
Dependen
y Pairs for Equational Rewriting

?

J�urgen Giesl

1

and Deepak Kapur

2

1

LuFG Informatik II, RWTH Aa
hen, Ahornstr. 55, 52074 Aa
hen, Germany,

giesl�informatik.rwth-aa
hen.de

2

Computer S
ien
e Dept., University of New Mexi
o, Albuquerque, NM 87131, USA

kapur�
s.unm.edu

Abstra
t. The dependen
y pair te
hnique of Arts and Giesl [1{3℄ for

termination proofs of term rewrite systems (TRSs) is extended to rewrit-

ing modulo equations. Up to now, su
h an extension was only known in

the spe
ial
ase of AC-rewriting [15, 17℄. In
ontrast to that, the pro-

posed te
hnique works for arbitrary non-
ollapsing equations (satisfying

a
ertain linearity
ondition). With the proposed approa
h, it is now pos-

sible to perform automated termination proofs for many systems where

this was not possible before. In other words, the power of dependen
y

pairs
an now also be used for rewriting modulo equations.

1 Introdu
tion

Termination of term rewriting (e.g., [1{3, 9, 22℄) and termination of rewriting

modulo asso
iativity and
ommutativity equations (e.g., [8, 13, 14, 20, 21℄) have

been extensively studied. For equations other than AC-axioms, however, there

are only a few te
hniques available to prove termination (e.g., [6, 10, 16, 18℄).

This paper presents an extension of the dependen
y pair approa
h [1{3℄ to

rewriting modulo equations. In the spe
ial
ase of AC-axioms, our te
hnique

orresponds to the methods of [15, 17℄, but in
ontrast to these methods, our

te
hnique
an also be used if the equations are not AC-axioms. This allows mu
h

more automated termination proofs for equational rewrite systems than those

possible with dire
tly applying simpli�
ation orderings for equational rewriting

(like equational polynomial orderings or AC-versions of path orderings).

We �rst review dependen
y pairs for ordinary term rewriting in Se
t. 2.

In Se
t. 3, we show why a straightforward extension of dependen
y pairs to

rewriting modulo equations is not possible. Therefore, we follow an idea similar

to the one of [17℄ for AC-axioms: We
onsider a restri
ted form of equational

rewriting, whi
h is more suitable for termination proofs with dependen
y pairs.

In Se
t. 4, we show how to ensure that termination of this restri
ted equa-

tional rewrite relation is equivalent to termination of full rewriting modulo equa-

tions. Under
ertain
onditions on the equations E , we show how to
ompute an

?

Pro
eedings of the 12th International Conferen
e on Rewriting Te
hniques and Ap-

pli
ations, RTA-2001, Utre
ht, The Netherlands, Le
ture Notes in Computer S
i-

en
e, Springer-Verlag. Supported by the Deuts
he Fors
hungsgemeins
haft Grant

GI 274/4-1 and the National S
ien
e Foundation Grants nos. CCR-9996150, CDA-

9503064, CCR-9712396.

extended rewrite system Ext

E

(R) from the given TRS R su
h that the restri
ted

rewrite relation of Ext

E

(R) modulo E is terminating i� R is terminating modulo

E . This is proved for (almost) arbitrary E-rewriting, thus generalizing a related

result for AC-rewriting. This general result may be of independent interest, and

may also be useful in investigating other properties of E-rewriting. Finally, in

Se
t. 5, we extend the dependen
y pair approa
h to rewriting modulo equations.

2 Dependen
y Pairs for Ordinary Rewriting

The dependen
y pair approa
h allows the use of standard methods like simpli-

�
ation orderings [9, 22℄ for automated termination proofs where they were not

appli
able before. In this se
tion we brie
y summarize the basi

on
epts of this

approa
h. All results in this se
tion are due to Arts and Giesl and we refer to

[1{3℄ for further details, re�nements, and explanations.

In
ontrast to the standard te
hniques for termination proofs, whi
h
om-

pare left and right-hand sides of rules, in this approa
h one
on
entrates on the

subterms in the right-hand sides that have a de�ned

1

root symbol, be
ause these

are the only terms responsible for starting new redu
tions.

More pre
isely, for every rule f(s

1

; : : : ; s

n

)! C[g(t

1

; : : : ; t

m

)℄ (where f and g

are de�ned symbols), we
ompare the argument tuples s

1

; : : : ; s

n

and t

1

; : : : ; t

m

.

To avoid the handling of tuples, for every de�ned symbol f , we introdu
e a

fresh tuple symbol F . To ease readability, we assume that the original signature

onsists of lower
ase fun
tion symbols only, whereas the tuple symbols are

denoted by the
orresponding upper
ase symbols. Now instead of the tuples

s

1

; : : : ; s

n

and t

1

; : : : ; t

m

we
ompare the terms F (s

1

; : : : ; s

n

) and G(t

1

; : : : ; t

m

).

De�nition 1 (Dependen
y Pair [1{3℄). If f(s

1

; : : : ; s

n

) ! C[g(t

1

; : : : ; t

m

)℄

is a rule of a TRSR and g is a de�ned symbol, then hF (s

1

; : : : ; s

n

); G(t

1

; : : : ; t

m

)i

is a dependen
y pair of R.

Example 2. As an example,
onsider the TRS fa + b ! a + (b +
)g,
f. [17℄.

Termination of this system
annot be shown by simpli�
ation orderings, sin
e the

left-hand side of the rule is embedded in the right-hand side. In this system, the

de�ned symbol is + and thus, we obtain the dependen
y pairs hP(a; b);P(a; b+
)i

and hP(a; b);P(b;
)i (where P is the tuple symbol for the plus-fun
tion \+").

Arts and Giesl developed the following new termination
riterion. As usual,

a quasi-ordering % is a re
exive and transitive relation, and we say that an

ordering > is
ompatible with % if we have > Æ % � > or % Æ >� >.

Theorem 3 (Termination with Dependen
y Pairs [1{3℄). A TRS R is

terminating i� there exists a weakly monotoni
 quasi-ordering % and a well-

founded ordering >
ompatible with %, where both % and > are
losed under

substitution, su
h that

1

Root symbols of left-hand sides are de�ned and all other fun
tions are
onstru
tors.

2

(1) s > t for all dependen
y pairs hs; ti of R and

(2) l % r for all rules l! r of R.

Consider the TRS from Ex. 2 again. In order to prove its termination a
-

ording to Thm. 3, we have to �nd a suitable quasi-ordering % and ordering >

su
h that P(a; b) > P(a; b+
), P(a; b) > P(b;
), and a+ b % a+ (b+
).

Most standard orderings amenable to automation are strongly monotoni

(
f. e.g. [9, 22℄), whereas here we only need weak monotoni
ity. Hen
e, before

synthesizing a suitable ordering, some of the arguments of fun
tion symbols may

be eliminated,
f. [3℄. For example, in our inequalities, one may eliminate the

�rst argument of +. Then every term s+t in the inequalities is repla
ed by +

0

(t)

(where +

0

is a new unary fun
tion symbol). By
omparing the terms resulting

from this repla
ement instead of the original terms, we
an take advantage of

the fa
t that + does not have to be strongly monotoni
 in its �rst argument.

Note that there are only �nitely many possibilities to eliminate arguments of

fun
tion symbols. Therefore all these possibilities
an be
he
ked automati
ally.

In this way, we obtain the inequalities P(a; b) > P(a;+

0

(
)), P(a; b) > P(b;
),

and +

0

(b) % +

0

(+

0

(
)). These inequalities are satis�ed by the re
ursive path

ordering (rpo) [9℄ with the pre
eden
e a A b A
 A +

0

(i.e., we
hoose % to

be %

rpo

and > to be �

rpo

). So termination of this TRS
an now be proved

automati
ally. For implementations of the dependen
y pair approa
h see [4, 7℄.

3 Rewriting Modulo Equations

For a set E of equations between terms, we write s !

E

t if there exist an

equation l � r in E , a substitution �, and a
ontext C su
h that s = C[l�℄ and

t = C[r�℄. The symmetri

losure of !

E

is denoted by à

E

and the transitive

re
exive
losure of à

E

is denoted by �

E

. In the following, we restri
t ourselves

to equations E where �

E

is de
idable.

De�nition 4 (Rewriting Modulo Equations). Let R be a TRS and let E be

a set of equations. A term s rewrites to a term t modulo E, denoted s !

R=E

t,

i� there exist terms s

0

and t

0

su
h that s �

E

s

0

!

R

t

0

�

E

t. The TRS R is
alled

terminating modulo E i� there does not exist an in�nite !

R=E

redu
tion.

Example 5. An interesting spe
ial
ase are equations E whi
h state that
ertain

fun
tion symbols are asso
iative and
ommutative (AC). As an example,
on-

sider the TRSR = fa+b! a+(b+
)g again and let E
onsist of the asso
iativity

and
ommutativity axioms for +, i.e., E = fx

1

+ x

2

� x

2

+ x

1

; x

1

+ (x

2

+ x

3

) �

(x

1

+ x

2

) + x

3

g,
f. [17℄. R is not terminating modulo E , sin
e we have

a+b!

R

a+(b+
) �

E

(a+b)+
!

R

(a+(b+
))+
 �

E

((a+b)+
)+
!

R

: : :

There are, however, many other sets of equations E apart from asso
iativity

and
ommutativity, whi
h are also important in pra
ti
e,
f. [11℄. Hen
e, our aim

is to extend dependen
y pairs to rewriting modulo (almost) arbitrary equations.

3

The soundness of dependen
y pairs for ordinary rewriting relies on the fa
t

that whenever a term starts an in�nite redu
tion, then one
an also
onstru
t

an in�nite redu
tion where only terminating or minimal non-terminating sub-

terms are redu
ed (i.e., one only applies rules to redexes without proper non-

terminating subterms). The
ontexts of minimal non-terminating redexes
an

be
ompletely disregarded. If a rule is applied at the root position of a minimal

non-terminating subterm s (i.e., s !

�

R

t where � denotes the root position),

then s and ea
h minimal non-terminating subterm t

0

of t
orrespond to a depen-

den
y pair. Hen
e, Thm. 3 (1) implies s > t

0

. If a rule is applied at a non-root

position of a minimal non-terminating subterm s (i.e., s !

>�

R

t), then we have

s % t by Thm. 3 (2). However, due to the minimality of s, after �nitely many

su
h non-root rewrite steps, a rule must be applied at the root position of the

minimal non-terminating term. Thus, every in�nite redu
tion of minimal non-

terminating subterms
orresponds to an in�nite >-sequen
e. This
ontradi
ts

the well-foundedness of >.

So for ordinary rewriting, any in�nite redu
tion from a minimal non-termi-

nating subterm involves an R-redu
tion at the root position. But as observed in

[15℄, when extending the dependen
y pair approa
h to rewriting modulo equa-

tions, this is no longer true. For an illustration,
onsider Ex. 5 again, where

a + (b +
) is a minimal non-terminating term. However, in its in�nite R=E-

redu
tion no R-step is ever appli
able at the root position. (Instead one applies

an E-step at the root position and further R- and E-steps below the root.)

In the rest of the paper, from a rewrite system R, we generate a new rewrite

system R

0

with the following three properties: (i) the termination of a weaker

form of rewriting by R

0

modulo E is equivalent to the termination of R modulo

E , (ii) every in�nite redu
tion of a minimal non-terminating term in this weaker

form of rewriting by R

0

modulo E involves a redu
tion step at the root level, and

(iii) every su
h minimal non-terminating term has an in�nite redu
tion where

the variables of the R

0

-rules are instantiated with terminating terms only.

4 E-Extended Rewriting

We showed why the dependen
y pair approa
h
annot be extended to rewriting

modulo equations dire
tly. As a solution for this problem, we propose to
onsider

a restri
ted form of rewriting modulo equations, i.e., the so-
alled E-extended R-

rewrite relation !

EnR

. (This approa
h was already taken in [17℄ for rewriting

modulo AC.) The relation!

EnR

was originally introdu
ed in [19℄ in order to
ir-

umvent the problems with in�nite or impra
ti
ally large E-equivalen
e
lasses.

2

De�nition 6 (E-extended R-rewriting [19℄). Let R be a TRS and let E be

a set of equations. The E-extended R-rewrite relation is de�ned as s!

�

EnR

t i�

sj

�

�

E

l� and t = s[r�℄

�

for some rule l ! r in R, some position � of s, and

some substitution �. We also write !

EnR

instead of !

�

EnR

.

2

In [12℄, the relation !

EnR

is denoted \!

R;E

".

4

To demonstrate the di�eren
e between !

R=E

and !

EnR

,
onsider Ex. 5

again. We have already seen that !

R=E

is not terminating, sin
e a + b !

R=E

(a+ b) +
!

R=E

((a+ b) +
) +
!

R=E

: : : But !

EnR

is terminating, be
ause

a+ b!

EnR

a+ (b+
), whi
h is a normal form w.r.t. !

EnR

.

The above example also demonstrates that in general, termination of !

EnR

is not suÆ
ient for termination of !

R=E

. In this se
tion we will show how ter-

mination of !

R=E

an nevertheless be ensured by only regarding an E-extended

rewrite relation indu
ed by a larger R

0

� R.

For the spe
ial
ase of AC-rewriting, this problem
an be solved by extending

R as follows: Let G be the set of all AC-symbols and

Ext

AC(G)

= R[ff(l; y)! f(r; y) j l! r 2 R; root(l) = f 2 Gg;

where y is a new variable not o

urring in the respe
tive rule l ! r. A similar

extension has also been used in previous work on extending dependen
y pairs

to AC-rewriting [17℄. The reason is that for AC-equations E , the termination of

!

R=E

is in fa
t equivalent to the termination of !

EnExt

AC(G)

(R)

.

For Ex. 5, we obtain Ext

AC(G)

(R) = fa + b ! a + (b +
); (a + b) + y !

(a+(b+
))+yg. Thus, in order to prove termination of!

R=E

, it is now suÆ
ient

to verify termination of !

EnExt

AC(G)

(R)

.

The above extension of [19℄ only works for AC-axioms E . A later paper [12℄

treats arbitrary equations, but it does not
ontain any de�nition for extensions

Ext

E

(R), and termination of !

R=E

is always a prerequisite in [12℄. The reason

is that [12℄ and also subsequent work on symmetrization and
oheren
e were

devoted to the development of
ompletion algorithms (i.e., here the goal was

to generate a
onvergent rewrite system and not to investigate the termination

behavior of possibly non-terminating TRSs). Thus, these papers did not
ompare

the termination behavior of full rewriting modulo equations with the termination

of restri
ted versions of rewriting modulo equations. In fa
t, [12℄ fo
uses on the

notion of
oheren
e, whi
h is not suitable for our purpose sin
e
oheren
e of EnR

modulo E does not imply that termination of!

R=E

is equivalent to termination

of !

EnR

.

3

To extend dependen
y pairs to rewriting modulo non-AC-equations E , we

have to
ompute extensions Ext

E

(R) su
h that termination of !

R=E

is equiv-

alent to termination of !

EnExt

E

(R)

. The only restri
tion we will impose on the

equations in E is that they must have identi
al unique variables. This require-

ment is satis�ed by most pra
ti
al examples where R=E is terminating. As usual,

a term t is
alled linear if no variable o

urs more than on
e in t.

De�nition 7 (Equations with Identi
al Unique Variables [19℄). An equa-

tion u � v is said to have identi
al unique variables if u and v are both linear

and the variables in u are the same as the variables in v.

3

In [12℄, EnR is
oherent modulo E i� for all terms s; t; u, we have that s �

E

t!

+

EnR

u

implies s !

+

EnR

v �

E

w

�

EnR

u for some v; w. Consider R = fa + b ! a + (b +

); x + y ! dg with E being the AC-axioms for +. The above system is
oherent,

sin
e s �

E

t !

+

EnR

u implies s !

+

R

d

�

R

u. However, !

EnR

is terminating but

!

R=E

is not terminating.

5

Let uni

E

(s; t) denote a
omplete set of E-uni�ers of two terms s and t. As

usual, Æ is an E-uni�er of s and t i� sÆ �

E

tÆ and a set uni

E

(s; t) of E-uni�ers is

omplete i� for every E-uni�er Æ there exists a � 2 uni

E

(s; t) and a substitution

� su
h that Æ �

E

��,
f. [5℄. (\��" is the
omposition of � and � where � is

applied �rst and \Æ �

E

��" means that for all variables x we have xÆ �

E

x��.)

To
onstru
t Ext

E

(R), we
onsider all overlaps between equations u � v or

v � u from E and rules l ! r from R. More pre
isely, we
he
k whether a non-

variable subterm vj

�

of v E-uni�es with l (where we always assume that rules

in R are variable disjoint from equations in E). In this
ase one adds the rules

(v[l℄

�

)� ! (v[r℄

�

)� for all � 2 uni

E

(vj

�

; l).

4

In Ex. 5, the subterm x

1

+ x

2

of

the right-hand side of x

1

+ (x

2

+ x

3

) � (x

1

+ x

2

) + x

3

uni�es with the left-hand

side of the only rule a+ b! a+ (b+
). Thus, in the extension of R, we obtain

the rule (a+ b) + y ! (a+ (b+
)) + y.

Ext

E

(R) is built via a kind of �xpoint
onstru
tion, i.e., we also have to

onsider overlaps between equations of E and the newly
onstru
ted rules of

Ext

E

(R). For example, the subterm x

1

+ x

2

also uni�es with the left-hand side

of the new rule (a+ b) + y ! (a+ (b+
)) + y. Thus, one would now
onstru
t

a new rule ((a+ b) + y) + z ! ((a+ (b+
)) + y) + z.

Obviously, in this way one obtains an in�nite number of rules by subsequently

overlapping equations with the newly
onstru
ted rules. However, in order to

use Ext

E

(R) for automated termination proofs, our aim is to restri
t ourselves

to �nitely many rules. It turns out that we do not have to in
lude new rules

(v[l℄

�

)� ! (v[r℄

�

)� in Ext

E

(R) if u� !

�

0

EnExt

E

(R)

q �

E

(v[r℄

�

)� already holds

for some position �

0

of u and some term q (using just the old rules of Ext

E

(R)).

When
onstru
ting the rule ((a+ b)+ y)+ z ! ((a+(b+
))+ y)+ z above,

the equation u � v used was x

1

+ (x

2

+ x

3

) � (x

1

+ x

2

) + x

3

and the uni�er �

repla
ed x

1

by (a+b) and x

2

by y. Hen
e, here u� is the term (a+b)+(y+x

3

).

But this term redu
es with!

1

EnExt

E

(R)

to (a+(b+
))+(y+x

3

) whi
h is indeed

�

E

-equivalent to (v[r℄

�

)�, i.e., to ((a+ (b+
)) + y) + x

3

. Thus, we do not have

to in
lude the rule ((a+ b) + y) + z ! ((a+ (b+
)) + y) + z in Ext

E

(R).

The following de�nition shows how suitable extensions
an be
omputed for

arbitrary equations with identi
al unique variables. It will turn out that with

these extensions one
an indeed simulate !

R=E

by !

EnExt

E

(R)

, i.e., s !

R=E

t

implies s !

EnExt

E

(R)

t

0

for some t

0

�

E

t. This
onstitutes a
ru
ial
ontribu-

tion of the paper, sin
e it is the main requirement needed in order to extend

dependen
y pairs to rewriting modulo equations.

De�nition 8 (Extending R for Arbitrary Equations). Let R be a TRS

and let E be a set of equations. Let R

0

be a set
ontaining only rules of the form

4

Obviously, uni

E

(vj

�

; l) always exists, but it
an be in�nite in general. So when au-

tomating our approa
h for equational termination proofs, we have to restri
t our-

selves to equations E where uni

E

(vj

�

; l)
an be
hosen to be �nite for all subterms

vj

�

of equations and left-hand sides of rules l. This in
ludes all sets E of �nitary uni-

�
ation type, but our restri
tion is weaker, sin
e we only need �niteness for
ertain

terms vj

�

and l.

6

C[l�℄ ! C[r�℄ (where C is a
ontext, � is a substitution, and l ! r 2 R). R

0

is an extension of R for the equations E i�

(a) R � R

0

and

(b) for all l ! r 2 R

0

, u � v 2 E and v � u 2 E, all positions � of v

and � 2 uni

E

(vj

�

; l), there is a position �

0

in u and a q �

E

(v[r℄

�

)� with

u� !

�

0

EnR

0

q.

In the following, let Ext

E

(R) always denote an arbitrary extension of R for E .

In order to satisfy Condition (b) of Def. 8, it is always suÆ
ient to add the rule

(v[l℄

�

)� ! (v[r℄

�

)� to R

0

. The reason is that then we have u� !

�

EnR

0

(v[r℄

�

)�.

But if u� !

�

0

EnR

0

q �

E

(v[r℄

�

)� already holds with the other rules of R

0

, then

the rule (v[l℄

�

)� ! (v[r℄

�

)� does not have to be added to R

0

.

Condition (b) of Def. 8 also makes sure that as long as the equations have

identi
al unique variables, we do not have to
onsider overlaps at variable po-

sitions.

5

The reason is that if vj

�

is a variable x 2 V , then we have u� =

u[x�℄

�

0

�

E

u[l�℄

�

0

!

R

u[r�℄

�

0

�

E

v[r�℄

�

= (v[r℄

�

)�, where �

0

is the position of

x in u. Hen
e, su
h rules (v[l℄

�

)� ! (v[r℄

�

)� do not have to be in
luded in R

0

.

Overlaps at root positions do not have to be
onsidered either. To see this,

assume that � is the top position � of v, i.e., that v� �

E

l�. In this
ase we have

u� �

E

v� �

E

l� !

R

r� and thus, u� !

�

EnR

r� = (v[r℄

�

)�. So again, su
h rules

(v[l℄

�

)! (v[r℄

�

)� do not have to be in
luded in R

0

.

The following pro
edure is used to
ompute extensions. Here, we assume both

R and E to be �nite, where the equations E must have identi
al unique variables.

1. R

0

:= R

2. For all l! r 2 R

0

,

all u � v or v � u from E ,

and all positions � of v where � 6= � and vj

�

62 V do:

2.1. Let � := uni

E

(vj

�

; l).

2.2. For all � 2 � do:

2.2.1. Let T := fq j u� !

�

0

EnR

0

q for a position �

0

of ug:

2.2.2. If there exists a q 2 T with (v[r℄

�

)� �

E

q, then � := � n f�g.

2.3. R

0

:= R

0

[f(v[l℄

�

)� ! (v[r℄

�

)� j � 2 �g.

This algorithm has the following properties:

(a) If in Step 2.1, uni

E

(vj

�

; l) is �nite and
omputable, then every step in the

algorithm is
omputable.

(b) If the algorithm terminates, then the �nal value of R

0

is an extension of R

for the equations E .

5

Note that
onsidering overlaps at variable positions as well would still not allow us

to treat equations with non-linear terms. As an example regard E = ff(x) � g(x; x)g

and R = fg(a; b) ! f(a); a ! bg. Here, !

EnExt

E

(R)

is well founded although R is

not terminating modulo E .

7

With the TRS of Ex. 5, Ext

E

(R) = fa + b ! a + (b +
); (a + b) + y !

(a+ (b+
)) + yg. In general, if E only
onsists of AC-axioms for some fun
tion

symbols G, then Def. 8 \
oin
ides" with the well-known extension for AC-axioms,

i.e., R

0

= R [ff(l; y) ! f(r; y) j l ! r 2 R; root(l) = f 2 Gg satis�es the

onditions (a) and (b) of Def. 8. So in
ase of AC-equations, our approa
h indeed

orresponds to the approa
hes of [15, 17℄. However, Def. 8
an also be used for

other forms of equations.

Example 9. As an example,
onsider the following system from [18℄.

R = f x� 0! x; E = f(u� v)� w � (u� w)� vg

s(x)� s(y)! x� y;

0� s(y)! 0;

s(x)� s(y)! s((x� y)� s(y))g

By overlapping the subterm u � w in the right-hand side of the equation with

the left-hand sides of the last two rules we obtain

Ext

E

(R) = R [f (0� s(y))� z ! 0� z;

(s(x)� s(y))� z ! s((x� y)� s(y))� z g:

Note that these are indeed all the rules of Ext

E

(R). Overlapping the sub-

term u � v of the equation's left-hand side with the third rule would result in

(0 � s(y)) � z

0

! 0 � z

0

. But this new rule does not have to be in
luded in

Ext

E

(R), sin
e the
orresponding other term of the equation, (0 � z

0

) � s(y),

would !

�

EnExt

E

(R)

-redu
e with the rule (0 � s(y))� z ! 0 � z to 0 � z

0

. Over-

lapping u� v with the left-hand side of the fourth rule is also super
uous.

Similarly, overlaps with the new rules (0 � s(y)) � z ! 0 � z or (s(x) �

s(y)) � z ! s((x � y) � s(y)) � z also do not give rise to additional rules in

Ext

E

(R). To see this, overlap the subterm u � w in the right-hand side of the

equation with the left-hand side of (0 � s(y)) � z ! 0 � z. This gives the rule

((0 � s(y)) � z) � z

0

! (0 � z) � z

0

. However, the
orresponding other term of

the equation is ((0� s(y))� z

0

)� z. This redu
es at position 1 (or position 11)

to (0� z

0

)� z, whi
h is E-equivalent to (0� z)� z

0

. Overlaps with the other new

rule (s(x)� s(y))� z ! s((x� y)� s(y))� z are not needed either.

Nevertheless, the above algorithm for
omputing extensions does not always

terminate. For example, for R = fa(x)!
(x)g, E = fa(b(a(x))) � b(a(b(x)))g,

it
an be shown that all extensions Ext

E

(R) are in�nite.

We prove below that Ext

E

(R) (a

ording to Def. 8) has the desired property

needed to redu
e rewriting modulo equations to E-extended rewriting. The fol-

lowing important lemma states that whenever s rewrites to t with!

R=E

modulo

E , then s also rewrites with !

EnExt

E

(R)

to a term whi
h is E-equivalent to t.

6

6

Our extension Ext

E

has some similarities to the
onstru
tion of
ontexts in [23℄.

However, in
ontrast to [23℄ we also
onsider the rules of R

0

in Condition (b) of Def.

8 in order to redu
e the number of rules in Ext

E

. Moreover, in [23℄ equations may

also be non-linear (and thus, Lemma 10 does not hold there).

8

Lemma 10 (Conne
tion between !

R=E

and !

EnExt

E

(R)

). Let R be a TRS

and let E be a set of equations with identi
al unique variables. If s!

R=E

t, then

there exists a term t

0

�

E

t su
h that s!

EnExt

E

(R)

t

0

.

Proof. Let s !

R=E

t, i.e., there exist terms s

0

; : : : ; s

n

; p with n � 0 su
h that

s = s

n

à

E

s

n�1

à

E

: : : à

E

s

0

!

R

p �

E

t. For the lemma, it suÆ
es to show

that there is a t

0

�

E

p su
h that s!

EnExt

E

(R)

t

0

, sin
e t

0

�

E

p implies t

0

�

E

t.

We perform indu
tion on n. If n = 0, we have s = s

n

= s

0

!

R

p. This

implies s!

EnExt

E

(R)

p sin
e R � Ext

E

(R). So with t

0

= p the
laim is proved.

If n > 0, the indu
tion hypothesis implies s = s

n

à

E

s

n�1

!

EnExt

E

(R)

t

0

su
h that t

0

�

E

p. So there exists an equation u � v or v � u from E and a

rule l ! r from Ext

E

(R) su
h that sj

�

= uÆ, s

n�1

= s[vÆ℄

�

, s

n�1

j

�

�

E

lÆ, and

t

0

= s

n�1

[rÆ℄

�

for positions � and � and a substitution Æ. We
an use the same

substitution Æ for instantiating the equation u � v (or v � u) and the rule l! r,

sin
e equations and rules are assumed variable disjoint. We now perform a
ase

analysis depending on the relationship of the positions � and �.

Case 1: � = �� for some �. In this
ase, we have sj

�

= sj

�

[uÆ℄

�

à

E

sj

�

[vÆ℄

�

=

s

n�1

j

�

�

E

lÆ. This implies s!

EnExt

E

(R)

s[rÆ℄

�

= s

n�1

[rÆ℄

�

= t

0

, as desired.

Case 2: �?�. Now we have sj

�

= s

n�1

j

�

�

E

lÆ and thus, s!

EnExt

E

(R)

s[rÆ℄

�

=

s[rÆ℄

�

[uÆ℄

�

à

E

s[rÆ℄

�

[vÆ℄

�

= s[vÆ℄

�

[rÆ℄

�

= s

n�1

[rÆ℄

�

= t

0

.

Case 3: � = �� for some �. Thus, (vÆ)j

�

�

E

lÆ. We distinguish two sub-
ases.

Case 3.1: uÆ !

EnExt

E

(R)

q �

E

(v[r℄

�

)Æ for some term q. This implies s = s[uÆ℄

�

!

EnExt

E

(R)

s[q℄

�

�

E

s[v[r℄

�

Æ℄

�

= (s[vÆ℄

�

)[rÆ℄

�

= s

n�1

[rÆ℄

�

= t

0

.

Case 3.2: Otherwise. First assume that � = �

1

�

2

where vj

�

1

is a variable x.

Hen
e, (vÆ)j

�

= Æ(x)j

�

2

. Let Æ

0

(y) = Æ(y) for y 6= x and let Æ

0

(x) = Æ(x)[rÆ℄

�

2

.

Sin
e u � v (or v � u) is an equation with identi
al unique variables, x also

o

urs in u at some position �

0

. This implies uÆj

�

0

�

2

= Æ(x)j

�

2

�

E

lÆ !

Ext

E

(R)

rÆ. Hen
e, we obtain uÆ !

�

0

�

2

EnExt

E

(R)

uÆ[rÆ℄

�

0

�

2

= uÆ

0

�

E

vÆ

0

= (v[r℄

�

)Æ in

ontradi
tion to the
ondition of Case 3.2.

Hen
e, � is a position of v and vj

�

is not a variable. Thus, (vÆ)j

�

= vj

�

Æ �

E

lÆ.

Sin
e rules and equations are assumed variable disjoint, the subterm vj

�

E-uni�es

with l. Thus, there exists a � 2 uni

E

(vj

�

; l) su
h that Æ �

E

��.

Due to the Condition (b) of Def. 8, there is a term q

0

su
h that u� !

�

0

EnExt

E

(R)

q

0

�

E

(v[r℄

�

)�. Sin
e �

0

is a position in u, we have uj

�

0

� �

E

Æ !

Ext

E

(R)

q

00

, where

q

0

= u�[q

00

℄

�

0

. This also implies uj

�

0

Æ �

E

uj

�

0

�� �

E

Æ !

Ext

E

(R)

q

00

�, and thus

uÆ !

�

0

EnExt

E

(R)

uÆ[q

00

�℄

�

0

�

E

u�[q

00

℄

�

0

� = q

0

� �

E

(v[r℄

�

)�� �

E

(v[r℄

�

)Æ. This is a

ontradi
tion to the
ondition of Case 3.2. ut

The following theorem shows that Ext

E

indeed has the desired property.

Theorem 11 (Termination of R=E by E-Extended Rewriting). Let R be

a TRS, let E be a set of equations with identi
al unique variables, and let t be

a term. Then t does not start an in�nite !

R=E

-redu
tion i� t does not start

9

an in�nite !

EnExt

E

(R)

-redu
tion. So in parti
ular, R is terminating modulo E

(i.e., !

R=E

is well founded) i� !

EnExt

E

(R)

is well founded.

Proof. The \only if" dire
tion is straightforward be
ause !

Ext

E

(R)

=!

R

and

therefore, !

EnExt

E

(R)

�!

Ext

E

(R)=E

=!

R=E

.

For the \if" dire
tion, assume that t starts an in�nite !

R=E

-redu
tion

t = t

0

!

R=E

t

1

!

R=E

t

2

!

R=E

: : :

For every i 2 IN, let f

i+1

be a fun
tion from terms to terms su
h that for every

t

0

i

�

E

t

i

, f

i+1

(t

0

i

) is a term E-equivalent to t

i+1

su
h that t

0

i

!

EnExt

E

(R)

f

i+1

(t

0

i

).

These fun
tions f

i+1

must exist due to Lemma 10, sin
e t

0

i

�

E

t

i

and t

i

!

R=E

t

i+1

implies t

0

i

!

R=E

t

i+1

. Hen
e, t starts an in�nite !

EnExt

E

(R)

-redu
tion:

t!

EnExt

E

(R)

f

1

(t)!

EnExt

E

(R)

f

2

(f

1

(t))!

EnExt

E

(R)

f

3

(f

2

(f

1

(t)))!

EnExt

E

(R)

: : : ut

5 Dependen
y Pairs for Rewriting Modulo Equations

In this se
tion we �nally extend the dependen
y pair approa
h to rewriting

modulo equations: To show that R modulo E terminates, one �rst
onstru
ts

the extension Ext

E

(R) of R. Subsequently, dependen
y pairs
an be used to

prove well-foundedness of !

EnExt

E

(R)

(whi
h is equivalent to termination of R

modulo E). The idea for the extension of the dependen
y pair approa
h is simply

to modify Thm. 3 as follows.

1. The equations should be satis�ed by the equivalen
e �
orresponding to the

quasi-ordering %, i.e., we demand u � v for all equations u � v in E .

2. A similar requirement is needed for equations u � v when the root symbols

of u and v are repla
ed by the
orresponding tuple symbols. We denote

tuples of terms s

1

; : : : ; s

n

by s and for any term t = f(s) with a de�ned root

symbol f , let t

℄

be the term F (s). Hen
e, we also have to demand u

℄

� v

℄

.

3. The notion of \de�ned symbols" must be
hanged a

ordingly. As before, all

root symbols of left-hand sides of rules are regarded as being de�ned, but

if there is an equation f(u) = g(v) in E and f is de�ned, then g must be

onsidered de�ned as well, as otherwise we would not be able to tra
e the

redex in a redu
tion by only regarding subterms with de�ned root symbols.

De�nition 12 (De�ned Symbols for Rewriting Modulo Equations). Let

R be a TRS and let E be a set of equations. Then the set of de�ned symbols D

of R=E is the smallest set su
h that D = froot(l) j l! r 2 Rg [froot(v) ju �

v 2 E or v � u 2 E ; root(u) 2 Dg.

The
onstraints of the dependen
y pair approa
h as sket
hed above are not

yet suÆ
ient for termination of !

EnR

as the following example illustrates.

Example 13. Consider R = ff(x)! xg and E = ff(a) � ag. There is no depen-

den
y pair in this example and thus, the only
onstraints would be f(x) % x,

f(a) � a, and F(a) � A. Obviously, these
onstraints are satis�able (by using

an equivalen
e relation � where all terms are equal). However, !

EnR

is not

terminating sin
e we have a à

E

f(a)!

R

a à

E

f(a)!

R

a à

E

: : :

10

The soundness of the dependen
y pair approa
h for ordinary rewriting (Thm.

3) relies on the fa
t that an in�nite redu
tion from a minimal non-terminating

term
an be a
hieved by applying only normalized instantiations of R-rules. But

for E-extended rewriting (or full rewriting modulo equations), this is not true

any more. For instan
e, the minimal non-terminating subterm a in Ex. 13 is �rst

modi�ed by applying an E-equation (resulting in f(a)) and then an R-rule is

applied whose variable is instantiated with the non-terminating term a. Hen
e,

the problem is that the new minimal non-terminating subterm a whi
h results

from appli
ation of the R-rule does not
orrespond to the right-hand side of a

dependen
y pair, be
ause this minimal non-terminating subterm is
ompletely

inside the instantiation of a variable of the R-rule. With ordinary rewriting, this

situation
an never o

ur.

In Ex. 13, the problem
an be avoided by adding a suitable instan
e of the

rule f(x)! x (viz. f(a)! a) to R, sin
e this instan
e is used in the in�nite re-

du
tion. Now there would be a dependen
y pair hF(a);Ai and with the additional

onstraint F(a) > A the resulting inequalities are no longer satis�able.

The following de�nition shows how to add the right instantiations of the

rules in R in order to allow a sound appli
ation of dependen
y pairs. As usual,

a substitution � is
alled a variable renaming i� the range of � only
ontains

variables and if �(x) 6= �(y) for x 6= y.

De�nition 14 (Adding Instantiations). Given a TRS R, a set E of equa-

tions, let R

0

be a set
ontaining only rules of the form l� ! r� (where � is a

substitution and l! r 2 R). R

0

is an instantiation of R for the equations E i�

(a) R � R

0

,

(b) for all l! r 2 R, all u � v 2 E and v � u 2 E, and all � 2 uni

E

(v; l), there

exists a rule l

0

! r

0

2 R

0

and a variable renaming � su
h that l� �

E

l

0

� and

r� �

E

r

0

�.

In the following, let Ins

E

(R) always denote an instantiation of R for E .

Unlike extensions Ext

E

(R), instantiations Ins

E

(R) are never in�nite if R

and E are �nite and if uni

E

(v; l) is always �nite (i.e., they are not de�ned via a

�xpoint
onstru
tion). In fa
t, one might even demand that for all l! r 2 R, all

equations, and all � from the
orresponding
omplete set of E-uni�ers, Ins

E

(R)

should
ontain l� ! r�. The
ondition that it is enough if some E-equivalent

variable-renamed rule is already
ontained in Ins

E

(R) is only added for eÆ
ien
y

onsiderations in order to redu
e the number of rules in Ins

E

(R). Even without

this
ondition, Ins

E

(R) would still be �nite and all the following theorems would

hold as well.

However, the above instantiation te
hnique only serves its purpose if there

are no
ollapsing equations (i.e., no equations u � v or v � u with v 2 V).

Example 15. Consider R = ff(x)! xg and E = ff(x) � xg. Note that Ins

E

(R)

= R. Although !

EnR

is
learly not terminating, the dependen
y pair approa
h

would falsely prove termination of !

EnR

, sin
e there is no dependen
y pair.

Now we
an present the main result of the paper.

11

Theorem 16 (Termination of Equational Rewriting using Dependen
y

Pairs). Let R be a TRS and let E be a set of non-
ollapsing equations with iden-

ti
al unique variables. R is terminating modulo E (i.e., !

R=E

is well founded) if

there exists a weakly monotoni
 quasi-ordering % and a well-founded ordering >

ompatible with % where both % and > are
losed under substitution, su
h that

(1) s > t for all dependen
y pairs hs; ti of Ins

E

(Ext

E

(R)),

(2) l % r for all rules l! r of R,

(3) u � v for all equations u � v of E, and

(4) u

℄

� v

℄

for all equations u � v of E where root(u) and root(v) are de�ned.

Proof. Suppose that there is a term t with an in�nite !

R=E

-redu
tion. Thm.

11 implies that t also has an in�nite !

EnExt

E

(R)

-redu
tion. By a minimality

argument, t = C[t

0

℄, where t

0

is an minimal non-terminating term (i.e., t

0

is

non-terminating, but all its subterms only have �nite !

EnExt

E

(R)

-redu
tions).

We will show that there exists a term t

1

with t !

+

EnExt

E

(R)

t

1

, t

1

ontains a

minimal non-terminating subterm t

0

1

, and t

0

℄

% Æ > t

0

1

℄

. By repeated appli
ation

of this
onstru
tion we obtain an in�nite sequen
e t!

+

EnExt

E

(R)

t

1

!

+

EnExt

E

(R)

t

2

!

+

EnExt

E

(R)

: : : su
h that t

0

℄

% Æ > t

0

1

℄

% Æ > t

0

2

℄

% Æ > : : :. This, however, is

a
ontradi
tion to the well-foundedness of >.

Let t

0

have the form f(u). In the in�nite !

EnExt

E

(R)

-redu
tion of f(u), �rst

some!

EnExt

E

(R)

-steps may be applied to u whi
h yields new terms v. Note that

due to the de�nition of E-extended rewriting, in these redu
tions, no E-steps
an

be applied outside of u. Due to the termination of u, after a �nite number of

those steps, an !

EnExt

E

(R)

-step must be applied on the root position of f(v).

Thus, there exists a rule l ! r 2 Ext

E

(R) su
h that f(v) �

E

l� and hen
e,

the redu
tion yields r�. Now the in�nite !

EnExt

E

(R)

-redu
tion
ontinues with

r�, i.e., the term r� starts an in�nite !

EnExt

E

(R)

-redu
tion, too. So up to now

the redu
tion has the following form (where !

Ext

E

(R)

equals !

R

):

t = C[f(u)℄!

�

EnExt

E

(R)

C[f(v)℄ �

E

C[l�℄!

Ext

E

(R)

C[r�℄:

We perform a
ase analysis depending on the positions of E-steps in f(v) �

E

l�.

First
onsider the
ase where all E-steps in f(v) �

E

l� take pla
e below the

root. Then we have l = f(w) and v �

E

w�. Let t

1

:= C[r�℄. Note that v do not

start in�nite !

EnExt

E

(R)

-redu
tions and by Thm. 11, they do not start in�nite

!

R=E

-redu
tions either. But thenw� also
annot start in�nite!

R=E

-redu
tions

and therefore they also do not start in�nite!

EnExt

E

(R)

-redu
tions. This implies

that for all variables x o

urring in f(w) the terms �(x) are terminating. Thus,

sin
e r� starts an in�nite redu
tion, there o

urs a non-variable subterm s in

r, su
h that t

0

1

:= s� is a minimal non-terminating term. Sin
e hl

℄

; s

℄

i is a

dependen
y pair, we obtain t

0

℄

= F (u) % F (v) � l

℄

� > s

℄

� = t

0

1

℄

. Here, F (u) %

F (v) holds sin
e u!

�

EnExt

E

(R)

v and sin
e l % r for every rule l! r 2 Ext

E

(R).

Now we
onsider the
ase where there are E-steps in f(v) �

E

l� at the root

position. Thus we have f(v) �

E

f(q) à

E

p �

E

l�, where f(q) à

E

p is the �rst

12

E-step at the root position. In other words, there is an equation u � v or v � u

in E su
h that f(q) is an instantiation of v.

Note that sin
e v �

E

q, the terms q only have �nite !

EnExt

E

(R)

-redu
tions

(the argumentation is similar as in the �rst
ase). Let Æ be the substitution whi
h

operates like � on the variables of l and whi
h yields vÆ = f(q). Thus, Æ is an

E-uni�er of l and v. Sin
e l is E-uni�able with v, there also exists a
orresponding

omplete E-uni�er � from uni

E

(l; v). Thus, there is also a substitution � su
h

that Æ �

E

��. As l is a left-hand side of a rule from Ext

E

(R), there is a rule

l

0

! r

0

in Ins

E

(Ext

E

(R)) and a variable renaming � su
h that l� �

E

l

0

� and

r� �

E

r

0

�.

Hen
e, v�� �

E

vÆ = f(q), l

0

�� �

E

l�� �

E

lÆ = l�, and r

0

�� �

E

r�� �

E

rÆ =

r�. So instead we now
onsider the following redu
tion (where !

Ins

E

(Ext

E

(R))

equals !

R

):

t = C[f(u)℄!

�

EnExt

E

(R)

C[f(v)℄ �

E

C[l

0

��℄!

Ins

E

(Ext

E

(R))

C[r

0

��℄ = t

1

:

Sin
e all proper subterms of vÆ only have �nite !

R=E

-redu
tions, for all

variables x of l

0

�, the term x� only has �nite !

R=E

-redu
tions and hen
e, also

only �nite!

EnExt

E

(R)

-redu
tions. To see this, note that sin
e all equations have

identi
al unique variables, v� �

E

l� �

E

l

0

� implies that all variables of l

0

� also

o

ur in v�. Thus, if x is a variable from l

0

�, then there exists a variable y in

v su
h that x o

urs in y�. Sin
e E does not
ontain
ollapsing equations, y is

a proper subterm of v and thus, yÆ is a proper subterm of vÆ. As all proper

subterms of vÆ only have �nite !

R=E

-redu
tions, this implies that yÆ only has

�nite !

R=E

-redu
tions, too. But then, sin
e yÆ �

E

y��, the term y�� only has

�nite !

R=E

-redu
tions, too. Then this also holds for all subterms of y��, i.e.,

all !

R=E

-redu
tions of x� are also �nite.

So for all variables x of l

0

, x�� only has �nite !

EnExt

E

(R)

-redu
tions. (Note

that this only holds be
ause � is just a variable renaming.) Sin
e r� starts an

in�nite!

EnExt

E

(R)

-redu
tion, r

0

�� �

E

r�must start an in�nite!

R=E

-redu
tion

(and hen
e, an in�nite !

EnExt

E

(R)

-redu
tion) as well. As for all variables x of

r

0

, x�� is !

EnExt

E

(R)

-terminating, there must be a non-variable subterm s of

r

0

, su
h that t

0

1

:= s�� is a minimal non-terminating term. As hl

0

℄

; s

℄

i is a

dependen
y pair, we obtain t

0

℄

= F (u) % F (v) �

E

l

0

℄

�� > s

℄

�� = t

0

1

℄

. Here,

F (v) �

E

l

0

℄

�� is a
onsequen
e of Condition (4). ut

Now termination of the division-system (Ex. 9)
an be proved by depen-

den
y pairs. Here we have Ins

E

(Ext

E

(R)) = Ext

E

(R) and thus, the resulting

onstraints are

M(s(x); s(y)) > M(x; y) Q(0� s(y); z) > Q(0; z)

Q(s(x); s(y)) > M(x; y) Q(s(x)� s(y); z) > M(x; y)

Q(s(x); s(y)) > Q(x� y; s(y)) Q(s(x)� s(y); z) > Q(x� y; s(y))

Q(s(x)� s(y); z) > Q(s((x� y)� s(y)); z)

as well as l % r for all rules l ! r, (u � v) � w � (u � w) � v, and Q(u �

v; w) � Q(u � w; v). (Here, M and Q are the tuple symbols for the minus-

symbol \�" and the quot-symbol \�".) As explained in Se
t. 2 one may again

13

eliminate arguments of fun
tion symbols before sear
hing for suitable orderings.

In this example we will eliminate the se
ond arguments of �, �, M, and Q

(i.e., every term s� t is repla
ed by �

0

(s), et
.). Then the resulting inequalities

are satis�ed by the rpo with the pre
eden
e �

0

A s A �

0

, Q

0

A M

0

. Thus,

with the method of the present paper, one
an now verify termination of this

example automati
ally for the �rst time. This example also demonstrates that

by using dependen
y pairs, termination of equational rewriting
an sometimes

even be shown by ordinary base orderings (e.g., the ordinary rpo whi
h on its

own
annot be used for rewriting modulo equations).

6 Con
lusion

We have extended the dependen
y pair approa
h to equational rewriting. In the

spe
ial
ase of AC-axioms, our method is similar to the ones previously presented

in [15, 17℄. In fa
t, as long as the equations only
onsist of AC-axioms, one
an

show that using the instan
es Ins

E

in Thm. 16 is not ne
essary.

7

(Hen
e, su
h a

on
ept
annot be found in [17℄). However, even then the only additional inequal-

ities resulting from Ins

E

are instantiations of other inequalities already present

and inequalities whi
h are spe
ial
ases of an AC-deletion property (whi
h is sat-

is�ed by all known AC-orderings and similar to the one required in [15℄). This

indi
ates that in pra
ti
al examples with AC-axioms, our te
hnique is at least

as powerful as the ones of [15, 17℄ (a
tually, we
onje
ture that for AC-examples,

these three te
hniques are virtually equally powerful). But
ompared to the ap-

proa
hes of [15, 17℄, our te
hnique has a more elegant treatment of tuple symbols.

(For example, if the TRS
ontains a rule f(t

1

; t

2

)! g(f(s

1

; s

2

); s

3

) were f and g

are de�ned AC-symbols, then we do not have to extend the TRS by rules with

tuple symbols like f(t

1

; t

2

) ! G(f(s

1

; s

2

); s

2

) in [17℄. Moreover, we do not need

dependen
y pairs where tuple symbols o

ur outside the root position su
h as

hF(F(t

1

; t

2

); y); : : :i in [17℄ and [15℄ and hF(t

1

; t

2

);G(F(s

1

; s

2

); s

3

)i in [15℄. Finally,

we also do not need the \AC-marked
ondition" F(f(x; y); z) � F(F(x; y); z) of

[15℄.) But most signi�
antly, unlike [15, 17℄ our te
hnique works for arbitrary

non-
ollapsing equations E with identi
al unique variables where E-uni�
ation

is �nitary (for subterms of equations and left-hand sides of rules). Obviously,

an implementation of our te
hnique also requires E-uni�
ation algorithms [5℄ for

the
on
rete sets of equations E under
onsideration.

In [1{3℄, Arts and Giesl presented the dependen
y graph re�nement whi
h is

based on the observation that it is possible to treat subsets of the dependen
y

pairs separately. This re�nement
arries over to the equational
ase in a straight-

forward way (by using E-uni�
ation to
ompute an estimation of this graph). For

details on this re�nement and for further examples to demonstrate the power

and the usefulness of our te
hnique, the reader is referred to [11℄.

A
knowledgments. We thank A. Middeldorp, T. Arts, and the referees for
omments.

7

Then in the proof of Thm. 16, instead of a minimal non-terminating term t

0

one re-

gards a term t

0

whi
h is non-terminating and minimal up to some extra f -o

urren
es

on the top (where f is an AC-symbol).

14

Referen
es

1. T. Arts and J. Giesl, Automati
ally Proving Termination where Simpli�
ation

Orderings Fail, in Pro
. TAPSOFT '97, LNCS 1214, 261-272, 1997.

2. T. Arts and J. Giesl, Modularity of Termination Using Dependen
y Pairs, in Pro
.

RTA '98, LNCS 1379, 226-240, 1998.

3. T. Arts and J. Giesl, Termination of Term Rewriting Using Dependen
y Pairs,

Theoreti
al Computer S
ien
e, 236:133-178, 2000.

4. T. Arts, System Des
ription: The Dependen
y Pair Method, in Pro
. RTA '00,

LNCS 1833, 261-264, 2000.

5. F. Baader and W. Snyder, Uni�
ation Theory, in Handbook of Automated Reason-

ing, J. A. Robinson and A. Voronkov (eds.), Elsevier. To appear.

6. A. Ben Cherifa and P. Les
anne, Termination of Rewriting Systems by Polynomial

Interpretations and its Implementation, S
. Comp. Prog., 9(2):137-159, 1987.

7. CiME 2. Pre-release available at http://www.lri.fr/~demons/
ime-2.0.html.

8. C. Delor and L. Puel, Extension of the Asso
iative Path Ordering to a Chain of

Asso
iative Commutative Symbols, in Pro
. RTA '93, LNCS 690, 389-404, 1993.

9. N. Dershowitz, Termination of Rewriting, J. Symboli
 Computation, 3:69-116, 1987.

10. M. C. F. Ferreira, Dummy Elimination in Equational Rewriting, in Pro
. RTA '96,

LNCS 1103, 78-92, 1996.

11. J. Giesl and D. Kapur, Dependen
y Pairs for Equational Rewriting, Te
hni
al

Report TR-CS-2000-53, University of New Mexi
o, USA, 2000. Available from

http://www.
s.unm.edu/soe/
s/te
h reports

12. J.-P. Jouannaud and H. Kir
hner, Completion of a Set of Rules Modulo a Set of

Equations, SIAM Journal on Computing, 15(4):1155-1194, 1986.

13. D. Kapur and G. Sivakumar, A Total Ground Path Ordering for Proving Termi-

nation of AC-Rewrite Systems, in Pro
. RTA '97, LNCS 1231, 142-156, 1997.

14. D. Kapur and G. Sivakumar, Proving Asso
iative-Commutative Termination Using

RPO-Compatible Orderings, in Pro
. Automated Dedu
tion in Classi
al and Non-

Classi
al Logi
s, LNAI 1761, 40-62, 2000.

15. K. Kusakari and Y. Toyama, On Proving AC-Termination by AC-Dependen
y

Pairs, Resear
h Report IS-RR-98-0026F, S
hool of Information S
ien
e, JAIST,

Japan, 1998. Revised version in K. Kusakari, Termination, AC-Termination and

Dependen
y Pairs of Term Rewriting Systems, PhD Thesis, JAIST, Japan, 2000.

16. J.-P. Jouannaud and M. Mu~noz, Termination of a Set of Rules Modulo a Set of

Equations, in Pro
. 7th CADE, LNCS 170, 175-193, 1984.

17. C. Mar
h�e and X. Urbain, Termination of Asso
iative-Commutative Rewriting by

Dependen
y Pairs, in Pro
. RTA '98, LNCS 1379, 241-255, 1998.

18. H. Ohsaki, A. Middeldorp, and J. Giesl, Equational Termination by Semanti
 La-

belling, in Pro
. CSL '00, LNCS 1862, 457-471, 2000.

19. G. E. Peterson and M. E. Sti
kel, Complete Sets of Redu
tions for Some Equational

Theories, Journal of the ACM, 28(2):233-264, 1981.

20. A. Rubio and R. Nieuwenhuis, A Total AC-Compatible Ordering based on RPO,

Theoreti
al Computer S
ien
e, 142:209-227, 1995.

21. A. Rubio, A Fully Synta
ti
 AC-RPO, Pro
. RTA-99, LNCS 1631, 133-147, 1999.

22. J. Steinba
h, Simpli�
ation Orderings: History of Results, Fundamenta Informat-

i
ae, 24:47-87, 1995.

23. L. Vigneron, Positive Dedu
tion modulo Regular Theories, in Pro
. CSL '95, LNCS

1092, 468-485, 1995.

15

