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Abstract. Dependency pairs are one of the most powerful techniques to
analyze termination of term rewrite systems (TRSs) automatically. We
adapt the dependency pair framework to the probabilistic setting in order
to prove almost-sure innermost termination of probabilistic TRSs. To eval-
uate its power, we implemented the new framework in our tool AProVE.

1 Introduction

Techniques and tools to analyze innermost termination of term rewrite systems
(TRSs) automatically are successfully used for termination analysis of programs in
many languages (e.g., Java [10, 35, 38], Haskell [18], and Prolog [19]). While there
exist several classical orderings for proving termination of TRSs (e.g., based on
polynomial interpretations [30]), a direct application of these orderings is usually
too weak for TRSs that result from actual programs. However, these orderings
can be used successfully within the dependency pair (DP) framework [2, 16, 17].
This framework allows for modular termination proofs (e.g., which apply different
orderings in different sub-proofs) and is one of the most powerful techniques for
termination analysis of TRSs that is used in essentially all current termination
tools for TRSs, e.g., AProVE [20], MU-TERM [22], NaTT [40], TTT2 [29], etc.

On the other hand, probabilistic programs are used to describe randomized
algorithms and probability distributions, with applications in many areas. To
use TRSs also for such programs, probabilistic term rewrite systems (PTRSs)
were introduced in [8, 9]. In the probabilistic setting, there are several notions of
“termination”. A program is almost-surely terminating (AST) if the probability
for termination is 1. As remarked in [24]: “AST is the classical and most widely-
studied problem that extends termination of non-probabilistic programs, and
is considered as a core problem in the programming languages community”.
A strictly stronger notion is positive almost-sure termination (PAST), which
requires that the expected runtime is finite. While there exist many automatic
approaches to prove (P)AST of imperative programs on numbers (e.g., [1, 4, 11,
15, 21, 24–26, 32–34, 36]), there are only few automatic approaches for programs
with complex non-tail recursive structure [7, 12], and even less approaches which
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are also suitable for algorithms on recursive data structures [3, 6, 31, 39]. The
approach of [39] focuses on algorithms on lists and [31] mainly targets algorithms
on trees, but they cannot easily be adjusted to other (possibly user-defined) data
structures. The calculus of [6] considers imperative programs with stack, heap,
and pointers, but it is not yet automated. Moreover, the approaches of [3, 6, 31,
39] analyze expected runtime, while we focus on AST.

PTRSs can be used to model algorithms (possibly with complex recursive struc-
ture) operating on algebraic data types. While PTRSs were introduced in [8, 9],
the first (and up to now only) tool to analyze their termination automatically was
presented in [3], where orderings based on interpretations were adapted to prove
PAST. Moreover, [14] extended general concepts of abstract rewrite systems (e.g.,
confluence and uniqueness of normal forms) to the probabilistic setting.

As mentioned, already for non-probabilistic TRSs a direct application of order-
ings (as in [3]) is limited in power. To obtain a powerful approach, one should
combine such orderings in a modular way, as in the DP framework. In this paper,
we show for the first time that an adaption of dependency pairs to the probabilistic
setting is possible and present the first DP framework for probabilistic term
rewriting. Since the crucial idea of dependency pairs is the modularization of the
termination proof, we analyze AST instead of PAST, because it is well known
that AST is compositional, while PAST is not (see, e.g., [25]). We also present a
novel adaption of the technique from [3] for the direct application of polynomial
interpretations in order to prove AST (instead of PAST) of PTRSs.

We start by briefly recapitulating the DP framework for non-probabilistic
TRSs in Sect. 2. Then we recall the definition of PTRSs based on [3, 9, 14] in
Sect. 3 and introduce a novel way to prove AST using polynomial interpretations
automatically. In Sect. 4 we present our new probabilistic DP framework. The
implementation of our approach in the tool AProVE is evaluated in Sect. 5. We
refer to [28] for all proofs (which are much more involved than the original proofs
for the non-probabilistic DP framework from [2, 16, 17]).

2 The DP Framework

We assume familiarity with term rewriting [5] and regard TRSs over a finite
signature Σ and a set of variables V. A polynomial interpretation Pol is a
Σ-algebra with carrier set N which maps every function symbol f ∈ Σ to a
polynomial fPol ∈ N[V ]. For a term t ∈ T (Σ,V), Pol(t) denotes the interpretation
of t by the Σ-algebra Pol. An arithmetic inequation like Pol(t1) > Pol(t2) holds
if it is true for all instantiations of its variables by natural numbers.

Theorem 1 (Termination With Polynomial Interpretations [30]). Let R
be a TRS and let Pol : T (Σ,V) → N[V ] be a monotonic polynomial interpretation
(i.e., x > y implies fPol(. . . , x, . . .) > fPol(. . . , y, . . .) for all f ∈ Σ). If for every
ℓ → r ∈ R, we have Pol(ℓ) > Pol(r), then R is terminating.

The search for polynomial interpretations is usually automated by SMT
solving. Instead of polynomials over the naturals, Thm. 1 (and the other ter-
mination criteria in the paper) can also be extended to polynomials over the
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non-negative reals, by requiring that whenever a term is “strictly decreasing”,
then its interpretation decreases at least by a certain fixed amount δ > 0.

Example 2. Consider the TRS Rdiv = {(1), . . . , (4)} for division from [2].

minus(x,O)→x (1)

minus(s(x), s(y))→minus(x, y) (2)

div(O, s(y))→O (3)

div(s(x), s(y))→s (div(minus(x, y), s(y))) (4)

Termination of Rminus = {(1), (2)} can be proved by the polynomial interpretation
that maps minus(x, y) to x+ y + 1, s(x) to x+ 1, and O to 0. However, a direct
application of classical techniques like polynomial interpretations fails for Rdiv.
These techniques correspond to so-called (quasi-)simplification orderings [13]
which cannot handle rules like (4) where the right-hand side is embedded in the
left-hand side if y is instantiated with s(x). In contrast, the dependency pair
framework is able to prove termination of Rdiv automatically.

We now recapitulate the DP framework and its core processors, and refer to,
e.g., [2, 16, 17, 23] for more details. In this paper, we restrict ourselves to the
DP framework for innermost rewriting (denoted “

i→R”), because our adaption
to the probabilistic setting relies on this evaluation strategy (see Sect. 4.1).

Definition 3 (Dependency Pair). Let R be a (finite) TRS. We decompose
its signature Σ = ΣC ⊎ ΣD such that f ∈ ΣD if f = root(ℓ) for some rule
ℓ → r ∈ R. The symbols in ΣC and ΣD are called constructors and defined
symbols, respectively. For every f ∈ ΣD, we introduce a fresh tuple symbol f#

of the same arity. Let Σ# denote the set of all tuple symbols. To ease readability,
we often write F instead of f#. For any term t = f(t1, . . . , tn) ∈ T (Σ,V) with
f ∈ ΣD, let t# = f#(t1, . . . , tn). Moreover, for any r ∈ T (Σ,V), let SubD(r)
be the set of all subterms of r with defined root symbol. For a rule ℓ → r with
SubD(r) = {t1, . . . , tn}, one obtains the n dependency pairs (DPs) ℓ# → t#i with
1 ≤ i ≤ n. DP(R) denotes the set of all dependency pairs of R.

Example 4. For the TRS Rdiv from Ex. 2, we get the following dependency pairs.

M(s(x), s(y)) → M(x, y) (5) D(s(x), s(y)) → M(x, y) (6)

D(s(x), s(y)) → D(minus(x, y), s(y)) (7)

The DP framework uses DP problems (D,R) where D is a (finite) set of DPs

andR is a (finite) TRS. A (possibly infinite) sequence t#0 , t
#
1 , t

#
2 , . . . with t#i

i→D,R

◦ i→∗
R t#i+1 for all i is an (innermost) (D,R)-chain. Here, i→D,R is the restriction

of →D to rewrite steps where the used redex is in normal form w.r.t. R. A chain
represents subsequent “function calls” in evaluations. Between two function calls
(corresponding to steps with D) one can evaluate the arguments with R. For exam-
ple, D(s2(O), s(O)), D(s(O), s(O)) is a (DP(Rdiv),Rdiv)-chain, as D(s

2(O), s(O))
i→DP(Rdiv),Rdiv

D(minus(s(O),O), s(O)) i→∗
Rdiv

D(s(O), s(O)), where s2(O) is s(s(O)).
A DP problem (D,R) is called innermost terminating (iTerm) if there is no

infinite innermost (D,R)-chain. The main result on dependency pairs is the chain
criterion which states that a TRS R is iTerm iff (DP(R),R) is iTerm. The key
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idea of the DP framework is a divide-and-conquer approach which applies DP
processors to transform DP problems into simpler sub-problems. A DP processor
Proc has the form Proc(D,R) = {(D1,R1), . . . , (Dn,Rn)}, where D,D1, . . . ,Dn

are sets of dependency pairs and R,R1, . . . ,Rn are TRSs. A processor Proc
is sound if (D,R) is iTerm whenever (Di,Ri) is iTerm for all 1 ≤ i ≤ n. It is
complete if (Di,Ri) is iTerm for all 1 ≤ i ≤ n whenever (D,R) is iTerm.

So given a TRS R, one starts with the initial DP problem (DP(R),R) and
applies sound (and preferably complete) DP processors repeatedly until all sub-
problems are “solved” (i.e., sound processors transform them to the empty set).
This allows for modular termination proofs, since different techniques can be
applied on each resulting “sub-problem” (Di,Ri). The following three theorems
recapitulate the three most important processors of the DP framework.

The (innermost) (D,R)-dependency graph is a control flow graph that in-
dicates which dependency pairs can be used after each other in a chain. Its
node set is D and there is an edge from ℓ#1 → t#1 to ℓ#2 → t#2 if there exist

(5)

(6)

(7)
substitutions σ1, σ2 such that t#1 σ1

i→∗
R ℓ#2 σ2, and both ℓ#1 σ1 and ℓ#2 σ2

are in normal form w.r.t. R. Any infinite (D,R)-chain corresponds to an
infinite path in the dependency graph, and since the graph is finite, this
infinite path must end in some strongly connected component (SCC).1

Hence, it suffices to consider the SCCs of this graph independently. The
(DP(Rdiv),Rdiv)-dependency graph can be seen on the right.

Theorem 5 (Dep. Graph Processor). For the SCCs D1, ...,Dn of the (D,R)-
dependency graph, ProcDG(D,R) = {(D1,R), ..., (Dn,R)} is sound and complete.

While the exact dependency graph is not computable in general, there are sev-
eral techniques to over-approximate it automatically, see, e.g., [2, 17, 23]. In our
example, applying ProcDG to the initial problem (DP(Rdiv),Rdiv) results in the
smaller problems

(
{(5)},Rdiv

)
and

(
{(7)},Rdiv

)
that can be treated separately.

The next processor removes rules that cannot be used to evaluate right-hand
sides of dependency pairs when their variables are instantiated with normal forms.

Theorem 6 (Usable Rules Processor). Let R be a TRS. For every f ∈
Σ ⊎Σ# let RulesR(f) = {ℓ → r ∈ R | root(ℓ) = f}. For any t ∈ T

(
Σ ⊎Σ#,V

)
,

its usable rules UR(t) are the smallest set such that UR(x) = ∅ for all x ∈ V
and UR(f(t1, . . . , tn)) = RulesR(f) ∪

⋃n
i=1 UR(ti) ∪

⋃
ℓ→r∈RulesR(f) UR(r). The

usable rules for the DP problem (D,R) are U(D,R) =
⋃

ℓ#→t#∈D UR(t#). Then
ProcUR(D,R) = {(D,U(D,R))} is sound but not complete.2

For the DP problem
(
{(7)},Rdiv

)
only the minus-rules are usable and thus

ProcUR
(
{(7)},Rdiv

)
= {

(
{(7)}, {(1), (2)}

)
}. For

(
{(5)},Rdiv

)
there are no usable

rules at all, and thus ProcUR
(
{(5)},Rdiv

)
= {

(
{(5)},∅

)
}.

1 Here, a set D′ of dependency pairs is an SCC if it is a maximal cycle, i.e., it is a
maximal set such that for any ℓ#1 → t#1 and ℓ#2 → t#2 in D′ there is a non-empty
path from ℓ#1 → t#1 to ℓ#2 → t#2 which only traverses nodes from D′.

2 For a complete version of the usable rules processor, one has to use a more involved
notion of DP problems with more components that we omit here for readability [16].
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The last processor adapts classical orderings like polynomial interpretations to
DP problems.3 In contrast to their direct application in Thm. 1, we may now use
weakly monotonic polynomials fPol that do not have to depend on all of their
arguments. The reduction pair processor requires that all rules and dependency
pairs are weakly decreasing and it removes those DPs that are strictly decreasing.

Theorem 7 (Reduction Pair Processor with Polynomial Interpreta-
tions). Let Pol : T

(
Σ ⊎Σ#,V

)
→ N[V] be a weakly monotonic polynomial

interpretation (i.e., x ≥ y implies fPol(. . . , x, . . .) ≥ fPol(. . . , y, . . .) for all
f ∈ Σ ⊎Σ#). Let D = D≥ ⊎ D> with D> ̸= ∅ such that:

(1) For every ℓ → r ∈ R, we have Pol(ℓ) ≥ Pol(r).
(2) For every ℓ# → t# ∈ D, we have Pol(ℓ#) ≥ Pol(t#).
(3) For every ℓ# → t# ∈ D>, we have Pol(ℓ#) > Pol(t#).

Then ProcRP(D,R) = {(D≥,R)} is sound and complete.

The constraints of the reduction pair processor for the remaining DP problems
({(7)}, {(1), (2)}) and ({(5)},∅) are satisfied by the polynomial interpretation
which maps O to 0, s(x) to x+1, and all other non-constant function symbols to
the projection on their first arguments. Since (7) and (5) are strictly decreasing,
ProcRP transforms both ({(7)}, {(1), (2)}) and ({(5)},∅) into DP problems of
the form (∅, . . .). As ProcDG(∅, . . .) = ∅ and all processors used are sound,
this means that there is no infinite innermost chain for the initial DP problem
(DP(Rdiv),Rdiv) and thus, Rdiv is innermost terminating.

3 Probabilistic Term Rewriting

Now we recapitulate probabilistic TRSs [3, 9, 14] and present a novel criterion to
prove almost-sure termination automatically by adapting the direct application
of polynomial interpretations from Thm. 1 to PTRSs. In contrast to TRSs, a
PTRS has finite4 multi-distributions on the right-hand side of rewrite rules.

Definition 8 (Multi-Distribution). A finite multi-distribution µ on a set A
̸= ∅ is a finite multiset of pairs (p : a), where 0 < p ≤ 1 is a probability and a ∈ A,
such that

∑
(p:a)∈µ p = 1. FDist(A) is the set of all finite multi-distributions on A.

For µ ∈ FDist(A), its support is the multiset Supp(µ)={a | (p :a)∈µ for some p}.

Definition 9 (PTRS). A probabilistic rewrite rule is a pair ℓ → µ ∈ T (Σ,V)
× FDist(T (Σ,V)) such that ℓ ̸∈ V and V(r) ⊆ V(ℓ) for every r ∈ Supp(µ). A
probabilistic TRS (PTRS) is a finite set R of probabilistic rewrite rules. Similar to

3 In this paper, we only regard the reduction pair processor with polynomial interpre-
tations, because for most other classical orderings it is not clear how to extend them
to probabilistic TRSs, where one has to consider “expected values of terms”.

4 Since our goal is the automation of termination analysis, in this paper we restrict
ourselves to finite PTRSs with finite multi-distributions.
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TRSs, the PTRS R induces a rewrite relation →R ⊆ T (Σ,V)×FDist(T (Σ,V))
where s →R {p1 : t1, . . . , pk : tk} if there is a position π, a rule ℓ → {p1 : r1,
. . . , pk : rk} ∈ R, and a substitution σ such that s|π = ℓσ and tj = s[rjσ]π for
all 1 ≤ j ≤ k. We call s →R µ an innermost rewrite step (denoted s

i→R µ) if
every proper subterm of the used redex ℓσ is in normal form w.r.t. R.

Example 10. As an example, consider the PTRS Rrw with the only rule g(x) →
{1/2 : x, 1/2 : g(g(x))}, which corresponds to a symmetric random walk.

As proposed in [3], we lift →R to a rewrite relation between multi-distributions
in order to track all probabilistic rewrite sequences (up to non-determinism) at
once. For any 0 < p ≤ 1 and any µ ∈ FDist(A), let p ·µ = {(p ·q : a) | (q : a) ∈ µ}.
Definition 11 (Lifting). The lifting ⇒ ⊆ FDist(T (Σ,V))× FDist(T (Σ,V))
of a relation → ⊆ T (Σ,V)× FDist(T (Σ,V)) is the smallest relation with:

• If t ∈ T (Σ,V) is in normal form w.r.t. →, then {1 : t} ⇒ {1 : t}.
• If t → µ, then {1 : t} ⇒ µ.
• If for all 1 ≤ j ≤ k there are µj , νj ∈ FDist(T (Σ,V)) with µj ⇒ νj and
0 < pj ≤ 1 with

∑
1≤j≤k pj = 1, then

⋃
1≤j≤k pj · µj ⇒

⋃
1≤j≤k pj · νj.

For a PTRS R, we write ⇒R and
i
⇒R for the liftings of →R and

i→R, respectively.

Example 12. For instance, we obtain the following
i
⇒Rrw -rewrite sequence:

{1 : g(O)} i
⇒Rrw {1/2 : O, 1/2 : g2(O)} i

⇒Rrw {1/2 : O, 1/4 : g(O), 1/4 : g3(O)}
i
⇒Rrw {1/2 : O, 1/8 : O, 1/8 : g2(O), 1/8 : g2(O), 1/8 : g4(O)}

Note that the two occurrences of O and g2(O) in the multi-distribution above
could be rewritten differently if the PTRS had rules resulting in different terms.
So it should be distinguished from {5/8 : O, 1/4 : g2(O), 1/8 : g4(O)}.

To express the concept of almost-sure termination, one has to determine the
probability for normal forms in a multi-distribution.

Definition 13 (|µ|R). For a PTRS R, NFR ⊆ T (Σ,V) denotes the set of all
normal forms w.r.t. R. For any µ ∈ FDist(T (Σ,V)), let |µ|R =

∑
(p:t)∈µ,t∈NFR p.

Example 14. Consider the multi-distribution {1/2 : O, 1/8 : O, 1/8 : g2(O), 1/8 :
g2(O), 1/8 : g4(O)} from Ex. 12 and Rrw from Ex. 10. Then |µ|Rrw = 1/2+1/8 = 5/8.

Definition 15 ((Innermost) AST). Let R be a PTRS and (µn)n∈N be an infi-
nite ⇒R-rewrite sequence, i.e., µn ⇒R µn+1 for all n ∈ N. Note that lim

n→∞
|µn|R

exists, since |µn|R ≤ |µn+1|R ≤ 1 for all n ∈ N. R is almost-surely terminating
(AST) ( innermost almost-surely terminating (iAST)) if lim

n→∞
|µn|R = 1 holds for

every infinite ⇒R-rewrite sequence (
i
⇒R-rewrite sequence) (µn)n∈N.

Example 16. For the (unique) infinite extension of the
i
⇒Rrw -rewrite sequence

(µn)n∈N in Ex. 12, we have lim
n→∞

|µn|R = 1. Indeed, Rrw is AST (but not PAST,

i.e., the expected number of rewrite steps is infinite for every term containing g).

Thm. 17 introduces a novel technique to prove AST automatically using a
direct application of polynomial interpretations.
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Theorem 17 (Proving AST with Polynomial Interpretations). Let R
be a PTRS, let Pol : T (Σ,V) → N[V] be a monotonic, multilinear5 polynomial
interpretation (i.e., for all f ∈ Σ, all monomials of fPol(x1, . . . , xn) have the
form c · xe1

1 · . . . · xen
n with c ∈ N and e1, . . . , en ∈ {0, 1}). If for every rule

ℓ → {p1 : r1, . . . , pk : rk} ∈ R,

(1) there exists a 1 ≤ j ≤ k with Pol(ℓ) > Pol(rj) and
(2) Pol(ℓ) ≥

∑
1≤j≤k pj · Pol(rj),

then R is AST.

In [3], it was shown that PAST can be proved by using multilinear polynomials
and requiring a strict decrease in the expected value of each rule. In contrast,
we only require a weak decrease of the expected value in (2) and in addition, at
least one term in the support of the right-hand side must become strictly smaller
(1). As mentioned, the proof for Thm. 17 (and for all our other new results and
observations) can be found in [28]. The proof idea is based on [32], but it extends
their approach from while-programs on integers to terms. However, in contrast
to [32], PTRSs can only deal with constant probabilities, since all variables stand
for terms, not for numbers. Note that the constraints (1) and (2) of our new
criterion in Thm. 17 are equivalent to the constraint of the classical Thm. 1 in
the special case where the PTRS is in fact a TRS (i.e., all rules have the form
ℓ → {1 : r}).

Example 18. To prove that Rrw is AST with Thm. 17, we can use the polynomial
interpretation that maps g(x) to x+ 1 and O to 0.

4 Probabilistic Dependency Pairs

We introduce our new adaption of DPs to the probabilistic setting in Sect. 4.1.
Then we present the processors for the probabilistic DP framework in Sect. 4.2.

4.1 Dependency Tuples and Chains for Probabilistic Term Rewriting

We first show why straightforward adaptions are unsound. A natural idea to define
DPs for probabilistic rules ℓ → {p1 : r1, . . . , pk : rk} ∈ R would be (8) or (9):

{ ℓ# → {p1 : r1, . . . , pi : t
#
j , . . . , pk : rk} | tj ∈ SubD(rj) with 1 ≤ j ≤ k } (8)

{ ℓ# → {p1 : t#1 , . . . , pk : t#k } | tj ∈ SubD(rj) for all 1 ≤ j ≤ k } (9)

For (9), if SubD(rj) = ∅, then we insert a fresh constructor ⊥ into SubD(rj) that

does not occur in R. So in both (8) and (9), we replace rj by a single term t#j in
the right-hand side. The following example shows that this notion of probabilistic
DPs does not yield a sound chain criterion. Consider the PTRSs R1 and R2:

R1 = {g → {1/2 : O, 1/2 : f(g, g)}} R2 = {g → {1/2 : O, 1/2 : f(g, g, g)}} (10)

5 As in [3], multilinearity ensures “monotonicity” w.r.t. expected values, since multilin-
earity implies fPol(. . . ,

∑
1≤j≤k pj · Pol(rj), . . .) =

∑
1≤j≤k pj · Pol(f(. . . , rj , . . .)).
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R1 is AST since it corresponds to a symmetric random walk stopping at 0,
where the number of gs denotes the current position. In contrast, R2 is not
AST as it corresponds to a random walk where there is an equal chance of
reducing the number of gs by 1 or increasing it by 2. For both R1 and R2, (8)
and (9) would result in the only dependency pair G → {1/2 : O, 1/2 : G} and
G → {1/2 : ⊥, 1/2 : G}, resp. Rewriting with this DP is clearly AST, since it
corresponds to a program that flips a coin until one gets head and then terminates.
So the definitions (8) and (9) would not yield a sound approach for proving AST.

R1 and R2 show that the number of occurrences of the same subterm in the
right-hand side r of a rule matters for AST. Thus, we now regard the multiset
MSubD(r) of all subterms of r with defined root symbol to ensure that multiple
occurrences of the same subterm in r are taken into account. Moreover, instead
of pairs we regard dependency tuples which consider all subterms with defined
root in r at once. Dependency tuples were already used when adapting DPs for
complexity analysis of (non-probabilistic) TRSs [37]. We now adapt them to the
probabilistic setting and present a novel rewrite relation for dependency tuples.

Definition 19 (Transformation dp). If MSubD(r) = {t1, . . . , tn}, then we

define dp(r) = cn(t
#
1 , . . . , t

#
n ). To make dp(r) unique, we use the lexicographic

ordering < on positions where ti = r|πi and π1 < . . . < πn. Here, we extend ΣC

by fresh compound constructor symbols cn of arity n for n ∈ N.

When rewriting a subterm t#i of cn(t
#
1 , . . . , t

#
n ) with a dependency tuple,

one obtains terms with nested compound symbols. To abstract from nested
compound symbols and from the order of their arguments, we introduce the
following normalization.

Definition 20 (Normalizing Compound Terms). For any term t, its con-
tent cont(t) is the multiset defined by cont(cn(t1, . . . , tn)) = cont(t1) ∪ . . . ∪
cont(tn) and cont(t) = {t} otherwise. For any term t with cont(t) = {t1, . . . , tn},
the term cn(t1, . . . , tn) is a normalization of t. For two terms t, t′, we define t ≈ t′

if cont(t) = cont(t′). We define ≈ on multi-distributions in a similar way: when-
ever tj ≈ t′j for all 1 ≤ j ≤ k, then {p1 : t1, . . . , pk : tk} ≈ {p1 : t′1, . . . , pk : t′k}.

So for example, c3(x, x, y) is a normalization of c2(c1(x), c2(x, y)). We do
not distinguish between terms and multi-distributions that are equal w.r.t. ≈
and we write cn(t1, . . . , tn) for any term t with a compound root symbol where
cont(t) = {t1, . . . , tn}, i.e., we consider all such t to be normalized.

For any rule ℓ → {p1 : r1, . . . , pk : rk} ∈ R, the natural idea would be to
define its dependency tuple (DT) as ℓ# → {p1 : dp(r1), . . . , pk : dp(rk)}. Then
innermost chains in the probabilistic setting would result from alternating a
DT-step with an arbitrary number of R-steps (using

i
⇒∗

R). However, such chains
would not necessarily correspond to the original rewrite sequence and thus, the
resulting chain criterion would not be sound.

Example 21. Consider the PTRS R3 = {f(O) → {1 : f(a)}, a → {1/2 : b1, 1/2 :
b2}, b1 → {1 : O}, b2 → {1 : f(a)}}. Its DTs would be D3 = {F(O) →
{1 : c2(F(a),A)},A → {1/2 : c1(B1), 1/2 : c1(B2)},B1 → {1 : c0},B2 → {1 :
c2(F(a),A)}}. R3 is not iAST, because one can extend the rewrite sequence
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{1: f(O)}
i
⇒R3 {1: f(a)}

i
⇒R3 {1/2 : f(b1), 1/2 : f(b2)}

i
⇒R3 {1/2 : f(O), 1/2 : f(f(a))} (11)

to an infinite sequence without normal forms. The resulting chain starts with

{ 1 : c1(F(O))}
i
⇒D3 { 1 : c2(F(a),A)}
i
⇒D3 { 1/2 : c2(F(a),B1), 1/2 : c2(F(a),B2)}
i
⇒R3 {1/4 : c2(F(b1),B1), 1/4 : c2(F(b2),B1), 1/4 : c2(F(b1),B2), 1/4 : c2(F(b2),B2).}

The second and third term in the last distribution do not correspond to terms in
the original rewrite sequence (11). After the next D3-step which removes B1,
no further D3-step can be applied to the underlined term anymore, because b2
cannot be rewritten to O. Thus, the resulting chain criterion would be unsound,
as every chain (µn)n∈N in this example contains such D3-normal forms and
therefore, it is AST (i.e., lim

n→∞
|µn|D3 = 1 where |µn|D3 is the probability for

D3-normal forms in µn). So we have to ensure that when A is rewritten to
B1 via a DT from D3, then the “copy” a of the redex A is rewritten via R3

to the corresponding term b1 instead of b2. Thus, after the step with
i
⇒R3

we
should have c2(F(b1),B1) and c2(F(b2),B2), but not c2(F(b2),B1) or c2(F(b1),B2).

Therefore, for our new adaption of DPs to the probabilistic setting, we operate
on pairs. Instead of having a rule ℓ → {p1 : r1, . . . , pk : rk} from R and its corres-
ponding dependency tuple ℓ# → {p1 : dp(r1), . . . , pk : dp(rk)} separately, we cou-
ple them together to ⟨ℓ#, ℓ⟩ → {p1 : ⟨dp(r1), r1⟩, . . . , pk : ⟨dp(rk), rk⟩}. This type
of rewrite system is called a probabilistic pair term rewrite system (PPTRS), and
its rules are called coupled dependency tuples. Our new DP framework works on
(probabilistic) DP problems (P,S), where P is a PPTRS and S is a PTRS.

Definition 22 (Coupled Dependency Tuple). Let R be a PTRS. For every
ℓ → µ = {p1 : r1, . . . , pk : rk} ∈ R, its coupled dependency tuple (or simply
dependency tuple, DT) is DT (ℓ → µ) = ⟨ℓ#, ℓ⟩ → {p1 : ⟨dp(r1), r1⟩, . . . , pk :
⟨dp(rk), rk⟩}. The set of all coupled dependency tuples of R is denoted by DT (R).

Example 23. The following PTRS Rpdiv adapts Rdiv to the probabilistic setting.

minus(x,O) → {1 : x} (12) minus(s(x), s(y)) → {1 : minus(x, y)} (13)

div(O, s(y)) → {1 : O} (14)

div(s(x), s(y)) → {1/2 : div(s(x), s(y)), 1/2 : s(div(minus(x, y), s(y)))} (15)

In (15), we now do the actual rewrite step with a chance of 1/2 or the terms stay
the same. Our new probabilistic DP framework can prove automatically that Rpdiv

is iAST, while (as in the non-probabilistic setting) a direct application of polyno-
mial interpretations via Thm. 17 fails. We get DT (Rpdiv) = {(16), . . . , (19)}:

⟨M(x,O),minus(x,O)⟩ → {1 : ⟨c0, x⟩} (16)

⟨M(s(x), s(y)),minus(s(x), s(y))⟩ → {1 : ⟨c1(M(x, y)), minus(x, y)⟩} (17)

⟨D(O, s(y)), div(O, s(y))⟩ → {1 : ⟨c0, O⟩} (18)

⟨D(s(x), s(y)), div(s(x), s(y))⟩ → {1/2 : ⟨c1(D(s(x), s(y))), div(s(x), s(y))⟩,
1/2 : ⟨c2(D(minus(x, y), s(y)),M(x, y)), s(div(minus(x, y), s(y)))⟩} (19)
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Definition 24 (PPTRS, i_P,S). Let P be a finite set of rules of the form
⟨ℓ#, ℓ⟩ → {p1 : ⟨d1, r1⟩, . . . , pk : ⟨dk, rk⟩}. For every such rule, let proj1(P)
contain ℓ# → {p1 : d1, . . . , pk : dk} and let proj2(P) contain ℓ → {p1 : r1, . . . , pk :
rk}. If proj2(P) is a PTRS and cont(dj) ⊆ cont(dp(rj)) holds

6 for all 1 ≤ j ≤ k,
then P is a probabilistic pair term rewrite system (PPTRS).

Let S be a PTRS. Then a normalized term cn(s1, . . . , sn) rewrites with the
PPTRS P to {p1 : b1, . . . , pk : bk} w.r.t. S (denoted i_P,S) if there are an
1 ≤ i ≤ n, an ⟨ℓ#, ℓ⟩ → {p1 : ⟨d1, r1⟩, . . . , pk : ⟨dk, rk⟩} ∈ P, a substitution σ
with si = ℓ#σ ∈ NFS , and for all 1 ≤ j ≤ k we have bj = cn(t

j
1, . . . , t

j
n) where

• tji = djσ for all 1 ≤ j ≤ k, i.e., we rewrite the term si using proj1(P).
• For every 1 ≤ i′ ≤ n with i ̸= i′ we have

(i) tji′ = si′ for all 1 ≤ j ≤ k or
(ii) tji′ = si′ [rjσ]τ for all 1 ≤ j ≤ k,

if si′ |τ = ℓσ for some position τ and if ℓ → {p1 : r1, . . . , pk : rk} ∈ S.
So si′ stays the same in all bj or we can apply the rule from proj2(P) to
rewrite si′ in all bj, provided that this rule is also contained in S. Note that
even if the rule is applicable, the term si′ can still stay the same in all bj.

Example 25. For R3 from Ex. 21, the (coupled) dependency tuple for the f-rule
is ⟨F(O), f(O)⟩ → {1 : ⟨c2(F(a),A), f(a)⟩} and the DT for the a-rule is ⟨A, a⟩ →
{1/2 : ⟨c1(B1), b1⟩, 1/2 : ⟨c1(B2), b2⟩}. With the lifting

i__P,S of i_P,S , we get the
following sequence which corresponds to the rewrite sequence (11) from Ex. 21.

{1 : c1(F(O))}
i__DT (R3),R3

{1 : c2(F(a),A)}
i__DT (R3),R3

{1/2 : c2(F(b1),B1), 1/2 : c2(F(b2),B2)}
(20)

So with the PPTRS, when rewriting A to B1 in the second step, we can simul-
taneously rewrite the inner subterm a of F(a) to b1 or keep a unchanged, but
we cannot rewrite a to b2. This is ensured by b1 in the second component of
⟨A, a⟩ → {1/2 : ⟨c1(B1), b1⟩, . . .}, since by Def. 24, if si′ contains ℓσ at some
arbitrary position τ , then one can (only) use the rule in the second component
of the DT to rewrite ℓσ (i.e., here we have si′ = F(a), si = A, and si′ |τ = a). A
similar observation holds when rewriting A to B2. Recall that with the notion
of chains in Ex. 21, one cannot simulate every possible rewrite sequence, which
leads to unsoundness. In contrast, with the notion of coupled DTs and PPTRSs,
every possible rewrite sequence can be simulated which ensures soundness of
the chain criterion. Of course, due to the ambiguity in (i) and (ii) of Def. 24,

one could also create other “unsuitable”
i__DT (R3),R3

-sequences where a is not
reduced to b1 and b2 in the second step, but is kept unchanged. This does not
affect the soundness of the chain criterion, since every rewrite sequence of the
original PTRS can be simulated by a “suitable” chain. To obtain completeness
of the chain criterion, one would have to avoid such “unsuitable” sequences.

We also introduce an analogous rewrite relation for PTRSs, where we can
apply the same rule simultaneously to the same subterms in a single rewrite step.

6 The reason for cont(dj) ⊆ cont(dp(rj)) instead of cont(dj) = cont(dp(rj)) is that in
this way processors can remove terms from the right-hand sides of DTs, see Thm. 32.
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Definition 26 ( i_S). For a PTRS S and a normalized term cn(s1, . . . , sn), we
define cn(s1, ..., sn)

i_S {p1 :b1, ..., pk :bk} if there are an 1≤ i≤ n, an ℓ→{p1 :r1,
. . . , pk :rk} ∈ S, a position π, a substitution σ with si|π=ℓσ such that every proper
subterm of ℓσ is in NFS , and for all 1≤ j≤ k we have bj = cn(t

j
1, . . . , t

j
n) where

• tji = si[rjσ]π for all 1 ≤ j ≤ k, i.e., we rewrite the term si using S.
• For every 1 ≤ i′ ≤ n with i ̸= i′ we have

(i) tji′ = si′ for all 1 ≤ j ≤ k or

(ii) tji′ = si′ [rjσ]τ for all 1 ≤ j ≤ k, if si′ |τ = ℓσ for some position τ .

So for example, the lifting
i__S of i_S for S = R3 rewrites {1 : c2(f(a), a)} to both

{1/2 : c2(f(b1), b1), 1/2 : c2(f(b2), b2)} and {1/2 : c2(f(a), b1), 1/2 : c2(f(a), b2)}.
A straightforward adaption of “chains” to the probabilistic setting using

i__P,S

◦
i__*

S would force us to use steps with DTs from P at the same time for all terms in
a multi-distribution. Therefore, instead we view a rewrite sequence on multi-dis-
tributions as a tree (e.g., the tree representation of the rewrite sequence (20) from

1 : c1(F(O))P

1 : c2(F(a),A)P

1/2 : c2(F(b1),B1) 1/2 : c2(F(b2),B2)

Ex. 25 is on the right). Regarding the paths in this
tree (which represent rewrite sequences of terms
with certain probabilities) allows us to adapt the
idea of chains, i.e., that one uses only finitely many
S-steps before the next step with a DT from P.

Definition 27 (Chain Tree). T=(V,E, L, P ) is an (innermost) (P,S)-chain tree if

1. V ̸= ∅ is a possibly infinite set of nodes and E ⊆ V × V is a set of
directed edges, such that (V,E) is a (possibly infinite) directed tree where
vE = {w | (v, w) ∈ E} is finite for every v ∈ V .

2. L : V → (0, 1]× T
(
Σ ⊎Σ#,V

)
labels every node v by a probability pv and a

term tv. For the root v ∈ V of the tree, we have pv = 1.
3. P ⊆ V \ Leaf (where Leaf are all leaves) is a subset of the inner nodes to

indicate whether we use the PPTRS P or the PTRS S for the rewrite step. S =
V \ (Leaf ∪P ) are all inner nodes that are not in P . Thus, V = P ⊎S ⊎Leaf.

4. For all v ∈ P : If vE = {w1, . . . , wk}, then tv
i_P,S {pw1

pv
: tw1

, . . . ,
pwk

pv
: twk

}.
5. For all v ∈ S: If vE = {w1, . . . , wk}, then tv

i_S {pw1

pv
: tw1 , . . . ,

pwk

pv
: twk

}.
6. Every infinite path in T contains infinitely many nodes from P .

Conditions 1–5 ensure that the tree represents a valid rewrite sequence and
the last condition is the main property for chains.

Definition 28 (|T|Leaf , iAST). For any innermost (P,S)-chain tree T we
define |T|Leaf =

∑
v∈Leaf pv. We say that (P,S) is iAST if we have |T|Leaf = 1

for every innermost (P,S)-chain tree T.

While we have |T|Leaf = 1 for every finite chain tree T, for infinite chain trees T
we may have |T|Leaf < 1 or even |T|Leaf = 0 if T has no leaf at all.

With this new type of DTs and chain trees, we now obtain an analogous chain
criterion to the non-probabilistic setting.

Theorem 29 (Chain Criterion). A PTRS R is iAST if (DT (R),R) is iAST.
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In contrast to the non-probabilistic case, our chain criterion as presented
in the paper is sound but not complete (i.e., we do not have “iff” in Thm. 29).
However, we also developed a refinement where our chain criterion is made
complete by also storing the positions of the defined symbols in dp(r) [27]. In this
way, one can avoid “unsuitable” chain trees, as discussed at the end of Ex. 25.

Our notion of DTs and chain trees is only suitable for innermost evaluation.
To see this, consider the PTRSs R′

1 and R′
2 which both contain g → {1/2 : O, 1/2 :

h(g)}, but in addition R′
1 has the rule h(x) → {1 : f(x, x)} and R′

2 has the rule
h(x) → {1 : f(x, x, x)}. Similar to R1 and R2 in (10), R′

1 is AST while R′
2 is not.

In contrast, both R′
1 and R′

2 are iAST, since the innermost evaluation strategy
prevents the application of the h-rule to terms containing g. Our DP framework
handles R′

1 and R′
2 in the same way, as both have the same DT ⟨G, g⟩ → {1/2 :

⟨c0,O⟩, 1/2 : ⟨c2(H(g),G), h(g)⟩} and a DT ⟨H(x), h(x)⟩ → {1 : ⟨c0, f(. . .)⟩}. Even
if we allowed the application of the second DT to terms of the form H(g), we
would still obtain |T|Leaf = 1 for every chain tree T. So a DP framework to
analyze “full” instead of innermost AST would be considerably more involved.

4.2 The Probabilistic DP Framework

Now we introduce the probabilistic dependency pair framework which keeps the
core ideas of the non-probabilistic framework. So instead of applying one ordering
for a PTRS directly as in Thm. 17, we want to benefit from modularity. Now a
DP processor Proc is of the form Proc(P,S) = {(P1,S1), . . . , (Pn,Sn)}, where
P,P1, . . . ,Pn are PPTRSs and S,S1, . . . ,Sn are PTRSs. A processor Proc is
sound if (P,S) is iAST whenever (Pi,Si) is iAST for all 1 ≤ i ≤ n. It is complete
if (Pi,Si) is iAST for all 1 ≤ i ≤ n whenever (P,S) is iAST. In the following, we
adapt the three main processors from Thm. 5 to 7 to the probabilistic setting
and present two additional processors.

The (innermost) (P,S)-dependency graph indicates which DTs from P can
rewrite to each other using the PTRS S. The possibility of rewriting with S is not
related to the probabilities. Thus, for the dependency graph, we can use the non-
probabilistic variant np(S) = {ℓ → rj | ℓ → {p1 : r1, . . . , pk : rk} ∈ S, 1 ≤ j ≤ k}.

Definition 30 (Dep. Graph). The node set of the (P,S)-dependency graph

is P and there is an edge from ⟨ℓ#1 , ℓ1⟩ → {p1 : ⟨d1, r1⟩, . . . , pk : ⟨dk, rk⟩} to

⟨ℓ#2 , ℓ2⟩ → . . . if there are substitutions σ1, σ2 and t# ∈ cont(dj) for some

1 ≤ j ≤ k such that t#σ1
i→∗
np(S) ℓ

#
2 σ2 and both ℓ#1 σ1 and ℓ#2 σ2 are in NFS .

(16) (17)

(18) (19)For Rpdiv from Ex. 23, the (DT (Rpdiv),Rpdiv)-dependency
graph is on the side. In the non-probabilistic DP framework, every
step with i→D,R corresponds to an edge in the (D,R)-dependency
graph. Similarly, in the probabilistic setting, every path from one node of P to
the next node of P in a (P,S)-chain tree corresponds to an edge in the (P,S)-
dependency graph. Since every infinite path in a chain tree contains infinitely
many nodes from P , when tracking the arguments of the compound symbols,
every such path traverses a cycle of the dependency graph infinitely often. Thus, it
again suffices to consider the SCCs of the dependency graph separately. So for our
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example, we obtain ProcDG(DT (Rpdiv),Rpdiv) = {({(17)},Rpdiv), ({(19)},Rpdiv)}.
To automate the following two processors, the same over-approximation techniques
as for the non-probabilistic dependency graph can be used.

Theorem 31 (Prob. Dep. Graph Processor). For the SCCs P1, ...,Pn of the
(P,S)-dependency graph, ProcDG(P,S)={(P1,S), ..., (Pn,S)} is sound and complete.

Next, we introduce a new usable terms processor (a similar processor was
also proposed for the DTs in [37]). Since we regard dependency tuples instead

of pairs, after applying ProcDG, the right-hand sides of DTs ⟨ℓ#1 , ℓ1⟩ → . . . might

still contain terms t# where no instance t#σ1 rewrites to an instance ℓ#2 σ2 of a

left-hand side of a DT (where we only consider instantiations such that ℓ#1 σ1 and

ℓ#2 σ2 are in NFS , because only such instantiations are regarded in chain trees).
Then t# can be removed from the right-hand side of the DT. For example, in the
DP problem ({(19)},Rpdiv), the only DT (19) has the left-hand side D(s(x), s(y)).
As the term M(x, y) in (19)’s right-hand side cannot “reach” D(. . .), the following
processor removes it, i.e., ProcUT({(19)},Rpdiv) = {({(21)},Rpdiv)}, where (21) is

⟨D(s(x), s(y)), div(s(x), s(y))⟩ → {1/2 : ⟨c1(D(s(x), s(y))), div(s(x), s(y))⟩,
1/2 : ⟨c1(D(minus(x, y), s(y))), s(div(minus(x, y), s(y)))⟩}. (21)

So both Thm. 31 and 32 are needed to fully simulate the dependency graph
processor in the probabilistic setting, i.e., they are both necessary to guarantee
that the probabilistic DP processors work analogously to the non-probabilistic
ones (which in turn ensures that the probabilistic DP framework is similar
in power to its non-probabilistic counterpart). This is also confirmed by our
experiments in Sect. 5 which show that disabling the processor of Thm. 32 affects
the power of our approach. For example, without Thm. 32, the proof that Rpdiv

is iAST in the probabilistic DP framework would require a more complicated
polynomial interpretation. In contrast, when using both processors of Thm. 31
and 32, then one can prove iAST of Rpdiv with the same polynomial interpretation
that was used to prove iTerm of Rdiv (see Ex. 36).

Theorem 32 (Usable Terms Processor). Let ℓ#1 be a term and (P,S) be

a DP problem. We call a term t# usable w.r.t. ℓ#1 and (P,S) if there is a

⟨ℓ#2 , ℓ2⟩ → . . . ∈ P and substitutions σ1, σ2 such that t#σ1
i→∗
np(S) ℓ

#
2 σ2 and both

ℓ#1 σ1 and ℓ#2 σ2 are in NFS . If d = cn(t
#
1 , . . . , t

#
n ), then UT (d)ℓ#1 ,P,S denotes the

term cm(t#i1 , . . . , t
#
im
), where 1 ≤ i1 < . . . < im ≤ n are the indices of all terms

t#i that are usable w.r.t. ℓ#1 and (P,S). The transformation that removes all
non-usable terms in the right-hand sides of dependency tuples is denoted by:

TUT(P,S) = {⟨ℓ#, ℓ⟩ → {p1 : ⟨UT (d1)ℓ#,P,S , r1⟩, . . . , pk : ⟨UT (dk)ℓ#,P,S , rk⟩}
| ⟨ℓ#, ℓ⟩ → {p1 : ⟨d1, r1⟩, . . . , pk : ⟨dk, rk⟩} ∈ P}

Then ProcUT(P,S) = {(TUT(P,S),S)} is sound and complete.

To adapt the usable rules processor, we adjust the definition of usable rules
such that it regards every term in the support of the distribution on the right-
hand side of a rule. The usable rules processor only deletes non-usable rules from
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S, but not from proj2(P). This is sufficient, because according to Def. 24, rules
from proj2(P) can only be applied if they also occur in S.

Theorem 33 (Probabilistic Usable Rules Processor). Let (P,S) be a DP
problem. For every f ∈ Σ ⊎ Σ# let RulesS(f) = {ℓ → µ ∈ S | root(ℓ) = f}.
For any term t ∈ T

(
Σ ⊎Σ#,V

)
, its usable rules US(t) are the smallest set such

that US(x) = ∅ for all x ∈ V and US(f(t1, . . . , tn)) = RulesS(f) ∪
⋃n

i=1 US(ti)
∪

⋃
ℓ→µ∈RulesS(f),r∈Supp(µ) US(r). The usable rules for (P,S) are U(P,S) =⋃

ℓ#→µ∈proj1(P),d∈Supp(µ) US(d). Then ProcUR(P,S) = {(P,U(P,S))} is sound.

Example 34. For the DP problem ({(21)},Rpdiv) only the minus-rules are us-
able and thus ProcUR({(21)},Rpdiv) = {({(21)}, {(12), (13)})}. For ({(17)},Rpdiv)
there are no usable rules at all, hence ProcUR({(17)},Rpdiv) = {({(17)},∅)}.

For the reduction pair processor, we again restrict ourselves to multilinear
polynomials and use analogous constraints as in our new criterion for the direct
application of polynomial interpretations to PTRSs (Thm. 17), but adapted to
DP problems (P,S). Moreover, as in the original reduction pair processor of
Thm. 7, the polynomials only have to be weakly monotonic. For every rule in S or
proj1(P), we require that the expected value is weakly decreasing. The reduction
pair processor then removes those DTs ⟨ℓ#, ℓ⟩ → {p1 : ⟨d1, r1⟩, . . . , pk : ⟨dk, rk⟩}
from P where in addition there is at least one term dj that is strictly decreasing.
Recall that we can also rewrite with the original rule ℓ → {p1 : r1, . . . , pk : rk}
from proj2(P), provided that it is also contained in S. Therefore, to remove the
dependency tuple, we also have to require that the rule ℓ → rj is weakly decreasing.
Finally, we have to use c-additive interpretations (with cnPol(x1, . . . , xn) =
x1 + . . .+ xn) to handle compound symbols and their normalization correctly.

Theorem 35 (Probabilistic Reduction Pair Processor). Let Pol : T (Σ ⊎
Σ#,V) → N[V] be a weakly monotonic, multilinear, and c-additive polynomial
interpretation. Let P = P≥ ⊎ P> with P> ̸= ∅ such that:

(1) For every ℓ → {p1 : r1, ..., pk : rk} ∈ S, we have Pol(ℓ) ≥
∑

1≤j≤k pj ·Pol(rj).
(2) For every ⟨ℓ#, ℓ⟩ → {p1 : ⟨d1, r1⟩, . . . , pk : ⟨dk, rk⟩} ∈ P, we have Pol(ℓ#) ≥∑

1≤j≤k pj · Pol(dj).
(3) For every ⟨ℓ#, ℓ⟩ → {p1 : ⟨d1, r1⟩, . . . , pk : ⟨dk, rk⟩} ∈ P>, there exists a

1 ≤ j ≤ k with Pol(ℓ#) > Pol(dj).
If ℓ → {p1 : r1, . . . , pk : rk} ∈ S, then we additionally have Pol(ℓ) ≥ Pol(rj).

Then ProcRP(P,S) = {(P≥,S)} is sound and complete.

Example 36. The constraints of the reduction pair processor for the two DP
problems from Ex. 34 are satisfied by the c-additive polynomial interpretation
which again maps O to 0, s(x) to x + 1, and all other non-constant function
symbols to the projection on their first arguments. As in the non-probabilistic case,
this results in DP problems of the form (∅, . . .) and subsequently, ProcDG(∅, . . .)
yields ∅. By the soundness of all processors, this proves that Rpdiv is iAST.

So with the new probabilistic DP framework, the proof that Rpdiv is iAST
is analogous to the proof that Rdiv is iTerm in the original DP framework (the
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proofs even use the same polynomial interpretation in the respective reduction
pair processors). This indicates that our novel framework for PTRSs has the
same essential concepts and advantages as the original DP framework for TRSs.
This is different from our previous adaption of dependency pairs for complexity
analysis of TRSs, which also relies on dependency tuples [37]. There, the power is
considerably restricted, because one does not have full modularity as one cannot
decompose the proof according to the SCCs of the dependency graph.

In proofs with the probabilistic DP framework, one may obtain DP problems
(P,S) that have a non-probabilistic structure (i.e., every DT in P has the form
⟨ℓ#, ℓ⟩ → {1 : ⟨d, r⟩} and every rule in S has the form ℓ′ → {1 : r′}). We now
introduce a processor that allows us to switch to the original non-probabilistic
DP framework for such (sub-)problems. This is advantageous, because due to
the use of dependency tuples instead of pairs in P, in general the constraints of
the probabilistic reduction pair processor of Thm. 35 are harder than the ones of
the reduction pair processor of Thm. 7. Moreover, Thm. 7 is not restricted to
multilinear polynomial interpretations and the original DP framework has many
additional processors that have not yet been adapted to the probabilistic setting.

Theorem 37 (Probability Removal Processor). Let (P,S) be a probabilistic
DP problem where every DT in P has the form ⟨ℓ#, ℓ⟩ → {1 : ⟨d, r⟩} and every rule
in S has the form ℓ′ → {1: r′}. Let np(P) = {ℓ# → t# | ℓ# → {1: d} ∈ proj1(P),
t# ∈ cont(d)}. Then (P,S) is iAST iff the non-probabilistic DP problem (np(P),
np(S)) is iTerm. So if (np(P),np(S)) is iTerm, then the processor ProcPR(P,S) =
∅ is sound and complete.

5 Conclusion and Evaluation

Starting with a new “direct” technique to prove almost-sure termination of
probabilistic TRSs (Thm. 17), we presented the first adaption of the dependency
pair framework to the probabilistic setting in order to prove innermost AST
automatically. This is not at all obvious, since most straightforward ideas for such
an adaption are unsound (as discussed in Sect. 4.1). So the challenge was to find a
suitable definition of dependency pairs (resp. tuples) and chains (resp. chain trees)
such that one can define DP processors which are sound and work analogously
to the non-probabilistic setting (in order to obtain a framework which is similar
in power to the non-probabilistic one). While the soundness proofs for our new
processors are much more involved than in the non-probabilistic case, the new
processors themselves are quite analogous to their non-probabilistic counterparts
and thus, adapting an existing implementation of the non-probabilistic DP
framework to the probabilistic one does not require much effort.

We implemented our contributions in our termination prover AProVE, which
yields the first tool to prove almost-sure innermost termination of PTRSs on
arbitrary data structures (including PTRSs that are not PAST). In our experi-
ments, we compared the direct application of polynomials for proving AST (via
our new Thm. 17) with the probabilistic DP framework. We evaluated AProVE
on a collection of 67 PTRSs which includes many typical probabilistic algorithms.
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For example, it contains the following PTRS Rqs for probabilistic quicksort.

rotate(cons(x, xs))→{1/2 : cons(x, xs), 1/2 : rotate(app(xs, cons(x, nil)))}
qs(nil)→{1 : nil}

qs(cons(x, xs))→{1 : qsHelp(rotate(cons(x, xs)))}
qsHelp(cons(x, xs))→{1 : app(qs(low(x, xs)), cons(x, qs(high(x, xs))))}

The rotate-rules rotate a list randomly often (they are AST, but not termi-
nating). Thus, by choosing the first element of the resulting list, one obtains
a random pivot element for the recursive call of quicksort. In addition to the
rules above, Rqs contains rules for list concatenation (app), and rules such that
low(x, xs) (resp. high(x, xs)) returns all elements of the list xs that are smaller
(resp. greater or equal) than x, see [28]. Using the probabilistic DP framework,
AProVE can prove iAST of Rqs and many other typical programs.

61 of the 67 examples in our collection are iAST and AProVE can prove iAST
for 53 (87%) of them. Here, the DP framework proves iAST for 51 examples and
the direct application of polynomial interpretations via Thm. 17 succeeds for 27
examples. (In contrast, proving PAST via the direct application of polynomial
interpretations as in [3] only works for 22 examples.) The average runtime of
AProVE per example was 2.88 s (where no example took longer than 8 s). So our
experiments indicate that the power of the DP framework can now also be used
for probabilistic TRSs.

We also performed experiments where we disabled individual processors of the
probabilistic DP framework. More precisely, we disabled either the usable terms
processor (Thm. 32), both the dependency graph and the usable terms processor
(Thm. 31 and 32), or all processors except the reduction pair processor of Thm. 35.
Our experiments show that disabling processors indeed affects the power of the
approach, in particular for larger examples with several defined symbols (e.g.,
then AProVE cannot prove iAST of Rqs anymore). So all of our processors are
needed to obtain a powerful technique for termination analysis of PTRSs.

Due to the use of dependency tuples instead of pairs, the probabilistic DP
framework does not (yet) subsume the direct application of polynomials com-
pletely (two examples in our collection can only be proved by the latter, see [28]).
Therefore, currently AProVE uses the direct approach of Thm. 17 in addition to
the probabilistic DP framework. In future work, we will adapt further processors
of the original DP framework to the probabilistic setting, which will also allow us
to integrate the direct approach of Thm. 17 into the probabilistic DP framework
in a modular way. Moreover, we will develop processors to prove AST of full
(instead of innermost) rewriting. Further work may also include processors to
disprove (i)AST and possible extensions to analyze PAST and expected runtimes
as well. Finally, one could also modify the formalism of PTRSs in order to allow
non-constant probabilities which depend on the sizes of terms.

For details on our experiments and for instructions on how to run our
implementation in AProVE via its web interface or locally, we refer to https:
//aprove-developers.github.io/ProbabilisticTermRewriting/.
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