
Size-Change Termination for Term Rewriting⋆

René Thiemann and Jürgen Giesl

LuFG Informatik II, RWTH Aachen, Ahornstr. 55, 52074 Aachen, Germany
{thiemann|giesl}@informatik.rwth-aachen.de

Abstract. In [13], a new size-change principle was proposed to verify
termination of functional programs automatically. We extend this princi-
ple in order to prove termination and innermost termination of arbitrary
term rewrite systems (TRSs). Moreover, we compare this approach with
existing techniques for termination analysis of TRSs (such as recursive
path orderings or dependency pairs). It turns out that the size-change
principle on its own fails for many examples that can be handled by stan-
dard techniques for rewriting, but there are also TRSs where it succeeds
whereas existing rewriting techniques fail. In order to benefit from their
respective advantages, we show how to combine the size-change princi-
ple with classical orderings and with dependency pairs. In this way, we
obtain a new approach for automated termination proofs of TRSs which
is more powerful than previous approaches.

1 Introduction

The size-change principle [13] is a new technique for automated termination
analysis of functional programs, which raised great interest in the functional
programming and automated reasoning community. However, up to now the con-
nection between this principle and existing approaches for termination proofs of
term rewriting was unclear. After introducing the size-change principle in Sect. 2,
we show how to use it for (innermost) termination proofs of arbitrary TRSs in
Sect. 3. This also illustrates how to combine the size-change principle with exist-
ing orderings from term rewriting. In Sect. 4 and 5 we compare the size-change
principle with classical simplification orderings and with the dependency pair
approach [1] for termination of TRSs. Finally, to combine their advantages, we
developed a technique which integrates the size-change principle and dependency
pairs. The combined technique was implemented in the system AProVE resulting
in a very efficient and powerful automated method (details can be found in [14]).

2 The Size-Change Principle

We assume familiarity with term rewriting [3]. For a TRS R over a signature F ,
the defined symbols D are the root symbols of the left-hand sides of rules and the
constructors are C = F \D. We restrict ourselves to finite signatures and TRSs.
R is a constructor system if the left-hand sides of its rules have the form f(s1, . . . ,

sn) where si are constructor terms (i.e., si ∈ T (C,V)). For a signature F , the
embedding rules EmbF are {f(x1, . . . , xn) → xi | f ∈ F , n = arity(f), 1 ≤ i ≤ n}.

⋆ Proceedings of the 14th International Conference on Rewriting Techniques and Ap-
plications (RTA-03), Valencia, Spain, LNCS, Springer-Verlag, 2003.

In [13], the size-change principle was formulated for a functional program-
ming language with eager evaluation strategy and without pattern matching.
Such functional programs are easily transformed into TRSs which are orthogo-
nal constructor systems whose ground normal forms only contain constructors
(i.e., all functions are “completely” defined). In this section we present an exten-
sion of the original size-change principle which can be used for arbitrary TRSs.

We call (%,≻) a reduction pair [11] on T (F ,V) if % is a quasi-ordering and
≻ is a well-founded ordering where % and ≻ are closed under substitutions and
compatible (i.e., % ◦ ≻ ⊆ ≻ or ≻ ◦ % ⊆ ≻, but ≻⊆% is not required). In
general, neither % nor ≻ must be closed under contexts. The reduction pair is
monotonic if % is closed under contexts. In Sect. 3 we examine which additional
conditions must be imposed on (%,≻) in order to use the size-change principle
for (innermost) termination proofs of TRSs. Size-change graphs denote how the
size of function parameters changes when going from one function call to another.

Definition 1 (Size-Change Graph). Let (%,≻) be a reduction pair. For every
rule f(s1, . . . , sn) → r of a TRS R and every subterm g(t1, . . . , tm) of r where
g ∈ D, we define a size-change graph. The graph has n output nodes marked
with {1f , . . . , nf} and m input nodes marked with {1g, . . . , mg}. If si ≻ tj, then
there is a directed edge marked with “≻” from output node if to input node
jg. Otherwise, if si % tj, then there is an edge marked with “ %” from if to
jg. If f and g are clear from the context, then we often omit the subscripts
from the nodes. So a size-change graph is a bipartite graph G = (V, W, E) where
V = {1f , . . . , nf} and W = {1g, . . . , mg} are the labels of the output and input
nodes, respectively, and we have edges E ⊆ V × W × {%,≻}.

Example 2. Let R consist of the following rules.

f(s(x), y) → f(x, s(x)) (1) f(x, s(y)) → f(y, x) (2)

R has two size-change graphs G(1) and G(2) resulting from (1) and (2). Here, we

use the embedding ordering on constructors C, i.e., (%,≻) = (→∗
EmbC

,→+
EmbC

).

G(1) : 1f

≻ //

%

��>
>>

>
1f

2f 2f

G(2) : 1f %

��>
>>

>
1f

2f

≻

??����
2f

To trace sizes of parameters along subsequent function calls, size-change
graphs (V1, W1, E1) and (V2, W2, E2) can be concatenated to multigraphs if W1 =
V2, i.e., if they correspond to arguments {1g, . . . , mg} of the same function g.

Definition 3 (Multigraph and Concatenation). Every size-change graph
of R is a multigraph of R and if G = ({1f , . . . , nf}, {1g, . . . , mg}, E1) and
H = ({1g, . . . , mg}, {1h, . . . , ph}, E2) are multigraphs w.r.t. the same reduction

pair (%,≻), then the concatenation G·H = ({1f , . . . , nf}, {1h, . . . , ph}, E) is
also a multigraph of R. For 1 ≤ i ≤ n and 1 ≤ k ≤ p, E contains an edge from
if to kh iff E1 contains an edge from if to some jg and E2 contains an edge from
jg to kh. If there is such a jg where the edge of E1 or E2 is labelled with “≻”,
then the edge in E is labelled with “≻” as well. Otherwise, it is labelled with
“ %”. A multigraph G is called maximal if its input and output nodes are both

2

labelled with {1f , . . . , nf} for some f and if it is idempotent, i.e., G = G·G.

Example 4. In Ex. 2 we obtain the following three maximal multigraphs:

G(1)·G(2) : 1f

≻ //

≻

��=
==

==
1f

2f 2f

G(2)·G(1) : 1f 1f

2f
≻

//

≻
@@�����
2f

G(2)·G(2) : 1f

≻ // 1f

2f

≻ // 2f

For termination, in every maximal multigraph a parameter must be decreasing.1

Definition 5 (Size-Change Termination). A TRS R over the signature F
is size-change terminating w.r.t. a reduction pair (%,≻) on T (F ,V) iff every
maximal multigraph contains an edge of the form i

≻
→ i.

In Ex. 4, each maximal multigraph contains the edge 1f

≻
→ 1f or 2f

≻
→ 2f .

So the TRS is size-change terminating w.r.t. the embedding ordering. Note that
classical path orderings from term rewriting fail on this example (see Sect. 4).

Since there are only finitely many possible multigraphs, they can be construc-
ted automatically. So for a given reduction pair, size-change termination is decid-
able. However, in general size-change termination does not imply termination.

Example 6. Consider the TRS with the rules f(a) → f(b) and b → a. If we use
the lexicographic path ordering ≻LPO [9] with the precedence a > b, then the
only maximal multigraph is 1f

≻LPO−→ 1f . So size-change termination is proved,
although the TRS is obviously not terminating.

3 Size-Change Termination and Termination of TRSs

In this section we develop conditions on the reduction pair used in Def. 5 which
ensure that size-change termination indeed implies (innermost) termination.
Then the size-change principle can be combined with classical orderings from
term rewriting and it becomes a sound termination criterion.

In [13], the authors use reduction pairs (%,≻) where % is the reflexive closure
of ≻ and ≻ is defined in terms of a well-founded relation > on (ground) normal
forms of R. We now show that such reduction pairs can be used for innermost
termination proofs of arbitrary TRSs. Moreover, % can be any compatible quasi-
ordering. We denote innermost reduction steps by i→R and s i→!

R
s′ means that

s′ is a normal form reachable from s by innermost reduction. Thm. 7 will serve
as the basis for the automation of the size-change principle in Thm. 8 afterwards.

Theorem 7 (Size-Change Termination and Innermost Termination).
Let > be a well-founded ordering on normal forms of a TRS R. For s, t ∈
T (F ,V) we define NF(s, t) = {(s′, t′) | sσ i→!

R
s′, tσ i→!

R
t′, σ instantiates all

variables of s and t with normal forms of R}. Let (%,≻) be a reduction pair where
s ≻ t implies s′ > t′ for all (s′, t′) ∈ NF(s, t). If R is size-change terminating
w.r.t. (%,≻), then R is innermost terminating.

Proof. If R is not innermost terminating, then there is a minimal non-innermost

1 Def. 5 corresponds to an equivalent characterization of size-change termination [13].

3

terminating term v0, i.e., all proper subterms of v0 are innermost terminating.
Let i→ǫ denote root reductions and let i→>ǫ denote reductions below the root.
Then v0’s infinite innermost reduction starts with v0

i→∗
>ǫ u1

i→ǫ w1 where all
proper subterms of u1 are in normal form. Since w1 is not innermost terminating,
it has a minimal non-innermost terminating subterm v1.

The infinite reduction continues in the same way. So for i ≥ 1, we have
vi−1

i→∗
>ǫ ui = liσi and vi = r′iσi for a rule li → ri, a subterm r′i of ri with

defined root, and a substitution σi instantiating li’s variables with normal forms.
For each step from ui to vi there is a corresponding size-change graph Gi. We

regard the infinite graph resulting from G1, G2, . . . by identifying the input nodes
of Gi with the output nodes of Gi+1. If R is size-change terminating, by [13, Thm.
4] resp. [14, Lemma 7], this infinite graph contains an infinite path where in-
finitely many edges are labelled with “≻”. Without loss of generality we assume
that this path already starts in G1. For every i, let ai be the output node in Gi

which is on this path. So we have li|ai
≻ r′i|ai+1

for all i from an infinite set I ⊆
IN and li|ai

% r′i|ai+1
for i ∈ IN\I. Note that li|ai

σi = ui|ai
and r′i|ai+1

σi = vi|ai+1

i→!
R

ui+1|ai+1
. Thus, (ui|ai

, ui+1|ai+1
) ∈ NF(li|ai

, r′i|ai+1
). So for I = {i1, i2, . . .}

we obtain ui1 |ai1
> ui2 |ai2

> . . . which contradicts well-foundedness of >. ⊓⊔

Innermost termination is interesting, since then there are no infinite reduc-
tions w.r.t. eager evaluation strategies. Moreover, for non-overlapping TRSs,
innermost termination already implies termination. However, Thm. 7 is not yet
suitable for automation. To check whether ≻ satisfies the conditions of Thm. 7,
one has to examine infinitely many instantiations of s and t and compute normal
forms s′ and t′ although R is possibly not innermost terminating. Therefore, in
the examples of [13], one is restricted to relations % and ≻ on constructor terms.

Thm. 8 shows how to use reduction pairs on T (C,V) for possibly automated
innermost termination proofs. A reduction pair (%,≻) on T (G,V) with G ⊆ F
can be extended to a (usually non-monotonic) reduction pair (%′,≻′) on T (F ,V)
by defining s %′ t if s = t or if there are u, v ∈ T (G,V) with u % v and s = uσ,
t = vσ for some substitution σ. Moreover, s ≻′ t iff u ≻ v for u and v as above.

Theorem 8 (Innermost Termination Proofs). Let (%,≻) be a reduction
pair on T (C,V). If R is size-change terminating w.r.t. the extension of the re-
duction pair (%,≻) to T (F ,V), then R is innermost terminating.

Proof. Let (%′,≻′) be the extension of (%,≻) to T (F ,V). We show that s ≻′ t

implies s′ ≻′ t′ for all (s′, t′) ∈ NF(s, t). Then the theorem follows from Thm. 7.
By the definition of extensions, s ≻′ t iff s = uσ, t = vσ, and u ≻ v for

suitable u, v, and σ. In particular, u and v must be constructor terms and we
also have u ≻′ v (as σ may also be the identity). Since NF(s, t) ⊆ {(uσ, vσ) |
σ instantiates u’s and v’s variables with normal forms}, the claim follows from
u ≻′ v, because ≻′ is closed under substitutions. ⊓⊔

For the TRS in Ex. 2, when using the extension of the reduction pair
(→∗

EmbC
, →+

EmbC
) on T (C,V), we obtain the same size-change graphs as with

(→∗
EmbC

,→+
EmbC

) on T (F ,V). Ex. 4 shows that this TRS is size-change termi-
nating w.r.t. this reduction pair and hence, by Thm. 8, this proves innermost

4

termination. However, a variant of Toyama’s example [15] shows that Thm. 7
and Thm. 8 are not sufficient to prove full (non-innermost) termination.

Example 9. Let R = {f(c(a, b, x)) → f(c(x, x, x)), g(x, y) → x, g(x, y) → y}.
We define %=→∗

S
and ≻=→+

S
restricted to T (C,V), where S is the terminating

TRS c(a, b, x) → c(x, x, x). The only maximal multigraph is 1f

≻→ 1f . So R is size-
change terminating and innermost terminating by Thm. 8, but not terminating.

As in Ex. 9, reduction pairs (→∗
S
,→+

S
) satisfying the conditions of Thm. 8

can be defined using a terminating TRS S over the signature C. The following
theorem shows that if S is non-duplicating, then we may use the relation →S

also on terms with defined symbols and size-change termination even implies
full termination. A TRS is non-duplicating if every variable occurs on the right-
hand side of a rule at most as often as on the corresponding left-hand side. So
size-change termination of the TRS in Ex. 2 and Ex. 4 using the reduction pair
(→∗

EmbC
,→+

EmbC
) implies that the TRS is indeed terminating.

To prove the theorem, we need a preliminary lemma which states that min-
imal non-terminating terms w.r.t. R ∪ S cannot start with constructors of R.
Again, here S must be non-duplicating. Otherwise, in Ex. 9, c(a, b, g(a, b)) is a
minimal non-terminating term w.r.t. R∪S that starts with a constructor of R.

Lemma 10. Let R be a TRS over the signature F with constructors C and let S
be a terminating non-duplicating TRS over C. If t1, . . . , tn ∈ T (F ,V) are termi-
nating w.r.t. R∪S and c ∈ C, then c(t1, . . . , tn) is also terminating w.r.t. R∪S.

Proof. For any term s ∈ T (F ,V), let Ms be the multiset of the maximal sub-
terms of s whose root is defined, i.e., Ms = {s|π | root(s|π) ∈ D and for all
π′ above π we have root(s|π′) ∈ C}. Moreover, let s′ be the term that results
from s by replacing all maximal subterms with defined root by the same fresh
special variable xC . Let ։R∪S be the extension of →R∪S to multisets where
M ։R∪S M ′ iff M = N ∪ {s} and M ′ = N ∪ {t1, . . . , tn} with n ≥ 0 and with
s →R∪S ti for all i. We prove the following conjecture.

Let s ∈ T (F ,V) such that all terms in Ms are terminating w.r.t. R∪ S
and let s →R∪S t. Then all terms in Mt are also terminating w.r.t. R∪S.
Moreover, Ms ։R∪S Mt or both Ms = Mt and s′ →S t′.

(3)

Note that ։R∪S is well founded on multisets like Ms which only contain termi-
nating terms. Termination of S implies that →S is also well founded and the lexi-
cographic combination of two well-founded orderings preserves well-foundedness.
Hence, (3) implies that if all terms in Ms are terminating, then s is terminating
as well. So the lemma immediately follows from Conjecture (3).

To prove (3), we distinguish according to the position π where the reduction
s →R∪S t takes place. If s has a defined symbol of D on or above position π, then
this implies Ms ։R∪S Mt and all terms in Mt are also terminating. Otherwise,
if π is above all symbols of D in s, then s →R∪S t implies s →S t and Ms ⊇ Mt

(since S is non-duplicating). Moreover, s →S t also implies s′ →S t′. ⊓⊔

Theorem 11 (Termination Proofs). Let R be a TRS over the signature F
with constructors C and let S be a terminating non-duplicating TRS over C. If R

5

is size-change terminating w.r.t. the reduction pair (→∗
S
,→+

S
) on T (F ,V), then

R (and even R∪ S) is terminating.

Proof. We define R′ := R ∪ S. If R′ is not terminating, then as in the proof of
Thm. 7 we obtain an infinite sequence of minimal non-terminating terms ui, vi

with vi →
∗
>ǫ,R′ ui+1 where the step from ui to vi corresponds to a size-change

graph of R′. Thus, for all i there is a rule li → ri in R′ with ui = liσi and
vi = r′iσi for a subterm r′i of ri and a substitution σi.

By Lemma 10, the roots of ui and vi are defined symbols. So all these size-
change graphs are from R. As in Thm. 7’s proof, there are ai with li|ai

→+
S

r′i|ai+1

for all i from an infinite I ⊆ IN and li|ai
→∗

S
r′i|ai+1

for i ∈ IN \ I. Since →S

is closed under substitution we have ui|ai
→+

S
vi|ai+1

or ui|ai
→∗

S
vi|ai+1

, respec-
tively. Recall vi|ai+1

→∗
R′ ui+1|ai+1

and S ⊆ R′. So for I = {i1, i2, . . .} we have
ui1 |ai1

→+
R′ ui2 |ai2

→+
R′ . . . contradicting the minimality of the terms ui. ⊓⊔

Thm. 8 and 11 offer two possibilities for automating the size-change principle.
Even for innermost termination, they do not subsume each other. Ex. 9 cannot be
handled by Thm. 11 and innermost termination of {g(f(a)) → g(f(b)), f(x) → x}
cannot be proved with Thm. 8, since f(a) 6≻ f(b) for any extension ≻ of an
ordering on constructor terms. But termination is shown with Thm. 11 using S =
{a → b}. A variant of Thm. 11 for innermost termination holds if S is innermost
terminating (and possibly duplicating). However, this variant only proves inner-
most termination of R∪ S which does not imply innermost termination of R.

So Thm. 8 and Thm. 11 are new contributions that show which reduction
pairs are admissible in order to use size-change termination for termination or
innermost termination proofs of TRSs. In this way, size-change termination be-
comes an automatic technique, since one can use classical techniques from ter-
mination of term rewriting to generate suitable reduction pairs automatically.

4 Comparison with Orderings from Term Rewriting

Traditional techniques for TRSs prove simple termination where R is simply ter-
minating iff it is compatible with a simplification ordering (e.g., LPO or RPOS
[5, 9], KBO [10], most polynomial orderings [12]). Equivalently, R is simply ter-
minating iff R ∪ EmbF terminates for R’s signature F . Similar to traditional
techniques, the size-change principle essentially only verifies simple termination.

Theorem 12 (Size-Change Principle and Simple Termination).

(a) A TRS R over a signature F is size-change terminating w.r.t. a reduction
pair (%,≻) iff R∪ EmbF is size-change terminating w.r.t. (%,≻).

(b) Let S be as in Thm. 11. If S is simply terminating and R is size-change
terminating w.r.t. (→∗

S
,→+

S
) on T (F ,V), then R∪S is simply terminating.

Proof. (a) The “if” direction is obvious. For the “only if” direction, note that
EmbF yields no new size-change graphs. But due to EmbC , all constructors
are transformed into defined symbols. So from the R-rules we obtain addi-
tional size-change graphs whose input nodes are labelled with (former) con-
structors (i.e., 1c, . . . , nc for c ∈ C). However, since output nodes are never

6

labelled with constructors, this does not yield new maximal multigraphs
(since there, output and input nodes are labelled by the same function).
Hence, size-change termination is not affected when adding EmbF .

(b) As in (a), adding EmbD to R yields no new size-change graphs and thus,
R ∪ EmbD is also size-change terminating w.r.t. (→∗

S ,→+
S
) and hence, also

w.r.t. (→∗
S∪EmbC

,→+
S∪EmbC

). Since S∪EmbC is terminating, Thm. 11 implies
termination of R∪EmbD ∪S ∪EmbC , i.e., simple termination of R∪S. ⊓⊔

The restriction to simple termination excludes many relevant TRSs. Thm. 12
illustrates that the size-change principle cannot compete with new techniques
(e.g., dependency pairs [1] or monotonic semantic path ordering [4]) where sim-
plification orderings may be applied to non-simply terminating TRSs as well.
However, these new techniques require methods to generate underlying base or-
derings. Hence, there is still an urgent need for powerful simplification orderings.

Now we clarify the connection between size-change termination and classical
simplification orderings and show that they do not subsume each other in general.

A major advantage of the size-change principle is that it can simulate the
basic ingredients of RPOS, i.e., the concepts of lexicographic and of multiset -
comparison. Thus, by the size-change principle w.r.t. a very simple reduction
pair like the embedding ordering we obtain an automated method for termination
analysis which avoids the search problems of RPOS and which can still capture
the idea of comparing tuples of arguments lexicographically or as multisets.

More precisely, for a reduction pair (%,≻), let ≻lex and ≻mul result from com-
paring tuples s∗ and t∗ of terms lexicographically and as multisets, respectively.
If s∗i ≻lex t∗i for all 1 ≤ i ≤ k, then the TRS {f(s∗1) → f(t∗1), . . . , f(s∗k) → f(t∗k)}
is size-change terminating w.r.t. (%,≻). In particular, size-change termination
w.r.t. the same reduction pair (%,≻) can simulate ≻lex for any permutation
used to compare the components of a tuple. Similarly, if s∗i ≻mul t∗i for all
i, then this TRS is also size-change terminating w.r.t. (%,≻).2 For example,
the TRS computing the Ackermann function as well as the TRS {plus(0, y) →
y, plus(s(x), y) → s(plus(y, x))} are size-change terminating w.r.t. the embed-
ding ordering on constructors whereas traditional rewriting techniques would
need lexicographic and recursive (multiset) path ordering, respectively.

Since both lexicographic and multiset comparison are simulated by the size-
change principle using the same reduction pair, one can also handle TRSs like
Ex. 2 where traditional path orderings like RPOS (or KBO) fail. In the first rule
f(s(x), y) → f(x, s(x)) the arguments of f have to be compared lexicographically
from left to right and in the second rule f(x, s(y)) → f(y, x) they have to be
compared as multisets. If one adds the rules for the Ackermann function then
polynomial orderings fail as well, but size-change termination is proved as before.

However, compared to classical path orderings, the size-change principle also
has several drawbacks. One problem is that it can only simulate lexicographic and
multiset comparison for the arguments of the root symbol. Hence, if one adds a
new function on top of all terms in the rules, this simulation is no longer possible.
For example, the TRS {f(plus(0, y)) → f(y), f(plus(s(x), y)) → f(s(plus(y, x)))} is

2 Formal proofs for these observations can be found in [14, Thm. 14 and Thm. 15].

7

no longer size-change terminating w.r.t. the embedding ordering, whereas classi-
cal path orderings can apply lexicographic or multiset comparisons on all levels
of the term. Thus, termination would still be easy to prove with RPO.

Perhaps the most serious drawback is that the size-change principle lacks
concepts to compare defined function symbols syntactically. Consider a TRS
with the rule log(s(s(x))) → s(log(s(half(x)))) and rules for half such that half(x)
computes ⌊x

2 ⌋. If a function (like log) calls another defined function (like half)
in the arguments of its recursive calls, one has to check whether the argument
half(x) is smaller than the term s(x) in the corresponding left-hand side. The
size-change principle on its own offers no possibility for that and its mechanizable
versions (Thm. 8 and Thm. 11) fail since they only use an underlying ordering
on constructor terms. In contrast, classical orderings like RPO can easily show
termination automatically using a precedence log > s > half on function symbols.

Finally, the size-change principle has the disadvantage that it cannot measure
terms by combining measures of subterms as in polynomial orderings or KBO.

Example 13. Measures (weights) are especially useful if one parameter is increas-
ing, but the decrease of another parameter is greater than this increase. So termi-
nation of {plus(s(s(x)), y) → s(plus(x, s(y))), plus(x, s(s(y))) → s(plus(s(x), y)),
plus(s(0), y) → s(y), plus(0, y) → y} is trivial to prove with polynomial orderings
or KBO, but the TRS is not size-change terminating w.r.t. any reduction pair.

5 Comparison and Combination with Dependency Pairs

Now we compare the size-change principle with dependency pairs. In contrast to
other recent techniques [4, 6], dependency pairs and size-change graphs are both
built from recursive calls which suggests to combine these approaches to benefit
from their respective advantages. We recapitulate the concepts of dependency
pairs; see [1, 7, 8] for refinements and motivations. Let F ♯ = {f ♯ | f ∈ D} be
a set of tuple symbols, where f ♯ has the same arity as f and we often write F

for f ♯, etc. If t = g(t1, . . . , tm) with g ∈ D, we write t♯ for g♯(t1, . . . , tm). If
l → r ∈ R and t is a subterm of r with defined root, then the rule l♯ → t♯ is a
dependency pair of R. So the dependency pairs of the TRS from Ex. 2 are

F(s(x), y) → F(x, s(x)) (4) F(x, s(y)) → F(y, x) (5)

We always assume that different occurrences of dependency pairs are variable
disjoint. Then a TRS is (innermost) terminating iff there is no infinite (inner-
most) chain of dependency pairs. A sequence s1 → t1, s2 → t2, . . . of dependency
pairs is a chain iff tiσ →∗

R
si+1σ for all i and a suitable substitution σ. The se-

quence is an innermost chain iff tiσ
i→∗
R si+1σ and all siσ are in normal form.

To estimate which dependency pairs may occur consecutively in chains, one
builds a so-called dependency graph. Let cap(t) result from replacing all sub-
terms of t with defined root symbol by different fresh variables and let ren(t)
result from replacing all occurrences of variables in t by different fresh variables.
For instance, cap(F(x, s(x))) = F(x, s(x)) and ren(F(x, s(x))) = F(x1, s(x2)).
The (estimated) dependency graph is the directed graph whose nodes are the

8

dependency pairs and there is an arc from s → t to v → w iff ren(cap(t)) and
v are unifiable. In the (estimated) innermost dependency graph there is only an
arc from s → t to v → w iff cap(t) and v are unifiable. For the TRS of Ex. 2,
the dependency graph and the innermost dependency graph are identical and
each dependency pair is connected with itself and with the other pair.

A non-empty set P of dependency pairs is a cycle if for any pairs s → t and
v → w in P there is a non-empty path from s → t to v → w which only traverses
pairs from P . In our example we have the cycles {(4)}, {(5)}, and {(4), (5)}. If a
cycle only contains dependency pairs resulting from the rules R′ ⊆ R we speak of
an R′-cycle of the dependency graph of R. Finally, for f ∈ D we define its usable
rules U(f) as the smallest set containing all f -rules and all rules that are usable
for function symbols occurring in right-hand sides of f -rules. In our example,
the usable rules for f are (1) and (2). For D′ ⊆ D let U(D′) =

⋃
f∈D′ U(f).

Theorem 14 (Dependency Pair Approach [1]). A TRS R is terminating
iff for each cycle P in the dependency graph there is a monotonic reduction pair
(%,≻) on T (F ∪ F ♯,V) such that

(a) s % t for all s → t ∈ P and s ≻ t for at least one s → t ∈ P
(b) l % r for all l → r ∈ R.

R is innermost terminating if for each cycle P in the innermost dependency
graph there is a monotonic reduction pair (%,≻) on T (F ∪ F ♯,V) such that

(c) s % t for all s → t ∈ P and s ≻ t for at least one s → t ∈ P
(d) l % r for all l → r ∈ U(D′),

where D′ = {f | f ∈ D occurs in t for some s → t ∈ P }.

For the TRS of Ex. 2, in P = {(4), (5)} we must find a reduction pair where
one dependency pair is weakly (w.r.t. %) and one is strictly decreasing (w.r.t.
≻). Since ≻ does not have to be monotonic, one typically uses a standard simpli-
fication ordering combined with an argument filtering to eliminate argument po-
sitions of function symbols. For example, we may eliminate the second argument
position of F. Then F becomes unary and every term F(s, t) is replaced by F(s).
The constraint F(s(x)) ≻ F(x) resulting from Dependency Pair (4) is easily satis-
fied but there is no reduction pair satisfying F(x) % F(y) from Dependency Pair
(5). Indeed, there is no argument filtering such that the constraints of the depen-
dency pair approach would be satisfied by a standard path ordering like RPOS or
KBO. Moreover, if one adds the rules f(x, y) → ack(x, y), ack(s(x), y) → f(x, x),
and the rules for the Ackermann function ack, then the dependency pair con-
straints are not satisfied by any polynomial ordering either.

Thus, termination cannot be proved with dependency pairs in combination
with classical orderings amenable to automation, whereas the proof is very easy
with the size-change principle and a simple reduction pair like the embedding
ordering on constructors. While the examples in [13] are easily handled by depen-
dency pairs and RPOS, this shows that there exist TRSs where the size-change
principle is preferable to dependency pairs and standard rewrite orderings.

In fact, size-change termination encompasses the concept of argument filter-
ing for root symbols, since it concentrates on certain arguments of (root) function

9

symbols while ignoring others. This is an advantage compared to dependency
pairs where finding the argument filtering is a major search problem. Moreover,
the size-change principle examines sequences of function calls in a more sophisti-
cated way. Depending on the different “paths” from one function call to another,
it can choose different arguments to be (strictly) decreasing. In contrast, in the
dependency pair approach such choices remain fixed for the whole cycle.

But in addition to the drawbacks in Sect. 4, a disadvantage of the size-change
principle is that it is not modular, i.e., one has to use the same reduction pair for
the whole termination proof whereas dependency pairs permit different orderings
for different cycles. The size-change principle also does not analyze arguments
of terms to check whether two function calls can follow each other, whereas in
dependency graphs, this is approximated using cap and ren. Again, the most
severe drawback is that the size-change principle offers no technique to compare
terms with defined symbols, whereas dependency pairs use inequalities of the
form l % r for this purpose. Therefore, only very restricted reduction pairs may
be used for the size-change principle in Thm. 8 and 11, whereas one may use
arbitrary monotonic reduction pairs for the dependency pair approach. In fact,
dependency pairs are a complete technique which can prove termination of every
TRS, which is not true for the size-change principle (see e.g., Ex. 13).

Therefore, we introduce a new technique to combine dependency pairs and
size-change termination. A straightforward approach would be to use size-change
termination as the “base ordering” when trying to satisfy the constraints result-
ing from the dependency pair approach. However, this would be very weak due
to the restrictions on the reduction pairs in Thm. 8 and Thm. 11. Instead, we
incorporate the size-change principle into the dependency pair approach and
use it when generating the constraints. The resulting technique is stronger than
both previous approaches: If (innermost) termination can be proved by the size-
change principle or by dependency pairs using certain reduction pairs, then it can
also be proved with our new technique using the same reduction pairs. On the
other hand, there are many examples which cannot be proved by the size-change
principle and where dependency pairs would require complicated reduction pairs
(that can hardly be generated automatically), whereas with our combined tech-
nique the (automatic) proof works with very simple reduction pairs, cf. [14].

Obviously, size-change graphs and dependency pairs have a close correspon-
dence, since they both represent a call of a defined symbol g in the right-hand
side of a rewrite rule f(s1, . . . , sn) → . . . g(t1, . . . , tm) . . . Since we only need to
concatenate size-change graphs which correspond to cycles in the (innermost)
dependency graph, we now label size-change graphs by the corresponding de-
pendency pair and multigraphs are labelled by the corresponding sequence of
dependency pairs. Then two size-change graphs or multigraphs labelled with
(. . . , D) and (D′, . . .) may only be concatenated if there is an arc from D to D′

in the (innermost)3 dependency graph. Another problem is that in size-change
graphs one only has output nodes 1f , . . . , nf and input nodes 1g, . . . , mg to

3 Whether one regards the dependency graph or the innermost dependency graph
depends on whether one wants to prove termination or innermost termination.

10

compare the arguments of f and g. Therefore, the size-change principle cannot
deal with TRSs like Ex. 13 where one has to regard the whole term in order
to show termination. For that reason we add another output node ǫf and input
node ǫg which correspond to the whole terms (or more precisely, to the terms
F (s1, . . . , sn) and G(t1, . . . , tm) of the corresponding dependency pair).

Definition 15 (Extended Size-Change Graphs). Let (%,≻) be a reduc-
tion pair on T (F ∪ F ♯,V). For every f(s1, . . . , sn) → r ∈ R and subterm
g(t1, . . . , tm) of r with g ∈ D, the extended size-change graph has n + 1 out-
put nodes if and m + 1 input nodes jg where i ∈ {ǫ, 1, . . . , n}, j ∈ {ǫ, 1, . . . , m}.
Let s = F (s1, . . . , sn) and t = G(t1, . . . , tm). Then there is an edge if

≻
→ jg iff

s|i ≻ t|j and otherwise, there is an edge if
%
→ jg iff s|i % t|j. Every extended size-

change graph is labelled by a one-element sequence (F (s1, ..., sn) → G(t1, ..., tm)).
Concatenation of extended size-change graphs to extended multigraphs works

as in Def. 3. However, if G is a multigraph labelled with (D1, . . . , Dn) and H is
labelled with (D′

1, . . . , D
′
m), then they can only be concatenated if there is an arc

from Dn to D′
1 in the (innermost) dependency graph. The concatenation G·H

is labelled with (D1, . . . , Dn, D′
1, . . . , D

′
m).

In the remainder, when we speak of size-change graphs or multigraphs, we
always mean extended graphs. To combine dependency pairs and the size-change
principle now we only regard multigraphs labelled with a cycle P of the (inner-
most) dependency graph (i.e., they are labelled with (D1, . . . , Dn) such that
P = {D1, . . . , Dn}). Moreover, one may use different reduction pairs for the
multigraphs resulting from different cycles. To benefit from the advantages of
the size-change principle (i.e., combining lexicographic and multiset comparison
and using different argument filterings and strict inequalities within one cycle),
we do not build inequalities but size-change graphs out of the dependency pairs.

The following theorem combines dependency pairs and the size-change princi-
ple for full termination (Thm. 11). In contrast to Thm. 11 we now allow arbitrary
reduction pairs. However, to handle defined symbols properly, one then has to re-
quire that all rules are weakly decreasing (like in the dependency pair approach).
Alternatively, as in Thm. 11 one may also use reduction pairs (→∗

S
,→+

S
) for a

terminating non-duplicating TRS S over the constructors of R without requiring
that R’s rules are weakly decreasing. For example, in this way one can prove ter-
mination of the Ackermann TRS with the embedding ordering (i.e., S = EmbC).
However, in order to use (→∗

S
,→+

S
) for some cycles and other reduction pairs

(%,≻) for other cycles, one has to prove termination of R∪S instead of just R.

Example 16. Let R = {g(f(a)) → g(f(b)), f(b) → f(a)} and S = {a → b}. For
the only cycle {G(f(a)) → G(f(b))} of R’s dependency graph, size-change ter-
mination can be shown by (→∗

S
,→+

S
). So if one only regards R instead of R∪S,

one could falsely “prove” termination of R. Instead, {F(b) → F(a)} must also be
regarded, since it is an R-cycle of the dependency graph of R∪S (in R∪S, a is
a defined symbol). Moreover, for reduction pairs (%,≻) 6= (→∗

S
,→+

S
), one has to

demand l % r not only for the rules l → r of R, but for those of S as well. Oth-
erwise, the constraints for the cycle {F(b) → F(a)} would falsely be satisfiable.

11

By Thm. 17, the resulting termination criterion is sound, complete, and more
powerful than the size-change principle or dependency pairs on their own.

Theorem 17 (Termination Proofs). Let R be a TRS over F with construc-
tors C and let S be a terminating non-duplicating TRS over C. R (and even
R∪ S) is terminating iff for each R-cycle P in the dependency graph of R∪ S
there is a monotonic reduction pair (%,≻) on T (F ∪ F ♯,V) such that

(a) all maximal multigraphs w.r.t. (%,≻) labelled with P contain an edge i
≻→ i

(b) %=→∗
S and ≻=→+

S
or l % r for all l → r ∈ R ∪ S

If R is size-change terminating w.r.t. (→∗
S
,→+

S
) as in Thm. 11 or if a reduction

pair satisfies Conditions (a) and (b) of Thm. 14 for termination with dependency
pairs, then this reduction pair also satisfies the conditions of this criterion.

Proof. Thm. 17 simulates size-change termination (Thm. 11):If all maximal mul-
tigraphs contain i

≻
→ i, this also holds for maximal multigraphs labelled with P .

It simulates dependency pairs by choosing S = ∅: By Thm. 14 (a), multigraphs
labelled with P contain ǫ

≻→ ǫ. As dependency pairs are complete for termination
(even with estimated or no dependency graphs), this proves the “only if” part.

For the “if” direction, suppose that R∪S is not terminating. Since S termi-
nates, by Lemma 10 and the soundness of dependency pairs, there is an infinite
chain s1 → t1, s2 → t2, . . . of R-dependency pairs such that tiσ →∗

R∪S
si+1σ

for all i and a substitution σ, and s1 = s♯ for a minimal non-terminating term
s w.r.t. R∪ S. Moreover, there is an R-cycle P consisting of those dependency
pairs which occur infinitely often in this chain. Let i1 < i2 < . . . such that
{sij

→ tij
, . . . , sij+1−1 → tij+1−1} = P for all j, i.e., we partition the sequence

into parts where all dependency pairs of P occur. For all j, let Gj be the multi-
graph resulting from the concatenation of the size-change graphs corresponding
to sij

→ tij
, . . . , sij+1−1 → tij+1−1. Note that all Gj are labelled with P .

Due to (a), every multigraph H resulting from concatenation of size-change
graphs contains an edge of the form i

≻→ i, provided that H = H·H and that
H is labelled with P . Hence, every idempotent multigraph H = H·H resulting
from concatenating graphs from G1, G2, . . . also contains an edge i

≻
→ i. The

reason is that since all Gj are labelled with P , then H is also labelled with P .
From this, [13, Thm. 4] or [14, Lemma 7] implies that there is an infinite path

with infinitely many “≻”-edges in the infinite graph resulting from G1, G2, . . .

by identifying the input nodes of Gj with the output nodes of Gj+1. Hence, there
is also such a path in the infinite graph resulting from the size-change graphs
corresponding to s1 → t1, s2 → t2, . . . Without loss of generality, we assume that
the infinite path already starts in the size-change graph corresponding to s1 → t1.
For every i, let ai be the output node in the size-change graph of si → ti which
is on this path. For infinitely many i we have si|ai

σ ≻ ti|ai+1
σ and otherwise,

we have si|ai
σ % ti|ai+1

σ, since % and ≻ are closed under substitutions.
If the reduction pair (%,≻) is (→∗

S
,→+

S
), then we obtain a contradiction to

the minimality of s similar as in the proof of Thm. 11. Otherwise, ti|ai+1
σ %

si+1|ai+1
σ due to (b) since ti|ai+1

σ →∗
R∪S

si+1|ai+1
σ. Hence, we have an infinite

decreasing sequence w.r.t. ≻ which contradicts its well-foundedness. ⊓⊔

12

For innermost termination, we integrate Thm. 8 with dependency pairs. (In-
tegrating a variant of Thm. 11 for innermost termination would only prove in-
nermost termination of R ∪ S which does not imply innermost termination of
R.) In the dependency pair approach for innermost termination, only the usable
rules for defined symbols in right-hand sides t of dependency pairs s → t must be
weakly decreasing. Here, one can benefit from the size-change principle, which
restricts the comparison of terms to certain arguments. Symbols of t which do
not occur in the arguments being compared do not have to be regarded as “us-
able”. More precisely, if one uses the extension of a reduction pair which only
compares terms with defined symbols from a subset D′ ⊆ D, then one only has
to require weak decreasingness of U(D′). So here the size-change principle has
the advantage that one can reduce the set of usable rules.

For example, the Ackermann TRS has the rule ack(s(x), s(y)) → ack(x,

ack(s(x), y)) and therefore, we obtain the dependency pair ACK(s(x), s(y)) →
ACK(x, ack(s(x), y)). Since ack occurs in the right-hand side of this dependency
pair, in the dependency pair approach we would have to require l % r for all
ack-rules since they would be regarded as being usable. For this reason, we
would need a lexicographic comparison. However, in our new technique, the
ACK-dependency pairs are transformed into size-change graphs and size-change
termination can easily be shown using the embedding ordering on constructor
terms (i.e., D′ = ∅). In other words, the second argument of ACK(x, ack(s(x), y))
is never regarded in this comparison and therefore, the ack-rules are no longer
usable. So instead of LPO we only need the embedding ordering to satisfy the
resulting constraints. Hence, in the combined technique one can often use much
simpler reduction pairs than the reduction pairs needed with dependency pairs.

Here it is important that extensions are non-monotonic. Consider the TRS of
Ex. 16 and a reduction pair on constructor terms (i.e., D′ = ∅) where a is greater
than b. Hence, we do not have to regard any usable rules. In the extension (%,≻)
of this reduction pair we have f(a) 6≻ f(b). Thus, the dependency pair G(f(a)) →
G(f(b)) is not decreasing, i.e., innermost termination is not proved. But if the
extension were monotonic, we would falsely prove innermost termination of R.

Theorem 18 (Innermost Termination Proofs). A TRS R is innermost
terminating if for each cycle P in the innermost dependency graph there is a
reduction pair on T (C ∪ D′ ∪ F ♯,V) for some D′ ⊆ D which is monotonic if
D′ 6= ∅, such that for its extension (%,≻) to T (F ∪ F ♯,V) we have

(a) all maximal multigraphs w.r.t. (%,≻) labelled with P contain an edge i
≻→ i

(b) l % r for all l → r ∈ U(D′)

If R is size-change terminating w.r.t. a reduction pair as in Thm. 8 or if a reduc-
tion pair satisfies Conditions (c) and (d) of Thm. 14 for innermost termination
with dependency pairs, then it also satisfies the conditions of this criterion.

Proof. Thm. 18 can simulate the size-change principle: As in Thm. 17, size-
change termination implies (a). Moreover, if (%,≻) is the extension of a reduction
pair on T (C,V) as in Thm. 8, then D′ = ∅ and thus, (b) is also satisfied.

The simulation of dependency pairs and the soundness of the above criterion

13

are shown as for Thm. 17. If R is not innermost terminating, then there is an
infinite innermost chain s1 → t1, s2 → t2, . . . with tiσ

i→∗
R

si+1σ and all siσ are
normal forms. As in Thm. 17’s proof, this implies that in the infinite graph re-
sulting from the corresponding size-change graphs there is an infinite path with
infinitely many “≻” labels. For every i, let ai be the output node in the size-
change graph corresponding to si → ti which is on this infinite path. To conclude
ti|ai+1

σ % si+1|ai+1
σ, note that si|ai

% ti|ai+1
or si|ai

≻ ti|ai+1
. According to

the definition of extending reduction pairs, all subterms of ti|ai+1
with root

from D \ D′ also occur in si|ai
. Hence, when instantiated by σ they are in

normal form. Therefore, the only rules applicable to ti|ai+1
σ are from U(D′).

Moreover, above the redexes of ti|ai+1
σ there are no symbols from D \D′, since

otherwise these redexes would also occur in the normal form si|ai
σ. Now (b)

ensures ti|ai+1
σ % si+1|ai+1

σ. The remainder is as in Thm. 17’s proof. ⊓⊔

The combined technique handles TRSs where both original techniques fail,
since some rules require lexicographic or multiset comparison and others re-
quire polynomial orderings. In the combined technique, lexicographic or multi-
set comparison is implicit since the size-change principle is incorporated. Thus,
the resulting constraints are often satisfied by simple polynomial orderings. For
example, we unite the plus-TRS (Ex. 13) with the TRS for Ackermann’s func-
tion, where ack(s(x), s(y)) → ack(x, ack(s(x), y)) is replaced by ack(s(x), s(y)) →
ack(x, plus(y, ack(s(x), y))). In the original dependency pair approach, both the
ack- and plus-rules are usable for the corresponding dependency pair and thus, no
standard ordering amenable to automation fulfills the resulting constraints. But
in the combined technique, there are no usable rules and hence, the innermost
termination proof works with the simple polynomial ordering on constructors
and tuple symbols where s(x) is mapped to x + 1 and PLUS(x, y) is mapped to
x + y. In practice, there are many TRSs where the combined technique simpli-
fies the termination proof significantly (e.g., TRSs for arithmetic operations, for
sorting algorithms, for term manipulations in λ-calculus, etc., cf. [14]).

In [1, 7], refinements to manipulate dependency pairs by narrowing, rewriting,
and instantiation were proposed. These refinements directly carry over to our
combined technique. To summarize, the combination of dependency pairs and
the size-change principle has two main advantages: First, one can now prove
(innermost) termination of TRSs automatically where up to now an automated
proof was impossible. Second, for many TRSs where up to now the termination
proof required complicated reduction pairs involving a large search space, one
can now use much simpler orderings which increases efficiency.

6 Conclusion

We extended the size-change principle to prove (innermost) termination of arbi-
trary TRSs. Then we compared it with classical simplification orderings from
rewriting: It is also restricted to simple termination, it incorporates lexicographic
and multiset comparison for root symbols (although not below the root), but it
cannot handle defined symbols or term measures and weights. Nevertheless, there

14

are even examples where the size-change principle is advantageous to dependency
pairs, since it can simulate argument filtering for root symbols and it can inves-
tigate how the size of arguments changes in sequences of function calls. On the
other hand, the size-change principle is not modular and it lacks a concept like
the dependency graph to analyze which function calls can follow each other.
Therefore, we developed a new approach to combine the size-change principle
with dependency pairs. The combined approach is more powerful than both pre-
vious techniques and has the advantage that it often succeeds with much simpler
argument filterings and base orderings than the dependency pair approach. We
have implemented both the original dependency pair approach and the combined
approach in the system AProVE and found that this combination often increases
efficiency dramatically. With this combination and a reduction pair based on
the lexicographic path ordering, 103 of the 110 examples in the collection of [2]
could be proved innermost terminating fully automatically. Most of these proofs
took less than a second; the longest took about 10 seconds. The remaining 7 ex-
amples only fail because of the underlying reduction pair (e.g., one would need
polynomial orderings or KBO). For details on the experiments see [14].

References

1. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-
oretical Computer Science, 236:133–178, 2000.

2. T. Arts and J. Giesl. A collection of examples for termination of term rewriting
using dependency pairs. Technical Report AIB-2001-09, RWTH Aachen, 2001.

3. F. Baader and T. Nipkow. Term Rewriting and All That. Cambr. Univ. Pr., 1998.
4. C. Borralleras, M. Ferreira, and A. Rubio. Complete monotonic semantic path

orderings. In Proc. 17th CADE, LNAI 1831, pages 346–364, 2000.
5. N. Dershowitz. Termination of rewriting. J. Symbolic Comp., 3:69–116, 1987.
6. O. Fissore, I. Gnaedig, and H. Kirchner. Induction for termination with local

strategies. In Proc. 4th Int. Workshop Strategies in Aut. Ded., ENTCS 58, 2001.
7. J. Giesl and T. Arts. Verification of Erlang processes by dependency pairs. Appl.

Algebra in Engineering, Communication and Computing, 12(1,2):39–72, 2001.
8. J. Giesl, T. Arts, and E. Ohlebusch. Modular termination proofs for rewriting

using dependency pairs. Journal of Symbolic Computation, 34(1):21–58, 2002.
9. S. Kamin and J. J. Lévy. Two generalizations of the recursive path ordering.

Unpublished Manuscript, University of Illinois, IL, USA, 1980.
10. D. Knuth and P. Bendix. Simple word problems in universal algebras. In J. Leech,

editor, Comp. Problems in Abstr. Algebra, pages 263–297. Pergamon, 1970.
11. K. Kusakari, M. Nakamura, and Y. Toyama. Argument filtering transformation.

In Proc. 1st PPDP, LNCS 1702, pages 48–62, 1999.
12. D. Lankford. On proving term rewriting systems are Noetherian. Technical Report

MTP-3, Louisiana Technical University, Ruston, LA, USA, 1979.
13. C. S. Lee, N. D. Jones, and A. M. Ben-Amram. The size-change principle for

program termination. In Proc. POPL ’01, pages 81–92, 2001.
14. R. Thiemann and J. Giesl. Size-change termination for term rewriting. Report

AIB-2003-02, RWTH Aachen, 2003. http://aib.informatik.rwth-aachen.de.
15. Y. Toyama. Counterexamples to the termination for the direct sum of term rewrit-

ing systems. Information Processing Letters, 25:141–143, 1987.

15

