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Abstract. In earlier work, we developed an approach for automated ter-
mination analysis of C programs with explicit pointer arithmetic, which
is based on symbolic execution. However, similar to many other termina-
tion techniques, this approach assumed the program variables to range
over mathematical integers instead of bitvectors. This eases mathemat-
ical reasoning but is unsound in general. In this paper, we extend our
approach in order to handle fixed-width bitvector integers. Thus, we
present the first technique for termination analysis of C programs that
covers both byte-accurate pointer arithmetic and bit-precise modeling of
integers. We implemented our approach in the automated termination
prover AProVE and evaluate its power by extensive experiments.

1 Introduction

In [14], we developed an approach for termination analysis of C with explicit
pointer arithmetic, which we implemented in our tool AProVE [9]. AProVE won
the termination category of the International Competition on Software Verifica-
tion (SV-COMP)1 at TACAS in 2015 and 2016. However, like the other termina-
tion tools at SV-COMP, our approach was restricted to mathematical integers.

In general, this is unsound: The function f below does not terminate if x has
the maximum value of its type.2 But we can falsely prove termination if we treat x
and j as mathematical integers. For g, we could falsely conclude non-termination,
although g always terminates due to the wrap-around for unsigned overflows.

void f(unsigned int x) { void g(unsigned int j) {

unsigned int j = 0; while (j > 0) j++; }

while (j <= x) j++; }

In this paper, we adapt our approach for termination of C from [14] to handle
the bitvector semantics correctly. To avoid dealing with the intricacies of C, we
analyze programs in the platform-independent intermediate representation of
the LLVM compilation framework [12]. Our approach works in two steps: First, a
symbolic execution graph is automatically constructed that represents an over-ap-
proximation of all possible program runs (Sect. 2 and 3). This graph can also

? Supported by the DFG grant GI 274/6-1.
1 See http://sv-comp.sosy-lab.org/.
2 In C, adding 1 to the maximal unsigned integer results in 0. In contrast, for signed

integers, adding 1 to the maximal signed integer results in undefined behavior. How-
ever, most C implementations return the minimal signed integer as the result.



2 J. Hensel et al.

be used to prove that the program does not result in undefined behavior (so in
particular, it is memory safe). In a second step (Sect. 4), this graph is transformed
into an integer transition system (ITS), whose termination can be proved by
existing techniques. In Sect. 5, we compare our approach with related work and
evaluate our corresponding implementation in AProVE. App. A discusses details
on the semantics of abstract states and App. B gives the proofs of the theorems.

To extend our approach to fixed-width integers, we express relations between
bitvectors by corresponding relations between mathematical integers Z. In this
way, we can use standard SMT solving over Z for all steps needed to construct the
symbolic execution graph. Moreover, this allows us to obtain ITSs over Z from
these graphs, and to use standard approaches for generating ranking functions
to prove termination of these ITSs. So our contribution is a general technique
to adapt byte-accurate symbolic execution to the handling of bitvectors, which
can also be used for many other program analyses besides proving termination.

Limitations To simplify the presentation and to concentrate on the issues related
to bitvectors, we restrict ourselves to a single LLVM function and to LLVM types
of the form in (for n-bit integers), in* (for pointers to values of type in), in**,
in***, etc. Moreover, we assume a 1 byte data alignment (i.e., values may be
stored at any address) and only handle memory allocation by the LLVM instruc-
tion alloca. See [14] for an extension of our approach to programs with several
LLVM functions, arbitrary alignment, and external functions like malloc. As dis-
cussed in [14], some LLVM concepts are not yet supported by our approach (e.g.,
undef, floating point values, vectors, struct types, and recursion). Another limi-
tation is that our approach cannot directly disprove properties like memory safe-
ty or termination, as it is based on over-approximating all possible program runs.

2 LLVM States for Symbolic Execution

define i32 @g(i32 j) {

entry: 0: ad = alloca i32

1: store i32 j, i32* ad

2: br label cmp

cmp: 0: j1 = load i32* ad

1: j1pos = icmp ugt i32 j1, 0

2: br i1 j1pos, label body, label done

body: 0: j2 = load i32* ad

1: inc = add i32 j2, 1

2: store i32 inc, i32* ad

3: br label cmp

done: 0: ret void }

Fig. 1: LLVM code for the function g

In this section, we define
concrete and abstract LLVM
states that represent sets of
concrete states. These states
will be needed for symbolic
execution in Sect. 3. As an
example, consider the func-
tion g from Sect. 1. In the
corresponding3 LLVM code
in Fig. 1, the integer vari-
able j has the type i32, as it
is represented as a bitvector
of length 32. The program
is split into the basic blocks entry, cmp, body, and done. We will explain this

3 This LLVM program corresponds to the code obtained from g with the Clang compiler
[3]. To ease readability, we wrote variables without “%” in front (i.e., we wrote “j”
instead of “%j” as in proper LLVM) and added line numbers.
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LLVM code in detail when constructing the symbolic execution graph in Sect. 3.
In our abstract domain, an LLVM state consists of the current program posi-

tion, the values of the local program variables, a knowledge base with informa-
tion about these values, and two sets to describe allocations and the contents
of memory. The program position is represented by a pair (b, k). Here, b is the
name of the current basic block and k is the index of the next instruction.
So if Blks is the set of all basic blocks, then the set of program positions is
Pos = Blks × N. We represent an assignment to the local program variables VP
(e.g., VP = {j, ad, . . .}) by an injective function LV : VP → Vsym , where Vsym is
an infinite set of symbolic variables with Vsym ∩VP = ∅. Let Vsym(LV ) ⊆ Vsym
be the set of all symbolic variables v where LV (x) = v for some x ∈ VP .

The third component of states is the knowledge base KB ⊆ QF IA(Vsym), a
set of first-order quantifier-free integer arithmetic formulas. For concrete states,
KB uniquely determines the values of symbolic variables, whereas for abstract
states several values are possible. We identify sets of formulas {ϕ1, . . . , ϕn} with
their conjunction ϕ1 ∧ . . . ∧ ϕn and require that KB is just a conjunction of
equalities and inequalities in order to speed up SMT-based arithmetic reasoning.

The fourth component of a state is an allocation list AL. It contains expres-
sions of the form Jv1, v2K for v1, v2 ∈ Vsym , which indicate that v1 ≤ v2 and that
all addresses between v1 and v2 have been allocated by an alloca instruction.

The fifth component PT is a set of “points-to” atoms v1 ↪→ty,i v2 where
v1, v2 ∈ Vsym , ty is an LLVM type, and i ∈ {u, s}. This means that the value
v2 of type ty is stored at the address v1, where i ∈ {u, s} indicates whether v2
represents this value as an unsigned or signed integer. As each memory cell stores
one byte, v1 ↪→i32,i v2 states that v2 is stored in the four cells v1, . . . , v1 + 3.

Finally, we use a special state ERR to be reached if we cannot prove absence
of undefined behavior (e.g., if a non-allowed overflow or a violation of memory
safety by accessing non-allocated memory might take place).

Definition 1 (States). LLVM states have the form (p,LV ,KB ,AL,PT ) where
p∈Pos, LV : VP → Vsym , KB ⊆ QF IA(Vsym), AL ⊆ {Jv1, v2K | v1, v2 ∈ Vsym},
and PT ⊆ {(v1 ↪→ty,i v2) | v1, v2 ∈Vsym , ty is an LLVM type, i∈{u, s}}. In ad-
dition, there is a state ERR for undefined behavior. For a = (p,LV,KB,AL,PT ),
let Vsym(a) consist of Vsym(LV ) and all symbolic variables in KB, AL, or PT .

We often identify the mapping LV with the equations {x = LV (x) | x ∈ VP}.
As an example, consider the following abstract state for our function g:

( (entry, 2), {j = vj, ad = vad}, {vend = vad + 3}, {Jvad, vendK}, {vad ↪→i32,u vj} ) (1)

It represents states in the entry block immediately before executing the instruc-
tion in line 2. Here, LV (j) = vj, the memory cells between LV (ad) = vad and
vend = vad + 3 have been allocated, and vj is stored in the 4 cells vad, . . . , vend .

In contrast to [14], we partition the program variables VP into two disjoint
sets UP and SP . If x ∈ UP (resp. x ∈ SP), then LV (x) is x’s value as an unsigned
(resp. signed) integer. This is advantageous when formulating rules to execute
LLVM instructions like icmp ugt and sgt, since the LLVM types do not distin-
guish between unsigned and signed integers. Instead, some LLVM instructions
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consider their arguments as “unsigned” whereas others consider them as “signed”.
To determine UP and SP , we use the following heuristic which statically scans

the program P for variables which are (mainly) used in unsigned resp. signed
interpretation. We iteratively add a variable x to UP if

• x is an address (i.e., it has a type of the form ty*),
• x occurs in an unsigned comparison instruction (e.g., icmp ugt for the integer

comparison “unsigned greater than”) or in another unsigned operation (e.g.,
udiv or urem for “unsigned division” or “remainder”),

• x occurs in a sign neutral comparison (icmp eq or ne) or in a phi or select in-
struction together with another variable y ∈ UP , where y is not the condition,

• x occurs in an add, sub, mul, or shl instruction without nsw flag (“no signed
wrap-up” means that overflow of signed integers yields undefined behavior),

• x occurs in a binary or conversion instruction with another y ∈ UP ,
• x is the result of icmp or the condition of a branch (br) or select instruction,
• x occurs in a lshr (“logical shift right”) instruction,
• x occurs in a zext instruction (the “zero extension” adds zero bits in front),
• x is loaded from an address where a variable y ∈ UP is stored to, or
• x is stored to an address where a variable y ∈ UP is loaded from.

Afterwards, we iteratively remove x from UP again if

• x is one of the two arguments of a signed comparison (e.g., icmp sgt) or
x occurs in another signed operation (e.g., sdiv or srem),

• x occurs in a comparison or in a phi or select instruction together with
another variable y ∈ VP \ UP , where x is not the condition,

• x occurs in an instruction flagged by nsw,
• x occurs in a binary or conversion instruction with another y ∈ VP \ UP ,
• x occurs in an ashr (“arithmetic shift right”) instruction,
• x occurs in a sext instruction (the “sign extension” adds copies of the most

significant bit in front),
• x is loaded from an address where a variable y ∈ VP \ UP is stored to, or
• x is stored to an address where a variable y ∈ VP \ UP is loaded from.

We then define SP = VP \UP . In this way, we make sure that in each instruction
in P, all occurring program variables of type in with n > 1 are either from UP
or from SP . In our example, we obtain UP = VP = {j, ad, . . . , inc} and SP = ∅.
Note that there is no guarantee that all variables in UP resp. SP are used as
unsigned resp. signed integers in the original C program (e.g., if y, z ∈ SP and
the C program contains “unsigned int x = y + z;”, then our heuristic would
conclude x ∈ SP , since the resulting LLVM code has the instruction “x = add

i32 y, z”). Our analysis remains correct if there are (un)signed variables that
we do not recognize as being (un)signed (i.e., failure of the above heuristic for UP
and SP only affects the performance, but not the soundness of our approach).

To construct symbolic execution graphs, for any state a we use a first-order
formula 〈a〉FO , which is a conjunction of equalities and inequalities containing
KB and obvious consequences of AL and PT . Moreover, 〈a〉FO states that all
integers belong to intervals corresponding to their types. Here, let umaxn =
2n−1, sminn = −2n−1, and smaxn = 2n−1−1. Moreover, size(ty) is the number
of bits required for values of type ty (e.g., size(in) = n and size(ty*) = 32 (resp.
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64) on 32-bit (resp. 64-bit) architectures). As usual, “v ∈ [k,m]” is a shorthand
for “k ≤ v ∧ v ≤ m” and “|= ϕ” means that ϕ is a tautology.

Definition 2 (FO Formulas for States). 〈a〉FO is the smallest set with4

〈a〉FO = KB ∪ {0 < v1 ≤ v2 | Jv1, v2K ∈ AL} ∪
{v2 = w2 | (v1 ↪→ty,i v2), (w1 ↪→ty,i w2) ∈ PT and |= 〈a〉FO ⇒ v1 = w1} ∪
{v1 6= w1 | (v1 ↪→ty,i v2), (w1 ↪→ty,i w2) ∈ PT and |= 〈a〉FO ⇒ v2 6= w2} ∪
{0 < v1 ∧ v2 ∈ [0, umaxsize(ty)] | (v1 ↪→ty,u v2) ∈ PT} ∪
{0 < v1 ∧ v2 ∈ [sminsize(ty), smaxsize(ty)] | (v1 ↪→ty,s v2) ∈ PT} ∪
{LV (x) ∈ [0, umaxsize(ty)] | x ∈ UP , x has type ty} ∪
{LV (x) ∈ [sminsize(ty), smaxsize(ty)] | x ∈ SP , x has type ty}.

Concrete states determine the values of variables and the contents of the
memory uniquely. To enforce a uniform representation, in concrete states we only
allow statements of the form (w1 ↪→ty,i w2) in PT where ty = i8 and i = u. In
addition, concrete states (p,LV ,KB ,AL,PT ) must be well formed, i.e., for every
(w1 ↪→ty,i w2) ∈ PT , there is an Jv1, v2K ∈ AL such that |= KB ⇒ v1 ≤ w1 ≤ v2.
So PT only contains information about addresses that are known to be allocated.

Definition 3 (Concrete States). An LLVM state c is concrete iff c = ERR
or c = (p,LV ,KB ,AL,PT ) is well formed, 〈c〉FO is satisfiable, and

• For all v ∈ Vsym(c) there exists an n ∈ Z such that |= 〈c〉FO ⇒ v = n.
• For all Jv1, v2K ∈ AL and for all integers n with |= 〈c〉FO ⇒ v1 ≤ n ≤
v2, there exists (w1 ↪→i8,u w2) ∈ PT for some w1, w2 ∈ Vsym such that
|= 〈c〉FO ⇒ w1 = n and |= 〈c〉FO ⇒ w2 = k, for some k ∈ [0, umax8].

• There is no (w1 ↪→ty,i w2) ∈ PT for ty 6= i8 or i = s.

In [14], for every abstract state a, we also introduced a separation logic for-
mula 〈a〉SL which extends 〈a〉FO by detailed information about the memory. (We
recapitulate 〈a〉SL and the semantics of separation logic in App. A.) For this se-
mantics, we use interpretations (as,mem). Here, as : VP → Z is an assignment of
the program variables, where for x∈VP of type ty, we have as(x)∈ [0, umaxsize(ty)]
if x ∈ UP and as(x) ∈ [sminsize(ty), smaxsize(ty)] if x ∈ SP . The partial function
mem : N>0 ⇀ {0, . . . , umax8} with finite domain describes the memory contents
at allocated addresses (as unsigned integers). We use “⇀” for partial functions.
For any abstract state a, we have |= 〈a〉SL ⇒ 〈a〉FO . So 〈a〉FO is a weakened
version of 〈a〉SL, used to construct symbolic execution graphs. This allows us to
use standard first-order SMT solving for all reasoning in our approach.

Now we define which concrete states are represented by an abstract state a.
We extract an interpretation (asc,memc) from every concrete state c 6= ERR.
Then a represents all concrete states c where (asc,memc) is a model of some
concrete instantiation of 〈a〉SL. A concrete instantiation is a function σ : Vsym →
Z. So σ does not instantiate VP . Instantiations are extended to formulas as usual.

4 Of course, 〈a〉FO can be extended by more formulas, e.g., on the connection between
v2 and v′2 if (v1 ↪→in,u v2), (v1 ↪→im,u v

′
2) ∈ PT for n < m. Then we can also handle

programs which load an in integer from an address where an im integer was stored.
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Definition 4 (Representing Concrete by Abstract States). Let c = (p,
LV c,KBc,ALc,PT c) be a concrete state. For every x ∈ VP , let asc(x) = n for
the number n ∈ Z with |= 〈c〉FO ⇒ LV c(x) = n. For n ∈ N>0, the function
memc(n) is defined iff there exists a (w1 ↪→i8,u w2) ∈ PT such that |= 〈c〉FO ⇒
w1 = n. Let |= 〈c〉FO ⇒ w2 = k, where k ∈ [0, umax8]. Then memc(n) = k.

We say that an abstract state a = (p,LV a,KBa,ALa,PT a) represents a con-
crete state c = (p,LV c,KBc,ALc,PT c) iff a is well formed and (asc,memc) is
a model of σ(〈a〉SL) for some concrete instantiation σ of the symbolic variables.
The only state that represents the error state ERR is ERR itself.

So the abstract state (1) represents all concrete states c = ((entry, 2),LV ,
KB ,AL,PT ) where memc stores the 32-bit integer asc(j) at the address asc(ad).

3 From LLVM to Symbolic Execution Graphs

We now show how to automatically generate a symbolic execution graph that
over-approximates all executions of a program. To this end, we define operations
to convert any integer expression t into an unsigned resp. signed n-bit integer:5

unsn(t) = t mod 2n sign(t) = ((t+ 2n−1) mod 2n)− 2n−1

The correctness of unsn is obvious and by Thm. 5, sign is correct as well.

Theorem 5 (Converting Integers to Signed n-Bit Integers). Let n ∈ N
with n ≥ 1. Then sign(t) ∈ [sminn, smaxn] and t mod 2n = sign(t) mod 2n.

Moreover, we extend LV to apply it also to concrete integers. To this end,
we use LVu,n,LVs,n : VP ] Z → Vsym ] Z, where LVu,n(t) (resp. LVs,n(t)) is t
represented as an unsigned (resp. signed) integer with n bits, for any t ∈ VP ]Z:

LVu,n(t) =


LV (t), if t ∈ UP
unsn(LV (t)), if t ∈ SP
unsn(t), if t ∈ Z

LVs,n(t) =


sign(LV (t)), if t ∈ UP
LV (t), if t ∈ SP
sign(t), if t ∈ Z

We developed symbolic execution rules for all LLVM instructions that are
affected by the adaption to bitvectors. We handle overflows by appropriate case
analyses (Sect. 3.1) or by introducing “modulo” relations (Sect. 3.2). Moreover,
Sect. 3.3 presents rules for bitwise binary and conversion instructions. The re-
maining bitvector instructions of LLVM are handled in an analogous way (see [1]
for details), and rules for other LLVM instructions can be found in [14].

3.1 Handling Bitvector Operations by Case Analysis

We start with the initial states that one wants to analyze for termination, e.g.,
with the abstract state A where j has an unknown value. In the symbolic exe-
cution graph for g in Fig. 2, we abbreviated parts by “...” and wrote ↪→i32 and
umax instead of ↪→i32,u and umax32. To ease readability, we replaced some sym-

5 As usual, mod is defined as follows: For any m ∈ Z and n ∈ N>0, we have t =
m mod n iff t ∈ [0, n− 1] and there exists a k ∈ Z such that t = k · n+m.
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(entry, 0), {j = vj, ...}, {vj ∈ [0, umax], ...}, ∅, ∅A

(entry, 1), {j = vj, ad = vad, ...}, {vend = vad +3, ...}, {Jvad, vendK}, ∅B

(entry, 2), {j = vj, ad = vad, ...}, {...}, {Jvad, vendK}, {vad ↪→i32 vj}C

(cmp, 0), {j = vj, ad = vad, ...}, {...}, {Jvad, vendK}, {vad ↪→i32 vj}D

(cmp, 1), {j = vj, ad = vad, j1 = vj, ...}, {...}, {...}, {vad ↪→i32 vj}E

(cmp, 1), {ad = vad, j1 = vj, ...},
{¬vj > 0, ...}, {...}, {vad ↪→i32 vj}

F (cmp, 1), {ad = vad, j1 = vj, ...},
{vj > 0, ...}, {...}, {vad ↪→i32 vj}

G

. . .

(cmp, 2), {ad = vad, j1 = vj, j1pos = 1, ...}, {vj > 0, ...}, {...}, {vad ↪→i32 vj}
H

(body, 0), {ad = vad, ...}, {vj > 0, ...}, {...}, {vad ↪→i32 vj}I

(body, 1), {ad = vad, j2 = vj, ...}, {vj > 0, ...}, {...}, {vad ↪→i32 vj}J

(body, 1), {ad = vad, j2 = umax, ...},
{...}, {...}, {vad ↪→i32 umax}

K (body, 1), {ad = vad, j2 = vj, ...},
{vj ∈ [1, umax− 1], ...}, {...}, {vad ↪→i32 vj}

L

(body, 2), {j2 = umax, inc = 0, ...},
{...}, {...}, {vad ↪→i32 umax}

M (body, 2), {inc = vinc, ...}, {vinc ∈ [2, umax],
vinc = vj + 1, ...}, {...}, {...}

N

. . .

(body, 3), {inc = vinc, ...}, {vinc ∈ [2, umax], vinc = vj +1, ...}, {Jvad, vendK}, {vad ↪→i32 vinc}O

(cmp, 0), {inc = vinc, ...}, {vinc ∈ [2, umax], vinc = vj+1, ...}, {Jvad, vendK}, {vad ↪→i32 vinc}P

(body, 1), {j2 = vinc, ...}, {vinc ∈ [2, umax], vinc = vj+1, ...}, {Jvad, vendK}, {vad ↪→i32 vinc}Q

(cmp, 0), {inc=vinc2, ...}, {vinc2∈ [3, umax], vinc2=vinc+1, ...}, {Jvad,vendK}, {vad ↪→i32 vinc2}R

. . .

Fig. 2: Symbolic execution graph for the function g

bolic variables by their values (e.g., we wrote j1pos = 1) and explicitly depicted
formulas like vj ∈ [0, umax] that follow from 〈A〉FO since j ∈ UP and LV (j) = vj.

The function g allocates Jvad, vendK and stores the value vj of j at address
ad. Next, we jump to the block cmp for the loop comparison. After loading the
value vj (stored at address ad) to the program variable j1, in State E we check
whether j1’s value in unsigned interpretation is greater than 0 (icmp ugt).

The following rule evaluates such instructions symbolically. In our rules, “p :
ins” states that ins is the instruction at position p. Let a always denote the
abstract state before the execution step (i.e., above the horizontal line of the
rule), where we write 〈a〉 instead of 〈a〉FO . Moreover, LV [x := v] is the function
where (LV [x := v])(x) = v and (LV [x := v])(y) = LV (y) for y 6= x. If p = (b, k),
then p+ = (b, k + 1) is the position of the next instruction in the same block.

icmp ugt (p : “x = icmp ugt ty t1, t2” with x ∈ VP , t1, t2 ∈ VP ∪ Z)

(p, LV , KB , AL, PT )

(p+, LV [x := v], KB ∪ {ϕ}, AL, PT )
if v ∈ Vsym is fresh and if

either |= 〈a〉⇒ (LVu,size(ty)(t1) > LVu,size(ty)(t2)) and ϕ is “v = 1”
or |= 〈a〉⇒ (LVu,size(ty)(t1) ≤ LVu,size(ty)(t2)) and ϕ is “v = 0”

However, in our example the value of LV u,32(j1) = LV (j1) = vj is unknown.
Therefore, we first have to refine State E to States F and G such that the
comparison can be decided. For this case analysis, we use the following rule.
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icmp ugt refinement (p : “x = icmp ugt ty t1, t2” with x ∈ VP , t1, t2 ∈ VP ∪ Z)

(p, LV , KB , AL, PT )

(p,LV ,KB ∪{ϕ},AL,PT ) | (p,LV ,KB ∪{¬ϕ},AL,PT )
if

ϕ is “LVu,size(ty)(t1) > LVu,size(ty)(t2)” and we have both 6|= 〈a〉⇒ ϕ and 6|= 〈a〉⇒ ¬ϕ

The rules for other comparisons are analogous. So the rules for the signed “grea-
ter than”comparison (sgt) are obtained by replacing LVu,size(ty) with LVs,size(ty).

If y is compared by ugt and y ∈ UP , then LV (y) is y’s value as an unsigned in-
teger, which makes the comparison very simple. (Similarly, LV (y) is signed if y is
compared by sgt). In contrast, if LV represented the value of all program vari-
ables as signed integers, then for icmp ugt we would have to consider more cases,
which results in a significantly larger graph (i.e., in a less efficient approach).6

In our example, if ¬vj > 0 (State F ), we return from the function. If vj > 0
(State G), the conditional branch instruction leads us to the block that corres-
ponds to the body of the while-loop. In the step from State I to J , again the va-
lue vj stored at address vad is loaded to a program variable j2. The next instruc-
tion is an overflow-sensitive addition: If vj < umax32, then vj + 1 is assigned to
inc. But if vj = umax32, then there is an overflow. If KB does not contain enough
information to decide whether an overflow occurs, we perform a case analysis.

unsigned add refinement (p : “x = add in t1, t2” with x ∈ VP , t1, t2 ∈ VP ∪ Z)

(p, LV , KB , AL, PT )

(p,LV ,KB ∪{ϕ},AL,PT ) | (p,LV ,KB ∪{¬ϕ},AL,PT )
if x ∈ UP and

ϕ is “LVu,n(t1) + LVu,n(t2) ≤ umaxn”, where 6|= 〈a〉⇒ ϕ and 6|= 〈a〉⇒ ¬ϕ

Therefore, State J is refined to K and L. In K, j2 has the value umax32, i.e.,
adding 1 results in an overflow. In State L, this overflow cannot happen.

The rule for “signed add refinement” is analogous, but here we have x ∈
SP and we obtain three instead of two cases: “LVs,n(t1) + LVs,n(t2) < sminn”,
“LVs,n(t1) + LVs,n(t2) ∈ [sminn, smaxn]”, and “LVs,n(t1) + LVs,n(t2) > smaxn”.

Now we define rules for add. If no overflow can occur, then the result is the
addition of the operators. Thus, State L evaluates to N , where vinc = vj + 1.

add without overflow (p : “x = add [nsw] in t1, t2” with x ∈ VP , t1, t2 ∈ VP ∪ Z)

(p, LV , KB , AL, PT )

(p+, LV [x := v], KB ∪ {ϕ}, AL, PT )
if v ∈ Vsym is fresh and if

either x ∈ UP , |= 〈a〉⇒ (LVu,n(t1) + LVu,n(t2) ∈ [0, umaxn]),
and ϕ is “v = LVu,n(t1) + LVu,n(t2)”

or x ∈ SP , |= 〈a〉⇒ (LVs,n(t1) + LVs,n(t2) ∈ [sminn, smaxn]),
and ϕ is “v = LVs,n(t1) + LVs,n(t2)”

6 Then we would have to check first whether LVs,size(ty)(t1) < 0 and LVs,size(ty)(t2) ≥ 0.
In that case, “icmp ugt ty t1, t2” is true, since the most significant bits of t1 and t2
are 1 and 0, respectively. The other cases are LVs,size(ty)(t1) ≥ 0∧LVs,size(ty)(t2) < 0,
and the two cases where LVs,size(ty)(t1) and LVs,size(ty)(t2) have the same sign and
either LVs,size(ty)(t1) > LVs,size(ty)(t2) or LVs,size(ty)(t1) ≤ LVs,size(ty)(t2).
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If an overflow occurs, then due to the wrap-around, the unsigned result value
is the sum of the operands minus the type size 2n. For example, in the evaluation
of State K to M , we add the relation vinc = umax32 + 1− 232 = 0.

unsigned add with overflow (p : “x = add in t1, t2” with x ∈ VP , t1, t2 ∈ VP∪Z)

(p, LV , KB , AL, PT )

(p+, LV [x := v], KB ∪ {v = LVu,n(t1) + LVu,n(t2)− 2n}, AL, PT )
if

x ∈ UP , v ∈ Vsym is fresh, and |= 〈a〉⇒ (LVu,n(t1) + LVu,n(t2) > umaxn)

When adding two signed integers in C, an overflow leads to undefined behav-
ior. Thus, this is translated into an LLVM instruction with the flag nsw. However,
when adding an unsigned and a signed integer in C, an overflow does not yield
undefined behavior (i.e., the resulting LLVM instruction is not flagged with nsw).
Our heuristic for UP and SP would consider this to be “signed” addition. Thus,
we also need a rule for overflow of signed add without the flag nsw.

Moreover, most C implementations use a wrap-around semantics also for
signed integers. Thus, they compile C to LLVM code where nsw is not used at all.
Our approach is independent of the actual C compiler, as it analyzes termination
of the resulting LLVM program instead and it can also handle signed overflows.

Thus, we use a similar rule for x ∈ SP . If |= 〈a〉⇒ (LVs,n(t1) + LVs,n(t2) >
smaxn), then we add “v = LVs,n(t1)+LVs,n(t2)−2n ” to the knowledge base KB .
If |= 〈a〉⇒ (LVs,n(t1) + LVs,n(t2) < sminn), we add “v = LVs,n(t1) + LVs,n(t2) +
2n ”. However, a potential signed overflow that is flagged with nsw leads to ERR.

signed add with nsw overflow (p : “x = add nsw in t1, t2”, x∈VP , t1, t2 ∈ VP∪Z)

(p, LV , KB , AL, PT )

ERR
if x∈SP and 6|= 〈a〉⇒(LVs,n(t1)+LVs,n(t2) ∈ [sminn, smaxn])

For M , the execution ends after some more steps. For N , after storing vinc
to vad, we branch to block cmp again. State P is like D (but ad points to j in
D whereas ad points to inc in P ). Therefore, we continue the execution, where
the steps from P to Q are similar to the steps from D to J . Here, dotted arrows
abbreviate several steps. Q is again refined and in the case where no overflow
occurs, we finally reach State R at the same program position as D and P .

To obtain finite symbolic execution graphs, we can generalize states whenever
an evaluation visits a program position (b, k) multiple times. We say that a′ is
a generalization of a with the instantiation µ whenever the conditions (b) –
(e) of the following rule from [14] are satisfied. Again, a is the state before the
generalization step and a′ is the state resulting from the generalization.

generalization with µ
(p, LV , KB , AL, PT )

(p′, LV ′, KB ′, AL′, PT ′)
if

(a) a has an incoming “evaluation edge” (not just refinement or generalization edges)
(b) LV (x) = µ(LV ′(x)) for all x ∈ VP
(c) |= 〈a〉 ⇒ µ(KB ′)
(d) if Jv1, v2K ∈ AL′, then Jµ(v1), µ(v2)K ∈ AL
(e) for i ∈ {u, s}, if (v1 ↪→ty,i v2) ∈ PT ′, then (µ(v1) ↪→ty,i µ(v2)) ∈ PT
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0 unsn(ub) ` u unsn(`b) umaxn `b umaxk ub

y y · zx1 x2

Fig. 3: Multiplication of unsigned integers

Clearly, we have |= 〈a〉SL ⇒ µ(〈a′〉SL). Condition (a) is needed to avoid cycles
of refinement and generalization steps, which do not correspond to any compu-
tation. See [14] for a heuristic to compute suitable generalizations automatically.

In our graph, P is a generalization of State R. If we use an instantiation µ
with µ(vj) = vinc and µ(vinc) = vinc2, then all conditions of the rule are satisfied.
So we can conclude the graph construction with a (dashed) generalization edge
from R to P . A symbolic execution graph is complete if all its leaves correspond
to ret instructions (so in particular, the graph does not contain ERR states). As
shown in [14], any LLVM evaluation of concrete states can be simulated by our
symbolic execution rules. So in particular, a program with a complete symbolic
execution graph does not exhibit undefined behavior (thus, it is memory safe).

3.2 Handling Bitvector Operations by Modulo Relations

We now consider further LLVM instructions whose symbolic execution rules have
to be adapted to bitvector arithmetic. A refinement with two cases was sufficient
to express the result of unsigned addition (or subtraction): if y+z exceeds umaxn
= 2n−1 for unsigned integers y and z, then the result of the addition is (y+z)−
2n ∈ [0, umaxn], since y+z can never exceed 2 ·umaxn. But for multiplication, if
y · z exceeds umaxn, then (y · z)− 2n is not necessarily in [0, umaxn]. In contrast,
one might have to subtract 2n multiple times. Even worse, if one only knows that
y and z are values from some interval, then for some values of y·z one may have to
subtract 2n more often than for others in order to obtain a result in [0, umaxn]. So
for multiplication, performing case analysis to handle overflows is not practical.7

Thus, we use modulo relations instead, which hold regardless of whether an
overflow occurs or not: for unsigned integers, if x is the result of multiplying y

and z, then the relation “x = y ·z mod 2n” (i.e., x = unsn(y ·z)) correctly models
the overflow of bitvectors of size n. To use standard SMT solvers for “modulo”,
any expression “t = m mod n” can be transformed into “t = k · n + m”, where
0 ≤ t < m and k is an existentially quantified fresh variable.

In some cases, the result of a multiplication “x = mul in t1, t2” can be in
disjoint intervals. For example, if y ∈ [`, u] such that ` · z ≤ umaxk < u · z for
some k, then there can be two intervals (x1, x2 in Fig. 3) for x = y · z, when x

is regarded as an unsigned integer in [0, umaxn]. Here, it is useful to extend KB
by additional information on the intervals of the result. If LVu,n(t1) ∈ [`1, u1]
and LVu,n(t2) ∈ [`2, u2] for numbers `1, `2, u1, u2 ∈ N, then for `b = `1 · `2 and
ub = u1 ·u2, we have LVu,n(t1) ·LVu,n(t2) ∈ [`b, ub]. However, our goal is to infer

7 If y, z ∈ [0, 2n−1], then y ·z ∈ [0, 22·n−2n+1 +1]. So there are O(2n) many potential
intervals of size 2n for the result, i.e., we would have to consider O(2n) many cases.
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min u ` max

x1 x2 x1

Fig. 4: Expressing unions of intervals

information on the possible value of unsn(LVu,n(t1) · LVu,n(t2)).
To this end, we compute the size of the interval [`b, ub]. If ub−`b+1 ≥ 2n, then

[`b, ub] contains more numbers than those that can be represented with n bits and
LV (x) can be any n-bit integer. Otherwise, we check whether unsn(`b) ≤ unsn(ub)
holds. In this case, we add “LV (x) ∈ [unsn(`b), unsn(ub)]” to KB . Finally, if the
size of [`b, ub] is < 2n but unsn(`b) > unsn(ub), then LV (x) ∈ [0, unsn(ub)] ∪
[unsn(`b), umaxn], i.e., LV (x) is not between the inner bounds unsn(ub) and
unsn(`b), cf. Fig. 3. However, we cannot add “LV (x) ≤ unsn(ub) ∨ LV (x) ≥
unsn(`b)” to KB as it contains “∨”, but KB is a conjunction of (in)equalities.

Hence, Thm. 6 shows how to express a condition of the form “t ∈ [min, u] ∪
[`,max]” for min ≤ u < ` ≤ max by a single inequality. To this end, we subtract `
so that the second subinterval [`,max] (x2 in Fig. 4) starts with 0. Then we apply
“mod 2n” (this results in moving the first subinterval x1, cf. the dashed arrow
in Fig. 4). Afterwards, we shift the whole interval back (by adding ` again).

Theorem 6 (Expressing Unions of Intervals in a Single Inequality). Let
n ∈ N>0, min ∈ Z, max = min + 2n − 1, t ∈ [min,max], and min ≤ u < ` ≤ max.
Let inBounds(t,min, u, `,max) be the formula “((t− `) mod 2n) + ` ≤ 2n + u”.
Then we have t ∈ [min, u] ∪ [`,max] iff inBounds(t,min, u, `,max) holds.

unsigned mul (p : “x = mul in t1, t2” with x ∈ VP , t1, t2 ∈ VP ∪ Z)

(p, LV , KB , AL, PT )

(p+, LV [x := v], KB ∪ {ϕ,ψ}, AL, PT )
if x ∈ UP , v ∈ Vsym is fresh, and

• If |= 〈a〉⇒ (LVu,n(t1)·LVu,n(t2) ∈ [0, umaxn]), then ϕ is “v = LVu,n(t1)·LVu,n(t2)”.
Otherwise, ϕ is “v = unsn(LVu,n(t1)·LVu,n(t2))”.
• `1, `2, u1, u2 ∈ N such that |= 〈a〉⇒ (LVu,n(t1) ∈ [`1, u1] ∧ LVu,n(t2) ∈ [`2, u2])
• `b = `1 · `2 and ub = u1 · u2

• If ub− `b+ 1 ≥ 2n, then ψ is true.
Otherwise, if unsn(`b) ≤ unsn(ub), then ψ is “v ∈ [unsn(`b), unsn(ub)]”.
Otherwise, ψ is inBounds(v, 0, unsn(ub), unsn(`b), umaxn).

We have an analogous rule for signed multiplication by using x ∈ SP instead
of UP , LVs,n instead of LVu,n, sminn and smaxn instead of 0 and umaxn, sign in-
stead of unsn, Z instead of N, and by defining `b (resp. ub) as the minimum (resp.
maximum) of {x1 · x2 | x1 ∈ [`1, u1], x2 ∈ [`2, u2]}. Moreover, for signed multi-
plication with the flag “nsw”, we reach ERR if 6|= 〈a〉⇒ (LVs,n(t1) · LVs,n(t2) ∈
[sminn, smaxn]). We also use similar rules for division and remainder (where
LLVM has separate instructions for unsigned and signed integers), cf. [1].

3.3 Handling Bitwise Operations

For bitwise binary LLVM operations like “and” (computing bitwise logical con-
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junction), we also infer knowledge about the range of the result. For instance,
the conjunction of 3 (0 1 1) and 5 (1 0 1) is 1 (0 0 1). So if “x = and in t1, t2”
and x ∈ UP , then LV (x) ≤ LVu,n(t1) and LV (x) ≤ LVu,n(t2), since a “1” on a
position of the bitvector results in a larger number than a “0” on that position.

The same is true for signed integers, if both are positive or negative. So the
conjunction of −1 (1 1 . . . 1 1) and −2 (1 1 . . . 1 0) is −2. The conjunction of a
negative and a positive signed integer is at most as large as the positive integer.

signed and (p : “x = and in t1, t2” with x ∈ VP , t1, t2 ∈ VP ∪ Z)

(p, LV , KB , AL, PT )

(p+, LV [x := v], KB ∪ {ϕ}, AL, PT )
if x ∈ SP , v ∈ Vsym is fresh, and

• `1, `2, u1, u2 ∈ Z such that |= 〈a〉⇒ (LVs,n(t1) ∈ [`1, u1] ∧ LVs,n(t2) ∈ [`2, u2])
• If 〈a〉⇒ (LVs,n(t1) = LVs,n(t2)), then ϕ is “v = LVs,n(t1)”.

Otherwise, if `1≥0 ∧ `2≥0 or u1<0 ∧ u2<0, ϕ is “v≤LVs,n(t1) ∧ v≤LVs,n(t2)”.
Otherwise, if `1≥0 then ϕ is “v≤LVs,n(t1)” and if `2≥0 then ϕ is “v≤LVs,n(t2)”.
Otherwise,ϕ is “v≤max(u1, u2)”.

In the corresponding rule for unsigned and, ϕ is “v = LVu,n(t1)” if 〈a〉 ⇒
(LVu,n(t1) = LVu,n(t2)). Otherwise, ϕ is “v ≤ LVu,n(t1) ∧ v ≤ LVu,n(t2)”.

Moreover, we adapt the rules for conversion instructions (e.g., extension and
truncation). Sign extension (sext) copies the most significant bit to all extension
bits, while for zero extension (zext) only zeros are used. So for 1 0 1, the sign
extension is 1 . . . 1 1 0 1 and the zero extension is 0 . . . 0 1 0 1. The following rule
for sext (resp. zext) considers its argument as a signed (resp. unsigned) integer.
Then these instructions do not change the value of their operands.

extension (p : “x = sext/zext in t to im” with x ∈ VP , t ∈ VP ∪ Z, n < m)

(p, LV , KB , AL, PT )

(p+, LV [x := v], KB ∪ {ϕ}, AL, PT )
if v ∈ Vsym is fresh and if

either p : “x = sext in t to im”, x ∈ SP , and ϕ is “v = LVs,n(t)”
or p : “x = zext in t to im”, x ∈ UP , and ϕ is “v = LVu,n(t)”

The instruction trunc truncates a value to the n least significant bits. Similar
to the rules for multiplication, we again use the operations sign (resp. unsn) and
inBounds to express our knowledge about the result of the truncation.

signed trunc (p : “x = trunc im t to in” with x ∈ VP , t ∈ VP ∪ Z, n < m)

(p, LV , KB , AL, PT )

(p+, LV [x := v], KB ∪ {ϕ,ψ}, AL, PT )
if x ∈ SP , v ∈ Vsym is fresh, and

• If |= 〈a〉⇒ (LVs,m(t) ∈ [sminn, smaxn]), then ϕ is “v = LVs,m(t)”.
Otherwise, ϕ is “v = sign(LVs,m(t))”.

• `, u ∈ Z such that |= 〈a〉⇒ (LVs,m(t) ∈ [`, u])
• If u− `+ 1 ≥ 2n, then ψ is true.

Otherwise, if sign(`) ≤ sign(u), then ψ is “v ∈ [sign(`), sign(u)]”.
Otherwise, ψ is inBounds(v, sminn, sign(u), sign(`), smaxn).

In the rule for unsigned trunc, we have x ∈ UP instead of SP , LVu,m(t) instead
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of LVs,m(t), 0 and umaxn instead of sminn and smaxn, and unsn instead of sign.

4 From Symbolic Execution Graphs to Integer Systems

After the graph construction has been completed, we extract an integer transition
system (ITS) from the cycles of the symbolic execution graph and then use
existing tools to prove its termination.

ITSs can be represented as graphs whose nodes correspond to program lo-
cations and whose edges correspond to transitions. A transition is labeled with
conditions that are required for its application. These conditions are quantifier-
free formulas over a set of variables V and a corresponding set V ′ = {x′ | x ∈ V}
which refers to the values of the variables after applying the transition.

`P

`R

vinc≤umax32
v′
inc = vinc

v′
inc2 = vinc2

. . .

vinc≤umax32
vinc2=vinc+1
v′
inc=vinc2

. . .

Fig. 5: ITS for function g

The only cycle of the symbolic execution graph in
Fig. 2 is the one from P to R and back. The result-
ing ITS is shown in Fig. 5. The values of the vari-
ables do not change in transitions that correspond
to evaluation edges of the symbolic execution graph.
For the generalization edge from R to P with the
instantiation µ, the corresponding transition in the
ITS gets the condition v′ = µ(v) for all v ∈ Vsym(P ). So we obtain the condi-
tion v′inc = µ(vinc), i.e., v′inc = vinc2 = vinc + 1. In contrast, vinc2’s value can
change arbitrarily here, since vinc2 /∈ Vsym(P ). Moreover, the transitions of the
ITS contain conditions like vinc ≤ umax32, which are also present in the states P
– R. Standard tools can easily prove termination of this ITS. See [14] for details
on extracting ITSs from symbolic execution graphs.

Recall that the bitvector arithmetic is covered by the rules to construct the
symbolic execution graph, whereas the variables in the graph and in the resulting
ITS range over Z. Therefore, the following theorem from [14] still holds. It states
that termination of the ITS implies termination of the analyzed LLVM program.

Theorem 7 (Termination). Let P be an LLVM program with a complete sym-
bolic execution graph G and let IG be the ITS resulting from G. If IG terminates,
then P also terminates for all concrete states represented by the states in G.

5 Related Work, Experiments, and Conclusion

We adapted our approach for proving memory safety and termination of C (resp.
LLVM) programs to bitvectors. Since we represent bitvectors by relations on Z,
we can use standard SMT solving and standard termination analysis on Z for
the symbolic execution and the termination proofs in our approach.

There are few other methods and tools for termination of bitvector programs
(e.g., KITTeL [7, 8], TAN [4, 11], 2LS [2], Juggernaut [5], Ultimate [10]8).9 Com-

8 However, there is not yet any paper describing Ultimate’s adaption to bitvectors.
9 Outside of termination analysis, there exist several tools for overflow detection. How-

ever, we cannot easily apply such external tools in our approach, since we want to
use the result of potential overflows to continue our symbolic execution and analysis.
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pared to related work, our approach has the following characteristics:

(a) Handling Memory: KITTeL, TAN, 2LS, and Juggernaut either do not han-
dle dynamic data structures, strings, and arrays, or they abstract their proper-
ties to arithmetic ones. Thus, they fail for programs whose termination depends
on explicit pointer arithmetic. Note that without considering the memory, ter-
mination of bitvector programs is decidable in PSPACE [4]. In contrast, our
approach is the first which combines the handling of bitvectors with the precise
representation of low-level memory operations, by using symbolic execution.

(b) Representation with Z: Similar to KITTeL and the first approach in [4], we
represent bitvectors by relations on Z. In contrast, 2LS, Juggernaut, and the sec-
ond approach in [4] use vectors of Boolean variables instead and reduce the termi-
nation problem to second-order satisfiability. This would have drawbacks when
constructing symbolic execution graphs, where large numbers of SMT queries
have to be solved. Here, using Z instead of bitvectors often simplifies the graph
structure and lets us benefit from the efficiency of SMT solving over Z.

(c) Unsigned resp. Signed Representation: We use a heuristic to determine
whether we represent information about the unsigned or the signed value of vari-
ables in the states for symbolic execution. In contrast, KITTeL resp. the first ap-
proach of [4] represent only the signed resp. the unsigned values. The drawback is
that then one needs a larger case analysis for instructions like icmp ugt resp.
sgt which differ for unsigned and signed integers. Thus, this affects efficiency.

(d) Case Analysis vs. “Modulo”: When representing bitvectors by relations
on Z, the wrap-around for overflows can either be handled by case analysis or by
“modulo” relations. We use a hybrid approach with case analysis for instructions
like addition (to avoid “modulo” which is less efficient for SMT solving) and with
“modulo” for operations like multiplication (where case analysis could lead to
an exponential blow-up). KITTeL only uses case analysis. While [4] also applies
“modulo”, our approach infers more complex relations about the ranges of vari-
ables, even if these ranges are unions of disjoint intervals. For an efficient SMT
reasoning during symbolic execution, we express such “disjunctive properties”
by single inequalities, cf. the formula inBounds(t,min, u, `,max).

We implemented our approach in AProVE [14] using the SMT solvers Yices
[6] and Z3 [13] in the back-end. The previous version of AProVE won the SV-
COMP 2015 and 2016 competitions for termination of C programs (where tools
were restricted to mathematical integers). To evaluate the new version of AProVE
with bitvectors, we performed experiments on 118 C programs. We took the 61
Windows Driver Development Kit examples used for the evaluation of [4] and
[8], 61 of the 62 examples from the repository of Juggernaut where we excluded
one example containing float, 7 of the 9 examples of [5] where we excluded two
examples with float, 4 new examples where termination depends on overflows of
multiplication, and 4 new examples combining pointer and bitvector arithmetic.
From these 137 examples, we removed 19 examples which are known to be non-
terminating. Since Ultimate does not support bitvector arithmetic for signed
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T F TO RT T F TO RT %

AProVE 34 9 9 10.23 61 3 2 5.55 80.5

2LS 23 29 0 0.37 45 21 0 0.33 57.6

KITTeL 27 4 21 1.81 33 3 30 14.17 50.8

Juggernaut 10 19 23 34.12 22 26 18 6.22 27.1

Ultimate – – – – 11 54 1 12.77 16.7

Fig. 6: Experimental evaluation

integers yet, the right half of the table in Fig. 6 consists of those examples where
termination does not depend on signed integers. We ran all tools in a mode
where signed overflows are allowed and result in a wrap-around behavior.

Fig. 6 shows the performance of the tools for a time limit of 300 seconds per
example on an Intel Core i7-950 with 6 GB memory. We did not compare with
TAN, since it was outperformed by its successor 2LS in [2]. “T” is the number of
examples where termination was proved, “F” states how often the termination
proof failed in ≤ 300 seconds, “TO” is the number of time-outs, “RT” is the
average run time in seconds for the examples where the tool showed termination,
and “%” is the percentage of examples where termination was proved.

So on our collection (which mainly consists of the examples from the evalu-
ations of the other tools), AProVE is most powerful. To evaluate the benefit of
representing both unsigned and signed values (cf. (c)), we also ran AProVE in a
mode where all values are represented as signed integers (i.e., SP = VP). Here,
we lost 11 termination proofs. To evaluate the use of case analysis vs. “modulo”
(cf. (d)), we tested a version of AProVE where we used “modulo” also for op-
erations like addition. Here, we failed on 13 more examples. For details on our
experiments, to access our implementation via a web interface, and for symbolic
execution rules for further LLVM instructions, we refer to [1]. In future work, we
plan to extend our approach to recursion, to inductive data structures, and to
a compositional treatment of LLVM functions (the main challenge is to combine
these tasks with the handling of explicit pointer arithmetic).

Acknowledgments. We are grateful to M. Heizmann, D. Kroening, M. Lewis, and P.

Schrammel for their help with the experiments.
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A Separation Logic Semantics of Abstract States

To formalize the semantics of an abstract state a, in [14] we introduced a separa-
tion logic formula 〈a〉SL, which extends 〈a〉FO by information about the memory
(i.e., about AL and PT ). In 〈a〉SL, we combine the elements of AL with the sep-
arating conjunction “∗” to express that different allocated memory blocks are
disjoint. As usual, ϕ1 ∗ ϕ2 means that ϕ1 and ϕ2 hold for disjoint parts of the
memory. In contrast, the elements of PT are combined by the ordinary conjunc-
tion “∧”. So (v1 ↪→ty,i v2) ∈ PT does not imply that v1 is different from other
addresses in PT . Similarly, we also combine the two formulas resulting from AL
and PT by “∧”, as both express different properties of the same addresses.

Definition 8 (SL Formulas for States). For v1, v2 ∈ Vsym , let 〈Jv1, v2K〉SL =
(∀x.∃y. (v1 ≤ x ≤ v2)⇒ (x ↪→ y)). For any LLVM type ty, we define

〈v1 ↪→ty,u v2〉SL = 〈v1 ↪→size(ty) v2〉SL.

To handle the two’s complement representation of signed integers, we define
〈v1 ↪→ty,s v2〉SL =

〈v1 ↪→size(ty) v3〉SL ∧ (v2 ≥ 0 ⇒ v3 = v2) ∧ (v2 < 0 ⇒ v3 = v2 + 2size(ty)),

where v3 ∈ Vsym is fresh. We assume a little-endian data layout (where least sig-
nificant bytes are stored in the lowest address). Hence, we define 〈v1 ↪→0 v3〉SL =
true and 〈v1 ↪→n+8 v3〉SL = (v1 ↪→ (v3 mod 28)) ∧ 〈 (v1 + 1) ↪→n (v3 div 28) 〉SL.

A state a = (p,LV ,KB ,AL,PT ) is represented in separation logic by
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〈a〉SL = 〈a〉FO ∧ (∗ϕ∈AL 〈ϕ〉SL) ∧ (
∧

ϕ∈PT
〈ϕ〉SL).

We use interpretations (as,mem) for the semantics of separation logic (Sect. 2).

Definition 9 (Semantics of Separation Logic). Let as :VP→Z be an assign-
ment, mem : N>0 ⇀ {0, . . . , umax8}, and ϕ be a formula. Let as(ϕ) result from
replacing all local variables x in ϕ by the value as(x). By construction, local
variables x are never quantified in our formulas. Then we define (as,mem) |= ϕ
iff mem |= as(ϕ).

We now define mem |= ψ for formulas ψ that may contain symbolic variables
from Vsym . As usual, all free variables v1, . . . , vn in ψ are implicitly universally
quantified, i.e., mem |= ψ iff mem |= ∀v1, . . . , vn. ψ. The semantics of arithmetic
operations and predicates as well as of first-order connectives and quantifiers are
as usual. In particular, we define mem |= ∀v. ψ iff mem |= σ(ψ) holds for all
instantiations σ where σ(v) ∈ Z and σ(w) = w for all w ∈ Vsym \ {v}.

We still have to define the semantics of ↪→ and ∗ for variable-free formulas.
For n1, n2 ∈ Z, let mem |= n1 ↪→ n2 hold iff mem(n1) = n2.10 The semantics of
∗ is defined as usual in separation logic: For two partial functions mem1,mem2 :
N>0 ⇀ Z, we write mem1⊥mem2 to indicate that the domains of mem1 and
mem2 are disjoint. If mem1⊥mem2, then mem1 ] mem2 denotes the union of
mem1 and mem2. Now mem |= ϕ1 ∗ ϕ2 holds iff there exist mem1⊥mem2 such
that mem = mem1 ]mem2 where mem1 |= ϕ1 and mem2 |= ϕ2.

B Proofs

Proof of Thm. 5. Since the result of “mod 2n” is always in the interval
[0, 2n − 1], we immediately obtain sign(t) = ((t + 2n−1) mod 2n) − 2n−1 ∈ [0 −
2n−1, 2n − 1− 2n−1] = [−2n−1, 2n−1 − 1] = [sminn, smaxn]. Moreover, we have

t mod 2n

= (t+ 2n−1 − 2n−1) mod 2n

= (((t+ 2n−1) mod 2n)− 2n−1) mod 2n

= sign(t) mod 2n. ut

Proof of Thm. 6. We consider three cases.

Case 1: t ∈ [min, u]

Clearly, u < ` implies u − ` < 0. Moreover, we also have u − ` ≥ min − max =
−2n + 1, which together implies

10 We use “↪→” instead of “ 7→” in separation logic, since mem |= n1 7→ n2 would
imply that mem(n) is undefined for all n 6= n1. This would be inconvenient in
our formalization, since PT usually only contains information about a part of the
allocated memory.
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−2n < u− ` < 0. (2)

Thus, we have: t ≤ u ⇒ t− ` ≤ u− `
⇒ (t− `) mod 2n ≤ u− `+ 2n by (2)

⇒ ((t− `) mod 2n) + ` ≤ u+ 2n

⇒ inBounds(t,min, u, `,max) holds

Case 2: t ∈ [u+ 1, `− 1]

This entails u+ 1 ≤ `− 1, i.e., u− `+ 1 < 0. Moreover, we also have u− `+ 1 ≥
min−max + 1 = −2n + 2, which together implies

−2n < u− `+ 1 < 0. (3)

We obtain: t ≥ u+ 1 ⇒ t− ` ≥ u− `+ 1

⇒ (t− `) mod 2n ≥ u− `+ 1 + 2n by (3)

⇒ ((t− `) mod 2n) + ` ≥ u+ 1 + 2n

⇒ inBounds(t,min, u, `,max) does not hold

Case 3: t ∈ [`,max]

Note that max− ` ≥ 0 and moreover, max− ` < max−min = 2n − 1, i.e.,

0 ≤ max− ` < 2n. (4)

In addition, we have

max = min + 2n − 1 ≤ u+ 2n − 1. (5)

Here, we obtain: t ≤ max ⇒ t− ` ≤ max− `
⇒ (t− `) mod 2n ≤ max− ` by (4)

⇒ ((t− `) mod 2n) + ` ≤ max

⇒ ((t− `) mod 2n) + ` ≤ u+ 2n by (5)

⇒ inBounds(t,min, u, `,max) holds ut

Proof of Thm. 7. The proof of Thm. 7 is identical to the proofs of Thm. 10
and 13 in [14]. It relies on the fact that our symbolic execution rules correspond
to the actual execution of LLVM when they are applied to concrete states (this
also holds for the new bitvector rules of the current paper). So if a concrete state
c is represented in the symbolic execution graph, then every LLVM evaluation
of c corresponds to a path in the graph. The generation of an ITS from the
graph is done in such a way that termination of the ITS implies that there is no
such infinite path in the graph. As all integers in the symbolic execution graphs
and in the ITSs are still mathematical integers, the construction of ITSs has not
changed in the current paper, i.e., the corresponding proof of [14] directly carries
over to the present setting.


