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Abstract. The dependency pair technique of Arts and Giesl [1-3] for
termination proofs of term rewrite systems (TRSs) is extended to rewrit-
ing modulo equations. Up to now, such an extension was only known in
the special case of AC-rewriting [15,17]. In contrast to that, the pro-
posed technique works for arbitrary non-collapsing equations (satisfying
a certain linearity condition). With the proposed approach, it is now pos-
sible to perform automated termination proofs for many systems where
this was not possible before. In other words, the power of dependency
pairs can now also be used for rewriting modulo equations.

1 Introduction

Termination of term rewriting (e.g., [1-3,9,22]) and termination of rewriting
modulo associativity and commutativity equations (e.g., [8,13,14,20,21]) have
been extensively studied. For equations other than AC-axioms, however, there
are only a few techniques available to prove termination (e.g., [6, 10, 16, 18]).

This paper presents an extension of the dependency pair approach [1-3] to
rewriting modulo equations. In the special case of AC-axioms, our technique
corresponds to the methods of [15,17], but in contrast to these methods, our
technique can also be used if the equations are not AC-axioms. This allows much
more automated termination proofs for equational rewrite systems than those
possible with directly applying simplification orderings for equational rewriting
(like equational polynomial orderings or AC-versions of path orderings).

We first review dependency pairs for ordinary term rewriting in Sect. 2.
In Sect. 3, we show why a straightforward extension of dependency pairs to
rewriting modulo equations is not possible. Therefore, we follow an idea similar
to the one of [17] for AC-axioms: We consider a restricted form of equational
rewriting, which is more suitable for termination proofs with dependency pairs.

In Sect. 4, we show how to ensure that termination of this restricted equa-
tional rewrite relation is equivalent to termination of full rewriting modulo equa-
tions. Under certain conditions on the equations £, we show how to compute an
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extended rewrite system Extg(R) from the given TRS R such that the restricted
rewrite relation of Extg(R) modulo £ is terminating iff R is terminating modulo
E. This is proved for (almost) arbitrary £-rewriting, thus generalizing a related
result for AC-rewriting. This general result may be of independent interest, and
may also be useful in investigating other properties of £-rewriting. Finally, in
Sect. 5, we extend the dependency pair approach to rewriting modulo equations.

2 Dependency Pairs for Ordinary Rewriting

The dependency pair approach allows the use of standard methods like simpli-
fication orderings [9, 22] for automated termination proofs where they were not
applicable before. In this section we briefly summarize the basic concepts of this
approach. All results in this section are due to Arts and Giesl and we refer to
[1-3] for further details, refinements, and explanations.

In contrast to the standard techniques for termination proofs, which com-
pare left and right-hand sides of rules, in this approach one concentrates on the
subterms in the right-hand sides that have a defined! root symbol, because these
are the only terms responsible for starting new reductions.

More precisely, for every rule f(sy,...,s,) = Clg(t1,-..,tm)] (where f and g
are defined symbols), we compare the argument tuples s1,...,s, and t1,...,ty.
To avoid the handling of tuples, for every defined symbol f, we introduce a
fresh tuple symbol F. To ease readability, we assume that the original signature
consists of lower case function symbols only, whereas the tuple symbols are
denoted by the corresponding upper case symbols. Now instead of the tuples
S1,---,8q and t, ..., t;, we compare the terms F(s1,...,8,) and G(t1,...,tm).

Definition 1 (Dependency Pair [1-3]). If f(s1,...,8n) = Clg(t1,-.-,tm)]
is a rule of a TRS R and g is a defined symbol, then (F(s1,...,8,),G(t1,. .- tm))
s a dependency pair of R.

Ezample 2. As an example, consider the TRS {a + b — a + (b + ¢)}, cf. [17].
Termination of this system cannot be shown by simplification orderings, since the
left-hand side of the rule is embedded in the right-hand side. In this system, the
defined symbol is + and thus, we obtain the dependency pairs (P(a, b), P(a, b+c))
and (P(a,b),P(b,c)) (where P is the tuple symbol for the plus-function “+7).

Arts and Giesl developed the following new termination criterion. As usual,
a quasi-ordering 7 is a reflexive and transitive relation, and we say that an
ordering > is compatible with = if we have > o~ C > or 27 o > C >.

Theorem 3 (Termination with Dependency Pairs [1-3]). A TRS R is
terminating iff there exists a weakly monotonic quasi-ordering - and a well-
founded ordering > compatible with 77, where both 7~ and > are closed under
substitution, such that

! Root symbols of left-hand sides are defined and all other functions are constructors.



(1) s >t for all dependency pairs (s,t) of R and
(2) 1= r for all rulesl —r of R.

Consider the TRS from Ex. 2 again. In order to prove its termination ac-
cording to Thm. 3, we have to find a suitable quasi-ordering - and ordering >
such that P(a,b) > P(a,b+c), P(a,b) > P(b,c), and a+b - a+ (b+c).

Most standard orderings amenable to automation are strongly monotonic
(cf. e.g. [9,22]), whereas here we only need weak monotonicity. Hence, before
synthesizing a suitable ordering, some of the arguments of function symbols may
be eliminated, cf. [3]. For example, in our inequalities, one may eliminate the
first argument of +. Then every term s+t in the inequalities is replaced by +’(t)
(where +' is a new unary function symbol). By comparing the terms resulting
from this replacement instead of the original terms, we can take advantage of
the fact that + does not have to be strongly monotonic in its first argument.
Note that there are only finitely many possibilities to eliminate arguments of
function symbols. Therefore all these possibilities can be checked automatically.

In this way, we obtain the inequalities P(a, b) > P(a, +'(c)), P(a, b) > P(b,c),
and +'(b) = +'(4+'(c)). These inequalities are satisfied by the recursive path
ordering (rpo) [9] with the precedence a I b 1 ¢ I 4’ (i.e., we choose 7 to
be Z,po and > to be >,,,). So termination of this TRS can now be proved
automatically. For implementations of the dependency pair approach see [4,7].

3 Rewriting Modulo Equations

For a set £ of equations between terms, we write s —¢ t if there exist an
equation ! ~ r in &, a substitution o, and a context C such that s = C[lo]| and
t = C[ro]. The symmetric closure of —¢ is denoted by Hg and the transitive
reflexive closure of He¢ is denoted by ~¢. In the following, we restrict ourselves
to equations £ where ~¢ is decidable.

Definition 4 (Rewriting Modulo Equations). Let R be a TRS and let £ be
a set of equations. A term s rewrites to a term t modulo £, denoted s — /¢ t,
iff there exist terms s’ and t' such that s ~¢ s' = t' ~¢ t. The TRS R is called
terminating modulo & iff there does not exist an infinite — /¢ reduction.

Ezample 5. An interesting special case are equations £ which state that certain
function symbols are associative and commutative (AC). As an example, con-
sider the TRS R = {a+b — a+(b+c)} again and let £ consist of the associativity
and commutativity axioms for +, i.e., &€ = {z1 + za & 22 + 21,21 + (T2 + 23) &
(x1 + z2) + 23}, cf. [17]. R is not terminating modulo &, since we have

a+b =g a+(b+c) ~¢ (a+b)+c—x (a+(b+c))+c~g ((a+b)+c)+c—x ...

There are, however, many other sets of equations £ apart from associativity
and commutativity, which are also important in practice, cf. [11]. Hence, our aim
is to extend dependency pairs to rewriting modulo (almost) arbitrary equations.



The soundness of dependency pairs for ordinary rewriting relies on the fact
that whenever a term starts an infinite reduction, then one can also construct
an infinite reduction where only terminating or minimal non-terminating sub-
terms are reduced (i.e., one only applies rules to redexes without proper non-
terminating subterms). The contexts of minimal non-terminating redexes can
be completely disregarded. If a rule is applied at the root position of a minimal
non-terminating subterm s (i.e., s =% t where e denotes the root position),
then s and each minimal non-terminating subterm ¢’ of ¢ correspond to a depen-
dency pair. Hence, Thm. 3 (1) implies s > ¢'. If a rule is applied at a non-root
position of a minimal non-terminating subterm s (i.e., s —%° t), then we have
s Z t by Thm. 3 (2). However, due to the minimality of s, after finitely many
such non-root rewrite steps, a rule must be applied at the root position of the
minimal non-terminating term. Thus, every infinite reduction of minimal non-
terminating subterms corresponds to an infinite >-sequence. This contradicts
the well-foundedness of >.

So for ordinary rewriting, any infinite reduction from a minimal non-termi-
nating subterm involves an R-reduction at the root position. But as observed in
[15], when extending the dependency pair approach to rewriting modulo equa-
tions, this is no longer true. For an illustration, consider Ex. 5 again, where
a + (b + ¢) is a minimal non-terminating term. However, in its infinite R/E-
reduction no R-step is ever applicable at the root position. (Instead one applies
an E-step at the root position and further R- and &-steps below the root.)

In the rest of the paper, from a rewrite system R, we generate a new rewrite
system R’ with the following three properties: (i) the termination of a weaker
form of rewriting by R’ modulo £ is equivalent to the termination of R modulo
&, (ii) every infinite reduction of a minimal non-terminating term in this weaker
form of rewriting by R’ modulo £ involves a reduction step at the root level, and
(iii) every such minimal non-terminating term has an infinite reduction where
the variables of the R'-rules are instantiated with terminating terms only.

4 E-Extended Rewriting

We showed why the dependency pair approach cannot be extended to rewriting
modulo equations directly. As a solution for this problem, we propose to consider
a restricted form of rewriting modulo equations, i.e., the so-called £-eztended R-
rewrite relation —¢\z. (This approach was already taken in [17] for rewriting
modulo AC'.) The relation — ¢\ z was originally introduced in [19] in order to cir-
cumvent the problems with infinite or impractically large £-equivalence classes.?

Definition 6 (£-extended R-rewriting [19]). Let R be a TRS and let £ be
a set of equations. The £-extended R-rewrite relation is defined as s —>§\R t iff

S|z ~g lo and t = s[ro], for some rule l — r in R, some position w of s, and
some substitution o. We also write —¢\r instead of —>§\R.

2In [12], the relation —¢\x is denoted “—r ¢”.



To demonstrate the difference between —z /¢ and —¢\ g, consider Ex. 5
again. We have already seen that — /¢ is not terminating, since a +b —x/¢
(@a+b)+c—rse ((@+b)+c)+c—g/e... But —¢\x is terminating, because
a+b =g a+(b+c), which is a normal form w.r.t. =g\ z.

The above example also demonstrates that in general, termination of —¢\r
is not sufficient for termination of —x/¢. In this section we will show how ter-
mination of —% /¢ can nevertheless be ensured by only regarding an £-extended
rewrite relation induced by a larger R’ O R.

For the special case of AC-rewriting, this problem can be solved by extending
R as follows: Let G be the set of all AC-symbols and

Extacig) = RUL{f(Ly) = f(r,y) | L= 71 € R, root(l) = f € G},

where y is a new variable not occurring in the respective rule I — r. A similar
extension has also been used in previous work on extending dependency pairs
to AC-rewriting [17]. The reason is that for AC-equations £, the termination of
—wr/¢ is in fact equivalent to the termination of —E\Ezt ac(g)(R)-

For Ex. 5, we obtain Extscg)(R) ={a+b —=a+(b+c),(a+b)+y—
(a+(b+c))+y}. Thus, in order to prove termination of —x ¢, it is now sufficient
to verify termination of —E\Ext so(6)(R)-

The above extension of [19] only works for AC-axioms £. A later paper [12]
treats arbitrary equations, but it does not contain any definition for extensions
Extg(R), and termination of —5 /¢ is always a prerequisite in [12]. The reason
is that [12] and also subsequent work on symmetrization and coherence were
devoted to the development of completion algorithms (i.e., here the goal was
to generate a convergent rewrite system and not to investigate the termination
behavior of possibly non-terminating TRSs). Thus, these papers did not compare
the termination behavior of full rewriting modulo equations with the termination
of restricted versions of rewriting modulo equations. In fact, [12] focuses on the
notion of coherence, which is not suitable for our purpose since coherence of E\R
modulo & does not imply that termination of —% /¢ is equivalent to termination
of _>5\72'3

To extend dependency pairs to rewriting modulo non-AC-equations &, we
have to compute extensions Extg(R) such that termination of —z /¢ is equiv-
alent to termination of —¢\ get.(r). The only restriction we will impose on the
equations in £ is that they must have identical unique variables. This require-
ment is satisfied by most practical examples where R /€ is terminating. As usual,
a term t is called linear if no variable occurs more than once in t.

Definition 7 (Equations with Identical Unique Variables [19]). An equa-
tion u ~ v s said to have identical unique variables if u and v are both linear
and the variables in u are the same as the variables in v.

3 In [12], £\R is coherent modulo £ iff for all terms s, t,u, we have that s ~¢ t —>'S"\R u
implies s —>2'\R v ~g w4z g u for some v,w. Consider R = {a+b — a+(b+
c), z+y — d} with £ being the AC-axioms for +. The above system is coherent,
since s ~g t —>2'\R u implies s —>'),é d <% u. However, —¢\z is terminating but
—®r/¢ is not terminating.



Let unig(s,t) denote a complete set of E-unifiers of two terms s and t. As
usual, ¢ is an £-unifier of s and ¢ iff s§ ~¢ t§ and a set unig(s,t) of E-unifiers is
complete iff for every E-unifier § there exists a o € unig(s,t) and a substitution
p such that & ~¢ op, cf. [5]. (“op” is the composition of o and p where o is
applied first and “§ ~g op” means that for all variables x we have 6 ~¢ zop.)

To construct Eztg(R), we consider all overlaps between equations u ~ v or
v =~ u from £ and rules [ — r from R. More precisely, we check whether a non-
variable subterm v|, of v E-unifies with | (where we always assume that rules
in R are variable disjoint from equations in £). In this case one adds the rules
(v[l]x)o — (v[r]x)o for all o € unig(v|s,1).* In Ex. 5, the subterm z; + x5 of
the right-hand side of z1 + (22 + x3) & (z1 + x2) + x3 unifies with the left-hand
side of the only rule a4+ b — a+ (b+c). Thus, in the extension of R, we obtain
therule (a4+b)+y— (a+(b+¢c))+y.

Extg(R) is built via a kind of fixpoint construction, i.e., we also have to
consider overlaps between equations of £ and the newly constructed rules of
Ezxtg(R). For example, the subterm x; 4+ 22 also unifies with the left-hand side
of the new rule (a+b) +y — (a+ (b+c)) + y. Thus, one would now construct
anewrule ((a+b)+y)+z—((a+(b+c)) +y)+ =

Obviously, in this way one obtains an infinite number of rules by subsequently
overlapping equations with the newly constructed rules. However, in order to
use Eztg(R) for automated termination proofs, our aim is to restrict ourselves
to finitely many rules. It turns out that we do not have to include new rules
(v[l]x)o = (v[r]z)o in Extg(R) if uo —>§I\Ezt£(R) g ~¢ (v[r])o already holds
for some position 7’ of u and some term ¢ (using just the old rules of Exte(R)).

When constructing the rule ((a+b) +y)+2z — ((a+ (b+c)) +y) + z above,
the equation u ~ v used was z1 + (22 + x3) & (21 + x2) + z3 and the unifier ¢
replaced z; by (a+b) and z2 by y. Hence, here uo is the term (a+b) + (y + x3).
But this term reduces with _>,1£\Eztg(7a) to (a+(b+c))+ (y+x3) which is indeed
~g-equivalent to (v[r],)o, i.e., to ((a+ (b+c)) +y) + 3. Thus, we do not have
to include the rule ((a+b) +y) +2z — ((a+ (b+c)) +y) + z in Extg(R).

The following definition shows how suitable extensions can be computed for
arbitrary equations with identical unique variables. It will turn out that with
these extensions one can indeed simulate —r/¢ by —¢\Eeto(R), 1€, § 2R/ t
implies s —¢\ gat, () t' for some t' ~¢ t. This constitutes a crucial contribu-
tion of the paper, since it is the main requirement needed in order to extend
dependency pairs to rewriting modulo equations.

Definition 8 (Extending R for Arbitrary Equations). Let R be a TRS
and let € be a set of equations. Let R’ be a set containing only rTules of the form

* Obviously, unig(v|r,1) always exists, but it can be infinite in general. So when au-
tomating our approach for equational termination proofs, we have to restrict our-
selves to equations €& where unig(v|x,l) can be chosen to be finite for all subterms
v|~ of equations and left-hand sides of rules I. This includes all sets £ of finitary uni-
fication type, but our restriction is weaker, since we only need finiteness for certain
terms v, and [.



Cllo] — C[ro] (where C is a context, o is a substitution, andl - r € R). R/
s an extension of R for the equations & iff

(a) RCR' and

(b) for alll - r € R, u mv € £ and v = u € &, all positions w of v
and o € unig(v|x,1), there is a position ' in u and a q ~¢ (v[r]z)o with
uo —>§\R, q.

In the following, let Exte(R) always denote an arbitrary extension of R for £.

In order to satisfy Condition (b) of Def. 8, it is always sufficient to add the rule
(v[l]x)o = (v[r]z)o to R'. The reason is that then we have uo —¢\ %, (v[r]x)o-
But if uo —>§'\R, g ~¢ (v[r]z)o already holds with the other rules of R', then
the rule (v[l]z)o — (v[r]s)o does not have to be added to R’.

Condition (b) of Def. 8 also makes sure that as long as the equations have
identical unique variables, we do not have to consider overlaps at variable po-
sitions.® The reason is that if v|, is a variable x € V, then we have uoc =
u[zo|pr ~g ullo)zr =g u[rol. ~g virely = (v[r]x)o, where ©’ is the position of
z in u. Hence, such rules (v[l];)oc — (v[r];)o do not have to be included in R’.

Overlaps at root positions do not have to be considered either. To see this,
assume that 7 is the top position € of v, i.e., that vo ~¢ lo. In this case we have
uo ~g vo ~g lo =g ro and thus, us =%,z ro = (v[r]z)o. So again, such rules
(v[l]x) = (v[r]x)o do not have to be included in R'.

The following procedure is used to compute extensions. Here, we assume both
R and & to be finite, where the equations £ must have identical unique variables.

1. R:=R
2. Foralll - r € R,
all u r v or v~ u from &,
and all positions 7 of v where m # € and v|, € V do:
2.1. Let X := unig (v, ).
2.2. For all o € X do:
221. Let T :={q | uo —)?CE’\R, q for a position 7’ of u}.
2.2.2. If there exists a ¢ € T' with (v[r];)o ~¢ ¢, then ¥ := X'\ {c}.
23. R =R U{(v[l]z)o = (v[r]z)o | o € X}.

This algorithm has the following properties:

(a) If in Step 2.1, unig(v|x,!) is finite and computable, then every step in the
algorithm is computable.

(b) If the algorithm terminates, then the final value of R’ is an extension of R
for the equations &.

5 Note that considering overlaps at variable positions as well would still not allow us
to treat equations with non-linear terms. As an example regard £ = {f(z) ~ g(z,z)}
and R = {g(a,b) — f(a),a — b}. Here, —¢\pot,(r) is well founded although R is
not terminating modulo £.



With the TRS of Ex. 5, Extg(R) = {a+b —>a+(b+c),(a+b)+y—
(a+ (b+c))+y}. In general, if £ only consists of AC-axioms for some function
symbols G, then Def. 8 “coincides” with the well-known extension for AC-axioms,
ie, R = RU{f(l,y) = fr,y)|l = r € R,root(l) = f € G} satisfies the
conditions (a) and (b) of Def. 8. So in case of AC-equations, our approach indeed
corresponds to the approaches of [15,17]. However, Def. 8 can also be used for
other forms of equations.

Ezample 9. As an example, consider the following system from [18].

R=A{ z—0—z, E={(usv)rw ~ (us+w) v}
S(m) —S(y) - T -y,
0-+s(y) — 0,

s(2) +s(y) = s((z —y) +s(y)}

By overlapping the subterm w + w in the right-hand side of the equation with
the left-hand sides of the last two rules we obtain

Exts(R)=RU { (0+s(y)+z—-0+z
(s(z) +s(y)) +z = s((z —y) +s(y) + 2 }-

Note that these are indeed all the rules of Extg(R). Overlapping the sub-
term w <+ v of the equation’s left-hand side with the third rule would result in
(0 +s(y)) + 2/ — 0=+ 2. But this new rule does not have to be included in
Extg(R), since the corresponding other term of the equation, (0 + z') + s(y),
would =%, g, (r)Teduce with the rule (0 +s(y)) + 2z — 0+ 2 to 0+ 2'. Over-
lapping u + v with the left-hand side of the fourth rule is also superfluous.

Similarly, overlaps with the new rules (0 +s(y)) + 2z — 0+ z or (s(z) +
s(y)) + z — s((z — y) + s(y)) +~ z also do not give rise to additional rules in
Extg(R). To see this, overlap the subterm uw + w in the right-hand side of the
equation with the left-hand side of (0 = s(y)) + z — 0 + z. This gives the rule
((0+s(y)) + 2) + 2/ — (0+ 2) + 2'. However, the corresponding other term of
the equation is ((0 + s(y)) + 2’) + z. This reduces at position 1 (or position 11)
to (0+ 2') + z, which is £-equivalent to (0+ z) + z’. Overlaps with the other new
rule (s(z) +s(y)) + z = s((x — y) +s(y)) + z are not needed either.

Nevertheless, the above algorithm for computing extensions does not always
terminate. For example, for R = {a(z) — c(x)}, £ = {a(b(a(z))) ~ b(a(b(x)))},
it can be shown that all extensions Exte(R) are infinite.

We prove below that Extg(R) (according to Def. 8) has the desired property
needed to reduce rewriting modulo equations to £-extended rewriting. The fol-
lowing important lemma states that whenever s rewrites to ¢ with —% /¢ modulo
&, then s also rewrites with —¢\ go¢. (%) to a term which is £-equivalent to t.

6 Our extension Exte has some similarities to the construction of contexts in [23].
However, in contrast to [23] we also consider the rules of R’ in Condition (b) of Def.
8 in order to reduce the number of rules in Exte. Moreover, in [23] equations may
also be non-linear (and thus, Lemma 10 does not hold there).



Lemma 10 (Connection between — /s and —¢\ g, (r))- Let R be a TRS
and let & be a set of equations with identical unique variables. If s —r /¢ t, then
there exists a term t' ~¢ t such that s =g\ gae () t'-

Proof. Let s —g/¢ t, i.e., there exist terms so,...,s,,p with n > 0 such that
s = 8p Hg sp_1 He ... He so = p ~¢ t. For the lemma, it suffices to show
that there is a t' ~¢ p such that s —¢\ g, (r) t', since t’ ~¢ p implies t' ~¢ t.

We perform induction on n. If n = 0, we have s = s, = sg —x p. This
implies s —¢\ gt () P since R C Exte(R). So with ¢’ = p the claim is proved.

If n > 0, the induction hypothesis implies s = s, He 5,1 —g\Eate(r)
such that ¢ ~g p. So there exists an equation v ~ v or v ~ u from £ and a
rule [ — r from Extg(R) such that s|, = ud, sp_1 = s[vd],, sn_1l¢ ~¢ 16, and
t' = s,_1[rd]¢ for positions 7 and ¢ and a substitution §. We can use the same
substitution § for instantiating the equation v ~ v (or v = u) and the rule { — r,
since equations and rules are assumed variable disjoint. We now perform a case
analysis depending on the relationship of the positions 7 and &.

Case 1: 7 = {r for some 7. In this case, we have s|¢ = s|¢[ud]. He s|¢[vd]r =
Sn—1l¢ ~¢ 10. This implies 5 — ¢\ gotz (R) 8[rd]e = sn_1[rd]e = t', as desired.

Case 2: 7L£.  Now we have s|¢ = 5, 1]¢ ~¢ 10 and thus, s —¢\ gar, (r) 8[10]e =
s[réle[ud], He s[rdle[vd], = s[vd] [rdle = sp_1[réle =t'.

Case 3: £ = 7w for some 7.  Thus, (vd)|, ~¢ [§. We distinguish two sub-cases.

Case 3.1: ud — ¢\ Eote(r) ¢ ~€ (V[r]7)d for some term g. This implies s = s[ud].
—e\Eate(R) Slalr ~e s[vlr]xdl; = (s[vd])[ré]e = sna[rdle = ¢'.

Case 3.2: Otherwise.  First assume that m = 772 where v|,, is a variable x.
Hence, (v0)|x = 6(x)|x,- Let ¢'(y) = d(y) for y # = and let ¢'(z) = §(x)[rd]x,.
Since u ~ v (or v & w) is an equation with identical unique variables, z also
occurs in u at some position 7’. This implies ud|r/r, = 0(2)|r, ~e 10 = Eai(R)
vte(R) UO[TOlaim, = ud" ~g v§' = (v[r]z)d in
contradiction to the condition of Case 3.2.

Hence, 7 is a position of v and v|, is not a variable. Thus, (v8)|, = v|zd ~g 16.
Since rules and equations are assumed variable disjoint, the subterm v|, £-unifies
with [. Thus, there exists a o € unig(v|,,!) such that § ~¢ op.

Due to the Condition (b) of Def. 8, there is a term ¢’ such that uo —>§'\E1t£(R)

H 7|"7|'2
rd. Hence, we obtain ud —e\B

q' ~¢ (v[r]x)o. Since 7’ is a position in u, we have u|r/0 ~¢ 0 = gas, (r) ¢”, Where
q" = uolq"|x. This also implies u|r/d ~¢ u|rop ~e © =g, (r) ¢"p, and thus
Ud =F\ gt (r) UOlA plnr ~e uolq"|wp = q'p ~e (v[r]x)op ~e (v[r]x)d. This is a
contradiction to the condition of Case 3.2. O

The following theorem shows that Exts indeed has the desired property.

Theorem 11 (Termination of R/E by £-Extended Rewriting). Let R be
a TRS, let € be a set of equations with identical unique variables, and let t be
a term. Then t does not start an infinite —r¢-reduction iff t does not start



an infinite — ¢\ et (r)-reduction. So in particular, R is terminating modulo &
(i.e., = /e is well founded) iff — g\ Eote(r) 15 well founded.

Proof. The “only if” direction is straightforward because — g, (r)=—r and

therefore, — ¢\ pate (R) C = Eate (R)/€ = I R/E-
For the “if” direction, assume that ¢ starts an infinite — /¢-reduction

t=1to =r/e t1 7r/e t2 7R/ ---

For every ¢ € IN, let f;11 be a function from terms to terms such that for every
ti; ~e ti, fiy1(t;) is a term E-equivalent to ;41 such that t; — g\ pare (r) fir1(t])-
These functions f;; must exist due to Lemma 10, since t; ~¢ t; and ¢; —R/E
tiy1 implies t; =g /¢ tiy1. Hence, t starts an infinite — ¢\ g, (r)-reduction:

t = e\Batg(R) J1(t) = e\Eotg(R) F2(f1(8)) = e\Bats (r) [3(F2(f1(8)) = e\Botg(r) --- O

5 Dependency Pairs for Rewriting Modulo Equations

In this section we finally extend the dependency pair approach to rewriting
modulo equations: To show that R modulo £ terminates, one first constructs
the extension Fztg(R) of R. Subsequently, dependency pairs can be used to
prove well-foundedness of —¢\ gt () (Which is equivalent to termination of R
modulo £). The idea for the extension of the dependency pair approach is simply
to modify Thm. 3 as follows.

1. The equations should be satisfied by the equivalence ~ corresponding to the
quasi-ordering -, i.e., we demand u ~ v for all equations u ~ v in £.

2. A similar requirement is needed for equations u &~ v when the root symbols
of u and v are replaced by the corresponding tuple symbols. We denote
tuples of terms si, ..., s, by s and for any term ¢t = f(s) with a defined root
symbol f, let ¢! be the term F(s). Hence, we also have to demand uf ~ ot

3. The notion of “defined symbols” must be changed accordingly. As before, all
root symbols of left-hand sides of rules are regarded as being defined, but
if there is an equation f(u) = g(v) in £ and f is defined, then g must be
considered defined as well, as otherwise we would not be able to trace the
redex in a reduction by only regarding subterms with defined root symbols.

Definition 12 (Defined Symbols for Rewriting Modulo Equations). Let
R be a TRS and let € be a set of equations. Then the set of defined symbols D
of R/E is the smallest set such that D = {root(l) | I = r € R}U {root(v) |u =~
veE&orvrucé, root(u) € D}.

The constraints of the dependency pair approach as sketched above are not
yet sufficient for termination of — ¢\ as the following example illustrates.

Ezample 13. Consider R = {f(z) — z} and £ = {f(a) ~ a}. There is no depen-
dency pair in this example and thus, the only constraints would be f(z) = =z,
f(a) ~ a, and F(a) ~ A. Obviously, these constraints are satisfiable (by using
an equivalence relation ~ where all terms are equal). However, — ¢\ is not
terminating since we have a Hg f(a) »g aHg f(a) =g aHe ...

10



The soundness of the dependency pair approach for ordinary rewriting (Thm.
3) relies on the fact that an infinite reduction from a minimal non-terminating
term can be achieved by applying only normalized instantiations of R-rules. But
for £-extended rewriting (or full rewriting modulo equations), this is not true
any more. For instance, the minimal non-terminating subterm a in Ex. 13 is first
modified by applying an E-equation (resulting in f(a)) and then an R-rule is
applied whose variable is instantiated with the non-terminating term a. Hence,
the problem is that the new minimal non-terminating subterm a which results
from application of the R-rule does not correspond to the right-hand side of a
dependency pair, because this minimal non-terminating subterm is completely
inside the instantiation of a variable of the R-rule. With ordinary rewriting, this
situation can never occur.

In Ex. 13, the problem can be avoided by adding a suitable instance of the
rule f(z) — x (viz. f(a) — a) to R, since this instance is used in the infinite re-
duction. Now there would be a dependency pair (F(a), A) and with the additional
constraint F(a) > A the resulting inequalities are no longer satisfiable.

The following definition shows how to add the right instantiations of the
rules in R in order to allow a sound application of dependency pairs. As usual,
a substitution v is called a variable renaming iff the range of v only contains
variables and if v(z) # v(y) for z # y.

Definition 14 (Adding Instantiations). Given a TRS R, a set £ of equa-
tions, let R’ be a set containing only rules of the form lo — ro (where o is a
substitution and | — r € R). R’ is an instantiation of R for the equations &£ iff

(a) RC R,

(b) foralll = r e R,allu~v € € andv~u €&, and all 0 € unig(v,l), there
exists a rule I' — ' € R’ and a variable renaming v such that lo ~¢ l'v and
ro ~g r'v.

In the following, let Insg(R) always denote an instantiation of R for €.

Unlike extensions Ezts(R), instantiations Insg(R) are never infinite if R
and £ are finite and if unig (v,1) is always finite (i.e., they are not defined via a
fixpoint construction). In fact, one might even demand that for alll — r € R, all
equations, and all o from the corresponding complete set of E-unifiers, Insg(R)
should contain lc — ro. The condition that it is enough if some £-equivalent
variable-renamed rule is already contained in Insg(R) is only added for efficiency
considerations in order to reduce the number of rules in Insg(R). Even without
this condition, Insg(R) would still be finite and all the following theorems would
hold as well.

However, the above instantiation technique only serves its purpose if there
are no collapsing equations (i.e., no equations u &~ v or v &~ u with v € V).

Ezample 15. Consider R = {f(z) — 2} and £ = {f(z) = z}. Note that Insg(R)
= R. Although — ¢\ is clearly not terminating, the dependency pair approach
would falsely prove termination of —¢\x, since there is no dependency pair.

Now we can present the main result of the paper.

11



Theorem 16 (Termination of Equational Rewriting using Dependency
Pairs). Let R be a TRS and let € be a set of non-collapsing equations with iden-
tical unique variables. R is terminating modulo £ (i.e., —x /¢ is well founded) if
there exists a weakly monotonic quasi-ordering = and a well-founded ordering >
compatible with 7, where both 7~ and > are closed under substitution, such that

(1) s >t for all dependency pairs (s,t) of Insg(Exts(R)),

(2) 1z r for all rulesl — r of R,

(8) u ~ v for all equations u ~ v of £, and

(4) uf ~ vt for all equations u ~ v of & where root(u) and root(v) are defined.

Proof. Suppose that there is a term ¢ with an infinite —% ¢-reduction. Thm.
11 implies that ¢ also has an infinite — ¢\ par, (r)-reduction. By a minimality
argument, t = C[t'], where t' is an minimal non-terminating term (i.e., t' is
non-terminating, but all its subterms only have finite — ¢\ ga, (r)-reductions).
We will show that there exists a term ¢, with ¢ _>2'F\Ewtg(72) t1, t; contains a

minimal non-terminating subterm ¢}, and ¢' # Z o> tflﬁ. By repeated application
of this construction we obtain an infinite sequence t —>;\ Bote(R) tq —>2'\ Bate(R)

to %z\Eztg(R) ... such that t* = o > t|* = o> t,* = o > .... This, however, is
a contradiction to the well-foundedness of >.

Let ¢’ have the form f(u). In the infinite — ¢\ pos, (r)-reduction of f(u), first
some — ¢\ gat (R)-Steps may be applied to w which yields new terms v. Note that
due to the definition of £-extended rewriting, in these reductions, no £-steps can
be applied outside of w. Due to the termination of w, after a finite number of
those steps, an — ¢\ pot. (r)-step must be applied on the root position of f(v).

Thus, there exists a rule [ — r € Extg(R) such that f(v) ~¢ la and hence,
the reduction yields ra. Now the infinite — ¢\ ga¢, (r)-reduction continues with
ra, i.e., the term ra starts an infinite — ¢\ ga, (r)-reduction, too. So up to now
the reduction has the following form (where — g,, () equals —x):

t = Clf (W] =28\ Bate (r) CLf (V)] ~¢ Clla] = pate (r) Clral.

We perform a case analysis depending on the positions of £-steps in f(v) ~¢ la.

First consider the case where all E-steps in f(v) ~¢ la take place below the
root. Then we have [ = f(w) and v ~¢ wa. Let t; := C[ra]. Note that v do not
start infinite —¢\ ger. (r)-reductions and by Thm. 11, they do not start infinite
—g/e-reductions either. But then wa also cannot start infinite — /¢-reductions
and therefore they also do not start infinite — ¢\ ga¢, (r)-reductions. This implies
that for all variables z occurring in f(w) the terms a(z) are terminating. Thus,
since r«a starts an infinite reduction, there occurs a non-variable subterm s in
r, such that #; := sa is a minimal non-terminating term. Since (I*,s) is a
dependency pair, we obtain ¢'* = F(u) = F(v) ~ lfa > sfa = t’lu. Here, F(u) 7
F(v) holds since w =%, g, () v and since | 7 r for every rule I — r € Exts(R).

Now we consider the case where there are E-steps in f(v) ~¢ la at the root
position. Thus we have f(v) ~¢ f(q) He p ~¢ la, where f(q) He p is the first

12



E-step at the root position. In other words, there is an equation u ~ v or v & u
in &€ such that f(q) is an instantiation of v.

Note that since v ~¢ g, the terms g only have finite —¢\ po¢. (r)-reductions
(the argumentation is similar as in the first case). Let § be the substitution which
operates like @ on the variables of [ and which yields vd = f(q). Thus, § is an
E-unifier of [ and v. Since ! is £-unifiable with v, there also exists a corresponding
complete E-unifier o from unig(l,v). Thus, there is also a substitution p such
that § ~¢ op. As I is a left-hand side of a rule from Extg(R), there is a rule
I" = 7" in Insg(Extg(R)) and a variable renaming v such that lo ~¢ I'v and
ro ~g r'v.

Hence, vop ~g véd = f(q), l'vp ~g lop ~g 16 = la, and r'vp ~g rop ~g 76 =
ra. So instead we now consider the following reduction (where — 1,5, (Eate (7))
equals —g):

t = Clf (W] =&\ gare(r) CL (V)] ~e ClUVP] S nse(Bate(r)) Clr'vpl = th.

Since all proper subterms of vé only have finite — 5 ¢-reductions, for all
variables z of I'v, the term zp only has finite —% /¢-reductions and hence, also
only finite — ¢\ gzt (r)-reductions. To see this, note that since all equations have
identical unique variables, vo ~¢ lo ~¢ I'v implies that all variables of I'v also
occur in vo. Thus, if z is a variable from ['v, then there exists a variable y in
v such that z occurs in yo. Since £ does not contain collapsing equations, y is
a proper subterm of v and thus, yé is a proper subterm of vd. As all proper
subterms of vd only have finite —5 ¢-reductions, this implies that yé only has
finite —% /¢-reductions, too. But then, since yd ~¢ yop, the term yop only has
finite — /¢-reductions, too. Then this also holds for all subterms of yop, i.e.,
all = /¢-reductions of xp are also finite.

So for all variables  of I', zvp only has finite — ¢\ ge, (r)-reductions. (Note
that this only holds because v is just a variable renaming.) Since ra starts an
infinite — ¢\ pat (r)-reduction, r'vp ~¢ o must start an infinite — /se-reduction
(and hence, an infinite — g\ gt (r)-reduction) as well. As for all variables z of
r', zvp is —>£\Exte (R)-terminating, there must be a non-variable subterm s of

r', such that #, := svp is a minimal non-terminating term. As (I'*,s!) is a
dependency pair, we obtain ¢/ = F(u) = F(v) ~¢ up > stup = t’lu. Here,
F(v) ~¢ I""vp is a consequence of Condition (4). O

Now termination of the division-system (Ex. 9) can be proved by depen-

dency pairs. Here we have Insg(Extg(R)) = Extg(R) and thus, the resulting
constraints are

M(s(z),s(y)) > M(z,y) Q(0+s(y),2) > Q(0,2)
Q(s(w),s(y)) > M(I,y) Q(S(CIZ) TS(y),Z) > M(I,
Q(s(z),s(y)) > Qz —y,s(y))  Q(s(x) +s(y), 2) > Az — y,s(y))
Q(s(x) +s(y), 2) > Q(s((z — y) +s(y)), 2)

as well as [ - r for all rules | — r, (u+v) +w ~ (u+ w) + v, and Q(u +
v,w) ~ Q(u + w,v). (Here, M and Q are the tuple symbols for the minus-
symbol “—” and the quot-symbol “+”.) As explained in Sect. 2 one may again
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eliminate arguments of function symbols before searching for suitable orderings.
In this example we will eliminate the second arguments of —, +, M, and Q
(i.e., every term s — t is replaced by —'(s), etc.). Then the resulting inequalities
are satisfied by the rpo with the precedence +' 7 s I -/, Q' I M’. Thus,
with the method of the present paper, one can now verify termination of this
example automatically for the first time. This example also demonstrates that
by using dependency pairs, termination of equational rewriting can sometimes
even be shown by ordinary base orderings (e.g., the ordinary rpo which on its
own cannot be used for rewriting modulo equations).

6 Conclusion

We have extended the dependency pair approach to equational rewriting. In the
special case of AC-axioms, our method is similar to the ones previously presented
in [15,17]. In fact, as long as the equations only consist of AC-axioms, one can
show that using the instances Ins¢ in Thm. 16 is not necessary.” (Hence, such a
concept cannot be found in [17]). However, even then the only additional inequal-
ities resulting from Insg are instantiations of other inequalities already present
and inequalities which are special cases of an AC-deletion property (which is sat-
isfied by all known AC-orderings and similar to the one required in [15]). This
indicates that in practical examples with AC-axioms, our technique is at least
as powerful as the ones of [15,17] (actually, we conjecture that for AC-examples,
these three techniques are virtually equally powerful). But compared to the ap-
proaches of [15, 17], our technique has a more elegant treatment of tuple symbols.
(For example, if the TRS contains a rule f(¢1,t2) — g(f(s1, s2), s3) were f and g
are defined AC-symbols, then we do not have to extend the TRS by rules with
tuple symbols like f(t1,t2) — G(f(s1, s2), s2) in [17]. Moreover, we do not need
dependency pairs where tuple symbols occur outside the root position such as
(F(F(t1,%2),v),...)in [17] and [15] and (F(t1,%2), G(F(s1, s2), s3)) in [15]. Finally,
we also do not need the “AC-marked condition” F(f(z,y),z) ~ F(F(z,y),2) of
[15].) But most significantly, unlike [15,17] our technique works for arbitrary
non-collapsing equations £ with identical unique variables where £-unification
is finitary (for subterms of equations and left-hand sides of rules). Obviously,
an implementation of our technique also requires £-unification algorithms [5] for
the concrete sets of equations £ under consideration.

In [1-3], Arts and Giesl presented the dependency graph refinement which is
based on the observation that it is possible to treat subsets of the dependency
pairs separately. This refinement carries over to the equational case in a straight-
forward way (by using £-unification to compute an estimation of this graph). For
details on this refinement and for further examples to demonstrate the power
and the usefulness of our technique, the reader is referred to [11].

Acknowledgments. We thank A. Middeldorp, T. Arts, and the referees for comments.

" Then in the proof of Thm. 16, instead of a minimal non-terminating term ¢ one re-
gards a term ¢’ which is non-terminating and minimal up to some extra f-occurrences
on the top (where f is an AC-symbol).
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