
Aachen
Department of Computer Science

Technical Report

Maximal Termination

Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter

Schneider-Kamp, René Thiemann, Harald Zankl

ISSN 0935–3232 · Aachener Informatik Berichte · AIB-2008-03

RWTH Aachen · Department of Computer Science · June 2008 (revised version)

1

The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

2

http://aib.informatik.rwth-aachen.de/

Maximal Termination⋆

Carsten Fuhs1, Jürgen Giesl1, Aart Middeldorp2, Peter Schneider-Kamp1,
René Thiemann2, and Harald Zankl2

1 LuFG Informatik 2, RWTH Aachen University, Germany
2 Institute of Computer Science, University of Innsbruck, Austria

Abstract. We present a new approach for termination proofs that uses
polynomial interpretations (with possibly negative coefficients) together
with the “maximum” function. To obtain a powerful automatic method,
we solve two main challenges: (1) We show how to adapt the latest de-
velopments in the dependency pair framework to our setting. (2) We
show how to automate the search for such interpretations by integrating
“max” into recent SAT-based methods for polynomial interpretations.
Experimental results support our approach.

1 Introduction

The use of polynomial interpretations [12] is standard in automated termination
analysis of term rewrite systems (TRSs). This is especially true for termination
proofs in the popular dependency pair (DP) framework [1,3,5,8] that is imple-
mented in most automated termination tools for TRSs.

A polynomial interpretation Pol maps every n-ary function symbol f to a
polynomial fPol over n variables x1, . . . , xn. The mapping is extended to terms by
defining [x]Pol = x for variables x and [f(t1, ..., tn)]Pol = fPol([t1]Pol, ..., [tn]Pol).
If Pol is clear from the context, we also write [t] instead of [t]Pol. Traditionally,
one uses polynomials with natural coefficients from N = {0, 1, 2, . . .}. Then
[t] ∈ N for every ground term t. For example, consider the interpretation Pol with
0Pol = 0, sPol = x1 + 1, and minusPol = x1. Then [minus(s(x), s(y))]Pol = x + 1.

An interpretation Pol induces an order ≻Pol and quasi-order %Pol where
s ≻Pol t (s %Pol t) iff [s] > [t] ([s] > [t]) holds for all instantiations of vari-
ables with natural numbers. So with Pol above we have minus(s(x), s(y)) ≻Pol

minus(x, y). Recently, two extensions to integer polynomials were proposed:

(a) [6] used polynomial interpretations with integer coefficients where ground
terms could also be mapped to arbitrary integers. However, this approach
only works for analyzing innermost instead of full termination.

(b) [9] proposed interpretations of the form max(p, 0) where p is a polynomial
with integer coefficients. Thus, ground terms are still mapped to numbers
from N. So one could define minusPol = max(x1−x2, 0) which would result in
minus(s(x), s(y)) ≈Pol minus(x, y). Here ≈Pol denotes the equivalence rela-
tion associated with %Pol, where for any quasi-order % we have ≈ = % ∩ -.

⋆ Supported by the DFG (Deutsche Forschungsgemeinschaft) under grant GI 274/5-2
and the FWF (Austrian Science Fund) project P18763.

The drawback is that the approach of [9] was not easy to automate and that
it could only be combined with a weak version of the DP technique.

In this paper, we present a new approach which improves upon (a) and (b):

• It uses integer polynomials together with the function “max”, where ground
terms are only mapped to natural numbers, as in [9]. But in contrast to
[9], we permit arbitrary combinations of polynomials and “max”, e.g., “p +
max(q, max(r, s))” where p, q, r, s are integer polynomials. And in contrast
to [6], integer polynomials may be used for interpreting any function symbol.

• It uses the newest and most powerful version of the DP technique as in [6].
• In contrast to [6], it can also prove full instead of innermost termination.
• In contrast to [9], we show how to search for arbitrary polynomial interpre-

tations with “max” automatically in an efficient way using SAT solving.

After recapitulating the DP framework in Sect. 2, Sect. 3 extends it to handle
non-monotonic quasi-orders like integer polynomial orders with “max”. Sect. 4
shows how to search for such interpretations automatically using SAT solving.
Sect. 5 discusses our implementation in the provers AProVE [4] and TTT2 [16].

2 Dependency Pairs

For a TRS R, the defined symbols D are the root symbols of left-hand sides
of rules. All other function symbols are called constructors. For every defined
symbol f ∈ D, we introduce a fresh tuple symbol f ♯ with the same arity. To ease
readability, we often write F instead of f ♯, etc. If t = f(t1, . . . , tn) with f ∈ D,
we write t♯ for f ♯(t1, . . . , tn). If ℓ → r ∈ R and t is a subterm of r with defined
root symbol, then the rule ℓ♯ → t♯ is a dependency pair of R. We denote the set
of all dependency pairs of R by DP(R).

Example 1. Consider the TRS SUBST from [7] and [17, Ex. 6.5.42]:

λ(x) ◦ y → λ(x ◦ (1 ⋆ (y ◦ ↑))) id ◦ x → x 1 ◦ (x ⋆ y) → x

(x ⋆ y) ◦ z → (x ◦ z) ⋆ (y ◦ z) 1 ◦ id → 1 ↑ ◦ (x ⋆ y) → y

(x ◦ y) ◦ z → x ◦ (y ◦ z) ↑ ◦ id → ↑

The dependency pairs are

λ(x) ◦♯ y → x ◦♯ (1 ⋆ (y ◦ ↑)) (1)

λ(x) ◦♯ y → y ◦♯ ↑ (2)

(x ⋆ y) ◦♯ z → x ◦♯ z

(x ⋆ y) ◦♯ z → y ◦♯ z

(x ◦ y) ◦♯ z → x ◦♯ (y ◦ z)

(x ◦ y) ◦♯ z → y ◦♯ z

The main result of the DP framework states that a TRS R is terminating iff
there is no infinite minimal DP (R)-chain. For any set of dependency pairs P , a
minimal P-chain is a sequence of (variable renamed) pairs s1 → t1, s2 → t2, . . .

from P such that there is a substitution σ (with possibly infinite domain) where
tiσ →∗

R si+1σ and where all tiσ are terminating w.r.t. R.
The DP framework has several techniques (so-called DP processors) to prove

absence of infinite chains. Thm. 2 recapitulates one of the most important pro-
cessors, the so-called reduction pair processor. It uses reduction pairs (%,≻) to

4

compare terms. Here, % is a stable monotonic quasi-order and ≻ is a stable well-
founded order, where % and ≻ are compatible (i.e., ≻ ◦ % ⊆ ≻ or % ◦ ≻ ⊆ ≻).

If P is the current set of dependency pairs,3 then the reduction pair processor
generates inequality constraints which should be satisfied by a reduction pair
(%,≻). The constraints require that all DPs in P are strictly or weakly decreasing
and all usable rules U(P) are weakly decreasing. Then one can delete all strictly
decreasing DPs from P . Afterwards, the reduction pair processor can be applied
again to the remaining set of DPs (possibly using a different reduction pair).
This process is repeated until all DPs have been removed.

The usable rules include all rules that can reduce the terms in right-hand
sides of P when their variables are instantiated with normal forms. To ensure
that it suffices to regard only the usable rules instead of all rules in the reduction
pair processor, one has to demand that % is Cε-compatible, i.e., that c(x, y) % x

and c(x, y) % y holds for a fresh function symbol c [5,9]. This requirement is
satisfied by virtually all quasi-orders used in practice.4

Theorem 2 ([5,9]). Let (%,≻) be a reduction pair where % is Cε-compatible.
Then the following DP processor Proc is sound (i.e., if there is no infinite min-
imal Proc(P)-chain, then there is also no infinite minimal P-chain):

Proc(P) =

{

P \ ≻ if P ⊆ ≻ ∪ % and U(P) ⊆ %

P otherwise

For any function symbol f , let Rls(f) = {ℓ → r ∈ R | root(ℓ) = f}. For any
term t, the usable rules U(t) are the smallest set such that

U(f(t1, . . . , tn)) = Rls(f) ∪
⋃

ℓ→r∈Rls(f)
U(r) ∪

⋃n

i=1
U(ti)

For a set of dependency pairs P, its usable rules are U(P) =
⋃

s→t∈P U(t).

Example 3. For the TRS of Ex. 1, we use the reduction pair (%Pol,≻Pol) with

λPol = x1 + 1 ⋆Pol = max(x1, x2)

◦Pol = ◦♯
Pol = x1 + x2 1Pol = idPol = ↑Pol = 0

Then all (usable) rules and dependency pairs are weakly decreasing (w.r.t. %Pol).
Furthermore, the DPs (1) and (2) are strictly decreasing (w.r.t. ≻Pol) and can be
removed by Thm. 2. Afterwards, we use the following interpretation where the
remaining DPs are strictly decreasing and the rules are still weakly decreasing:

◦♯
Pol = x1 ⋆Pol = max(x1, x2) + 1

◦Pol = x1 + x2 + 1 λPol = 1Pol = idPol = ↑Pol = 0

Termination of SUBST cannot be proved with Thm. 2 using reduction pairs
based on linear polynomial interpretations, cf. Appendix A. Thus, this exam-
ple shows the usefulness of polynomial interpretations with “max”. Up to now,

3 For readability, we consider sets of DPs instead of DP problems [3]. This suffices to
present our new results, since the DP processors of this paper only modify the DPs.

4 An exception are equivalences like ≈, which are usually not Cε-compatible [9].

5

only restricted forms of such interpretations were available in termination tools.
For example, already in 2004, TTT used interpretations like max(x1 − x2, 0),
but no tool offered arbitrary interpretations with polynomials and “max” like
max(x1, x2) + 1.

While SUBST’s original termination proof was very complicated [7], easier
proofs were developed later, using the techniques of distribution elimination
or semantic labeling [17]. Indeed, the only tool that could prove termination of
SUBST automatically up to now (TPA [11]) used semantic labeling.5 In contrast,
Ex. 3 shows that there is an even simpler proof without semantic labeling.

3 Termination With Integer Polynomials and “max”

Our aim is to use polynomial interpretations with integer polynomials, together
with the function “max”. More precisely, we want to use interpretations that
map n-ary function symbols to arbitrary functions from N

n → N. But Ex. 4
demonstrates that such interpretations may not be used in Thm. 2, since then
%Pol is not monotonic, and thus, (%Pol, ≻Pol) is not a reduction pair.

Example 4. Consider this non-terminating TRS (inspired by [6, Ex. 4]):

f(s(x), x) → f(s(x), round(x))

round(0) → 0 round(s(0)) → s(0)

round(0) → s(0) round(s(s(x))) → s(s(round(x)))

Here, round(x) evaluates to x if x is odd and to x or s(x) otherwise. We use the
interpretation Pol with FPol = x1 +max(x1 −x2, 0), ROUNDPol = x1, 0Pol = 0,
and sPol = roundPol = x1 + 1, where F and ROUND are the tuple symbols for
f and round, respectively. Then all DPs are strictly decreasing and the usable
round-rules are weakly decreasing. So if we were allowed to use Pol in Thm. 2,
then we could remove all DPs and falsely prove termination.

Ex. 4 shows the reason for unsoundness when dropping the requirement of
monotonicity of %. Thm. 2 requires ℓ % r for all usable rules ℓ → r. This is meant
to ensure that all reductions with usable rules will weakly decrease the reduced
term (w.r.t. %). However, this only holds if the quasi-order % is monotonic. For
instance in Ex. 4, we have round(0) %Pol 0, but F(s(0), round(0)) 6%Pol F(s(0), 0).

In [9], this problem was solved by requiring ℓ ≈ r instead of ℓ % r. Then such
rules are not just weakly decreasing but equivalent w.r.t. %. This requirement
is not satisfied in Ex. 4 as round(0) 6≈Pol 0. In general, this equivalence even
has to be required for all rules ℓ → r (not just the usable ones), since the
step from all rules to the usable rules in the proof of Thm. 2 also relies on the
monotonicity of %. Thus, up to now one had to apply the following reduction
pair processor when using non-monotonic reduction pairs. The soundness of this

5 For the semantic labeling, TPA uses only a (small) fixed set of functions, including
certain fixed polynomials and the function “max”. So in contrast to our automation
in Sect. 4, TPA does not search for arbitrary combinations of polynomials and “max”.

6

processor immediately results from [3, Thm. 28] and [9, Thm. 23 and Cor. 31], cf.
Appendix B.6 Here, a non-monotonic reduction pair (%,≻) consists of a stable
quasi-order % and a compatible stable well-founded order ≻. But we do not
require monotonicity of % (and % does not have to be Cε-compatible either).
However, the equivalence relation ≈ associated with % must be monotonic.7

Theorem 5. Let (%,≻) be a non-monotonic reduction pair. Then Proc is sound:

Proc(P) =

P \ ≻ if P ⊆ ≻ ∪ % and (a) or (b) holds:

(a) P ∪ U(P) is non-duplicating and U(P) ⊆ ≈

(b) R ⊆ ≈

P otherwise

However, demanding ℓ ≈ r for the usable rules as in Thm. 5(a) is a very
strong requirement which makes the termination proof fail in many examples,
cf. Ex. 11 and 12. Therefore, as already suggested in [6], one should take into
account on which positions the quasi-order % is monotonically increasing resp.
decreasing. If a defined function symbol f occurs at a monotonically increasing
position in the right-hand side of a dependency pair, then one should require
ℓ % r for all f -rules. If f is at a decreasing position, one requires r % ℓ. Finally,
if f is at a position which is neither increasing nor decreasing, one requires ℓ ≈ r.

To modify our definition of usable rules accordingly, we need a monotonicity
specification which specifies which arguments of a symbol have to be increasing
(“⇑”) or decreasing (“⇓”). Afterwards, we search for a (non-monotonic) reduction
pair that is compatible with the monotonicity specification.

Definition 6. A monotonicity specification is a mapping ν which assigns to
every function symbol f and every i ∈ {1, ..., arity(f)} a subset of {⇑,⇓}. A
reduction pair (%,≻) is ν-compatible iff

• if ⇑ ∈ ν(f, i) then % is monotonically increasing on f ’s i-th argument, i.e.,
ti % si implies f(t1, ..., ti, ..., tn) % f(t1, ..., si, ..., tn) for all terms t1, ..., tn, si

• if ⇓ ∈ ν(f, i) then % is monotonically decreasing on f ’s i-th argument, i.e.,
ti % si implies f(t1, ..., ti, ..., tn) - f(t1, ..., si, ..., tn) for all terms t1, ..., tn, si

• if ν(f, i) = {⇑,⇓} then8 additionally % must be independent on f ’s i-th
argument, i.e., f(t1, ..., ti, ..., tn) ≈ f(t1, ..., si, ..., tn) for all terms t1, ..., tn, si

We call f ν-dependent on its i-th argument iff ν(f, i) 6= {⇑,⇓}. The concept of
monotonicity can be extended to positions in a term where ν(t, ε) = {⇑} and

6 An alternative to Thm. 5(a) is presented in [9, Thm. 40] for reduction pairs (%Pol,

≻Pol) based on polynomial interpretations. Here, “non-duplication of P ∪ U(P)” is
replaced by “Pol-right-linearity of P ∪ U(P)”. So for every right-hand side r there
must be a linear term r′ with r ≈Pol r′ where r′ differs from r only in the variables.

7 Triples like (≈, %,≻) were called “reduction triples” in [9]. “Non-monotonic reduc-
tion pairs” are also related to the “general reduction pairs” in [6], but there ≻ did
not have to be well founded. Consequently, the notion of stability was weakened too.

8 Note that this condition is implied by the first two conditions whenever % is total
on ground terms and whenever sσ % tσ for all ground substitutions σ implies s % t.

7

ν(f(t1, ..., tn), i p) =

8

>

>

>

>

<

>

>

>

>

:

{⇑,⇓} if ν(f, i) = {⇑,⇓} or ν(ti, p) = {⇑,⇓}
{⇑} if ν(f, i) = ν(ti, p) = {⇑} or ν(f, i) = ν(ti, p) = {⇓}
{⇓} if either ν(f, i) = {⇑} and ν(ti, p) = {⇓}

or ν(f, i) = {⇓} and ν(ti, p) = {⇑}
∅ otherwise

A position p in a term t is called ν-dependent iff ν(t, p) 6= {⇑,⇓}.

Definition 7 (General Usable Rules [6]). Let ν be a monotonicity specifi-
cation. For any TRS U , we define U{⇑,⇓} = ∅, U{⇑} = U , U{⇓} = U−1 = {r →
ℓ | ℓ → r ∈ U}, and U∅ = U ∪U−1. For any term t, we define the general usable
rules GU(t) as the smallest set such that9

GU(f(t1, . . . , tn)) = Rls(f) ∪
⋃

ℓ→r∈Rls(f)
GU(r) ∪

⋃n

i=1
GUν(f,i)(ti)

For a set of DPs P, we define GU(P) =
⋃

s→t∈P GU(t). Moreover, we let
Ucontr(t) be those rules of R that contributed to GU(t), i.e., Ucontr(t) = {ℓ→r∈
R | ℓ→r∈GU (t) or r→ℓ∈GU(t)}. Similarly, Ucontr(P) =

⋃

s→t∈P Ucontr(t).10

Example 8. In Ex. 4, as FPol = x1 + max(x1 − x2, 0), %Pol is monotonically
decreasing on F’s second argument. So (%Pol,≻Pol) is ν-compatible for the
monotonicity specification ν with ν(F, 2) = {⇓} and ν(F, 1) = ν(ROUND, 1) =
ν(s, 1) = ν(round, 1) = {⇑}. Due to ν(F, 2) = {⇓}, the general usable rules are
the reversed round-rules. Thus, we cannot falsely prove termination with Pol

anymore, since Pol does not make the reversed round-rules weakly decreasing;
for example, we have 0 ≺Pol round(0).

Our goal is to show that with the modified definition of usable rules above,
Thm. 2 can also be used for non-monotonic reduction pairs. However, this is not
true in general as shown by the following counterexample, cf. [9, Ex. 32].

Example 9. Consider the following famous TRS of Toyama [15]:

f(0, 1, x) → f(x, x, x) g(x, y) → x g(x, y) → y

We use a monotonicity specification ν with ν(F, 1) = {⇓}, ν(F, 2) = {⇑},
ν(F, 3) = {⇑,⇓} and a ν-compatible reduction pair (%Pol,≻Pol) where FPol =
max(x2 − x1, 0), 0Pol = 0, and 1Pol = 1. The only DP is strictly decreasing and
there is no (general) usable rule. Hence, one would falsely conclude termination.

To obtain a sound criterion, we therefore impose certain requirements on all
rules ℓ → r ∈ P ∪ Ucontr. To this end, we need the following notions.

• A rule ℓ → r is ν-more monotonic (ν-MM) if variables occur at more mono-
tonic positions on the right-hand side than on the left-hand side. More pre-
cisely, for every ν-dependent position p of r with r|p = x there is a position
q of ℓ such that ℓ|q = x and ν(ℓ, q) ⊆ ν(r, p). However, each position of ℓ can
only be used once, i.e., for different positions p and p′ of r we must choose
different positions q and q′ of ℓ. To define this notion formally, let Posν

x(t)

9 Note that GU(t) is no longer a subset of R. We nevertheless refer to GU(t) as “usable”
rules in order to keep the similarity to Thm. 2.

10 Ucontr are the “usable rules w.r.t. an argument filtering” from [5].

8

be the set of all ν-dependent positions p of t with t|p = x. Then a rule ℓ → r

is ν-MM if for each variable x there is an injective mapping α from Posν
x(r)

to Posν
x(ℓ) such that ν(ℓ, α(p)) ⊆ ν(r, p) for all p ∈ Posν

x(r).
So for the right-hand side of the DP in Ex. 9, we have Posν

x(F(x, x, x)) =
{1, 2}. Hence, x would have to occur on at least two different ν-dependent
positions q and q′ in the left-hand side F(0, 1, x). Moreover, we would need
ν(F(0, 1, x), q) ⊆ ν(F(x, x, x), 1) = {⇓} and ν(F(0, 1, x), q′) ⊆ ν(F(x, x, x), 2)
= {⇑}. However, this DP is not ν-MM as Posν

x(F(0, 1, x)) = ∅.
• ℓ → r is weakly ν-MM if for each x with Posν

x(ℓ) 6= ∅, there is an injective
mapping α from Posν

x(r) to Posν
x(ℓ) such that ν(ℓ, α(p)) ⊆ ν(r, p) for all

p ∈ Posν
x(r). So in contrast to ν-MM, now we also permit variables that

occur at dependent positions of r, but not at any dependent position of ℓ.
Therefore, the DP of Ex. 9 is weakly ν-MM.

• ℓ → r is ν-right-linear (ν-RL) if all variables occur at most once at a ν-
dependent position in r. Formally, ℓ → r is ν-RL iff for all x ∈ V(r):
|Posν

x(r)| 6 1. So the DP in Ex. 9 is not ν-RL since x occurs twice at
ν-dependent positions in the right-hand side.

A TRS is (weakly) ν-MM resp. ν-RL iff all its rules satisfy that condition.
We now extend the processor from Thm. 2 to non-monotonic reduction pairs.

Thm. 10 shows that to remove all strictly decreasing DPs, it is still sufficient if
the (general) usable rules are weakly decreasing, provided that P ∪ Ucontr(P)
satisfies ν-MM. Alternatively, one can also require weak ν-MM and ν-RL.

As shown in [6], if one only wants to prove innermost termination, then
Thm. 10 can be used even without the conditions (weak) ν-MM and ν-RL. How-
ever, we now extend this result to full termination. Of course, if P ∪ Ucontr(P)
is not (weakly) ν-MM resp. ν-RL and one wants to prove full termination with
a non-monotonic reduction pair, then one has to use Thm. 5 instead.

Theorem 10. Let ν be a monotonicity specification and let (%,≻) be a ν-
compatible non-monotonic reduction pair. Then Proc is sound:11

Proc(P) =

8

>

>

<

>

>

:

P \≻ if P ⊆ ≻∪ %, GU(P) ⊆ % , and one of (a) or (b) holds:
(a) P ∪ Ucontr(P) is ν-MM
(b) P ∪ Ucontr(P) is weakly ν-MM and ν-RL

P otherwise

Example 11. To modify Ex. 4 into a terminating TRS, we replace the f-rule by

f(s(x), x) → f(s(x), round(s(x)))

similar to [6, Ex. 9]. We use the monotonicity specification from Ex. 8. The
interpretation Pol from Ex. 4 is modified by defining roundPol = x1. Then
(%Pol, ≻Pol) is ν-compatible, all DPs are strictly decreasing, and the (general)
usable rules (i.e., the reversed round-rules) are weakly decreasing. Moreover, all
rules in P ∪ Ucontr(P) are ν-MM. Thus, by Thm. 10(a) we can transform the
initial DP problem P = DP (R) into P \≻= ∅ and prove termination.

In contrast, this was not possible by the method of [9] which requires ℓ ≈ r

11 The proof can be found in Appendix C.

9

for all usable rules. There is no (possibly non-monotonic) reduction pair that
satisfies round(0) ≈ 0 ≈ s(0) and F(s(x), x) ≻ F(s(x), round(s(x))). The method
of [6] can only prove innermost termination of this example. However, this TRS
does not belong to a known class of TRSs where innermost termination implies
termination. So in fact, up to now all tools failed on this example.

Example 12. The following example illustrates Thm. 10(b):

p(0) → 0 minus(x, 0) → x

p(s(x)) → x minus(s(x), s(y)) → minus(x, y)
div(0, s(y)) → 0 minus(x, s(y)) → p(minus(x, y))

div(s(x), s(y)) → s(div(minus(s(x), s(y)), s(y)))
log(s(0), s(s(y))) → 0

log(s(s(x)), s(s(y))) → s(log(div(minus(x, y), s(s(y))), s(s(y))))

We use a monotonicity specification ν with ν(s, 1) = ν(p, 1) = ν(minus, 1) =
ν(MINUS, 1) = ν(div, 1) = ν(DIV, 1) = ν(LOG, 1) = {⇑}, ν(minus, 2) = {⇓},
ν(P, 1) = ν(MINUS, 2) = ν(div, 2) = ν(DIV, 2) = ν(LOG, 2) = {⇑,⇓}, and the
interpretation pPol = max(x1−1, 0), minusPol = max(x1−x2, 0), 0Pol = PPol =
0, sPol = MINUSPol = divPol = LOGPol = x1 + 1, DIVPol = x1 + 2. Now
(%Pol,≻Pol) is ν-compatible, all DPs except MINUS(x, s(y)) → MINUS(x, y) are
strictly decreasing, and the remaining DP and the usable p-, minus-, and div-rules
are weakly decreasing. In addition, all DPs and usable rules are weakly ν-MM
and ν-RL. Hence, by Thm. 10(b) we can remove all DPs except MINUS(x, s(y))→
MINUS(x, y). Afterwards, we use MINUSPol′ = x2 and sPol′ = x1 + 1 to delete
this remaining DP. (Now there are no usable rules.) Hence, termination is proved.

Note that here, Thm. 10(a) does not apply as the DP DIV(s(x), s(y)) →
DIV(minus(s(x), s(y)), s(y)) is not ν-MM: the first occurrence of y in the right-
hand side is at a non-increasing position, whereas the only occurrence of y in
the left-hand side is at a ν-independent, and thus increasing position.

The technique of [9] cannot handle the DP LOG(. . .) → LOG(div(. . .), . . .),
because it would have to find an interpretation which makes the div-rules equiva-
lent. In contrast, Thm. 10 only requires a weak decrease for the div-rules. Indeed,
all existing termination tools failed on this example.

4 Automation

The most efficient implementations to search for polynomial interpretations are
based on SAT solving [2]. However, [2] only handled the search for polynomial
interpretations with natural coefficients as well as interpretations of the form
max(p − n, 0) where p is a polynomial with natural coefficients and n ∈ N.
So we permitted interpretations like max(x1 − 1, 0), but not interpretations like
max(x1−x2, 0) (as needed in Ex. 11 and 12) or max(x1, x2) (as needed in Ex. 1).

We want to use SAT solvers to search for arbitrary interpretations using poly-
nomials and “max”. Compared to existing related approaches, there are two chal-
lenges: the additional use of “max” in polynomial interpretations (Sect. 4.1) and
the handling of non-monotonic quasi-orders and general usable rules (Sect. 4.2).

10

4.1 Automating Polynomial Interpretations with “max”

We start with encoding the “classical” reduction pair processor of Thm. 2 as a
SAT problem. This is simpler than encoding Thm. 10, because in Thm. 2 we use
a monotonic reduction pair (%Pol,≻Pol) and thus, the applicability conditions
and the usable rules U do not depend on a monotonicity specification. But in
contrast to our earlier encoding from [2], now Pol can be an interpretation that
combines polynomials and “max” arbitrarily.12

Definition 13 (max-polynomial). Let V be the set of variables. The set of
max-polynomials PM over a set of numbers M is the smallest set such that

• M ⊆ PM and V ⊆ PM

• if p, q ∈ PM , then p + q ∈ PM , p− q ∈ PM , p ∗ q ∈ PM , and max(p, q) ∈ PM

At the moment, we only consider interpretations Pol that map every function
symbol to a max-polynomial over N that does not contain any subtraction “−”.
Obviously, then (%Pol,≻Pol) is a Cε-compatible (monotonic) reduction pair.

To find such interpretations automatically, one starts with an abstract poly-
nomial interpretation. It maps each function symbol to a max-polynomial over
a set A of abstract coefficients. In other words, one has to determine the de-
gree and the shape of the max-polynomial, but the actual coefficients are left
open. For example, for the TRS of Ex. 1 we could use an abstract polynomial
interpretation Pol where ⋆Pol = max(a1 x1 + a2 x2, a′

1 x1 + a′
2 x2), ↑Pol = b,

◦Pol = x1 + x2, etc.13 Here, a1, a2, a
′
1, a

′
2, b are abstract coefficients.

Now to apply the reduction pair processor of Thm. 2, we have to find an in-
stantiation of the abstract coefficients satisfying the following condition. Then all
dependency pairs that are strictly decreasing (i.e., [s] > [t] + 1) can be removed.

V

s→t ∈ P

[s]Pol > [t]Pol ∧
W

s→t ∈ P

[s]Pol > [t]Pol + 1 ∧
V

ℓ→r ∈ U(P)

[ℓ]Pol > [r]Pol (3)

Here, all rules in P ∪U(P) are variable-renamed to have pairwise different vari-
ables. The polynomials [s]Pol, [t]Pol, etc. are again max-polynomials over A. So
with the interpretation Pol above, to make the last rule of Ex. 1 weakly decreas-
ing (i.e., ↑ ◦ (x ⋆ y) %Pol y) we obtain the inequality [↑ ◦ (x ⋆ y)]Pol > [y]Pol:

b + max(a1 x + a2 y, a′
1 x + a′

2 y) > y (4)

We have to find an instantiation of the abstract coefficients a1, a2, . . . such that
(4) holds for all instantiations of the variables x and y. In other words, the
variables from V occurring in such inequalities are universally quantified.

Several techniques have been proposed to transform such inequalities further
in order to remove such universally quantified variables [10]. However, the exist-
ing techniques only operate on inequalities without “max”. Therefore, we now
present new inference rules to eliminate “max” from such inequalities.

Our inference rules operate on conditional constraints of the form

12 Of course, in an analogous way, one can also integrate the “minimum” function and
indeed, we did this in our implementations.

13 Here we already fixed ◦’s interpretation to simplify the presentation. Our implemen-
tations use heuristics to determine when to use an interpretation with “max”.

11

p1 > q1 ∧ . . . ∧ pn > qn ⇒ p > q (5)

Here, n > 0 and p1, ..., pn, q1, ..., qn are polynomials with abstract coefficients
without “max”. In contrast, p, q are max-polynomials with abstract coefficients.

The first inference rule eliminates an inner occurrence of “max” from the
inequality p > q. If p or q have a sub-expression max(p′, q′) where p′ and q′ do
not contain “max”, then we can replace this sub-expression by p′ or q′ when
adding the appropriate condition p′ > q′ or q′ > p′ + 1, respectively.

I. Eliminating “max”

p1 > q1 ∧ . . . ∧ pn > qn ⇒ . . . max(p′, q′) . . .

p1 > q1 ∧ . . . ∧ pn > qn ∧ p′ > q′ ⇒ . . . p′ . . . ∧
p1 > q1 ∧ . . . ∧ pn > qn ∧ q′ > p′ + 1 ⇒ . . . q′ . . .

if p′ and q′ do
not contain
“max”

Obviously, by repeated application of inference rule (I), all occurrences of
“max” can be removed. In our example, the constraint (4) is transformed into
the following new constraint that does not contain “max” anymore.

a1 x + a2 y > a′
1 x + a′

2 y ⇒ b + a1 x + a2 y > y ∧ (6)

a′
1 x + a′

2 y > a1 x + a2 y + 1 ⇒ b + a′
1 x + a′

2 y > y (7)

Since the existing methods for eliminating universally quantified variables
only work for unconditional inequalities, the next inference rule eliminates the
conditions pi > qi from a constraint of the form (5).14 To this end, we introduce
two new abstract polynomials p and q (that do not contain “max”). The polyno-
mial q over the variables x1, ..., xn is used to “measure” the polynomials p1, ..., pn

resp. q1, ..., qn in the premise of (5) and the unary polynomial p measures the
polynomials p and q in the conclusion of (5). We write q[p1, ..., pn] to denote the
result of instantiating the variables x1, ..., xn in q by p1, ..., pn, etc.

II. Eliminating Conditions

p1 > q1 ∧ . . . ∧ pn > qn ⇒ p > q

p[p]− p[q] > q[p1, . . . , pn]− q[q1, . . . , qn]

if q and p do not contain “max”, p is
strictly monotonic, and q is weakly mono-
tonic

Here, the monotonicity conditions mean that x > y ⇒ p[x] > p[y] must hold
and similarly that x1 > y1 ∧ . . . ∧ xn > yn ⇒ q[x1, . . . , xn] > q[y1, . . . , yn].

To see why Rule (II) is sound, let p[p]−p[q] > q[p1, . . . , pn]−q[q1, . . . , qn] hold
and assume that there is an instantiation σ of all variables in the polynomials
with numbers that refutes p1 > q1 ∧ . . . ∧ pn > qn ⇒ p > q. Now p1σ > q1σ ∧
... ∧ pnσ > qnσ implies q[p1, . . . , pn]σ > q[q1, . . . , qn]σ by weak monotonicity
of q. Hence, p[p]σ − p[q]σ > 0. Since the instantiation σ is a counterexample
to our original constraint, we have pσ 6> qσ and thus pσ < qσ. But then strict
monotonicity of p would imply p[p]σ − p[q]σ < 0 which gives a contradiction.

14 Such conditional polynomial constraints also occur in other applications, e.g., in the
termination analysis of logic programs. Indeed, we used a rule similar to inference
rule (II) in the tool Polytool for termination analysis of logic programs [14]. However,
Polytool only applies classical polynomial interpretations without “max”.

12

If we choose15 the abstract polynomials p = c x1 and q = d x1 for (6) and
p = c′ x1 and q = d′ x1 for (7), then (6) and (7) are transformed into the following
unconditional inequalities. (Note that we also have to add the inequalities c > 1
and c′ > 1 to ensure that p is strictly monotonic.)

c · (b + a1 x + a2 y) − c · y > d · (a1 x + a2 y) − d · (a′
1 x + a′

2 y) ∧ (8)

c′ · (b + a′
1 x + a′

2 y) − c′ · y > d′ · (a′
1 x + a′

2 y) − d′ · (a1 x + a2 y + 1) (9)

Of course, such inequalities can be transformed into inequalities with 0 on their
right-hand side. For example, (8) is transformed to

(c a1 − d a1 + d a′
1) x + (c a2 − c − d a2 + d a′

2) y + c b > 0 (10)

Thus, we now have to ensure non-negativeness of “polynomials” over variables
like x, y, where the “coefficients” are polynomials over the abstract variables like
c a1 − d a1 + d a′

1. To this end, it suffices to require that all these “coefficients”
are > 0 [10]. In other words, now one can eliminate all universally quantified
variables like x, y and (10) is transformed into the Diophantine constraint

c a1 − d a1 + d a′
1 > 0 ∧ c a2 − c − d a2 + d a′

2 > 0 ∧ c b > 0

III. Eliminating Universally Quantified Variables

p0+p1 x
e11
1 . . . xen1

n + · · ·+pk x
e1k
1 . . . x

enk
n > 0

p0 > 0 ∧ p1 > 0 ∧ . . . ∧ pk > 0

if the pi neither contain “max” nor
any variable from V

To search for suitable values for the abstract coefficients that satisfy the
resulting Diophantine constraints, one fixes an upper bound for these values.
Then we showed in [2] how to translate such Diophantine constraints into a
satisfiability problem for propositional logic which can be handled by SAT solvers
efficiently. In our example, the constraints resulting from the initial inequality
(4) are for example satisfied by a1 = 1, a2 = 0, a′

1 = 0, a′
2 = 1, b = 0, c = 1,

d = 1, c′ = 1, d′ = 0. With these values, the abstract interpretation max(a1 x1 +
a2 x2, a′

1 x1 +a′
2 x2) for ⋆ is turned into the concrete interpretation max(x1, x2).

4.2 Automating Thm. 10

Now we show how to automate the improved reduction pair processor of Thm. 10.
As before, our aim is to translate the resulting constraints into Diophantine
constraints and further into propositional satisfiability problems.

Again, we start with an abstract polynomial interpretation Pol. But since
the values for the abstract coefficients can now be from Z, we add the constraint

[f] > 0 for all function symbols f (11)

to ensure the well-foundedness of the resulting order. In the TRS of Ex. 12,
we could start with an abstract interpretation where minusPol = max(m1x1 +
m2x2, m0). Here, m0, m1, m2 are abstract coefficients which can later be instan-

15 A good heuristic is to choose q = b1x1 + . . . + bnxn where all bi are from {0, 1} and
p = a · x1 where 1 6 a 6 max(Σn

i=1bi, 1).

13

tiated by integers. Thus, we obtain the constraint max(m1x1 + m2x2, m0) > 0.
The challenge when automating Thm. 10 is that the general usable rules

GU and the conditions (weakly) ν-MM and ν-RL depend on the (yet unknown)
monotonicity specification ν, which itself enforces constraints on the quasi-order
%Pol that one searches for. Nevertheless, if one uses max-polynomial interpreta-
tions, then the search for reduction pairs can still be mechanized efficiently. More
precisely, we show how to encode all conditions of Thm. 10 as a formula which
is independent of ν. In other words, this formula only contains Diophantine and
Boolean variables. The latter are used to encode ν. The formula has the form

Orient ∧ Usable ∧
(

More ∨ (Wmore ∧Rlinear)
)

∧ Compat ∧ Depend (12)

where Orient requires that the DPs and general usable rules are weakly decreas-
ing and at least one DP is strictly decreasing. Here, we use Boolean variables
that state which rules are usable and Usable ensures that these variables have the
correct values. More, Wmore, and Rlinear correspond to ν-MM, weak ν-MM,
and ν-RL, respectively. Compat requires that %Pol is ν-compatible. Finally, the
formula Depend computes the sets ν(t, p) from the monotonicity specification ν.

We start with defining Depend . To represent a monotonicity specification
ν, for every function symbol f of arity n and every 1 6 i 6 n we introduce
two Boolean variables ⇑f,i and ⇓f,i which encode the set ν(f, i). So ⇑f,i is true
iff ⇑ ∈ ν(f, i) and likewise for ⇓f,i. Depend is the conjunction of the following
formulas for every term t in P ∪U(P) and every position p of t. They introduce
two Boolean variables ⇑t,p and ⇓t,p to encode the sets ν(t, p) according to Def. 6.

⇑t,ε ⇔ true
⇑f(t1,...,tn),i p ⇔

(

⇑f,i ∧ ⇑ti,p

)

∨
(

⇓f,i ∧ ⇓ti,p

)

∨
(

⇑f,i ∧ ⇓f,i

)

∨
(

⇑ti,p
∧ ⇓ti,p

)

⇓t,ε ⇔ false
⇓f(t1,...,tn),i p ⇔

(

⇑f,i ∧ ⇓ti,p

)

∨
(

⇓f,i ∧ ⇑ti,p

)

∨
(

⇑f,i ∧ ⇓f,i

)

∨
(

⇑ti,p
∧ ⇓ti,p

)

Next we define Usable. We use two Boolean variables usf and usf for every
defined symbol f . Here, usf (resp. usf) is true if the f -rules (resp. reversed f -
rules) are usable according to Def. 7. So whenever an f occurs at a non-decreasing
position of a right-hand side of P then the f -rules are usable. Similarly, if f occurs
at a non-increasing position, then the reversed f -rules are usable. Moreover, if
(possibly reversed) f -rules are already usable then this may yield new usable
rules due to right-hand sides of f -rules. Here, one has to keep the direction of
the rules for non-decreasing positions and reverse the direction for non-increasing
positions. This gives rise to the following formula Usable.

∧

s→t∈P, t|p=f(...), f defined

(¬⇓t,p ⇒ usf) ∧ (¬⇑t,p ⇒ usf) ∧

V

ℓ→r∈Rls(f), r|p=g(...), g defined

`

usf ⇒ (¬⇓r,p ⇒usg) ∧ (¬⇑r,p ⇒usg)
´

∧
`

usf ⇒ (¬⇓r,p ⇒usg) ∧ (¬⇑r,p ⇒usg)
´

With the Boolean variables usf and usf we can easily formalize that the
rules in P ∪ GU(P) are weakly decreasing and that at least one pair is strictly

14

decreasing. We obtain the following constraint Orient which is analogous to (3).

∧

s→t∈P

[s]Pol > [t]Pol ∧
∨

s→t∈P

[s]Pol > [t]Pol + 1 ∧

∧

ℓ→r∈R, f=root(ℓ)

(

usf ⇒ [ℓ]Pol > [r]Pol

)

∧
(

usf ⇒ [r]Pol > [ℓ]Pol

)

To ensure that P ∪ Ucontr(P) is ν-RL, we interpret the Boolean values true
and false as 1 and 0. Then we express ν-RL as a Diophantine constraint which
we solve in the same way as the ones obtained from Orient later on. For any
variable x, any term t, and any set M ⊆ {⇑,⇓}, let #M

x (t) be a polynomial that
describes the number of occurrences of x in t at positions p where ν(t, p) = M .

Thus, #∅

x (t) =
∑

t|p=x(¬⇑t,p∧¬⇓t,p) and #
{⇑}
x (t), #

{⇓}
x (t), #

{⇑,⇓}
x (t) are defined

accordingly. Moreover, #x(t) =
∑

t|p=x(¬⇑t,p ∨ ¬⇓t,p) encodes the number of
occurrences of x at dependent positions of t. Then the constraint Rlinear is:

V

s→t∈P, x∈V(s)

#x(t)61 ∧
V

ℓ→r∈R, x∈V(ℓ), f=root(ℓ)

`

usf ∨ usf ⇒ #x(r)61
´

More and Wmore ensure that P ∪Ucontr(P) is (weakly) ν-MM. For every rule
ℓ → r and every variable x at a ν-dependent position p of r, this variable must
also occur at a unique less monotonic “partner” position q of ℓ. Thus, we could

require #∅

x (r) 6 #∅

x (ℓ), #
{⇑}
x (r) 6 #

{⇑}
x (ℓ), and #

{⇓}
x (r) 6 #

{⇓}
x (ℓ). However,

these requirements would be too strong, because they ignore the possibility that
the “partner” position in ℓ may also be strictly less monotonic than the one in
r. Therefore, for every rule ℓ → r we introduce two new Diophantine variables
pt⇑x and pt⇓x which stand for the number of those positions p ∈ Posν

x(r) with
ν(r, p) = {⇑} (resp. ν(r, p) = {⇓}) where the “partner” position q ∈ Posν

x(ℓ) is
non-monotonic (i.e., ν(ℓ, q) = ∅). Then Wmore is the following formula:

^

s→t∈P, x∈V(t)

`

#x(s)>1 ⇒ mm(s → t, x)
´

∧
^

ℓ→r∈R, x∈V(r), f=root(ℓ)

`

(usf ∨ usf) ∧ #x(ℓ)>1 ⇒ mm(ℓ → r, x)
´

where mm(ℓ → r, x) is the following formula to encode ν-MM. Its first part
ensures that ℓ contains enough non-monotonic occurrences of x to “cover” all
occurrences of x in r that have a non-monotonic “partner” position in ℓ.

#∅

x (r)+pt⇑x +pt⇓x 6 #∅

x (ℓ) ∧ #{⇑}
x (r) 6 pt⇑x+#{⇑}

x (ℓ) ∧ #{⇓}
x (r) 6 pt⇓x+#{⇓}

x (ℓ)

Now More results from Wmore by removing the premises “#x(·) > 1”.
Compat ensures that whenever the Boolean variable ⇑f,i is true, then fPol

is a max-polynomial that is (weakly) monotonically increasing on its i-th argu-
ment (similarly for ⇓f,i). We express such monotonicity conditions by the partial
derivatives of fPol. If fPol is differentiable (i.e., fPol contains no “max”), then
%Pol is monotonically increasing on f ’s i-th argument iff ∂fPol

∂xi
> 0 (similarly

for monotonic decrease). If fPol is a max-polynomial, then it is in general not
differentiable, but piecewise differentiable and continuous. Then

%Pol is monotonically increasing (resp. decreasing) on f ’s i-th argument iff
∂fPol

∂xi
> 0 (resp. ∂fPol

∂xi
6 0) holds for all values where ∂fPol

∂xi
is defined.

15

For instance, max(x1−1, 2) is not differentiable at x1 = 3. We have ∂ max(x1−1,2)
∂x1

= 0 for x1 < 3 and ∂ max(x1−1,2)
∂x1

= 1 for x1 > 3. But as ∂ max(x1−1,2)
∂x1

> 0 when-
ever it is defined, the function max(x1−1, 2) is indeed monotonically increasing.

Therefore we introduce a new function symbol derx for partial derivatives.
Here, derx(p) stands for ∂p

∂x
whenever p is a function depending on x. However,

at the moment the expressions derx(p) are not “evaluated”. Thus, we can also
write derx(p) if p is not differentiable. Then, Compat is the conjunction of the
following constraints for all function symbols f and all 1 6 i 6 arity(f):

(

⇑f,i ⇒ derxi
(fPol) > 0

)

∧
(

⇓f,i ⇒ 0 > derxi
(fPol)

)

This is indeed sufficient to guarantee that (%Pol,≻Pol) is ν-compatible. In
particular, ⇑f,i ∧ ⇓f,i now implies derxi

(fPol) = 0, which ensures that %Pol is
independent on f ’s i-th argument. Thus, the third condition of Def. 6 is always
satisfied for quasi-orders like %Pol, cf. Footnote 8.

So to automate Thm. 10,16 we start with the constraint (12) instead of (3).
In addition, we need the constraints of the form (11). Then we again apply the
inference rules (I) - (III) in order to obtain Diophantine constraints.

However, now inequalities also contain “derx(p)” for max-polynomials p.
Here, we apply Rule (I) repeatedly in order to eliminate “max”. So by Rule
(I), the constraint derx1(max(m1x1 +m2x2, m0)) > 0 would be transformed into

(

m1x1 + m2x2 > m0 ⇒ derx1(m1x1 + m2x2) > 0
)

∧
(

m0 > m1x1 + m2x2 + 1 ⇒ derx1(m0) > 0
) (13)

To eliminate “derx” afterwards, we need the following rule for partial derivation:

IV. Eliminating “der”

. . . derxi
(p0 + p1 x

e11
1 . . . xen1

n + · · · + pk x
e1k
1 . . . x

enk
n) . . .

. . . p1 ei1 x
e11
1 . . . x

ei1−1

i
. . . xen1

n + · · · + pk eik x
e1k
1 . . . x

eik−1

i
. . . x

enk
n

if the pi neither con-
tain “max” nor any
variable from V

So in (13), one could replace derx1(m1x1 + m2x2) by m1 and derx1(m0) by 0.

5 Experiments and Conclusion

We showed how to use integer polynomial interpretations with “max” in termina-
tion proofs with DPs and developed a method to encode the resulting search
problems into SAT. All our results are implemented in the systems AProVE and
TTT2. While AProVE and TTT2 were already the two most powerful termination
provers for TRSs at the International Competition of Termination Tools 2007
[13], our contributions increase the power of both tools considerably without
affecting their efficiency. More precisely, when using a time limit of 1 minute per
example, AProVE and TTT2 can now automatically prove termination of 15 ad-

16 The automation of Thm. 5 works as for Thm. 2. To automate the combination of
Thm. 5 and Thm. 10, one first generates the constraints for Thm. 10 and tries to
solve them. If one does not find a solution, one checks whether P ∪ U(P) is non-
duplicating. In this case, one uses Thm. 5(a) and otherwise, one uses Thm. 5(b).

16

ditional examples from the Termination Problem Data Base that is used for the
competitions. Several of these examples had not been proven terminating by any
tool at the competitions before. Moreover, AProVE and TTT2 now also succeed on
all examples from this paper (i.e., Ex. 1, 11, and 12), whereas all previous tools
from the competitions failed (with the exception of TPA that could already solve
Ex. 1). Our experiments also show the advantages over the earlier related con-
tributions of [6,9] which were already implemented in AProVE and TTT2, respec-
tively. To run the AProVE implementation via a web-interface and for further de-
tails, we refer to http://aprove.informatik.rwth-aachen.de/eval/maxpolo.

References

1. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-
oretical Computer Science, 236:133–178, 2000.

2. C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, and H. Zankl.
SAT solving for termination analysis with polynomial interpretations. In Proc.
SAT’07, LNCS 4501, pp. 340–354, 2007.

3. J. Giesl, R. Thiemann, and P. Schneider-Kamp. The dependency pair framework:
Combining techniques for automated termination proofs. In Proc. LPAR’04, LNAI
3452, pp. 301–331, 2005.

4. J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic termina-
tion proofs in the DP framework. Proc. IJCAR’06, LNAI 4130, pp. 281–286, 2006.

5. J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and im-
proving dependency pairs. Journal of Automated Reasoning, 37(3):155–203, 2006.

6. J. Giesl, R. Thiemann, S. Swiderski, and P. Schneider-Kamp. Proving termination
by bounded increase. Proc. CADE’07, LNAI 4603, pp. 443–459, 2007.

7. T. Hardin and A. Laville. Proof of termination of the rewriting system SUBST on
CCL. Theoretical Computer Science, 46(2,3):305–312, 1986.

8. N. Hirokawa and A. Middeldorp. Automating the dependency pair method. In-
formation and Computation, 199(1,2):172–199, 2005.

9. N. Hirokawa and A. Middeldorp. Tyrolean Termination Tool: Techniques and fea-
tures. Information and Computation, 205(4):474–511, 2007.

10. H. Hong and D. Jakuš. Testing positiveness of polynomials. Journal of Automated
Reasoning, 21(1):23–38, 1998.

11. A. Koprowski. TPA: Termination proved automatically. In Proc. RTA’06, LNCS
4098, pp. 257–266, 2006.

12. D. Lankford. On proving term rewriting systems are Noetherian. Technical Report
MTP-3, Louisiana Technical University, Ruston, LA, USA, 1979.

13. C. Marché and H. Zantema. The termination competition. Proc. RTA’07, LNCS
4533, pp. 303–313, 2007.

14. M. Nguyen, D. De Schreye, J. Giesl, P. Schneider-Kamp. Polytool: Polynomial inter-
pretations as a basis for termination analysis of logic programs. KU Leuven, 2008.

15. Y. Toyama. Counterexamples to the termination for the direct sum of term rewrit-
ing systems. Information Processing Letters, 25:141–143, 1987.

16. TTT2. Available from http://colo6-c703.uibk.ac.at/ttt2.
17. H. Zantema. Termination. In Term Rewriting Systems, by Terese (ed.), Chapter 6,

pp. 181–259, Cambridge University Press, 2003.

17

http://aprove.informatik.rwth-aachen.de/eval/maxpolo
http://colo6-c703.uibk.ac.at/ttt2

A Why SUBST Does Not Work With Linear Polynomials

As mentioned after Ex. 3, termination of the SUBST-TRS from Ex. 1 cannot
be proved with Thm. 2 if we use reduction pairs based on linear polynomial
interpretations. To show this, first assume that the interpretation of ◦♯ depends
only on its first argument. Then the DP (2) cannot be oriented (unless all ground
terms were mapped to the same number, which however would prevent any pair
from being strictly decreasing). Alternatively, if ◦♯ only depends on its second
argument, then it is easy to see that none of the DPs can be strictly decreasing.
Hence, ◦♯

Pol = ◦♯
1x1 + ◦♯

2x2 + ◦♯
0 with ◦♯

1, ◦
♯
2 > 1.

Together with this information, decrease of the DP

(x ◦ y) ◦♯ z → x ◦♯ (y ◦ z)

implies ◦1 > 1 and ◦2 = 1, whereas the decrease of the DPs

(x ⋆ y) ◦♯ z → x ◦♯ z

(x ⋆ y) ◦♯ z → y ◦♯ z

requires ⋆0, ⋆1 > 1. But then the the second rule

(x ⋆ y) ◦ z → (x ◦ z) ⋆ (y ◦ z)

cannot be weakly decreasing due to the variable z.

B Proof of Thm. 5

Proof. We first consider Variant (b). If R ⊆ ≈ and P ⊆ ≻ ∪ %, then the absence
of infinite minimal chains from P\ ≻ also implies the absence of infinite minimal
chains from P by [9, Cor. 31].

Now we regard Variant (a). If P ∪U(P) is non-duplicating, then the polyno-
mial interpretation that maps every n-ary symbol f to the polynomial x1 + . . .+
xn results in a reduction pair (%′,≻′) where ≻′ is monotonic and where every
DP and every usable rule is weakly decreasing. By [3, Thm. 28], one can there-
fore replace the underlying TRS R by U(P) in the termination proof. Hence,
then the correctness follows from the correctness of Variant (b). ⊓⊔

C Proof of Thm. 10

Proof. Throughout this proof we consider contexts C with multiple holes, but
where all holes are at ν-dependent positions and we write C[w] to denote that the
holes are filled with (the terms in) the vector w. We first show the following state-
ment (⋆) which allows us to prove part (a) of the theorem. Here, P ∪ Ucontr

R (P)
must be ν-MM. Moreover, we require P ⊆ ≻ ∪ % and GUR(P) ⊆ %.

If t →R s, Ct[wt] = t, and GUR(Ct) ⊆ GUR(P) then there are Cs and
ws such that Cs[ws] = s, GUR(Cs) ⊆ GUR(P), and (wt, t) > (ws, s).

(⋆)

18

Here, > is defined as the lexicographic combination of the multiset extension of
(→R ∪⊲)+ and of ≻. (As usual, ⊲ denotes the proper subterm relation.) So the
transitive closure of the multiset extension of →R ∪ ⊲ is used to compare the
vectors wt and ws (that are interpreted as multisets) and ≻ is used to compare
the terms t and s. We define (wt, t) > (ws, s) iff (wt, t) > (ws, s) or if wt and
ws are the same multiset and t % s.

Before proving (⋆), we give some intuition. Our goal is to refute the assump-
tion that there is an infinite minimal chain s1σ →P t1σ →∗

R s2σ →P t2σ →∗
R

s3σ . . . where a strictly decreasing pair of P is used infinitely often. We will show
that every such chain results in an infinite decrease w.r.t. >. To this end, we
decompose the terms t that occur in the reduction into the components Ct and
wt. For instance, consider the term t = t1σ. The outermost part of t is captured
by the context Ct where Ct is like t1σ, but each subterm at a variable position
of t1 is replaced by a hole if the position is ν-dependent. Thus, the context Ct

contains those parts of t where we can ensure that the corresponding usable rules
are oriented. Reductions at positions within Ct are therefore decreasing w.r.t. %.
And due to ν-MM the number of terms in wt (i.e., the number of holes in Ct)
is not increased, thus there also will be a decrease w.r.t. >.

The terms in wt which fill the holes in Ct originate from the substitution.
Hence, whenever a step is performed at a position pointing into a hole, then one
can perform that step within wt. Thus, one obtains a decrease w.r.t. > as wt is
getting smaller w.r.t. the multiset extension of →R.

We start with proving (⋆) and afterwards show how to prove the theorem
with the help of (⋆). So, let t →R s at position p. There are three possibilities
for the position p.

Case 1: p is a position of Ct that is ν-independent
Then we have ν(Ct, p) = ν(t, p) = {⇑,⇓}. We choose Cs = Ct[s|p]p and ws = wt.
Hence, t ≈ t[s|p]p = s by ν-compatibility of the reduction pair. Consequently,
(wt, t) > (ws, s). And since holes of Ct only occur at ν-dependent positions
we conclude Cs[ws] = Ct[s|p]p[ws] = Ct[wt][s|p]p = t[s|p]p = s. Finally, since
GUR(Ct) does not depend on Ct|p as p is ν-independent, we obtain GUR(Ct) =
GUR(Cs) ⊆ GUR(P).

Case 2: p is a position at or below a hole in Ct

In this case, the reduction step is performed in wt, i.e., if wt = w1, . . . , wm

then for some i we have wi →R vi and s = Ct[w1, . . . , vi, . . . , wm]. We de-
fine Cs = Ct and ws = w1, . . . , vi, . . . , wm Then obviously, s = Cs[ws] and
GUR(Cs) = GUR(Ct) ⊆ GUR(P). Additionally, (wt, t) > (ws, s) since there is a
strict decrease in the first component.

Case 3: p is at a ν-dependent position of Ct which is not a hole
We only consider the case that p is at a monotonically decreasing position of Ct

and t, i.e., ν(Ct, p) = ν(t, p) = {⇓}. The other cases can be proved in a similar
way. Let wt = w1, . . . , wm with Ct[wt] = t, t|p = ℓσ → rσ, s = t[rσ]p, and
C′

t = Ct|p where w.l.o.g. the first k holes are present in C′
t, i.e., t|p = C′

t[w
′

t]
for w

′

t = w1, . . . , wk. By the construction of GUR we know that {r → ℓ} ∪

19

GU−1
R (C′

t) ⊆ GUR(Ct) ⊆ GUR(P) ⊆ %. Hence, we can directly conclude

t = t[ℓσ]p % t[rσ]p = s (14)

by ν-compatibility of %.
We now have to choose Cs and ws. To this end we will use Ct and the terms

wk+1, . . . , wm. However, we change the context Ct at position p and we also
change the first terms of the vector wt. So we only look at what happens below
the position p of the redex. From C′

t[w
′

t] = ℓσ we conclude that C′
t and ℓ have

the same symbols on all common positions, i.e., positions which are neither a
hole in C′

t nor a variable in ℓ. This allows us to enlarge C′
t to C′′

t such that all
positions of ℓ are also positions of C′′

t .
To be more precise, to obtain C′′

t from C′
t, we have to change C′

t as follows.
Whenever C′

t|q is the i-th hole � but q is a non-variable position of ℓ then
C′′

t |q = Cq. Here, Cq is like ℓ|q, but all variables at ν-dependent positions are
replaced by new holes � and all other variables are instantiated by σ. The latter
is needed to ensure that the new holes occur only at ν-dependent positions. Let
w

′′

t result from w
′

t by filling every new hole � in Cq according to σ (i.e., if the
new hole was obtained by replacing a variable x in ℓ|q, then in w

′′

t we fill the
hole with xσ). Then we have C′′

t [w′′

t]|q = ℓ|qσ = C′
t[w

′

t]|q = wi. This also shows
that the term wi is replaced by zero or more proper subterms wi1, . . . , wid with
wi = Cq[wi1, . . . , wid] when going from w

′

t to w
′′

t . Hence, w
′

t ⊲∗
mul w

′′

t where the
vectors w

′

t and w
′′

t are again compared as multisets and ⊲mul is the multiset
extension of ⊲.

To summarize the construction, we obtain C′′
t and w

′′

t such that:

• C′′
t [w′′

t] = C′
t[w

′

t] = ℓσ (15)

• w
′

t ⊲∗
mul w

′′

t (16)

• every position of ℓ is a position of C′′
t . (17)

Thus, we only have to analyze the reduction step C′′
t [w′′

t] = ℓσ → rσ = s|p
where all positions of ℓ also occur in C′′

t . We now have to define w
′

s and C′
s

such that C′
s[w

′

s] = rσ. The idea is to mimic the rewrite step as follows. The
context C′

s is essentially like r but a variable x at a ν-independent position is
fully instantiated by σ. And if x occurs at a ν-dependent positions we know by
ν-MM that it also occurs on a ν-dependent position in ℓ. Thus, the subterm xσ

already occurs in ℓσ = C′′
t [w′′

t], cf. (15). However, xσ can consist of parts from
both C′′

t and the vector w
′′

t since a variable position in ℓ is not necessarily a hole
in C′′

t . Those parts that are in the context C′′
t will be copied to the context C′

s.
Hence, these parts will contribute to the usable rules of C′

s, but due to ν-MM
the corresponding usable rules were already usable rules of C′′

t . The parts of xσ

that are in w
′′

t will be copied to w
′

s. Moreover, ν-MM ensures that subterms
from w

′′

t do not have to be copied repeatedly, i.e., w
′

s does not contain more
terms than w

′′

t .
To be more formal, C′

s is like r where we replace the variables as follows. Let
us choose a first variable position q of r where r|q = x. If q is ν-independent in

20

r then C′
s|q = σ(x). Otherwise, q is ν-dependent. Then we use that ℓ → r is ν-

MM and thus, there is an injective mapping α which maps q to a less monotonic
position α(q) in ℓ (and C′′

t by (17)) such that ℓ|α(q) = x. We define C′
s|q = C′′

t |α(q)

and extend w
′

s by those terms of w
′′

t which fill the holes in C′′
t |α(q). Then we

obtain C′
s[w

′

s]|q = xσ = rσ|q .
Repeating this process for all variable positions of r results in the final context

C′
s and the final vector w

′

s. Note that every term of w
′′

t is used at most once to
construct w

′

s since α is injective. Hence, we obtain

w
′′

t ⊇ w
′

s. (18)

Moreover,

C′
s[w

′

s] = rσ (19)

as for all variable positions q of r we have C′
s[w

′

s]|q = rσ|q .
It remains to define Cs = Ct[C

′
s]p and ws = w

′

s, wk+1, . . . , wm. Then clearly

s = Ct[wt][rσ]p
= Ct[rσ]p[wk+1, . . . , wm]
= Ct[C

′
s[w

′

s]]p[wk+1, . . . , wm] by (19)
= Ct[C

′
s]p[w

′

s, wk+1, . . . , wm]
= Cs[ws].

From w
′

t ⊲∗
mul w

′′

t ⊇ w
′

s (by (16) and (18)), we obtain w
′

t ⊲∗
mul w

′

s and thus
wt ⊲∗

mul ws. Hence, we have (wt, t) > (ws, s) by additionally using (14).
To finish the proof of (⋆) we need to consider the usable rules. Note that

GUR(C′
s) only contains GUR(r) and (possibly reversed) sets GUR(C′

s|q) for all
variable positions q of r where the term C′

s|q is not a hole. From the con-
struction of C′

s, the latter implies that the variable must also occur at a ν-
dependent position in ℓ. Hence, by ν-MM we conclude ν(ℓ, α(q)) ⊆ ν(r, q)
where α(q) is a position of ℓ, C′′

t , and even C′
t: since ℓ|α(q) is a variable we

know that the position α(q) is not in the extended part that was added to
build C′′

t from C′
t. Moreover, C′

s|q = C′′
t |α(q) = C′

t|α(q) and thus, we obtain

GUR(C′
s|q)

ν(r,q) ⊆ GUR(C′
s|q)

ν(ℓ,α(q)) = GUR(C′
t|α(q))

ν(C′
t,α(q)) ⊆ GUR(C′

t). As
we also have GUR(r) ⊆ GUR(C′

t), this directly yields GUR(C′
s) ⊆ GUR(C′

t).
Hence, GUR(Cs) = GUR(Ct[x]p) ∪ GU−1

R (C′
s) ⊆ GUR(Ct[x]p) ∪ GU−1

R (C′
t) =

GUR(Ct) ⊆ GUR(P) where x is an arbitrary variable.

Now that we have finished the proof of (⋆), we prove the theorem with the
help of (⋆). Note that one can also replace →R by →P in (⋆) where steps with
→P are only allowed at the root position. Then the modified version of (⋆) is
still valid where additionally every reduction with a strictly decreasing pair of
P results in a strict decrease (i.e., in (wt, t) > (ws, s)).

Now assume that there is an infinite minimal P-chain s1σ →P t1σ →∗
R

s2σ →P t2σ →∗
R . . . where a strictly decreasing pair of P is used infinitely

often. We define C1 to be like t1 where all variables at ν-independent positions
are instantiated by σ, and for each variable position p of t1 at a ν-dependent

21

position we define C1|p = �. Moreover, the term t1σ|p is added to w1 as the
corresponding term which fills the hole �. Thus, C1[w1] = t1σ and GUR(C1) =
GUR(t1) ⊆ GUR(P). Hence, we may apply (⋆) infinitely often and obtain Ci and
wi such that tiσ = Ci[wi] for every i > 1 and

(w1, t1σ) > (w2, t2σ) > (w3, t3σ) > . . .

with an infinite number of strict decreases. This directly leads to a contradiction
to the well-foundedness of ≻ or to termination of the terms in w1 w.r.t. R (which
however follows from the minimality of the chain). Hence, then we can conclude
that pairs of P ∩≻ can only occur finitely often, and thus, can be removed. This
finishes the proof of part (a).

We continue to prove part (b) of the theorem. The structure of the proof is
similar to the one of part (a), however there are some differences. The require-
ments in part (b) allow usable rules and DPs where a variable only occurs at
a ν-dependent position of a right-hand sides. Thus, there is not necessarily a
decrease between wt and ws since ws can contain more elements as there will
be an additional hole in Cs for such a variable. Therefore, we only use % instead
of the lexicographic combination containing %.

However, now there is need for another way to deal with reduction steps
below holes. The idea is that due to ν-RL, for each term wi ∈ wt there is
a unique final term vi on a ν-dependent position to which wi is reduced in the
chain. Then instead of comparing t = Ct[wt] with Cs[ws] = s we compare Ct[vt]
with Cs[vs] where vt and vs are the vectors containing the resulting terms vi.

For readability we again show the full proof in all detail, although several
steps are similar to the proof of part (a). One can observe the following major
differences.

• The statement (⋆) is adapted to (⋆⋆). This new statement contains the ad-
ditional vectors vt and vs, but does not need > anymore.

• There is a difference when dealing with reductions below holes (Case 2).
• When building C′

s from r in Case 3 there is an additional case for variables
which only occur on ν-dependent positions of the right-hand side of a rule.

• The decrease w.r.t. % in Case 3 is not trivial to achieve. This new problem
has been solved by proving (⋆⋆) inductively.

• Assembling the proof of the theorem from (⋆⋆) is more challenging.

We start to prove part (b) of the theorem by showing the following statement
(⋆⋆) for all terminating terms t which allows us later to prove part (b) of the
theorem. Here, P ∪ Ucontr

R (P) must be weakly ν-MM and ν-RL. Moreover, we
require P ⊆ ≻ ∪ % and GUR(P) ⊆ %.

If t →∗
R s, Ct[wt] = t, and GUR(Ct) ⊆ GUR(P) then there are Cs

and ws such that Cs[ws] = s and GUR(Cs) ⊆ GUR(P). Moreover, for
every vs with ws ։∗

R vs there is a vector vt such that wt ։∗
R vt and

Ct[vt] % Cs[vs].

(⋆⋆)

22

Here, ։∗
R denotes the extension of →∗

R to vectors, i.e., w = (w1, . . . , wm) ։∗
R

(v1, . . . , vm) = v iff wi →
∗
R vi for every i.

To prove (⋆⋆) we perform induction using a lexicographic induction relation.
It first compares t w.r.t. →R ∪⊲ and then considers the length of the reduction
t →∗

R s. This induction relation is well founded for all terminating terms t.
If t = s then there is nothing to show since one can just choose Cs = Ct,

ws = wt, and for every vs with ws ։∗
R vs we choose vt = vs.

If t →R u →+
R s then we know from the induction hypothesis that (⋆⋆)

already holds for the reduction t →R u since this reduction is shorter than the
reduction t →∗

R s. This yields Cu and wu such that Cu[wu] = u and GUR(Cu) ⊆
GUR(P). From the induction hypothesis, we also know that (⋆⋆) holds for the
reduction u →+

R s since t →R u yields a strict decrease w.r.t. the first component
of the induction relation. Hence, we obtain Cs and ws with Cs[ws] = s and
GUR(Cs) ⊆ GUR(P). Given vs such that ws ։∗

R vs we additionally obtain vu

with wu ։∗
R vu and Cu[vu] % Cs[vs]. Thus, from the first application of the

induction hypothesis we additionally extract vt which satisfies both wt ։∗
R vt

and Ct[vt] % Cu[vu]. Assembling the comparisons yields Ct[vt] % Cs[vs], which
finishes this case.

It remains to consider the main case where there is exactly one reduction
between t and s. So, let t →R s at position p. There are three possibilities for
the position p.

Case 1: p is a position of Ct that is ν-independent
Then we have ν(Ct, p) = {⇑,⇓}. We choose Cs = Ct[s|p]p and ws = wt. More-
over, for every vs with ws ։∗

R vs, we choose vt = vs and obtain wt = ws ։∗
R

vs = vt. Since all holes in Ct are at ν-dependent positions, the holes are at
positions which are neither above nor below p. Hence, by ν-compatibility of the
reduction pair we know that Ct[vt] ≈ Ct[vt][s|p]p = Ct[s|p]p[vt] = Cs[vt] =
Cs[vs]. Consequently, Ct[vt] % Cs[vs]. Moreover, Cs[ws] = Ct[s|p]p[ws] =
Ct[wt][s|p]p = t[s|p]p = s. Finally, since GUR(Ct) does not depend on Ct|p
as p is ν-independent, we obtain GUR(Ct) = GUR(Cs) ⊆ GUR(P).

Case 2: p is a position at or below a hole in Ct

In this case we only have to change wt, i.e., we choose Cs = Ct. Then obviously,
GUR(Cs) = GUR(Ct) ⊆ GUR(P). Let wt = w1, . . . , wi, . . . , wm. Hence, the re-
duction is performed in some wi, i.e., wi →R w′

i and for ws = w1, . . . , w
′
i, . . . , wm

we obtain s = Ct[ws] = Cs[ws]. Moreover, for every vs with ws ։∗
R vs, we

choose vt = vs. Then ws ։∗
R vs implies wt ։∗

R ws ։∗
R vs = vt. In addition,

we obtain Ct[vt] = Cs[vs] and thus, Ct[vt] % Cs[vs].

Case 3: p is at a ν-dependent position of Ct which is not a hole
We only consider the case that p is at a monotonically decreasing position of
Ct and t, i.e., ν(Ct, p) = ν(t, p) = {⇓}. The other cases can be proved in a
similar way. Let wt = w1, . . . , wm with Ct[wt] = t, t|p = ℓσ → rσ, s = t[rσ]p,
and C′

t = Ct|p where w.l.o.g. the first k holes of Ct are present in C′
t, i.e.,

t|p = C′
t[w

′

t] for w
′

t = w1, . . . , wk. By the construction of GUR we know that
{r → ℓ} ∪ GU−1

R (C′
t) ⊆ GUR(Ct) ⊆ GUR(P) ⊆ %.

23

We now have to choose Cs and ws. To this end we will use Ct and the terms
wk+1, . . . , wm. However, we change the context Ct at position p and we also
change the first terms of the vector wt. So we only look at what happens below
the position p of the redex. From C′

t[w
′

t] = ℓσ we conclude that C′
t and ℓ have

the same symbols on all common positions, i.e., positions which are neither a
hole in C′

t nor a variable in ℓ. This allows us to enlarge C′
t to C′′

t such that all
positions of ℓ are also positions of C′′

t .
To be more precise, to obtain C′′

t from C′
t, we have to change C′

t as follows.
Whenever C′

t|q is the i-th hole � but q is a non-variable position of ℓ then
C′′

t |q = Cq. Here, Cq is like ℓ′|q, but all variables at ν-dependent positions are
replaced by new holes � and all other variables are instantiated by σ. The latter
is needed to ensure that the new holes occur only at ν-dependent positions. Let
w

′′

t result from w
′

t by filling every new hole � in Cq according to σ (i.e., if the
new hole was obtained by replacing a variable x in ℓ|q, then in w

′′

t we fill the
hole with xσ). Then we have C′′

t [w′′

t]|q = ℓ|qσ = C′
t[w

′

t]|q = wi. This also shows
that the term wi is replaced by zero or more proper subterms wi1, . . . , wid with
wi = Cq[wi1, . . . , wid] when going from w

′

t to w
′′

t .
Note that whenever w

′′

t ։∗
R v

′′

t for some v
′′

t , then we can define a suit-
able vector v

′

t such that w
′

t ։∗
R v

′

t. We have w
′′

t = (. . . , wi1, . . . , wid, . . .) ։∗
R

(. . . , vi1, . . . , vid, . . .) = v
′′

t (i.e., wij →∗
R vij for all 1 6 j 6 d). Thus, we define

vi = Cq〈vi1, . . . , vid〉 and get w
′

t = (. . . , wi, . . .) = (. . . , Cq〈wi1, . . . , wid〉, . . .) ։∗
R

(. . . , Cq〈vi1, . . . , vid〉, . . .) = (. . . , vi, . . .) = v
′

t. Moreover, C′
t[v

′

t]|q = �[vi] = vi =
Cq[vi1, . . . , vid] = C′′

t [v′′

t]|q.
To summarize the construction, we obtain C′′

t and w
′′

t such that:

• C′′
t [w′′

t] = C′
t[w

′

t] = ℓσ (20)

• for every v
′′

t with w
′′

t ։∗
R v

′′

t there is a corresponding v
′

t

such that w
′

t ։∗
R v

′

t and C′
t[v

′

t] = C′′
t [v′′

t]
(21)

• every position of ℓ is a position of C′′
t . (22)

Thus, we only have to analyze the reduction step C′′
t [w′′

t] = ℓσ → rσ = s|p
where all positions of ℓ also occur in C′′

t . We now have to define w
′

s and C′
s

such that C′
s[w

′

s] = rσ. The idea is to mimic the rewrite step as follows. The
context C′

s is essentially like r but variables at ν-independent positions are fully
instantiated by σ. For the remaining variables we distinguish two cases.

Whenever a variable x also occurs on a dependent position in ℓ, then the
subterm xσ already occurs in ℓσ = C′′

t [w′′

t], cf. (20). However, xσ can consist of
parts from both C′′

t and from the vector w
′′

t since a variable position in ℓ is not
necessarily a hole in C′′

t . Those parts that are in the context C′′
t will be copied

to the context C′
s. Hence, this part will contribute to the usable rules of C′

s, but
due to weak ν-MM these usable rules were already usable rules of C′′

t . The parts
of xσ that are in w

′′

t will be copied to w
′

s. Finally, if a variable x does not occur
on a dependent position on the left-hand side, then we just use a new hole for
the dependent position of x in r. This position is unique due to ν-RL.

To be more formal, C′
s is like r where we replace the variables as follows. Let

us choose a first variable position q of r where r|q = x. If q is ν-independent

24

in r then C′
s|q = σ(x). Otherwise, q is ν-dependent. If x occurs on dependent

positions in both sides ℓ and r, then we use that ℓ → r is weakly ν-MM and thus,
there is an injective mapping α which maps q to a less monotonic position α(q)
in ℓ (and C′′

t by (22)) such that ℓ|α(q) = x. We define C′
s|q = C′′

t |α(q) and extend
s

′, w
′

s by those terms of w
′′

t which fill the holes in C′′
t |α(q). Then we obtain

C′
s[w

′

s]|q = xσ = rσ|q . In the remaining case, x only occurs at a ν-dependent
position in r. Here, we define C′

s|q to be a new hole and extend the vector w
′

s

by xσ. Then again we have C′
s[w

′

s]|q = xσ = rσ|q .

Repeating this process for all variable positions of r results in the final context
C′

s and the final vector w
′

s. Moreover,

C′
s[w

′

s] = rσ (23)

as for all variable positions q of r we have C′
s[w

′

s]|q = rσ|q .

Now let w
′

s ։∗
R v

′

s. We have to construct a vector v
′′

t such that w
′′

t ։∗
R

v
′′

t and C′′
t [v′′

t] - C′
s[v

′

s]. (By (21), this means that then one can also define
a suitable vector v

′

t such that w
′

t ։∗
R v

′

t and C′
t[v

′

t] = C′′
t [v′′

t] - C′
s[v

′

s].)
Recall the construction of w

′

s from w
′′

t . Essentially, for every variable x at a
ν-dependent position of ℓ we have subcontexts C1, . . . , Ce at positions q1, . . . , qe

of C′′
t , subvectors t1, . . . , te of t

′′, and subvectors w1, . . . , we of w
′′

t such that
ℓσ = C′′

t [w′′

t]|qi
= Ci[wi] = xσ for all i ∈ {1, . . . , e}. In order to define v

′′

t ,
it suffices to define the subvectors v1, . . . , ve of v

′′

t where C′′
t [v′′

t]|qi
= Ci[vi].

If x does not occur at a ν-dependent position of r (and C′
s) then we define vi

to be wi for all i and we define xσ′ = xσ. Obviously, wi ։∗
R vi. In the other

case x occurs at exactly one ν-dependent position q of r and C′
s by ν-RL. Thus,

there is a subcontext Cq of C′
s, and subvectors sq of s

′ and wq of w
′

s such that
C′

s[w
′

s]|q = Cq[wq] = xσ. There is a j ∈ {1, . . . , e} with α(q) = qj and thus,
Cq = C′′

t |α(q) = C′′
t |qj

= Cj , sq = tj , and wq = wj . We define vj = vq and
conclude wj = wq ։∗

R vq = vj . Moreover, we define xσ′ = C′′
t [v′′

t]|qj
= Cj [vj].

Note that xσ′ is indeed well defined, since in both cases, x occurs at most once
at a ν-dependent position of r and C′

s. Essentially, σ′ replaces w
′

s by v
′

s below
the hole that corresponds to the variable x in r. But σ′ would also perform this
replacement for occurrences of x at ν-independent positions of r. For this reason,
rσ′ may differ from C′

s[v
′

s], but only at ν-independent positions. Hence,

ℓσ′ - rσ′ ≈ C′
s[v

′

s].

Up to now, we have already defined vj , but not v1, . . . , vj−1, vj+1, . . . , ve. How-
ever, since ℓ is not necessarily linear, it is not yet clear how to define the rest
of v

′′

t (and indeed, we will not achieve C′′
t [v′′

t] ≈ ℓσ′). Instead, we consider
the reduction xσ = Cq[wq] →∗

R Cq[vq] = xσ′. Thus, for every i 6= j we know
xσ = Ci[wi] →

∗
R xσ′. We only consider the case where qi is a decreasing position

of C′′
t , i.e., ν(C′′

t , qi) = {⇓}, since the remaining cases are similar. Since qi is a
variable position of C′′

t we know that Ci is a hole or it was already a subcontext
of C′

t. Thus, we conclude GUR(Ci) ⊆ GUR(C′
t)

−1 ⊆ GUR(P) and we can apply

25

the induction hypothesis17 to obtain C′
i and w

′

i such that C′
i[w

′

i] = xσ′. More-
over, for v

′

i = w
′

i we obviously satisfy w
′

i ։∗
R v

′

i and thus, there exists a vi with
wi ։∗

R vi and Ci[vi] % C′
i[v

′

i]. Hence, C′′
t [v′′

t]|qi
= Ci[vi] % C′

i[v
′

i] = xσ′. Here,
the latter equality is achieved by our choice v

′

i = w
′

i. Since qi is a decreasing
position of C′′

t we conclude

C′′
t [v′′

t] - ℓσ′ - rσ′ ≈ C′
s[v

′

s]. (24)

It remains to define Cs = Ct[C
′
s]p and ws = w

′

s, wk+1, . . . , wm. Then clearly

s = Ct[wt][rσ]p
= Ct[rσ]p[wk+1, . . . , wm]
= Ct[C

′
s[w

′

s]]p[wk+1, . . . , wm] by (23)
= Ct[C

′
s]p[w

′

s, wk+1, . . . , wm]
= Cs[ws].

For every vs = v1, . . . , vm with ws ։∗
R vs we define vt = v

′

t, vk+1, . . . , vm where
v

′

t is determined from the previous results for the vector v
′

s = v1, . . . , vk which
satisfies w

′

s ։∗
R v

′

s since ws ։∗
R vs. Using (21), we know that w

′

t ։∗
R v

′

t and
thus, wt ։∗

R vt. Moreover, we get a decrease by ν-compatibility of %.

Ct[vt]
= Ct[C

′
t[v

′

t]]p[vk+1, . . . , vm]
= Ct[C

′′
t [v′′

t]]p[vk+1, . . . , vm] by (20)
% Ct[C

′
s[v

′

s]]p[vk+1, . . . , vm] by (24) and ν(Ct, p) = {⇓}
= Ct[C

′
s]p[v

′

s, vk+1, . . . , vm]
= Cs[vs]

It remains to consider the usable rules. Note that GUR(C′
s) only contains

GUR(r) and (possibly reversed) sets GUR(C′
s|q) for all variable positions q of

r where the term C′
s|q is not a hole. From the construction of C′

s, the latter
implies that the variable must also occur at a ν-dependent position in ℓ. Hence,
by weak ν-MM we conclude ν(ℓ, α(q)) ⊆ ν(r, q) where α(q) is a position of ℓ,
C′′

t , and even C′
t: since ℓ|α(q) is a variable we know that the position α(q) is not

in the extended part that was added to build C′′
t from C′

t. Moreover, C′
s|q =

C′′
t |α(q) = C′

t|α(q) and thus, we obtain GUR(C′
s|q)

ν(r,q) ⊆ GUR(C′
s|q)

ν(ℓ,α(q)) =

GUR(C′
t|α(q))

ν(C′
t,α(q)) ⊆ GUR(C′

t). As we also have GUR(r) ⊆ GUR(C′
t), this

yields GUR(C′
s) ⊆ GUR(C′

t). Hence, GUR(Cs) = GUR(Ct[x]p) ∪ GU−1
R (C′

s) ⊆
GUR(Ct[x]p)∪GU

−1
R (C′

t) = GUR(Ct) ⊆ GUR(P) where x is an arbitrary variable.

Now that we have finished the proof of (⋆⋆), we prove the theorem with the
help of (⋆⋆). Note that one can also replace →∗

R by →P in (⋆⋆) where steps with
→P are only allowed at the root position. Then the modified version of (⋆⋆) is

17 The reduction xσ →∗
R xσ′ is possibly longer than the reduction t →∗

R s. Therefore,
one needs the lexicographic component in the induction relation. However, t ⊲ xσ is
satisfied, since i 6= j implies ℓ 6= x, because then e = 1 and there is no i 6= j with
i ∈ {1, . . . , e}. Then we have t D ℓσ ⊲ xσ.

26

still valid where additionally every reduction with a strictly decreasing pair of
P results in a strict decrease (i.e., in Ct[vt] ≻ Cs[vs]).

Now assume that there is an infinite minimal P-chain s1σ →P t1σ →∗
R

s2σ →P t2σ →∗
R . . . where a strictly decreasing pair of P is used infinitely

often. We define C1 to be like t1 where all variables at ν-independent positions
are instantiated by σ, and for each variable position p of t1 at a ν-dependent
position we define C1|p = �. Moreover, the element t1σ|p is added to w1 as the
corresponding term which fills the hole �. Thus, C1[w1] = t1σ and GUR(C1) =
GUR(t1) ⊆ GUR(P). Hence, we may apply (⋆⋆) infinitely often and obtain Ci

and wi such that tiσ = Ci[wi] for every i > 1.
For every n > 1, let v

n
n = wn which satisfies wn ։∗

R v
n
n . Then by (⋆⋆) there

exist v
n
1
, . . . , vn

n−1
with wi ։∗

R v
n
i for all i such that

C1[v
n
1
] % C2[v

n
2
] % · · · % Cn[vn

n] (25)

where every step with a strictly decreasing pair results in a strict decrease. The
only problem is that the vectors v

n
1
, . . . , vn

n depend on n and it is not guaranteed

that for every n′ we will obtain the same vectors v
n′

i with v
n′

i = v
n
i . So to obtain

an infinite decrease, one has to determine all vectors vi independent of a fixed n

such that (25) can be turned into an infinite sequence. If this is achieved, then
we directly have a contradiction to the well-foundedness of ≻. Hence, then we
can conclude that pairs of P ∩≻ can only occur finitely often, and thus, can be
removed.

Since all terms in the vector wi are terminating (due to the minimality of the
chain), for every i there exist only finitely many different vectors v

n
i with n > i.

Hence, in the sequence [vn
1

| n ∈ N], there is a vector v1 occurring infinitely
often. Let N1 be the (infinite) set of all natural numbers n ∈ N with v

n
1

= v1.
Hence, in the sequence [vn

2
| n ∈ N1], there is a vector v2 occurring infinitely

often. Let N2 be the (infinite) set of all natural numbers n ∈ N1 with v
n
2

= v2.
Hence, in the sequence [vn

3
| n ∈ N2], there is a vector v3 occurring infinitely

often, etc. In this way, we construct the desired infinite sequence

C1[v1] % C2[v2] % C3[v3] % . . . ⊓⊔

27

28

Aachener Informatik-Berichte

This list contains all technical reports published during the past five
years. A complete list of reports dating back to 1987 is available from
http://aib.informatik.rwth-aachen.de/. To obtain copies consult the
above URL or send your request to: Informatik-Bibliothek, RWTH
Aachen, Ahornstr. 55, 52056 Aachen, Email: biblio@informatik.rwth-
aachen.de

2003-01 ∗ Jahresbericht 2002
2003-02 Jürgen Giesl, René Thiemann: Size-Change Termination for Term

Rewriting
2003-03 Jürgen Giesl, Deepak Kapur: Deciding Inductive Validity of Equations
2003-04 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Improving Dependency Pairs
2003-05 Christof Löding, Philipp Rohde: Solving the Sabotage Game is PSPACE-

hard
2003-06 Franz Josef Och: Statistical Machine Translation: From Single-Word

Models to Alignment Templates
2003-07 Horst Lichter, Thomas von der Maßen, Alexander Nyßen, Thomas

Weiler: Vergleich von Ansätzen zur Feature Modellierung bei der Soft-
wareproduktlinienentwicklung

2003-08 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:
Mechanizing Dependency Pairs

2004-01 ∗ Fachgruppe Informatik: Jahresbericht 2003
2004-02 Benedikt Bollig, Martin Leucker: Message-Passing Automata are expres-

sively equivalent to EMSO logic
2004-03 Delia Kesner, Femke van Raamsdonk, Joe Wells (eds.): HOR 2004 – 2nd

International Workshop on Higher-Order Rewriting
2004-04 Slim Abdennadher, Christophe Ringeissen (eds.): RULE 04 – Fifth In-

ternational Workshop on Rule-Based Programming
2004-05 Herbert Kuchen (ed.): WFLP 04 – 13th International Workshop on Func-

tional and (Constraint) Logic Programming
2004-06 Sergio Antoy, Yoshihito Toyama (eds.): WRS 04 – 4th International

Workshop on Reduction Strategies in Rewriting and Programming
2004-07 Michael Codish, Aart Middeldorp (eds.): WST 04 – 7th International

Workshop on Termination
2004-08 Klaus Indermark, Thomas Noll: Algebraic Correctness Proofs for Com-

piling Recursive Function Definitions with Strictness Information
2004-09 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Param-

eterized Power Domination Complexity
2004-10 Zinaida Benenson, Felix C. Gärtner, Dogan Kesdogan: Secure Multi-

Party Computation with Security Modules

29

http://aib.informatik.rwth-aachen.de/

2005-01 ∗ Fachgruppe Informatik: Jahresbericht 2004
2005-02 Maximillian Dornseif, Felix C. Gärtner, Thorsten Holz, Martin Mink: An

Offensive Approach to Teaching Information Security: “Aachen Summer
School Applied IT Security”

2005-03 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-
proving Termination of Higher-Order Functions

2005-04 Daniel Mölle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for
the Steiner Tree Problem

2005-05 Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing
Honeypots

2005-06 Simon Fischer, Berthold Vöcking: Adaptive Routing with Stale Informa-
tion

2005-07 Felix C. Freiling, Thorsten Holz, Georg Wicherski: Botnet Tracking: Ex-
ploring a Root-Cause Methodology to Prevent Distributed Denial-of-
Service Attacks

2005-08 Joachim Kneis, Peter Rossmanith: A New Satisfiability Algorithm With
Applications To Max-Cut

2005-09 Klaus Kursawe, Felix C. Freiling: Byzantine Fault Tolerance on General
Hybrid Adversary Structures

2005-10 Benedikt Bollig: Automata and Logics for Message Sequence Charts
2005-11 Simon Fischer, Berthold Vöcking: A Counterexample to the Fully Mixed

Nash Equilibrium Conjecture
2005-12 Neeraj Mittal, Felix Freiling, S. Venkatesan, Lucia Draque Penso: Ef-

ficient Reductions for Wait-Free Termination Detection in Faulty Dis-
tributed Systems

2005-13 Carole Delporte-Gallet, Hugues Fauconnier, Felix C. Freiling: Revisiting
Failure Detection and Consensus in Omission Failure Environments

2005-14 Felix C. Freiling, Sukumar Ghosh: Code Stabilization
2005-15 Uwe Naumann: The Complexity of Derivative Computation
2005-16 Uwe Naumann: Syntax-Directed Derivative Code (Part I: Tangent-

Linear Code)
2005-17 Uwe Naumann: Syntax-directed Derivative Code (Part II: Intraprocedu-

ral Adjoint Code)
2005-18 Thomas von der Maßen, Klaus Müller, John MacGregor, Eva Geis-

berger, Jörg Dörr, Frank Houdek, Harbhajan Singh, Holger Wußmann,
Hans-Veit Bacher, Barbara Paech: Einsatz von Features im Software-
Entwicklungsprozess - Abschlussbericht des GI-Arbeitskreises “Fea-
tures”

2005-19 Uwe Naumann, Andre Vehreschild: Tangent-Linear Code by Augmented
LL-Parsers

30

2005-20 Felix C. Freiling, Martin Mink: Bericht über den Workshop zur Ausbil-
dung im Bereich IT-Sicherheit Hochschulausbildung, berufliche Weiter-
bildung, Zertifizierung von Ausbildungsangeboten am 11. und 12. Au-
gust 2005 in Köln organisiert von RWTH Aachen in Kooperation mit
BITKOM, BSI, DLR und Gesellschaft fuer Informatik (GI) e.V.

2005-21 Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Revis-
ited

2005-22 Felix Freiling, Maurice Herlihy, Lucia Draque Penso: Optimal Random-
ized Fair Exchange with Secret Shared Coins

2005-23 Heiner Ackermann, Alantha Newman, Heiko Röglin, Berthold Vöcking:
Decision Making Based on Approximate and Smoothed Pareto Curves

2005-24 Alexander Becher, Zinaida Benenson, Maximillian Dornseif: Tampering
with Motes: Real-World Physical Attacks on Wireless Sensor Networks

2006-01 ∗ Fachgruppe Informatik: Jahresbericht 2005
2006-02 Michael Weber: Parallel Algorithms for Verification of Large Systems
2006-03 Michael Maier, Uwe Naumann: Intraprocedural Adjoint Code Generated

by the Differentiation-Enabled NAGWare Fortran Compiler
2006-04 Ebadollah Varnik, Uwe Naumann, Andrew Lyons: Toward Low Static

Memory Jacobian Accumulation
2006-05 Uwe Naumann, Jean Utke, Patrick Heimbach, Chris Hill, Derya Ozyurt,

Carl Wunsch, Mike Fagan, Nathan Tallent, Michelle Strout: Adjoint
Code by Source Transformation with OpenAD/F

2006-06 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Divide-
and-Color

2006-07 Thomas Colcombet, Christof Löding: Transforming structures by set in-
terpretations

2006-08 Uwe Naumann, Yuxiao Hu: Optimal Vertex Elimination in Single-
Expression-Use Graphs

2006-09 Tingting Han, Joost-Pieter Katoen: Counterexamples in Probabilistic
Model Checking

2006-10 Mesut Günes, Alexander Zimmermann, Martin Wenig, Jan Ritzerfeld,
Ulrich Meis: From Simulations to Testbeds - Architecture of the Hybrid
MCG-Mesh Testbed

2006-11 Bastian Schlich, Michael Rohrbach, Michael Weber, Stefan Kowalewski:
Model Checking Software for Microcontrollers

2006-12 Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker:
Replaying Play in and Play out: Synthesis of Design Models from Sce-
narios by Learning

2006-13 Wong Karianto, Christof Löding: Unranked Tree Automata with Sibling
Equalities and Disequalities

2006-14 Danilo Beuche, Andreas Birk, Heinrich Dreier, Andreas Fleischmann,
Heidi Galle, Gerald Heller, Dirk Janzen, Isabel John, Ramin Tavakoli
Kolagari, Thomas von der Maßen, Andreas Wolfram: Report of the GI
Work Group “Requirements Management Tools for Product Line Engi-
neering”

31

2006-15 Sebastian Ullrich, Jakob T. Valvoda, Torsten Kuhlen: Utilizing optical
sensors from mice for new input devices

2006-16 Rafael Ballagas, Jan Borchers: Selexels: a Conceptual Framework for
Pointing Devices with Low Expressiveness

2006-17 Eric Lee, Henning Kiel, Jan Borchers: Scrolling Through Time: Improv-
ing Interfaces for Searching and Navigating Continuous Audio Timelines

2007-01 ∗ Fachgruppe Informatik: Jahresbericht 2006
2007-02 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, and Harald Zankl: SAT Solving for Termination Anal-
ysis with Polynomial Interpretations

2007-03 Jürgen Giesl, René Thiemann, Stephan Swiderski, and Peter Schneider-
Kamp: Proving Termination by Bounded Increase

2007-04 Jan Buchholz, Eric Lee, Jonathan Klein, and Jan Borchers: coJIVE: A
System to Support Collaborative Jazz Improvisation

2007-05 Uwe Naumann: On Optimal DAG Reversal
2007-06 Joost-Pieter Katoen, Thomas Noll, and Stefan Rieger: Verifying Con-

current List-Manipulating Programs by LTL Model Checking
2007-07 Alexander Nyßen, Horst Lichter: MeDUSA - MethoD for UML2-based

Design of Embedded Software Applications
2007-08 Falk Salewski and Stefan Kowalewski: Achieving Highly Reliable Em-

bedded Software: An empirical evaluation of different approaches
2007-09 Tina Kraußer, Heiko Mantel, and Henning Sudbrock: A Probabilistic

Justification of the Combining Calculus under the Uniform Scheduler
Assumption

2007-10 Martin Neuhäußer, Joost-Pieter Katoen: Bisimulation and Logical
Preservation for Continuous-Time Markov Decision Processes

2007-11 Klaus Wehrle (editor): 6. Fachgespräch Sensornetzwerke
2007-12 Uwe Naumann: An L-Attributed Grammar for Adjoint Code
2007-13 Uwe Naumann, Michael Maier, Jan Riehme, and Bruce Christianson:

Second-Order Adjoints by Source Code Manipulation of Numerical Pro-
grams

2007-14 Jean Utke, Uwe Naumann, Mike Fagan, Nathan Tallent, Michelle Strout,
Patrick Heimbach, Chris Hill, and Carl Wunsch: OpenAD/F: A Modular,
Open-Source Tool for Automatic Differentiation of Fortran Codes

2007-15 Volker Stolz: Temporal assertions for sequential and concurrent programs
2007-16 Sadeq Ali Makram, Mesut Günec, Martin Wenig, Alexander Zimmer-

mann: Adaptive Channel Assignment to Support QoS and Load Balanc-
ing for Wireless Mesh Networks

2007-17 René Thiemann: The DP Framework for Proving Termination of Term
Rewriting

2007-20 Joost-Pieter Katoen, Daniel Klink, Martin Leucker, and Verena Wolf:
Three-Valued Abstraction for Probabilistic Systems

2007-21 Tingting Han, Joost-Pieter Katoen, and Alexandru Mereacre: Compo-
sitional Modeling and Minimization of Time-Inhomogeneous Markov
Chains

32

2007-22 Heiner Ackermann, Paul W. Goldberg, Vahab S. Mirrokni, Heiko Röglin,
and Berthold Vöcking: Uncoordinated Two-Sided Markets

2008-01 ∗ Fachgruppe Informatik: Jahresbericht 2007
2008-02 Henrik Bohnenkamp, Marielle Stoelinga: Quantitative Testing
2008-03 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, Harald Zankl: Maximal Termination

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

33

	Maximal Termination
	Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp, René Thiemann, and Harald Zankl

