues. As soon as there are no DP problems
left anymore, the system returns “yes”. To avoid non-termination of the system,
it can also abort the proof after some time limit and return “maybe”. This algo-
rithm and a large number of DP processors (including those presented in this pa-
per) have been implemented in our automated termination tool AProVE [9] which
can be obtained from http://www-i2.informatik.rwth-aachen.de/AProVE.

To obtain a powerful system for termination proofs, a main challenge is to
develop strategies to decide which DP processor should be applied to a DP
problem d. A general heuristic is to apply fast processors first and to use more
powerful slower processors later on in order to handle those problems which
cannot already be solved by fast processors. The strategy of AProVE is to select
the first DP processor Proc from the following list which satisfies Proc(d) 6= {d}.

1. DP processor based on the dependency graph (Thm. 15)
2. DP processor based on usable rules (Thm. 27)
3. DP processor for modular non-overlap check (Thm. 32)
4. Narrowing, rewriting, and instantiation processors in “safe” cases [8] where

they “simplify” the DP problem (Thm. 21)
5. DP processor based on usable rules and reduction pairs (Thm. 28)
6. DP processor based on rule removal (Thm. 30)
7. DP processor based on red. pairs: linear polynomials over {0, 1} (Thm. 19)
8. DP processor for non-termination analysis13

9. Narrowing, rewriting, and instantiation (up to a certain limit) (Thm. 21)

13 A simple sound and complete DP processor Proc for non-termination analysis is the
following: Proc((P ,Q,R, f)) = no if P contains a rule of the form s → s where s

is in Q-normal form. Otherwise, Proc((P ,Q,R, f)) = (P ,Q,R, f). Obviously, this
processor can be improved to detect more cases of non-termination.

28

10. DP processor based on red. pairs: linear polynomials over {0, 1, 2} (Thm. 19)
11. DP processor based on reduction pairs: lexicographic path orders (Thm. 19)
12. DP processor based on reduction pairs: non-linear polynomials (Thm. 19)
13. DP processor based on string reversal (Thm. 36)

Of course, one can also use different strategies for different forms of TRSs. For
example, if the underlying TRS is an SRS, AProVE uses a slightly different
strategy, which also includes DP processors based on other techniques like RFC
matchbounds [5] and semantic labelling [24], cf. Sect. 5.

Due to the DP framework (with the above strategies), AProVE was the most
powerful system at the competition of termination tools at the 7th International
Workshop on Termination (WST ’04). Here, the tools were tested on 936 ex-
amples from the termination problem data base (TPDB) [20], a collection of
termination problems from several sources and different areas of computer sci-
ence. This demonstrates that the DP framework is indeed very well suited for
automation and for application in practice.

7 Conclusion and Future Work

We introduced the dependency pair framework for termination proofs (Sect. 2)
which generalizes the classical dependency pair approach into a general basis
for automated termination proofs. We first showed how to formulate the exist-
ing components of the dependency pair approach as DP processors within this
framework (Sect. 3). Now these components can be applied at any time during
the termination proof and their applicability conditions only concern the cur-
rent DP problem, not the whole TRSs. Afterwards, we developed several new
DP processors to simplify termination problems (Sect. 4) and we showed how
to integrate arbitrary existing termination techniques into the DP framework
(Sect. 5). For all processors, we also investigated their completeness which al-
lows us to use them also when proving non-termination. As demonstrated in
Sect. 6, this framework is indeed suitable for automation in practice. For future
work, we see two main directions of research:

While there already exist several powerful DP processors, these processors are
not yet sufficient to handle all termination problems occurring in practice. There-
fore, one important topic for further work is the improvement of the existing DP
processors and the development of new DP processors which are particularly
fast or particularly powerful for certain classes of DP problems.

The other important line of research is the development of new strategies to
decide which DP processor should be applied next on a particular DP problem.
We have presented such a strategy in Sect. 6, but depending on the area of
application, other strategies can be advantageous.

To summarize, in this paper we have shown that the combination of tech-
niques for termination proofs within the dependency pair framework leads to
a very modular, flexible, and powerful approach. Therefore, we think that this
framework is particularly suitable as a basis for future research on automated
termination proving.

29

References

1. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-
oretical Computer Science, 236:133–178, 2000.

2. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

3. N. Dershowitz. Termination of rewriting. J. Symb. Computation, 3:69–116, 1987.
4. N. Dershowitz. Termination by abstraction. In Proc. ICLP ’04, LNCS 3132, pages

1–18, 2004.
5. A. Geser, D. Hofbauer, and J. Waldmann. Match-bounded string rewriting sys-

tems. In Proc. MFCS ’03, LNCS 2747, pages 449–459, 2003.
6. J. Giesl and T. Arts. Verification of Erlang processes by dependency pairs. Appl.

Algebra in Engineering, Communication and Computing, 12(1,2):39–72, 2001.
7. J. Giesl, T. Arts, and E. Ohlebusch. Modular termination proofs for rewriting

using dependency pairs. Journal of Symbolic Computation, 34(1):21–58, 2002.
8. J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Improving dependency

pairs. In Proc. LPAR ’03, LNAI 2850, pages 165–179, 2003.
9. J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Automated termination

proofs with AProVE. In Proc. RTA ’04, LNCS 3091, pages 210–220, 2004.
10. B. Gramlich. Abstract relations between restricted termination and confluence

properties of rewrite systems. Fundamenta Informaticae, 24:3–23, 1995.
11. N. Hirokawa and A. Middeldorp. Automating the dependency pair method. In

Proc. CADE ’03, LNAI 2741, pages 32–46, 2003. Full version to appear in Infor-
mation and Computation.

12. N. Hirokawa and A. Middeldorp. Dependency pairs revisited. In Proc. RTA ’04,
LNCS 3091, pages 249–268, 2004.

13. N. Hirokawa and A. Middeldorp. Polynomial interpretations with negative coeffi-
cients. In Proc. AISC ’04, LNAI 3249, pages 185–198, 2004.

14. S. Kamin and J. J. Lévy. Two generalizations of the recursive path ordering.
Unpublished Manuscript, University of Illinois, IL, USA, 1980.

15. D. Knuth and P. Bendix. Simple word problems in universal algebras. In J. Leech,
editor, Computational Problems in Abstract Algebra, pages 263–297, 1970.

16. K. Kusakari, M. Nakamura, and Y. Toyama. Argument filtering transformation.
In Proc. PPDP ’99, LNCS 1702, pages 48–62, 1999.

17. D. Lankford. On proving term rewriting systems are Noetherian. Technical Report
MTP-3, Louisiana Technical University, Ruston, LA, USA, 1979.

18. Aart Middeldorp. A simple proof to a result of Bernhard Gramlich. Presented at
the 5th Japanese Term Rewriting Meeting, Tsukuba, 1994. Available from
http://informatik.uibk.ac.at/users/ami/research/papers/bg.pdf.

19. J. Steinbach. Simplification orderings: History of results. Fundamenta Informati-
cae, 24:47–87, 1995.

20. Termination Problem Data Base (TPDB). Available from http://www.lri.fr/

~marche/wst2004-competition/tpdb.html.
21. R. Thiemann, J. Giesl, and P. Schneider-Kamp. Improved modular termination

proofs using dependency pairs. In Proc. IJCAR ’04, LNAI 3097, pages 75–90, 2004.
22. Y. Toyama. Counterexamples to the termination for the direct sum of term rewrit-

ing systems. Information Processing Letters, 25:141–143, 1987.
23. X. Urbain. Modular and incremental automated termination proofs. Journal of

Automated Reasoning, 32(4): 315–355, 2004.
24. H. Zantema. Termination of term rewriting by semantic labelling. Fundamenta

Informaticae, 24:89–105, 1995.

30

