Inferring Expected Runtimes of Probabilistic Programs

Jürgen Giesl

LuFG Informatik 2, RWTH Aachen University, Germany

joint work with Marcel Hark and Fabian Meyer
Termination analysis of imperative programs: ranking functions
Complexity Analysis for Integer Programs

- **Termination analysis** of imperative programs: ranking functions
- **Goal**: use ranking functions for **complexity analysis**
Termination analysis of imperative programs: ranking functions

Goal: use ranking functions for complexity analysis

Problem: complexity from combination of ranking functions
Complexity Analysis for Integer Programs

- **Termination analysis** of imperative programs: ranking functions
- **Goal**: use ranking functions for **complexity analysis**
- **Problem**: complexity from combination of ranking functions

```plaintext
while i > 0 do
  i = i - 1
done

while x > 0 do
  x = x - 1
done
```
Complexity Analysis for Integer Programs

- **Termination analysis** of imperative programs: ranking functions
- **Goal**: use ranking functions for complexity analysis
- **Problem**: complexity from combination of ranking functions

Termination: lexicographic combination of

\[
\begin{align*}
 f_1(x, i) &= i \\
 f_2(x, i) &= x
\end{align*}
\]

```
while i > 0 do
    i = i - 1
done
```

```
while x > 0 do
    x = x - 1
done
```
Termination analysis of imperative programs: ranking functions

Goal: use ranking functions for complexity analysis

Problem: complexity from combination of ranking functions

Termination: lexicographic combination of

\[f_1(x, i) = i \]
\[f_2(x, i) = x \]

while \(i > 0 \) do
\[i = i - 1 \]
done

while \(x > 0 \) do
\[x = x - 1 \]
done

Complexity: linear
Complexity Analysis for Integer Programs

- **Termination analysis** of imperative programs: ranking functions
- **Goal**: use ranking functions for **complexity analysis**
- **Problem**: complexity from combination of ranking functions

Termination: lexicographic combination of
\[
\begin{align*}
 f_1(x, i) &= i \\
 f_2(x, i) &= x
\end{align*}
\]

Complexity: linear

```
while i > 0 do
    x = x + i
    i = i - 1
done
```

```
while x > 0 do
    x = x - 1
done
```
Complexity Analysis for Integer Programs

- **Termination analysis** of imperative programs: ranking functions
- **Goal**: use ranking functions for **complexity analysis**
- **Problem**: complexity from **combination** of ranking functions

Termination:

\[f_1(x, i) = i \]
\[f_2(x, i) = x \]

Complexity: quadratic

while \(i > 0 \) do
 \(x = x + i \)
 \(i = i - 1 \)
done

while \(x > 0 \) do
 \(x = x - 1 \)
done
Complexity Analysis for Integer Programs

- **Termination analysis** of imperative programs: ranking functions
- **Goal**: use ranking functions for **complexity analysis**
- **Problem**: complexity from combination of ranking functions

Termination: lexicographic combination of

\[f_1(x, i) = i \]
\[f_2(x, i) = x \]

Complexity: quadratic

\[i_0 + \text{"size"}(x) \]

```
while i > 0 do
    x = x + i
    i = i - 1
done
```

```
while x > 0 do
    x = x - 1
done
```
Complexity Analysis for Integer Programs

- **Termination analysis** of imperative programs: ranking functions
- **Goal**: use ranking functions for complexity analysis
- **Problem**: complexity from combination of ranking functions

Termination: lexicographic combination of
\[f_1(x, i) = i \]
\[f_2(x, i) = x \]

Complexity: quadratic
\[i_0 + \text{"size"}(x) \]

Solution: modular approach which alternates between finding runtime and size bounds
Complexity Analysis for Probabilistic Programs

Probabilistic ranking functions

Expected value of ranking function must decrease by at least 1

\[
f_1(x, i) \geq \frac{1}{2} \cdot f_1(x + i, i - 1) + \frac{1}{2} \cdot f_1(x, i) + 1
\]

Probabilistic ranking functions for each loop

\[
f_1(x, i) = 2 \cdot i
\]

\[
f_2(x, i) = x
\]

Expected runtime: quadratic

\[
2 \cdot i_0 + \text{"expected size"}(x)
\]

while \(i > 0 \) do
 \[
x = x + i
 i = i - 1
\]
done

while \(x > 0 \) do
 \[
x = x - 1
\]
done

Solution: modular approach which alternates between finding runtime and size bounds
Complexity Analysis for Probabilistic Programs

Probabilistic ranking functions

Expected value of ranking function must decrease by at least 1

\[f_1(x, i) \geq \frac{1}{2} \cdot f_1(x + i, i - 1) + 1 \]

Probabilistic ranking functions for each loop

\[f_1(x, i) = 2 \cdot i \]

\[f_2(x, i) = x \]

Expected runtime: quadratic

\[2 \cdot i + \text{"expected size"}(x) \]

```
while i > 0 do
    \{ x = x + i \} [\frac{1}{2}] \{ x = x \}
    i = i - 1
done

while x > 0 do
    x = x - 1
done
```
Complexity Analysis for Probabilistic Programs

- Probabilistic ranking functions

\[
\begin{align*}
\text{while } i > 0 & \text{ do} \\
\{ & x = x + i \\
& i = i - 1 \} \left[\frac{1}{2} \right] \{ & x = x \\
& i = i \} \\
\text{done} \\
\text{while } x > 0 & \text{ do} \\
& x = x - 1 \\
\text{done}
\end{align*}
\]
Complexity Analysis for Probabilistic Programs

- **Probabilistic** ranking functions
- **Expected** value of ranking function must decrease by at least 1

```
while i > 0 do
    \[
    \begin{cases}
    x = x + i \\
    i = i - 1
    \end{cases}
    \]
    \[
    \left[\frac{1}{2}\right]
    \begin{cases}
    x = x \\
    i = i
    \end{cases}
    \]
done

while x > 0 do
    x = x - 1
done
```
Complexity Analysis for Probabilistic Programs

- **Probabilistic** ranking functions
- **Expected** value of ranking function must decrease by at least 1

Probabilistic ranking functions for each loop

\[
\begin{align*}
 f_1(x, i) &= 2 \cdot i \\
 f_2(x, i) &= x
\end{align*}
\]

```plaintext
while i > 0 do
  \{ x = x + i \} [\frac{1}{2}] \{ x = x \} \i
  i = i - 1
\}
done

while x > 0 do
  x = x - 1
done
```
Complexity Analysis for Probabilistic Programs

- **Probabilistic ranking functions**

- **Expected** value of ranking function must decrease by at least 1

\[
f_1(x, i) \geq \frac{1}{2} \cdot f_1(x + i, i - 1) + \frac{1}{2} \cdot f_1(x, i) + 1
\]

Probabilistic ranking functions for each loop

\[
f_1(x, i) = 2 \cdot i \\
f_2(x, i) = x
\]

while \(i > 0 \) **do**

\[
\begin{align*}
x &= x + i \\
i &= i - 1
\end{align*}
\]

\(\left\lfloor \frac{1}{2} \right\rfloor \)

done

while \(x > 0 \) **do**

\[
\begin{align*}
x &= x - 1
\end{align*}
\]

done
Complexity Analysis for Probabilistic Programs

- **Probabilistic ranking functions**

- **Expected** value of ranking function must decrease by at least 1

\[f_1(x, i) \geq \frac{1}{2} \cdot f_1(x + i, i - 1) + \frac{1}{2} \cdot f_1(x, i) + 1 \]

Probabilistic ranking functions for each loop

\[f_1(x, i) = 2 \cdot i \]
\[f_2(x, i) = x \]

Expected runtime: quadratic

\[
\text{while } i > 0 \text{ do }
\{
\begin{align*}
 x &= x + i \\
 i &= i - 1
\end{align*}
\}
\quad \left[\frac{1}{2} \right]
\{
\begin{align*}
 x &= x \\
 i &= i
\end{align*}
\}\]
\text{done}

\[
\text{while } x > 0 \text{ do }
\{ x = x - 1 \}
\text{done} \]
Complexity Analysis for Probabilistic Programs

- **Probabilistic ranking functions**

- **Expected** value of ranking function must decrease by at least 1

\[f_1(x, i) \geq \frac{1}{2} \cdot f_1(x + i, i - 1) + \frac{1}{2} \cdot f_1(x, i) + 1 \]

Probabilistic ranking functions for each loop

\[f_1(x, i) = 2 \cdot i \]
\[f_2(x, i) = x \]

Expected runtime: quadratic

\[2 \cdot i_0 + \text{“expected size”}(x) \]

```
while i > 0 do
    \{ x = x + i \} \quad \left\{ \begin{array}{l}
        x = x \\
        i = i - 1
    \end{array} \right\}
\quad \left[ \begin{array}{l}
        [\frac{1}{2}]
    \end{array} \right]
\quad \left\{ \begin{array}{l}
        x = x \\
        i = i
    \end{array} \right\}
\quad \text{done}
```

```
while x > 0 do
    x = x - 1
\quad \text{done}
```
Complexity Analysis for Probabilistic Programs

- **Probabilistic ranking functions**

- **Expected** value of ranking function must decrease by at least 1
 \[
 f_1(x, i) \geq \frac{1}{2} \cdot f_1(x + i, i - 1) + \frac{1}{2} \cdot f_1(x, i) + 1
 \]

Probabilistic ranking functions for each loop
- \(f_1(x, i) = 2 \cdot i \)
- \(f_2(x, i) = x \)

Expected runtime: quadratic
- \(2 \cdot i_0 + \text{“expected size”}(x) \)

Solution: modular approach which alternates between finding \textit{runtime} and \textit{size} bounds
Runtime and Size Bounds

while \(i > 0 \) do
\[
\begin{align*}
\{ & x = x + i \\
& i = i - 1 \}
\end{align*}
\]
\[
\begin{align*}
\{ & x = x \\
& i = i \}
\end{align*}
\]
done

while \(x > 0 \) do
\[
\begin{align*}
x &= x - 1
\end{align*}
\]
done
Runtime and Size Bounds

while $i > 0$ do
 \{
 x = x + i
 \}
 \frac{1}{2}
 \{
 x = x
 \}
 \{ i = i - 1 \}
 \frac{1}{2}
 \{
 i = i
 \}

done

while $x > 0$ do
 $x = x - 1$

done

Goal: find complexity bounds w.r.t. the sizes (absolute values) of the input variables

Runtime bound $R(t)$:
- $R(t_0) = 1$
- $R(t_1) = i_0$
- $R(t_2) = x_0 + i_2$

Size bound $S(t, v)$:
- $S(t_1, x) = x_0 + i_2$

Overall runtime is bounded by $R(t_0) + \ldots + R(t_3) = 1 + i_0 + 1 + x_0 + i_2$.
Runtime and Size Bounds

while $i > 0$ do
 $x = x + i$
 $i = i - 1$
done

while $x > 0$ do
 $x = x - 1$
done
Goal: find complexity bounds w.r.t. the sizes (absolute values) of the input variables.

Overall runtime is bounded by

\[R(t_0) + \ldots + R(t_3) = 1 + i_0 + 1 + x_0 + i_2. \]
Goal: find complexity bounds w.r.t. the sizes (absolute values) of the input variables

- Runtime bound $R(t)$: bound on number of times that transition t occurs in executions

```
while i > 0 do
  x = x + i
  i = i - 1
while x > 0 do
  x = x - 1
```

Goal: find complexity bounds w.r.t. the sizes (absolute values) of the input variables

- Runtime bound $R(t)$: bound on number of times that transition t occurs in executions

```
while i > 0 do
  x = x + i
  i = i - 1
while x > 0 do
  x = x - 1
```

Goal: find complexity bounds w.r.t. the sizes (absolute values) of the input variables

- Runtime bound $R(t)$: bound on number of times that transition t occurs in executions

```
while i > 0 do
  x = x + i
  i = i - 1
while x > 0 do
  x = x - 1
```

Goal: find complexity bounds w.r.t. the sizes (absolute values) of the input variables

- Runtime bound $R(t)$: bound on number of times that transition t occurs in executions

```
while i > 0 do
  x = x + i
  i = i - 1
while x > 0 do
  x = x - 1
```
Goal: find complexity bounds w.r.t. the sizes (absolute values) of the input variables

- **Runtime bound** $R(t)$:
 bound on number of times that transition t occurs in executions

 $R(t_0) = 1$

Goal

- **Runtime and Size Bounds**

```plaintext
while i > 0 do
  x = x + i
  i = i - 1

end
while x > 0 do
  x = x - 1
end
```

Goal:

- **Runtime bound** $R(t)$:
 - $R(t_0) = 1$
 - $R(t_1) = i_0$
 - $R(t_2) = x_0 + i_2$

- **Size bound** $S(t, v)$:
 - $S(t_1, x) = x_0 + i_2$

Overall runtime is bounded by

$$R(t_0) + \ldots + R(t_3) = 1 + i_0 + 1 + x_0 + i_2.$$
Runtime and Size Bounds

Goal: find complexity bounds w.r.t. the sizes (absolute values) of the input variables

- **Runtime bound $\mathcal{R}(t)$:**
 - bound on number of times that transition t occurs in executions
 - $\mathcal{R}(t_0) = 1$
 - $\mathcal{R}(t_1) = i_0$

```
while i > 0 do
  x = x + i
  i = i - 1
while x > 0 do
  x = x - 1
```

Goal: find complexity bounds w.r.t. the sizes (absolute values) of the input variables.
Goal: find complexity bounds w.r.t. the sizes (absolute values) of the input variables

- Runtime bound $\mathcal{R}(t)$:
 bound on number of times that transition t occurs in executions

 $\mathcal{R}(t_0) = 1$
 $\mathcal{R}(t_1) = i_0$
 $\mathcal{R}(t_2) = 1$
 $\mathcal{R}(t_3) = x_0 + i_2$

Goal: find complexity bounds w.r.t. the sizes (absolute values) of the input variables

- Runtime bound $\mathcal{R}(t)$:
 bound on number of times that transition t occurs in executions

 $\mathcal{R}(t_0) = 1$
 $\mathcal{R}(t_1) = i_0$
 $\mathcal{R}(t_2) = 1$
 $\mathcal{R}(t_3) = x_0 + i_2$

Overall runtime is bounded by $\mathcal{R}(t_0) + \ldots + \mathcal{R}(t_3) = 1 + i_0 + 1 + x_0 + i_2$.

The diagram shows a flowchart with transitions t_0, t_1, t_2, t_3 and conditions for each transition:
- t_0: if $i > 0$, then $x = x + i$, $i = i - 1$.
- t_1: if $i \leq 0$, then t_1.
- t_2: if $x > 0$, then $x = x - 1$.
Runtime and Size Bounds

Goal: find complexity bounds w.r.t. the sizes (absolute values) of the input variables

- **Runtime bound** $R(t)$:

 bound on number of times that transition t occurs in executions

 $R(t_0) = 1$

 $R(t_1) = i_0$

 $R(t_2) = 1$

 $R(t_3) = x_0 + i_0^2$

```plaintext
while i > 0 do
    x = x + i
    i = i - 1
while x > 0 do
    x = x - 1
```

- **Size bound** $S(t, v)$:

 bound on size of v after using transition t in program executions

 $S(t_1, x) = x_0 + i_0^2$

Overall runtime is bounded by

$R(t_0) + \ldots + R(t_3) = 1 + i_0 + 1 + x_0 + i_0^2$.

![Diagram]
Runtime and Size Bounds

Goal: find complexity bounds w.r.t. the sizes (absolute values) of the input variables

- **Runtime bound** $\mathcal{R}(t)$:
 - bound on number of times that transition t occurs in executions
 \[
 \mathcal{R}(t_0) = 1, \quad \mathcal{R}(t_1) = i_0, \quad \mathcal{R}(t_2) = 1, \quad \mathcal{R}(t_3) = x_0 + i_0^2
 \]

- **Size bound** $\mathcal{S}(t, v)$:
 - bound on size of v after using transition t in program executions

![Diagram](image)
Goal: find complexity bounds w.r.t. the sizes (absolute values) of the input variables

- **Runtime bound \(R(t) \):**
 bound on number of times that transition \(t \) occurs in executions

 \[
 R(t_0) = 1 \quad R(t_2) = 1 \\
 R(t_1) = i_0 \quad R(t_3) = x_0 + i_0^2
 \]

- **Size bound \(S(t, v) \):**
 bound on size of \(v \) after using transition \(t \) in program executions

 e.g., \(S(t_1, x) = x_0 + i_0^2 \)
Runtime and Size Bounds

Goal: find complexity bounds w.r.t. the sizes (absolute values) of the input variables

- **Runtime bound** $\mathcal{R}(t)$:
 bound on number of times that transition t occurs in executions

 $\mathcal{R}(t_0) = 1$
 $\mathcal{R}(t_1) = i_0$
 $\mathcal{R}(t_2) = 1$
 $\mathcal{R}(t_3) = x_0 + i_0^2$

- **Size bound** $\mathcal{S}(t, v)$:
 bound on size of v after using transition t in program executions

 e.g., $\mathcal{S}(t_1, x) = x_0 + i_0^2$

Overall runtime is bounded by $\mathcal{R}(t_0) + \ldots + \mathcal{R}(t_3) = 1 + i_0 + 1 + x_0 + i_0^2$.
Runtime Bounds from Ranking Functions

Initial bounds

$R(t_0) = 1, \ R(t_2) = 1$ as t_0 and t_2 are not in loops

Graph:
- $\ell_0 \rightarrow \ell_1 \rightarrow \ell_2 \rightarrow \ell_0$
- t_0 to ℓ_1
- t_1 if $i > 0$
- $x = x + i$
- $i = i - 1$
- t_2 if $i \leq 0$
- t_3 if $x > 0$
- $x = x - 1$
Initial bounds

\(R(t_0) = 1, R(t_2) = 1 \) as \(t_0 \) and \(t_2 \) are not in loops

Ranking function \(r \) for program \(P \)

\[r(\ell) = i \] for all locations \(\ell \)

Thus:

\(t_1 \)

\(\text{if}(i > 0) \)
\(x = x + i \)
\(i = i - 1 \)

\(t_2 \)

\(\text{if}(i \leq 0) \)

\(t_3 \)

\(\text{if}(x > 0) \)
\(x = x - 1 \)
Initial bounds
\[R(t_0) = 1, \ R(t_2) = 1 \] as \(t_0 \) and \(t_2 \) are not in loops

Ranking function \(\tau \) for program \(\mathcal{P} \)
- \(\tau \) maps locations to \(\mathbb{R}[v_1, \ldots, v_n] \)

```
t_1 := if (i > 0)
x := x + i
i := i - 1

\text{if}(i \leq 0)
t_2

\text{if}(x > 0)
x := x - 1

\text{if}\ \text{else}
```

Thus:
\[t_1 \in \mathcal{P} \succ \]
Initial bounds
\[R(t_0) = 1, \ R(t_2) = 1 \] as \(t_0 \) and \(t_2 \) are not in loops

Ranking function \(r \) for program \(P \)
- \(r \) maps \(\text{locations} \) to \(\mathbb{R}[v_1, \ldots, v_n] \)
- Non-Increase: no transition in \(P \) increases value of \(r \)

Diagram:
- \(\ell_0 \) to \(t_0 \)
 - if \((i > 0) \)
 - \(x = x + i \)
 - \(i = i - 1 \)
- \(\ell_1 \) to \(t_1 \)
- \(\ell_2 \) to \(t_2 \)
 - if \((i \leq 0) \)
- \(\ell_3 \) to \(t_3 \)
 - if \((x > 0) \)
 - \(x = x - 1 \)
Initial bounds
\[R(t_0) = 1, \quad R(t_2) = 1 \] as \(t_0 \) and \(t_2 \) are not in loops

Ranking function \(r \) for program \(P \)
- \(r \) maps locations to \(\mathbb{R}[v_1, \ldots, v_n] \)
- **Non-Increase:** no transition in \(P \) increases value of \(r \)
- **Decrease:** value of \(r \) decreases by at least 1 for \(P_{\succ} \subseteq P \)
Runtime Bounds from Ranking Functions

Initial bounds
\[R(t_0) = 1, \ R(t_2) = 1 \] as \(t_0 \) and \(t_2 \) are not in loops

Ranking function \(r \) for program \(P \)
- \(r \) maps *locations* to \(\mathbb{R}[v_1, \ldots, v_n] \)
- **Non-Increase:** no transition in \(P \) increases value of \(r \)
- **Decrease:** value of \(r \) decreases by at least 1 for \(P_\succ \subseteq P \)
- **Boundedness:** \(r \geq 0 \) after \(P_\succ \subseteq P \)
Runtime Bounds from Ranking Functions

Initial bounds

\[\mathcal{R}(t_0) = 1, \mathcal{R}(t_2) = 1 \] as \(t_0 \) and \(t_2 \) are not in loops

Ranking function \(\tau \) for program \(\mathcal{P} \)

- \(\tau \) maps locations to \(\mathbb{R}[v_1, \ldots, v_n] \)
- **Non-Increase**: no transition in \(\mathcal{P} \) increases value of \(\tau \)
- **Decrease**: value of \(\tau \) decreases by at least 1 for \(\mathcal{P}_\succ \subseteq \mathcal{P} \)
- **Boundedness**: \(\tau \geq 0 \) after \(\mathcal{P}_\succ \subseteq \mathcal{P} \)

- \(\tau(\ell) = i \) for all locations \(\ell \)

Diagram

- \(\mathcal{L}_0 \)
- \(\mathcal{L}_1 \)
- \(\mathcal{L}_2 \)
- \(t_0 \)
- \(t_1 \) if \((i > 0) \)
- \(x = x + i \)
- \(i = i - 1 \)
- \(t_2 \) if \((i \leq 0) \)
- \(t_3 \) if \((x > 0) \)
- \(x = x - 1 \)
Runtime Bounds from Ranking Functions

Initial bounds
\(\mathcal{R}(t_0) = 1, \mathcal{R}(t_2) = 1 \) as \(t_0 \) and \(t_2 \) are not in loops

Ranking function \(r \) for program \(\mathcal{P} \)
- \(r \) maps locations to \(\mathbb{R}[v_1, \ldots, v_n] \)
- **Non-Increase**: no transition in \(\mathcal{P} \) increases value of \(r \)
- **Decrease**: value of \(r \) decreases by at least 1 for \(\mathcal{P}_\succ \subseteq \mathcal{P} \)
- **Boundedness**: \(r \geq 0 \) after \(\mathcal{P}_\succ \subseteq \mathcal{P} \)

- \(r(\ell) = i \) for all locations \(\ell \)
- Thus: \(t_1 \in \mathcal{P}_\succ \)
Runtime Bounds from Ranking Functions

Initial bounds

\[R(t_0) = 1, \ R(t_2) = 1 \] as \(t_0 \) and \(t_2 \) are not in loops

Ranking function \(r \) for program \(P \)

- for all \(t \in P_{\succ} \), set \(R(t) = r(l_0) \)
- **Non-Increase**: no transition in \(P \) increases value of \(r \)
- **Decrease**: value of \(r \) decreases by at least 1 for \(P_{\succ} \subseteq P \)
- **Boundedness**: \(r \geq 0 \) after \(P_{\succ} \subseteq P \)

- \(r(l) = i \) for all locations \(l \)
- Thus: \(t_1 \in P_{\succ} \)
Runtime Bounds from Ranking Functions

Initial bounds
\[\mathcal{R}(t_0) = 1, \mathcal{R}(t_2) = 1, \mathcal{R}(t_1) = i_0 \]

Ranking function \(r \) for program \(P \)
- for all \(t \in P \), set \(\mathcal{R}(t) = r(\ell_0) \)
- **Non-Increase**: no transition in \(P \) increases value of \(r \)
- **Decrease**: value of \(r \) decreases by at least 1 for \(P \preceq \subseteq P \)
- **Boundedness**: \(r \geq 0 \) after \(P \preceq \subseteq P \)
 - \(r(\ell) = i \) for all locations \(\ell \)
 - Thus: \(t_1 \in P \preceq \)
Current bounds
\(R(t_0) = 1, R(t_2) = 1, R(t_1) = i_0 \)
Modular Runtime Bounds from Ranking Functions

Current bounds
\(R(t_0) = 1, R(t_2) = 1, R(t_1) = i_0 \)

- Modular use of ranking function for subset \(P' = \{ t_3 \} \)

- Diagram:
 - \(\ell_0 \) (start state)
 - \(t_0 \) to \(\ell_1 \)
 - \(t_1 \) if \(i > 0 \)
 - \(x = x + i \)
 - \(i = i - 1 \)
 - \(\ell_1 \) to \(\ell_2 \)
 - \(t_2 \) if \(i \leq 0 \)
 - \(\ell_2 \) to \(\ell_1 \)
 - \(t_3 \) if \(x > 0 \)
 - \(x = x - 1 \)
Modular Runtime Bounds from Ranking Functions

Current bounds

\[R(t_0) = 1, \ R(t_2) = 1, \ R(t_1) = i_0 \]

Computing runtime bound for \(t \in \mathcal{P}' \)

\[R(t) = r(\ell) \]

\(\ell \): entry location of \(\mathcal{P}' \)

- Modular use of ranking function for subset \(\mathcal{P}' = \{t_3\} \)
Modular Runtime Bounds from Ranking Functions

Current bounds
\[R(t_0) = 1, \ R(t_2) = 1, \ R(t_1) = i_0 \]

Computing runtime bound for \(t \in P' \)
\[R(t) = r(\ell) \]
- \(\ell \): entry location of \(P' \)

- Modular use of ranking function for subset \(P' = \{t_3\} \)
- \(r(\ell_2) = x \)

Diagram:
- If \(i > 0 \):
 - \(x = x + i \)
 - \(i = i - 1 \)
- If \(i \leq 0 \):
 - \(t_3 \)
 - \(x = x - 1 \)
Modular Runtime Bounds from Ranking Functions

Current bounds
\(R(t_0) = 1, \ R(t_2) = 1, \ R(t_1) = i_0 \)

Computing runtime bound for \(t \in \mathcal{P}' \)
\[
R(t) = r(\ell)
\]

- \(\ell \): entry location of \(\mathcal{P}' \)

- Modular use of ranking function for subset \(\mathcal{P}' = \{t_3\} \)

- \(r(\ell_2) = x \)

 Thus: \(t_3 \in \mathcal{P}' \)

Diagram:
- \(\ell_0 \) to \(t_0 \)
- \(t_1 \) if \(i > 0 \) then \(x = x + i \), \(i = i - 1 \)
- \(t_2 \) if \(i \leq 0 \) then \(t_3 \)
- \(t_3 \) if \(x > 0 \) then \(x = x - 1 \)
Modular Runtime Bounds from Ranking Functions

Current bounds

\[R(t_0) = 1, R(t_2) = 1, R(t_1) = i_0, R(t_3) = r(l_2) \]

Computing runtime bound for \(t \in \mathcal{P}' \)

\[R(t) = r(l) \]

- \(l \): entry location of \(\mathcal{P}' \)

- Modular use of ranking function for subset \(\mathcal{P}' = \{t_3\} \)

- \(r(l_2) = x \)

Thus: \(t_3 \in \mathcal{P}' \)

![Graph showing the modular runtime bounds and ranking function calculations](image-url)
Modular Runtime Bounds from Ranking Functions

Current bounds
\[R(t_0) = 1, \ R(t_2) = 1, \ R(t_1) = i_0, \ R(t_3) = r(\ell_2) \]

Computing runtime bound for \(t \in \mathcal{P}' \)

\[R(t) = r(\ell) \]

- \(\ell \): entry location of \(\mathcal{P}' \)

- Modular use of ranking function for subset \(\mathcal{P}' = \{ t_3 \} \)

- \(r(\ell_2) = x \) Thus: \(t_3 \in \mathcal{P}' \)

- Executions of \(\mathcal{P}' \) starting in \(\ell_2 \) use \(t_3 \) at most \(r(\ell_2) = x \) times.

Diagram:
- \(\ell_0 \) to \(t_0 \)
- \(t_1 \) if \(i > 0 \)
 - \(x = x + i \)
 - \(i = i - 1 \)
- \(\ell_1 \) to \(t_2 \)
- \(t_2 \) if \(i \leq 0 \)
 - \(t_3 \)
 - \(x > 0 \)
 - \(x = x - 1 \)
- \(\ell_2 \) to \(t_3 \)
Modular Runtime Bounds from Ranking Functions

Current bounds
\[R(t_0) = 1, \quad R(t_2) = 1, \quad R(t_1) = i_0, \quad R(t_3) = r(\ell_2) \]

Computing runtime bound for \(t \in P' \)
\[R(t) = r(\ell) \]
- \(\ell \): entry location of \(P' \)

- Modular use of ranking function for subset \(P' = \{ t_3 \} \)
- \(r(\ell_2) = x \) \quad Thus: \(t_3 \in P'_\leq \)
- Executions of \(P' \) starting in \(\ell_2 \) use \(t_3 \) at most \(r(\ell_2) = x \) times.
- For global result:
Modular Runtime Bounds from Ranking Functions

Current bounds
\[\mathcal{R}(t_0) = 1, \mathcal{R}(t_2) = 1, \mathcal{R}(t_1) = i_0, \mathcal{R}(t_3) = r(\ell_2) \]

Computing runtime bound for \(t \in \mathcal{P}' \)

\[
\mathcal{R}(t) = r(\ell)
\]

- \(\ell \): entry location of \(\mathcal{P}' \)

- Modular use of ranking function for subset \(\mathcal{P}' = \{t_3\} \)

- \(r(\ell_2) = x \)

- Thus: \(t_3 \in \mathcal{P}' \)

- Executions of \(\mathcal{P}' \) starting in \(\ell_2 \) use \(t_3 \) at most \(r(\ell_2) = x \) times.

- For global result:
 - consider how often \(\mathcal{P}' \) is reached (by \(t_2 \))
Modular Runtime Bounds from Ranking Functions

Current bounds
\[R(t_0) = 1, \ R(t_2) = 1, \ R(t_1) = i_0, \ R(t_3) = r(l_2) \]

Computing runtime bound for \(t \in P' \)

\[R(t) = r(\ell) \]

- \(\ell \): entry location of \(P' \)

- Modular use of ranking function for subset \(P' = \{t_3\} \)

- \(t(l_2) = x \)

 Thus: \(t_3 \in P'_x \)

- Executions of \(P' \) starting in \(l_2 \) use \(t_3 \) at most \(r(l_2) = x \) times.

- For global result:
 - consider how often \(P' \) is reached (by \(t_2 \))

\[\Rightarrow \] multiply \(t_2 \)'s runtime bound \(R(t_2) \) with local bound \(r(l_2) \)
Modular Runtime Bounds from Ranking Functions

Current bounds

\[R(t_0) = 1, \ R(t_2) = 1, \ R(t_1) = i_0, \ R(t_3) = R(t_2) \cdot r(\ell_2) \]

Computing runtime bound for \(t \in \mathcal{P}' \)

% \[R(t) = r(\ell) \]

- \(\ell \): entry location of \(\mathcal{P}' \)

- Modular use of ranking function for subset \(\mathcal{P}' = \{ t_3 \} \)

- \(r(\ell_2) = x \)

Thus: \(t_3 \in \mathcal{P}' \)

- Executions of \(\mathcal{P}' \) starting in \(\ell_2 \) use \(t_3 \) at most \(r(\ell_2) = x \) times.

- For global result:
 - consider how often \(\mathcal{P}' \) is reached (by \(t_2 \))

⇒ multiply \(t_2 \)'s runtime bound \(R(t_2) \) with local bound \(r(\ell_2) \)
Modular Runtime Bounds from Ranking Functions

Current bounds
\[R(t_0) = 1, \ R(t_2) = 1, \ R(t_1) = i_0, \ R(t_3) = R(t_2) \cdot r(\ell_2) \]

Computing runtime bound for \(t \in P' \)
\[R(t) = R(t') \cdot r(\ell) \]
- \(\ell \): entry location of \(P' \)
- \(t' \): pre-transition of \(P' \)

- Modular use of ranking function for subset \(P' = \{ t_3 \} \)

- \(r(\ell_2) = x \)
 - Thus: \(t_3 \in P'_\perp \)

- Executions of \(P' \) starting in \(\ell_2 \) use \(t_3 \) at most \(r(\ell_2) = x \) times.

- For global result:
 - consider how often \(P' \) is reached (by \(t_2 \))

\[\Rightarrow \text{multiply } t_2 \text{'s runtime bound } R(t_2) \text{ with local bound } r(\ell_2) \]
Modular Runtime Bounds from Ranking Functions

Current bounds

\[R(t_0) = 1, \ R(t_2) = 1, \ R(t_1) = i_0, \ R(t_3) = R(t_2) \cdot r(\ell_2) \]

Computing runtime bound for \(t \in P' \)

\[R(t) = R(t') \cdot r(\ell) \]

- \(\ell \): entry location of \(P' \)
- \(t' \): pre-transition of \(P' \)

- Modular use of ranking function for subset \(P' = \{ t_3 \} \)
- \(r(\ell_2) = x \)
 Thus: \(t_3 \in P'_\ell \)

- Executions of \(P' \) starting in \(\ell_2 \) use \(t_3 \) at most \(r(\ell_2) = x \) times.

- For global result:
 - consider how often \(P' \) is reached (by \(t_2 \))
 - consider value of \(P'' \)'s initial variable \(x \) in full run

\[\Rightarrow \text{multiply } t_2 \text{'s runtime bound } R(t_2) \text{ with local bound } r(\ell_2) \]

\[t_1 \]
\[\text{if}(i > 0) \]
\[x = x + i \]
\[i = i - 1 \]

\[t_2 \]
\[\text{if}(i \leq 0) \]

\[t_3 \]
\[\text{if}(x > 0) \]
\[x = x - 1 \]
Modular Runtime Bounds from Ranking Functions

Current bounds
\[R(t_0) = 1, \ R(t_2) = 1, \ R(t_1) = i_0, \ R(t_3) = R(t_2) \cdot r(\ell_2) \]

Computing runtime bound for \(t \in P' \)

\[R(t) = R(t') \cdot r(\ell) \]

- \(\ell \): entry location of \(P' \)
- \(t' \): pre-transition of \(P' \)

- Modular use of ranking function for subset \(P' = \{ t_3 \} \)
- \(r(\ell_2) = x \)

 Thus: \(t_3 \in P'_x \)

- Executions of \(P' \) starting in \(\ell_2 \) use \(t_3 \) at most \(r(\ell_2) = x \) times.

- For global result:
 - consider how often \(P' \) is reached (by \(t_2 \))
 - consider value of \(P'' \)'s initial variable \(x \) in full run

\[\Rightarrow \text{replace } r(\ell_2) \text{ by } r(\ell_2)[x/S(t_2, x)] \]
Modular Runtime Bounds from Ranking Functions

Current bounds
\[R(t_0) = 1, R(t_2) = 1, R(t_1) = i_0, R(t_3) = R(t_2) \cdot r(l_2) [x / S(t_2, x)] \]

Computing runtime bound for \(t \in P' \)
\[R(t) = R(t') \cdot r(l) \]
- \(l \): entry location of \(P' \)
- \(t' \): pre-transition of \(P' \)

Modular use of ranking function for subset \(P' = \{ t_3 \} \)
- \(r(l_2) = x \)
 Thus: \(t_3 \in P'_\prec \)

Executions of \(P' \) starting in \(l_2 \) use \(t_3 \) at most \(r(l_2) = x \) times.

For global result:
- consider how often \(P' \) is reached (by \(t_2 \))
- consider value of \(P' \)'s initial variable \(x \) in full run

\[\Rightarrow \text{replace } r(l_2) \text{ by } r(l_2) [x / S(t_2, x)] \]
Modular Runtime Bounds from Ranking Functions

Current bounds
\[R(t_0) = 1, \ R(t_2) = 1, \ R(t_1) = i_0, \ R(t_3) = R(t_2) \cdot r(\ell_2)[x / S(t_2, x)] \]

Computing runtime bound for \(t \in P' \)
\[R(t) = R(t') \cdot r(\ell)[v / S(t', v)] \]

- \(\ell \): entry location of \(P' \)
- \(t' \): pre-transition of \(P' \)

Modular use of ranking function for subset \(P' = \{ t_3 \} \)

- \(t(\ell_2) = x \)

 Thus: \(t_3 \in P' \)

Executions of \(P' \) starting in \(\ell_2 \) use \(t_3 \) at most \(r(\ell_2) = x \) times.

For global result:
- consider how often \(P' \) is reached (by \(t_2 \))
- consider value of \(P'' \)'s initial variable \(x \) in full run

\[\Rightarrow \text{replace } t(\ell_2) \text{ by } t(\ell_2)[x / S(t_2, x)] \]
Modular Runtime Bounds from Ranking Functions

Current bounds
\[
\mathcal{R}(t_0) = 1, \mathcal{R}(t_2) = 1, \mathcal{R}(t_1) = i_0, \mathcal{R}(t_3) = 1 \cdot r(l_2)[x / S(t_2, x)]
\]

Computing runtime bound for \(t \in \mathcal{P}' \)
\[
\mathcal{R}(t) = \mathcal{R}(t') \cdot r(l)[v / S(t', v)]
\]

- \(l \): entry location of \(\mathcal{P}' \)
- \(t' \): pre-transition of \(\mathcal{P}' \)

- Modular use of ranking function for subset \(\mathcal{P}' = \{ t_3 \} \)
- \(t(l_2) = x \)

 Thus: \(t_3 \in \mathcal{P'} \)
- Executions of \(\mathcal{P}' \) starting in \(l_2 \) use \(t_3 \) at most \(r(l_2) = x \) times.
- For global result:
 - consider how often \(\mathcal{P}' \) is reached (by \(t_2 \))
 - consider value of \(\mathcal{P}' \)'s initial variable \(x \) in full run

\[\Rightarrow \text{replace } t(l_2) \text{ by } t(l_2)[x / S(t_2, x)] \]
Modular Runtime Bounds from Ranking Functions

Current bounds

\[R(t_0) = 1, \ R(t_2) = 1, \ R(t_1) = i_0, \ R(t_3) = 1 \times x \ [x / S(t_2, x)] \]

Computing runtime bound for \(t \in \mathcal{P}' \)

\[
R(t) = R(t') \cdot r(\ell)[v / S(t', v)]
\]

- \(\ell \): entry location of \(\mathcal{P}' \)
- \(t' \): pre-transition of \(\mathcal{P}' \)

- Modular use of ranking function for subset \(\mathcal{P}' = \{ t_3 \} \)
- \(r(\ell_2) = x \)
 Thus: \(t_3 \in \mathcal{P}' \)
- Executions of \(\mathcal{P}' \) starting in \(\ell_2 \) use \(t_3 \) at most \(r(\ell_2) = x \) times.
- For global result:
 - consider how often \(\mathcal{P}' \) is reached (by \(t_2 \))
 - consider value of \(\mathcal{P}' \)'s initial variable \(x \) in full run

\[\Rightarrow \text{replace } r(\ell_2) \text{ by } r(\ell_2)[x / S(t_2, x)] \]
Modular Runtime Bounds from Ranking Functions

Current bounds

\[R(t_0) = 1, \quad R(t_2) = 1, \quad R(t_1) = 1, \quad R(t_3) = 1 \cdot S(t_2, x) \]

Computing runtime bound for \(t \in P' \)

\[R(t) = R(t') \cdot r(\ell)[v / S(t', v)] \]

- \(\ell \): entry location of \(P' \)
- \(t' \): pre-transition of \(P' \)

- Modular use of ranking function for subset \(P' = \{ t_3 \} \)
- \(r(\ell_2) = x \)
 Thus: \(t_3 \in P' \)
- Executions of \(P' \) starting in \(\ell_2 \) use \(t_3 \) at most \(r(\ell_2) = x \) times.
- For global result:
 - consider how often \(P' \) is reached (by \(t_2 \))
 - consider value of \(P'' \)'s initial variable \(x \) in full run

\[\Rightarrow \text{replace } r(\ell_2) \text{ by } r(\ell_2)[x / S(t_2, x)] \]
Modular Runtime Bounds from Ranking Functions

Current bounds
\[R(t_0) = 1, \quad R(t_2) = 1, \quad R(t_1) = i_0, \quad R(t_3) = 1 \cdot (x_0 + i_0^2) \]

Computing runtime bound for \(t \in P' \)
\[R(t) = R(t') \cdot r(\ell)[v/S(t', v)] \]
- \(\ell \): entry location of \(P' \)
- \(t' \): pre-transition of \(P' \)

Modular use of ranking function for subset \(P' = \{ t_3 \} \)
- \(t(\ell_2) = x \)
 Thus: \(t_3 \in P'_\leq \)

Executions of \(P' \) starting in \(\ell_2 \) use \(t_3 \) at most \(r(\ell_2) = x \) times.

For global result:
- consider how often \(P' \) is reached (by \(t_2 \))
- consider value of \(P' \)'s initial variable \(x \) in full run

⇒ replace \(t(\ell_2) \) by \(t(\ell_2)[x/S(t_2, x)] \)
Modular Runtime Bounds from Ranking Functions

Runtime bounds

\[\mathcal{R}(t_0) = 1, \mathcal{R}(t_2) = 1, \mathcal{R}(t_1) = i_0, \mathcal{R}(t_3) = x_0 + i_0^2 \]

Computing runtime bound for \(t \in \mathcal{P}' \)

\[\mathcal{R}(t) = \mathcal{R}(t') \cdot r(\ell)[v / S(t', v)] \]

- \(\ell \): entry location of \(\mathcal{P}' \)
- \(t' \): pre-transition of \(\mathcal{P}' \)

use size bounds to compute runtime bounds

- Modular use of ranking function for subset \(\mathcal{P}' = \{ t_3 \} \)

 \[r(\ell_2) = x \]

 Thus: \(t_3 \in \mathcal{P}' \)

- Executions of \(\mathcal{P}' \) starting in \(\ell_2 \) use \(t_3 \) at most \(r(\ell_2) = x \) times.

- For global result:
 - consider how often \(\mathcal{P}' \) is reached (by \(t_2 \))
 - consider value of \(\mathcal{P}' \)'s initial variable \(x \) in full run

\[\Rightarrow \text{replace } r(\ell_2) \text{ by } r(\ell_2)[x / S(t_2, x)] \]
Modular Runtime Bounds from Ranking Functions

Runtime bounds

\[R(t_0) = 1, \ R(t_2) = 1, \ R(t_1) = i_0, \ R(t_3) = x_0 + i_0^2 \]

Computing runtime bound for \(t \in \mathcal{P}' \)

\[R(t) = R(t') \cdot r(\ell)[v / S(t', v)] \]

- \(\ell \): entry location of \(\mathcal{P}' \)
- \(t' \): pre-transition of \(\mathcal{P}' \)

Use size bounds to compute runtime bounds

- Modular use of ranking function for subset \(\mathcal{P}' = \{ t_3 \} \)
- \(r(\ell_2) = x \)
 Thus: \(t_3 \in \mathcal{P}' \)

- Executions of \(\mathcal{P}' \) starting in \(\ell_2 \) use \(t_3 \) at most \(r(\ell_2) = x \) times.

- For global result:
 - consider how often \(\mathcal{P}' \) is reached (by \(t_2 \))
 - consider value of \(\mathcal{P}' \)’s initial variable \(x \) in full run

Overall runtime

Overall runtime is bounded by

\[R(t_0) + \ldots + R(t_3) = 1 + i_0 + 1 + x_0 + i_0^2. \]
Expected Runtime Bounds from Probabilistic Ranking Functions

Initial bounds $R_E(g_0) = 1$, $R_E(g_2) = 1$ as g_0 and g_2 are not in loops

Probabilistic ranking function r for program P

Non-Increase: no transition in P increases expected value of r

Decrease: expected value of r decreases by 1 for $P ≻ ⊆ P$

Boundedness: $r \geq 0$ after $P ≻ ⊆ P$

ℓ_0

t_0

t_1

if $(i > 0)$

$x = x + i$

$i = i - 1$

t_2

if $(i \leq 0)$

t_3

if $(x > 0)$

$x = x - 1$
Expected Runtime Bounds from Probabilistic Ranking Functions

Initial bounds

\[
R_E(g_0) = 1, \quad R_E(g_2) = 1 \quad \text{as } g_0 \text{ and } g_2 \text{ are not in loops}
\]

Probabilistic ranking function \(r \) for program \(P \)

- Non-Increase: no transition in \(P \) increases expected value of \(r \)
- Decrease: expected value of \(r \) decreases by 1 for \(P \succ \subseteq P \)
- Boundedness: \(r \geq 0 \) after \(P \succ \subseteq P \)

\[
\ell_0 \\
t_0 \in g_0
\]

\[
\ell_1 \\
\frac{1}{2} : t_1 \in g_1 \quad \text{if} (i > 0) \\
x = x + i \\
i = i - 1
\]

\[
\ell_2 \\
\frac{1}{2} : t_2 \in g_2 \quad \text{if} (i \leq 0) \\
t_2 \in g_2
\]

\[
\ell_3 \\
t_3 \in g_3 \quad \text{if} (x > 0) \\
x = x - 1
\]

\[
\ell_4 \\
\frac{1}{2} : t_4 \in g_1 \quad \text{if} (i > 0) \\
2i \geq 1 \\
2i \geq \frac{2}{2} \cdot r(\ell_1) [x/x + i, i/i - 1] \\
2i + 1
\]
Initial bounds

\(\mathcal{R}_E(g_0) = 1, \mathcal{R}_E(g_2) = 1 \) as \(g_0 \) and \(g_2 \) are not in loops.

Diagram

- \(\ell_0 \) with \(t_0 \) belonging to \(g_0 \)
- \(\ell_1 \) with conditions:
 - \(\frac{1}{2} : t_1 \in g_1 \)
 - \(\text{if}(i > 0) \)
 - \(x = x + i \)
 - \(i = i - 1 \)
- \(\ell_2 \) with condition:
 - \(\text{if}(i \leq 0) \)
 - \(t_2 \in g_2 \)
- \(\ell_3 \) with conditions:
 - \(t_3 \in g_3 \)
 - \(\text{if}(x > 0) \)
 - \(x = x - 1 \)
- \(\ell_4 \) with condition:
 - \(\frac{1}{2} : t_4 \in g_1 \)
 - \(\text{if}(i > 0) \)
Expected Runtime Bounds from Probabilistic Ranking Functions

Initial bounds
$$R_E(g_0) = 1, R_E(g_2) = 1$$ as g_0 and g_2 are not in loops

Probabilistic ranking function r for program P
- r maps locations to $\mathbb{R}[v_1, \ldots, v_n]$
- **Non-Increase**: no transition in P increases value of r
- **Decrease**: value of r decreases by 1 for $P \succ P$
- **Boundedness**: $r \geq 0$ after $P \succ P$

Diagram:
- ℓ_0: $t_0 \in g_0$
- ℓ_1: $t_1 \in g_1$
 - $\frac{1}{2} : t_1 \in g_1$
 - $\text{if} (i > 0)$
 - $x = x + i$
 - $i = i - 1$
- ℓ_2: $t_2 \in g_2$
 - $\frac{1}{2} : t_4 \in g_1$
 - $\text{if} (i > 0)$
 - $t_2 \in g_2$
 - $\text{if} (i \leq 0)$
- ℓ_3: $t_3 \in g_3$
 - $\text{if} (x > 0)$
 - $x = x - 1$
Expected Runtime Bounds from Probabilistic Ranking Functions

Initial bounds
\[R_E(g_0) = 1, \ R_E(g_2) = 1 \] as \(g_0 \) and \(g_2 \) are not in loops

Probabilistic ranking function \(\tau \) for program \(\mathcal{P} \)
- \(\tau \) maps locations to \(\mathbb{R}[v_1, \ldots, v_n] \)
- **Non-Increase**: no transition in \(\mathcal{P} \) increases value of \(\tau \)
- **Decrease**: value of \(\tau \) decreases by 1 for \(\mathcal{P}_{\succ} \subseteq \mathcal{P} \)
- **Boundedness**: \(\tau \geq 0 \) after \(\mathcal{P}_{\succ} \subseteq \mathcal{P} \)

\[
\begin{align*}
R_E(g_0) &= 1, \\
R_E(g_2) &= 1
\end{align*}
\]
as \(g_0 \) and \(g_2 \) are not in loops

\[
E(g_0) = 1, \ E(g_2) = 1
\]

Non-Increase
- No transition in \(\mathcal{P} \) increases value of \(\tau \)

Decrease
- Value of \(\tau \) decreases by 1 for \(\mathcal{P}_{\succ} \subseteq \mathcal{P} \)

Boundedness
- \(\tau \geq 0 \) after \(\mathcal{P}_{\succ} \subseteq \mathcal{P} \)

Diagram:
- \(\ell_0 \rightarrow \ell_1 \):
 - \(t_0 \in g_0 \)
 - \(\frac{1}{2} : t_1 \in g_1 \)
 - \(\text{if}(i > 0) \)
 - \(x = x + i \)
 - \(i = i - 1 \)
- \(\ell_1 \rightarrow \ell_2 \):
 - \(\text{if}(i > 0) \)
 - \(t_2 \in g_2 \)
- \(\ell_2 \rightarrow \ell_0 \):
 - \(\text{if}(i \leq 0) \)
 - \(t_3 \in g_3 \)
 - \(\text{if}(x > 0) \)
 - \(x = x - 1 \)

- Value of \(\tau \) decreases by 1 for \(\mathcal{P}_{\succ} \subseteq \mathcal{P} \)
- Boundedness: \(\tau \geq 0 \) after \(\mathcal{P}_{\succ} \subseteq \mathcal{P} \)
Expected Runtime Bounds from Probabilistic Ranking Functions

Initial bounds
\[R_E(g_0) = 1, \ R_E(g_2) = 1 \text{ as } g_0 \text{ and } g_2 \text{ are not in loops} \]

Probabilistic ranking function \(r \) for program \(P \)
- for all \(g \in P \), set \(R_E(g) = r(\ell_0) \)
- **Non-Increase**: no transition in \(P \) increases value of \(r \)
- **Decrease**: value of \(r \) decreases by 1 for \(P \subseteq P \)
- **Boundedness**: \(r \geq 0 \) after \(P \subseteq P \)
Expected Runtime Bounds from Probabilistic Ranking Functions

Initial bounds
\[\mathcal{R}_E(g_0) = 1, \mathcal{R}_E(g_2) = 1 \] as \(g_0 \) and \(g_2 \) are not in loops

Probabilistic ranking function \(\tau \) for program \(\mathcal{P} \)
- for all \(g \in \mathcal{P}_\succ \), set \(\mathcal{R}_E(g) = \tau(\ell_0) \)
- **Non-Increase**: no transition in \(\mathcal{P} \) increases expected value of \(\tau \)
- **Decrease**: value of \(\tau \) decreases by 1 for \(\mathcal{P}_\succ \subseteq \mathcal{P} \)
- **Boundedness**: \(\tau \geq 0 \) after \(\mathcal{P}_\succ \subseteq \mathcal{P} \)

```
\[ \frac{1}{2} : t_1 \in g_1 \]  
\[ \text{if}(i > 0) \]
\[ x = x + i \]
\[ i = i - 1 \]

\[ \frac{1}{2} : t_4 \in g_1 \]  
\[ \text{if}(i > 0) \]

\[ t_2 \in g_2 \]
\[ \text{if}(i \leq 0) \]
```

```
\[ t_3 \in g_3 \]
\[ \text{if}(x > 0) \]
\[ x = x - 1 \]
```
Expected Runtime Bounds from *Probabilistic* Ranking Functions

Initial bounds

\[R_E(g_0) = 1, \ R_E(g_2) = 1 \] as \(g_0 \) and \(g_2 \) are not in loops

Probabilistic ranking function \(\tau \) for program \(\mathcal{P} \)

- for all \(g \in \mathcal{P}_\succ \), set \(R_E(g) = \tau(\ell_0) \)

 - **Non-Increase**: no transition in \(\mathcal{P} \) increases *expected* value of \(\tau \)

 - **Decrease**: *expected* value of \(\tau \) decreases by 1 for \(\mathcal{P}_\succ \subseteq \mathcal{P} \)

 - **Boundedness**: \(\tau \geq 0 \) after \(\mathcal{P}_\succ \subseteq \mathcal{P} \)
Expected Runtime Bounds from Probabilistic Ranking Functions

Initial bounds
\[R_E(g_0) = 1, \ R_E(g_2) = 1 \] as \(g_0 \) and \(g_2 \) are not in loops

Probabilistic ranking function \(r \) for program \(P \)

- For all \(g \in P_{\gg} \), set \(R_E(g) = r(\ell_0) \)
- **Non-Increase**: no transition in \(P \) increases expected value of \(r \)
- **Decrease**: expected value of \(r \) decreases by 1 for \(P_{\gg} \subseteq P \)
- **Boundedness**: \(r \geq 0 \) after \(P_{\gg} \subseteq P \)

- \(r(\ell) = 2 \cdot i \) for all locations \(\ell \)

Diagram

- \(\ell_0 \)
 - \(t_0 \in g_0 \)
 - \(\frac{1}{2} : t_1 \in g_1 \) if \(i > 0 \)
 - \(x = x + i \)
 - \(i = i - 1 \)
 - \(\frac{1}{2} : t_4 \in g_1 \) if \(i > 0 \)

- \(\ell_1 \)
 - \(t_2 \in g_2 \) if \(i \leq 0 \)
 - \(t_3 \in g_3 \) if \(x > 0 \)
 - \(x = x - 1 \)
Expected Runtime Bounds from Probabilistic Ranking Functions

Initial bounds

\[R_E(g_0) = 1, \; R_E(g_2) = 1 \text{ as } g_0 \; \text{and} \; g_2 \; \text{are not in loops} \]

Probabilistic ranking function \(r \) for program \(P \)

- for all \(g \in P_{\succ} \), set \(R_E(g) = r(\ell_0) \)
- **Non-Increase:** no transition in \(P \) increases expected value of \(r \)
- **Decrease:** expected value of \(r \) decreases by 1 for \(P_{\succ} \subseteq P \)
- **Boundedness:** \(r \geq 0 \) after \(P_{\succ} \subseteq P \)

- \(r(\ell) = 2 \cdot i \) for all locations \(\ell \)
- Thus: \(g_1 \in P_{\succ} \)

\[\frac{1}{2} : t_1 \in g_1 \]
\[\text{if}(i > 0) \quad x = x + i \quad i = i - 1 \]

\[\frac{1}{2} : t_4 \in g_1 \]
\[\text{if}(i > 0) \]

\[t_2 \in g_2 \]
\[\text{if}(i \leq 0) \]

\[t_3 \in g_3 \]
\[\text{if}(x > 0) \quad x = x - 1 \]
Expected Runtime Bounds from Probabilistic Ranking Functions

Initial bounds
\[R_E(g_0) = 1, \ R_E(g_2) = 1 \] as \(g_0 \) and \(g_2 \) are not in loops

Probabilistic ranking function \(r \) for program \(P \)
- For all \(g \in P_\succ \), set \(R_E(g) = r(\ell_0) \)
- Non-Increase: no transition in \(P \) increases expected value of \(r \)
- Decrease: expected value of \(r \) decreases by 1 for \(P_\succ \subseteq P \)
- Boundedness: \(r \geq 0 \) after \(P_\succ \subseteq P \)

\[r(\ell) = 2 \cdot i \] for all locations \(\ell \)
- Thus: \(g_1 \in P_\succ \)

\[r(\ell_1) \geq \frac{1}{2} \cdot r(\ell_1)[x / x + i, \ i / i - 1] + \frac{1}{2} \cdot r(\ell_1)[x / x, \ i / i] + 1 \]
Expected Runtime Bounds from Probabilistic Ranking Functions

Initial bounds
\[R_E(g_0) = 1, \quad R_E(g_2) = 1 \text{ as } g_0 \text{ and } g_2 \text{ are not in loops} \]

Probabilistic ranking function \(\tau \) for program \(P \)
- for all \(g \in P_\succcurlyeq \), set \(R_E(g) = \tau(\ell_0) \)
- **Non-Increase**: no transition in \(P \) increases *expected* value of \(\tau \)
- **Decrease**: *expected* value of \(\tau \) decreases by 1 for \(P_\succcurlyeq \subseteq P \)
- **Boundedness**: \(\tau \geq 0 \) after \(P_\succcurlyeq \subseteq P \)

- \(\tau(\ell) = 2 \cdot i \) for all locations \(\ell \)
- Thus: \(g_1 \in P_\succcurlyeq \)

\[
2 \cdot i \geq \frac{1}{2} \cdot \tau(\ell_1)[x/x+i, i/i-1] + \frac{1}{2} \cdot \tau(\ell_1)[x/x, i/i] + 1
\]
Expected Runtime Bounds from Probabilistic Ranking Functions

Initial bounds
\[R_E(g_0) = 1, \ R_E(g_2) = 1 \text{ as } g_0 \text{ and } g_2 \text{ are not in loops} \]

Probabilistic ranking function \(\tau \) for program \(P \)
- for all \(g \in P_\succ \), set \(R_E(g) = \tau(\ell_0) \)
- **Non-Increase**: no transition in \(P \) increases expected value of \(\tau \)
- **Decrease**: expected value of \(\tau \) decreases by 1 for \(P_\succ \subseteq P \)
- **Boundedness**: \(\tau \geq 0 \) after \(P_\succ \subseteq P \)

- \(\tau(\ell) = 2 \cdot i \) for all locations \(\ell \)
- Thus: \(g_1 \in P_\succ \)

\[
2 \cdot i \geq \frac{1}{2} \cdot 2 \cdot (i - 1) + \frac{1}{2} \cdot \tau(\ell_1)[x / x, i / i] + 1
\]

Diagram:
- \(\ell_0 \rightarrow t_0 \in g_0 \)
- \(\ell_1 \):
 - \(\frac{1}{2} : t_1 \in g_1 \) if \(i > 0 \)
 - \(x = x + i \) if \(i > 0 \)
 - \(i = i - 1 \)
- \(\ell_2 \):
 - \(\frac{1}{2} : t_4 \in g_1 \) if \(i > 0 \)
- \(\ell_3 \):
 - \(t_3 \in g_3 \) if \(x > 0 \)
 - \(x = x - 1 \)
Expected Runtime Bounds from Probabilistic Ranking Functions

Initial bounds

\[R_E(g_0) = 1, \ R_E(g_2) = 1 \] as \(g_0 \) and \(g_2 \) are not in loops

Probabilistic ranking function \(\tau \) for program \(P \)

- for all \(g \in P_\succ \), set \(R_E(g) = \tau(\ell_0) \)
- **Non-Increase**: no transition in \(P \) increases expected value of \(\tau \)
- **Decrease**: expected value of \(\tau \) decreases by 1 for \(P_\succ \subseteq P \)
- **Boundedness**: \(\tau \geq 0 \) after \(P_\succ \subseteq P \)

- \(\tau(\ell) = 2 \cdot i \) for all locations \(\ell \)

- **Thus**: \(g_1 \in P_\succ \)

\[
2 \cdot i \geq \frac{1}{2} \cdot 2 \cdot (i - 1) + \frac{1}{2} \cdot 2 \cdot i + 1
\]
Expected Runtime Bounds from Probabilistic Ranking Functions

Initial bounds
\[R_E(g_0) = 1, \quad R_E(g_2) = 1, \quad R_E(g_1) = 2 \cdot i_0 \]

Probabilistic ranking function \(r \) for program \(P \)
- for all \(g \in P_A \), set \(R_E(g) = r(\ell_0) \)
- **Non-Increase**: no transition in \(P \) increases *expected* value of \(r \)
- **Decrease**: *expected* value of \(r \) decreases by 1 for \(P_A \subseteq P \)
- **Boundedness**: \(r \geq 0 \) after \(P_A \subseteq P \)

- \(r(\ell) = 2 \cdot i \) for all locations \(\ell \)

Thus: \(g_1 \in P_A \)

\[
2 \cdot i \geq \frac{1}{2} \cdot 2 \cdot (i - 1) + \frac{1}{2} \cdot 2 \cdot i + 1
\]
Modular Expected Runtime Bounds from Probabilistic Ranking Functions

Current bounds

\[R_E(g_0) = 1, \ R_E(g_2) = 1, \ R_E(g_1) = 2 \cdot i_0 \]
Modular *Expected* Runtime Bounds from *Probabilistic* Ranking Functions

Current bounds
\[\mathcal{R}_E(g_0) = 1, \quad \mathcal{R}_E(g_2) = 1, \quad \mathcal{R}_E(g_1) = 2 \cdot i_0 \]

Computing runtime bound for \(g \in \mathcal{P}' \)
\[\mathcal{R}(g) = \mathcal{R}(g') \cdot \mathcal{R}(t) [v / S (g', v)] \]
- \(\ell \): entry location of \(\mathcal{P}' \)
- \(g' \): pre-transition of \(\mathcal{P}' \)

\[\begin{align*}
\ell_0 & \quad t_0 \in g_0 \\
\ell_1 & \quad \frac{1}{2} : t_1 \in g_1 \\
& \quad \text{if}(i > 0) \\
& \quad x = x + i \\
& \quad i = i - 1 \\
\ell_2 & \quad t_2 \in g_2 \\
& \quad \text{if}(i \leq 0) \\
\ell_3 & \quad t_3 \in g_3 \\
& \quad \text{if}(x > 0) \\
& \quad x = x - 1 \\
\ell_4 & \quad t_4 \in g_1 \\
& \quad \text{if}(i > 0) \\
\end{align*} \]
Modular *Expected* Runtime Bounds from *Probabilistic* Ranking Functions

Current bounds

\[\mathcal{R}_E(g_0) = 1, \mathcal{R}_E(g_2) = 1, \mathcal{R}_E(g_1) = 2 \cdot i_0 \]

Computing *expected* runtime bound for \(g \in \mathcal{P}' \)

\[\mathcal{R}(g) = \mathcal{R}(g') \cdot t(\ell)[v/S(g', \nu)] \]

- \(\ell \): entry location of \(\mathcal{P}' \)
- \(g' \): pre-transition of \(\mathcal{P}' \)

\[
\begin{align*}
\ell_0 & \quad t_0 \in g_0 \\
\ell_1 & \quad \frac{1}{2} : t_1 \in g_1 \\
& \quad \text{if}(i > 0) \\
& \quad x = x + i \\
& \quad i = i - 1 \\
\ell_2 & \quad t_2 \in g_2 \\
& \quad \text{if}(i \leq 0) \\
\ell_3 & \quad t_3 \in g_3 \\
& \quad \text{if}(x > 0) \\
& \quad x = x - 1 \\
\ell_4 & \quad \frac{1}{2} : t_4 \in g_1 \\
& \quad \text{if}(i > 0) \\
\end{align*}
\]
Modular Expected Runtime Bounds from Probabilistic Ranking Functions

Current bounds

\[\mathcal{R}_E(g_0) = 1, \mathcal{R}_E(g_2) = 1, \mathcal{R}_E(g_1) = 2 \cdot i_0 \]

Computing expected runtime bound for \(g \in \mathcal{P}' \)

\[\mathcal{R}_E(g) = \mathbb{E}(\mathcal{R}(g') \cdot t(\ell) [\nu / S(g', \nu)]) \]

- \(\ell \): entry location of \(\mathcal{P}' \)
- \(g' \): pre-transition of \(\mathcal{P}' \)

\[\begin{align*}
\ell_0: t_0 & \in g_0 \\
\ell_1: t_1 & \in g_1 \\
\ell_2: t_2 & \in g_2 \\
\ell_3: t_3 & \in g_3 \\
\ell_4: t_4 & \in g_1
\end{align*} \]

- if \(i > 0 \):
 - \(x = x + i \)
 - \(i = i - 1 \)

- if \(i \leq 0 \):
 - \(t_2 \in g_2 \)

- if \(x > 0 \):
 - \(x = x - 1 \)
Modular *Expected* Runtime Bounds from *Probabilistic* Ranking Functions

Current bounds

\[\mathcal{R}_E(g_0) = 1, \mathcal{R}_E(g_2) = 1, \mathcal{R}_E(g_1) = 2 \cdot i_0 \]

Computing *expected* runtime bound for \(g \in \mathcal{P}' \)

\[\mathcal{R}_E(g) = \mathbb{E}(\mathcal{R}(g')) \cdot t(\ell)[v/S(g',v)] \]

- \(\ell \): entry location of \(\mathcal{P}' \)
- \(g' \): pre-transition of \(\mathcal{P}' \)

Expected value *not* multiplicative!

\[
\begin{align*}
\ell_0 & \quad t_0 \in g_0 \\
\ell_1 & \quad \frac{1}{2} : t_1 \in g_1 \\
& \quad \text{if}(i > 0) \\
& \quad x = x + i \\
& \quad i = i - 1 \\
\ell_2 & \quad \frac{1}{2} : t_2 \in g_2 \\
& \quad \text{if}(i > 0) \\
\ell_3 & \quad t_3 \in g_3 \\
& \quad \text{if}(x > 0) \\
& \quad x = x - 1 \\
\ell_4 & \quad t_4 \in g_4 \\
& \quad \text{if}(i > 0) \\
\end{align*}
\]
Modular *Expected* Runtime Bounds from *Probabilistic* Ranking Functions

Current bounds

\[R_E(g_0) = 1, \quad R_E(g_2) = 1, \quad R_E(g_1) = 2 \cdot i_0 \]

Computing expected runtime bound for \(g \in \mathcal{P}' \)

\[R_E(g) = R(t') \cdot E(r(\ell) [v / S (g', v)]) \]

- \(\ell \): entry location of \(\mathcal{P}' \)
- \(g', t' \): pre-transition of \(\mathcal{P}' \)

Expected value *not* multiplicative!

Expected value not multiplicative!

Diagram:

- \(\ell_0 \): entry location of \(\mathcal{P}' \)
- \(t_0 \in g_0 \)
- \(t_1 \in g_1 \) if \(i > 0 \)
 - \(x = x + i \)
 - \(i = i - 1 \)
- \(t_2 \in g_2 \) if \(i \leq 0 \)
- \(t_3 \in g_3 \) if \(x > 0 \)
 - \(x = x - 1 \)
- \(t_4 \in g_1 \) if \(i > 0 \)
Modular *Expected* Runtime Bounds from *Probabilistic* Ranking Functions

Current bounds

\[R_E(g_0) = 1, \quad R_E(g_2) = 1, \quad R_E(g_1) = 2 \cdot i_0 \]

Computing *expected* runtime bound for \(g \in P' \)

\[R_E(g) = R(t') \cdot E(\tau(\ell) [v / S(g', v)]) \]

- \(\ell \): entry location of \(P' \)
- \(g', t' \): pre-transition of \(P' \)

Expected value not multiplicative!
\(\Rightarrow \) restrict to *linear* ranking functions \(\tau \)
Modular *Expected* Runtime Bounds from *Probabilistic* Ranking Functions

Current bounds

\[R_E(g_0) = 1, \; R_E(g_2) = 1, \; R_E(g_1) = 2 \cdot i_0 \]

Computing *expected* runtime bound for \(g \in P' \)

\[R_E(g) = R(t') \cdot \tau(\ell) [v / S_E(g', v)] \]

- \(\ell \): entry location of \(P' \)
- \(g', t' \): pre-transition of \(P' \)

Expected value *not* multiplicative!

⇒ restrict to *linear* ranking functions \(\tau \)
Modular *Expected* Runtime Bounds from *Probabilistic* Ranking Functions

Current bounds
\[R_E(g_0) = 1, \quad R_E(g_2) = 1, \quad R_E(g_1) = 2 \cdot i_0 \]

Computing expected runtime bound for \(g \in P' \)
\[
R_E(g) = R(t') \cdot t(\ell) [v / S_E(g', v)]
\]

- \(\ell \): entry location of \(P' \)
- \(g', t' \): pre-transition of \(P' \)

- Modular use of ranking function for subset \(P' = \{ g_3 \} \)
Modular *Expected* Runtime Bounds from *Probabilistic* Ranking Functions

Current bounds

\[R_E(g_0) = 1, \quad R_E(g_2) = 1, \quad R_E(g_1) = 2 \cdot i_0 \]

Computing *expected* runtime bound for \(g \in P' \)

\[R_E(g) = R(t') \cdot t(\ell)[v/S_E(g', v)] \]

- \(\ell \): entry location of \(P' \)
- \(g', t' \): pre-transition of \(P' \)

- Modular use of ranking function for subset \(P' = \{ g_3 \} \)
- \(t(\ell_2) = x \)
Modular *Expected* Runtime Bounds from *Probabilistic* Ranking Functions

Current bounds

\[R_E(g_0) = 1, \; R_E(g_2) = 1, \; R_E(g_1) = 2 \cdot i_0, \; R_E(g_3) = t(\ell_2) \]

Computing expected runtime bound for \(g \in \mathcal{P}' \)

\[
R_E(g) = R(t') \cdot t(\ell) [v / S_E(g', v)]
\]

- \(\ell \): entry location of \(\mathcal{P}' \)
- \(g', t' \): pre-transition of \(\mathcal{P}' \)

- Modular use of ranking function for subset \(\mathcal{P}' = \{g_3\} \)
- \(t(\ell_2) = x \)
 Thus: \(g_3 \in \mathcal{P}' \)

\[
\frac{1}{2} : t_1 \in g_1 \\
\text{if}(i > 0) \\
x = x + i \\
i = i - 1
\]

\[
\frac{1}{2} : t_2 \in g_2 \\
\text{if}(i > 0) \\
t_3 \in g_3 \\
\text{if}(x > 0) \\
x = x - 1
\]
Modular *Expected* Runtime Bounds from *Probabilistic* Ranking Functions

Current bounds

\[R_E(g_0) = 1, R_E(g_2) = 1, R_E(g_1) = 2 \cdot i_0, R_E(g_3) = t(l_2) \]

Computing expected runtime bound for \(g \in \mathcal{P}' \)

\[R_E(g) = R(t') \cdot t(l)[v / S_E(g', v)] \]

- \(\ell \): entry location of \(\mathcal{P}' \)
- \(g', t' \): pre-transition of \(\mathcal{P}' \)

- Modular use of ranking function for subset \(\mathcal{P}' = \{g_3\} \)
- \(t(l_2) = x \)

 Thus: \(g_3 \in \mathcal{P}' \)

- Executions of \(\mathcal{P}' \) starting in \(l_2 \) use \(g_3 \) at most \(t(l_2) = x \) times.
Modular *Expected* Runtime Bounds from *Probabilistic* Ranking Functions

Current bounds

\[R_E(g_0) = 1, \; R_E(g_2) = 1, \; R_E(g_1) = 2 \cdot i_0, \; R_E(g_3) = t(\ell_2) \]

Computing expected runtime bound for \(g \in \mathcal{P}' \)

\[R_E(g) = R(t') \cdot t(\ell)[v / S_E(g', v)] \]

- \(\ell \): entry location of \(\mathcal{P}' \)
- \(g', t' \): pre-transition of \(\mathcal{P}' \)

- Modular use of ranking function for subset \(\mathcal{P}' = \{g_3\} \)
- \(t(\ell_2) = x \quad \text{Thus:} \quad g_3 \in \mathcal{P}_\succ \)
- Executions of \(\mathcal{P}' \) starting in \(\ell_2 \) use \(g_3 \) at most \(t(\ell_2) = x \) times.
- For global result:
 - consider how often \(\mathcal{P}' \) is reached (by \(t_2 \))

Diagram

- \(t_0 \in g_0 \)
- \(t_1 \in g_1 \) if \(i > 0 \)
- \(t_2 \in g_2 \) if \(i \leq 0 \)
- \(t_3 \in g_3 \) if \(x > 0 \)
- \(x = x - 1 \)
- \(t_4 \in g_1 \) if \(i > 0 \)
- \(x = x + i \)
- \(i = i - 1 \)
Modular Expected Runtime Bounds from Probabilistic Ranking Functions

Current bounds

\[R_E(g_0) = 1, \, R_E(g_2) = 1, \, R_E(g_1) = 2 \cdot i_0, \, R_E(g_3) = t(l_2) \]

Computing expected runtime bound for \(g \in P' \)

\[R_E(g) = R(t') \cdot t(l)[v / S_E(g', v)] \]

- \(l \): entry location of \(P' \)
- \(g', t' \): pre-transition of \(P' \)

- Modular use of ranking function for subset \(P' = \{ g_3 \} \)

- \(t(l_2) = x \)
 Thus: \(g_3 \in P' \)

- Executions of \(P' \) starting in \(l_2 \) use \(g_3 \) at most \(t(l_2) = x \) times.

- For global result:
 - consider how often \(P' \) is reached (by \(t_2 \))

⇒ multiply \(t_2 \)'s non-probabilistic runtime bound \(R(t_2) \) with local bound \(t(l_2) \)
Modular *Expected* Runtime Bounds from *Probabilistic* Ranking Functions

Current bounds
\[
R_E(g_0) = 1, \ R_E(g_2) = 1, \ R_E(g_1) = 2 \cdot i_0, \ R_E(g_3) = R(t_2) \cdot t(\ell_2)
\]

Computing expected runtime bound for \(g \in P' \)
\[
R_E(g) = R(t') \cdot t(\ell) [v / S_E(g', v)]
\]
- \(\ell \): entry location of \(P' \)
- \(g', t' \): pre-transition of \(P' \)

- Modular use of ranking function for subset \(P' = \{ g_3 \} \)
- \(t(\ell_2) = x \)
 - Thus: \(g_3 \in P'_> \)
- Executions of \(P' \) starting in \(\ell_2 \) use \(g_3 \) at most \(t(\ell_2) = x \) times.
- For global result:
 - consider how often \(P' \) is reached (by \(t_2 \))

 \[\Rightarrow \text{multiply } t_2 \text{'s non-probabilistic runtime bound } R(t_2) \text{ with local bound } t(\ell_2) \]
Modular *Expected* Runtime Bounds from *Probabilistic* Ranking Functions

Current bounds

\[R_E(g_0) = 1, \quad R_E(g_2) = 1, \quad R_E(g_1) = 2 \cdot i_0, \quad R_E(g_3) = 1 \cdot t(l_2) \]

Computing expected runtime bound for \(g \in P' \)

\[R_E(g) = R(t') \cdot t(l)[v / S_E(g', v)] \]

- \(l \): entry location of \(P' \)
- \(g', t' \): pre-transition of \(P' \)

- Modular use of ranking function for subset \(P' = \{ g_3 \} \)
- \(t(l_2) = x \)
 Thus: \(g_3 \in P' \)
- Executions of \(P' \) starting in \(l_2 \) use \(g_3 \) at most \(t(l_2) = x \) times.
- For global result:
 - consider how often \(P' \) is reached (by \(t_2 \))

\[\Rightarrow \text{multiply} \ t_2 \text{'s non-probabilistic runtime bound} \ R(t_2) \text{with local bound} \ t(l_2) \]
Modular *Expected* Runtime Bounds from *Probabilistic* Ranking Functions

Current bounds

\[R_E(g_0) = 1, \quad R_E(g_2) = 1, \quad R_E(g_1) = 2 \cdot i_0, \quad R_E(g_3) = t(l_2) \]

Computing expected runtime bound for \(g \in P' \)

\[R_E(g) = R(t') \cdot t(l)[v / S_E(g', v)] \]

- \(l \): entry location of \(P' \)
- \(g', t' \): pre-transition of \(P' \)
- Modular use of ranking function for subset \(P' = \{g_3\} \)
- \(t(l_2) = x \) Thus: \(g_3 \in P' \Rightarrow \)
- Executions of \(P' \) starting in \(l_2 \) use \(g_3 \) at most \(t(l_2) = x \) times.
- For global result:
 - consider how often \(P' \) is reached (by \(t_2 \))

\(\Rightarrow \) multiply \(t_2 \)'s *non-probabilistic* runtime bound \(R(t_2) \) with local bound \(t(l_2) \)
Modular *Expected* Runtime Bounds from *Probabilistic* Ranking Functions

Current bounds

\[R_E(g_0) = 1, \; R_E(g_2) = 1, \; R_E(g_1) = 2 \cdot i_0, \; R_E(g_3) = t(l_2) \]

Computing expected runtime bound for \(g \in P' \)

\[R_E(g) = R(t') \cdot t(l)[v/S_E(g', v)] \]

- \(l \): entry location of \(P' \)
- \(g', t' \): pre-transition of \(P' \)

- Modular use of ranking function for subset \(P' = \{ g_3 \} \)
- \(t(l_2) = x \) Thus: \(g_3 \in P'_\succ \)
- Executions of \(P' \) starting in \(l_2 \) use \(g_3 \) at most \(t(l_2) = x \) times.
- For global result:
 - consider how often \(P' \) is reached (by \(t_2 \))
 - consider expected value of \(P' \)'s initial variable \(x \) in full run

\[\Rightarrow \text{multiply } t_2 \text{'s non-probabilistic runtime bound } R(t_2) \text{ with local bound } t(l_2) \]
Modular *Expected* Runtime Bounds from *Probabilistic* Ranking Functions

Current bounds

\[R_E(g_0) = 1, \ R_E(g_2) = 1, \ R_E(g_1) = 2 \cdot i_0, \ R_E(g_3) = t(l_2) \]

Computing expected runtime bound for \(g \in \mathcal{P}' \)

\[R_E(g) = R(t') \cdot t(l)[v / S_E(g', v)] \]

- \(l \): entry location of \(\mathcal{P}' \)
- \(g', t' \): pre-transition of \(\mathcal{P}' \)

Modular use of ranking function for subset \(\mathcal{P}' = \{ g_3 \} \)

\[t(l_2) = x \]

Executions of \(\mathcal{P}' \) starting in \(l_2 \) use \(g_3 \) at most \(t(l_2) = x \) times.

For global result:

- consider how often \(\mathcal{P}' \) is reached (by \(t_2 \))
- consider *expected* value of \(\mathcal{P}' \)'s initial variable \(x \) in full run

\[\Rightarrow \text{replace } t(l_2) \text{ by } t(l_2)[x / S_E(g_2, x)] \]
Modular Expected Runtime Bounds from Probabilistic Ranking Functions

Current bounds
\[R_E(g_0) = 1, \quad R_E(g_2) = 1, \quad R_E(g_1) = 2 \cdot i_0, \quad R_E(g_3) = t(\ell_2)[x/S_E(g_2, x)] \]

Computing expected runtime bound for \(g \in P' \)
\[R_E(g) = R(t') \cdot t(\ell)[v/S_E(g', v)] \]
- \(\ell \): entry location of \(P' \)
- \(g', t' \): pre-transition of \(P' \)

Modular use of ranking function for subset \(P' = \{ g_3 \} \)
- \(t(\ell_2) = x \)

Thus: \(g_3 \in P'_{\succ} \)
- Executions of \(P' \) starting in \(\ell_2 \) use \(g_3 \) at most \(t(\ell_2) = x \) times.
- For global result:
 - consider how often \(P' \) is reached (by \(t_2 \))
 - consider expected value of \(P' \)'s initial variable \(x \) in full run

\[\Rightarrow \text{replace } t(\ell_2) \text{ by } t(\ell_2)[x/S_E(g_2, x)] \]
Modular *Expected* Runtime Bounds from *Probabilistic* Ranking Functions

Current bounds

\[
R_E(g_0) = 1, \quad R_E(g_2) = 1, \quad R_E(g_1) = 2 \cdot i_0, \quad R_E(g_3) = x \left[\frac{x}{S_E(g_2, x)} \right]
\]

Computing expected runtime bound for \(g \in P' \)

\[
R_E(g) = R(t') \cdot t(\ell) \left[v / S_E(g', v) \right]
\]

- \(\ell \): entry location of \(P' \)
- \(g', t' \): pre-transition of \(P' \)

Modular use of ranking function for subset \(P' = \{ g_3 \} \)

- \(t(\ell_2) = x \)
 Thus: \(g_3 \in P'_> \)

- Executions of \(P' \) starting in \(\ell_2 \) use \(g_3 \) at most \(t(\ell_2) = x \) times.

- For global result:
 - consider how often \(P' \) is reached (by \(t_2 \))
 - consider *expected* value of \(P'\)'s initial variable \(x \) in full run

\[\Rightarrow \text{replace } t(\ell_2) \text{ by } t(\ell_2) \left[\frac{x}{S_E(g_2, x)} \right] \]
Modular Expected Runtime Bounds from Probabilistic Ranking Functions

Current bounds

\[R_E(g_0) = 1, \ R_E(g_2) = 1, \ R_E(g_1) = 2 \cdot i_0, \ R_E(g_3) = S_E(g_2, x) \]

Computing expected runtime bound for \(g \in P' \)

\[R_E(g) = R(t') \cdot t(\ell)[v / S_E(g', v)] \]

- \(\ell \): entry location of \(P' \)
- \(g', t' \): pre-transition of \(P' \)

- Modular use of ranking function for subset \(P' = \{ g_3 \} \)
- \(t(\ell_2) = x \)
 Thus: \(g_3 \in P'_\succ \)

- Executions of \(P' \) starting in \(\ell_2 \) use \(g_3 \) at most \(t(\ell_2) = x \) times.

- For global result:
 - consider how often \(P' \) is reached (by \(t_2 \))
 - consider expected value of \(P' \)'s initial variable \(x \) in full run

\(\Rightarrow \) replace \(t(\ell_2) \) by \(t(\ell_2)[x / S_E(g_2, x)] \)
Modular Expected Runtime Bounds from Probabilistic Ranking Functions

Expected runtime bounds

\[R_E(g_0) = 1, \quad R_E(g_2) = 1, \quad R_E(g_1) = 2 \cdot i_0, \quad R_E(g_3) = x_0 + i_0^2 \]

Computing expected runtime bound for \(g \in \mathcal{P}' \)

\[R_E(g) = R(t') \cdot t(\ell)[v / S_E(g', v)] \]

- \(\ell \): entry location of \(\mathcal{P}' \)
- \(g', t' \): pre-transition of \(\mathcal{P}' \)

- Modular use of ranking function for subset \(\mathcal{P}' = \{g_3\} \)
- \(t(\ell_2) = x \) Thus: \(g_3 \in \mathcal{P}'_> \)
- Executions of \(\mathcal{P}' \) starting in \(\ell_2 \) use \(g_3 \) at most \(t(\ell_2) = x \) times.
- For global result:
 - consider how often \(\mathcal{P}' \) is reached (by \(t_2 \))
 - consider expected value of \(\mathcal{P}' \)'s initial variable \(x \) in full run

\[\Rightarrow \text{replace } t(\ell_2) \text{ by } t(\ell_2)[x / S_E(g_2, x)] \]
Modular *Expected* Runtime Bounds from *Probabilistic* Ranking Functions

Expected runtime bounds

\[R_E(g_0) = 1, \ R_E(g_2) = 1, \ R_E(g_1) = 2 \cdot i_0, \ R_E(g_3) = x_0 + i_0^2 \]

Computing expected runtime bound for \(g \in P' \)

\[R_E(g) = R(t') \cdot t(\ell) [v / S_E(g', v)] \]

- \(\ell \): entry location of \(P' \)
- \(g', t' \): pre-transition of \(P' \)

- Modular use of ranking function for subset \(P' = \{ g_3 \} \)
- \(t(\ell_2) = x \)
 - Thus: \(g_3 \in P' \) \(\succ \)
- Executions of \(P' \) starting in \(\ell_2 \) use \(g_3 \) at most \(t(\ell_2) = x \) times.
- For global result:
 - consider how often \(P' \) is reached (by \(t_2 \))
 - consider *expected* value of \(P'' \)'s initial variable \(x \) in full run

Overall *expected* runtime is bounded by

\[R_E(g_0) + \ldots + R_E(g_3) = 1 + 2 \cdot i_0 + 1 + x_0 + i_0^2. \]
Size Bounds

Size bounds
\[S(t_0, i) = i_0, \ S(t_0, x) = x_0 \]
Size Bounds

Size bounds

\[S(t_0, v) = v_0 \]
Size Bounds

Size bounds

\[S(t_0, v) = v_0, \ S(t_1, i) = i_0 \]
Size Bounds

Size bounds

\[S(t_0, \nu) = \nu_0, \ S(t_1, i) = i_0 \]

Computing size bound for variable \(\nu \) after transition \(t \)

\[S(t, \nu) = \ \mathcal{LC}(t, \nu) \]

- \(\mathcal{LC}(t, \nu) \): local change by one application of \(t \)

Diagram:

- \(\ell_0 \) to \(\ell_1 \): \(t_0 \)
- \(\ell_1 \): \(t_1 \)
 - \(\text{if}(i > 0) \): \(x = x + i \)
 - \(i = i - 1 \)
- \(\ell_2 \): \(t_2 \)
 - \(\text{if}(i \leq 0) \)
- \(\ell_3 \): \(t_3 \)
 - \(\text{if}(x > 0) \): \(x = x - 1 \)
Size Bounds

Size bounds

\[S(t_0, \nu) = \nu_0, \ S(t_1, i) = i_0 \]

Computing size bound for variable \(\nu \) after transition \(t \)

\[S(t, \nu) = \mathcal{LC}(t, \nu) \]

\(\mathcal{LC}(t, \nu) \): local change by one application of \(t \)

\[\mathcal{LC}(t_1, x) = i \]

- \(t_1 \)
 - \text{if} \(i > 0 \)
 - \(x = x + i \)
 - \(i = i - 1 \)

- \(t_2 \)
 - \text{if} \(i \leq 0 \)
 - \(x = x - 1 \)
Size Bounds

Size bounds

\[S(t_0, v) = v_0, \quad S(t_1, i) = i_0, \quad S(t_1, x) = \mathcal{LC}(t_1, x) \]

Computing size bound for variable \(v \) after transition \(t \)

\[S(t, v) = \mathcal{LC}(t, v) \]

\(\mathcal{LC}(t, v) \): local change by one application of \(t \)

\(\mathcal{LC}(t_1, x) = i \)
Size Bounds

Size bounds

\[S(t_0, v) = v_0, \ S(t_1, i) = i_0, \ S(t_1, x) = \mathcal{LC}(t_1, x) \]

Computing size bound for variable \(v \) after transition \(t \)

\[S(t, v) = \mathcal{LC}(t, v) \]

- \(\mathcal{LC}(t, v) \): local change by one application of \(t \)

- \(\mathcal{LC}(t_1, x) = i \)

- For global result:

\[\text{if}(i > 0) \quad x = x + i \]
\[\text{if}(i \leq 0) \quad i = i - 1 \]
Size Bounds

Size bounds

\[S(t_0, v) = v_0, \quad S(t_1, i) = i_0, \quad S(t_1, x) = \mathcal{LC}(t_1, x) \]

Computing size bound for variable \(v \) after transition \(t \)

\[S(t, v) = \mathcal{LC}(t, v) \]

- \(\mathcal{LC}(t, v) \): local change by one application of \(t \)

- \(\mathcal{LC}(t_1, x) = i \)

- For global result:
 - consider value of \(x \) before reaching \(t_1 \) (after \(t_0 \))

![Diagram](image-url)
Size Bounds

Size bounds

\[
S(t_0, v) = v_0, \quad S(t_1, i) = i_0, \quad S(t_1, x) = \mathcal{LC}(t_1, x)
\]

Computing size bound for variable \(v \) after transition \(t \)

\[
S(t, v) = S(t_0, v) + \mathcal{LC}(t, v)
\]

- \(\mathcal{LC}(t, v) \): local change by one application of \(t \)

- \(\mathcal{LC}(t_1, x) = i \)

- For global result:
 - consider value of \(x \) before reaching \(t_1 \) (after \(t_0 \))

\[\Rightarrow \text{add size bound } S(t_0, x) \text{ to } \mathcal{LC}(t_1, x) \]
Size Bound

Size bounds
\[S(t_0, v) = v_0, \ S(t_1, i) = i_0, \ S(t_1, x) = S(t_0, x) + LC(t_1, x) \]

Computing size bound for variable \(v \) after transition \(t \)
\[S(t, v) = LC(t, v) \]

- \(LC(t, v) \): local change by one application of \(t \)
- \(LC(t_1, x) = i \)
- For global result:
 - consider value of \(x \) before reaching \(t_1 \) (after \(t_0 \))

\[\Rightarrow \text{add size bound } S(t_0, x) \text{ to } LC(t_1, x) \]
Size Bounds

Size bounds

$S(t_0, v) = v_0, \ S(t_1, i) = i_0, \ S(t_1, x) = S(t_0, x) + \ LC(t_1, x)$

Computing size bound for variable v after transition t

$S(t, v) = S(t', v) + \ LC(t, v)$

- $\LC(t, v)$: local change by one application of t
- t': pre-transition of t

$\LC(t_1, x) = i$

For global result:
- consider value of x before reaching t_1 (after t_0)

\Rightarrow add size bound $S(t_0, x)$ to $\LC(t_1, x)$
Size Bounds

Size bounds
\[S(t_0, \nu) = \nu_0, \ S(t_1, i) = i_0, \ S(t_1, x) = x_0 + \ \mathcal{LC}(t_1, x) \]

Computing size bound for variable \(\nu \) after transition \(t \)

\[S(t, \nu) = S(t', \nu) + \ \mathcal{LC}(t, \nu) \]

- \(\mathcal{LC}(t, \nu) \): local change by one application of \(t \)
- \(t' \): pre-transition of \(t \)

- \(\mathcal{LC}(t_1, x) = i \)

- For global result:
 - consider value of \(x \) before reaching \(t_1 \) (after \(t_0 \))

\[\Rightarrow \text{add size bound } S(t_0, x) \text{ to } \mathcal{LC}(t_1, x) \]
Size Bounds

Size bounds
\[S(t_0, v) = v_0, \; S(t_1, i) = i_0, \; S(t_1, x) = x_0 + \mathcal{LC}(t_1, x) \]

Computing size bound for variable \(v \) after transition \(t \)
\[S(t, v) = S(t', v) + \mathcal{LC}(t, v) \]

- \(\mathcal{LC}(t, v) \): local change by one application of \(t \)
- \(t' \): pre-transition of \(t \)

- \(\mathcal{LC}(t_1, x) = i \)

For global result:
- consider value of \(x \) before reaching \(t_1 \) (after \(t_0 \))
- consider how often \(t_1 \) is executed

⇒ add size bound \(S(t_0, x) \) to \(\mathcal{LC}(t_1, x) \)
Size Bounds

Size bounds

\[S(t_0, v) = v_0, \ S(t_1, i) = i_0, \ S(t_1, x) = x_0 + \ \mathcal{LC}(t_1, x) \]

Computing size bound for variable \(v \) after transition \(t \)

\[S(t, v) = S(t', v) + \ \mathcal{LC}(t, v) \]

- \(\mathcal{LC}(t, v) \): local change by one application of \(t \)
- \(t' \): pre-transition of \(t \)

\[\mathcal{LC}(t_1, x) = i \]

For global result:
- consider value of \(x \) before reaching \(t_1 \) (after \(t_0 \))
- consider how often \(t_1 \) is executed

\[\Rightarrow \text{multiply } t_1' \text{'s runtime bound } \mathcal{R}(t_1) \text{ with local change } \mathcal{LC}(t_1, x) \]
Size Bounds

Size bounds

\[S(t_0, v) = v_0, \quad S(t_1, i) = i_0, \quad S(t_1, x) = x_0 + R(t_1) \cdot LC(t_1, x) \]

Computing size bound for variable \(v \) after transition \(t \)

\[S(t, v) = S(t', v) + LC(t, v) \]

- \(LC(t, v) \): local change by one application of \(t \)
- \(t' \): pre-transition of \(t \)

- \(LC(t_1, x) = i \)

- For global result:
 - consider value of \(x \) before reaching \(t_1 \) (after \(t_0 \))
 - consider how often \(t_1 \) is executed

\[\Rightarrow \text{multiply } t_1 \text{'s runtime bound } R(t_1) \text{ with local change } LC(t_1, x) \]
Size Bounds

Size bounds:

\[S(t_0, \nu) = \nu_0, \quad S(t_1, i) = i_0, \quad S(t_1, x) = x_0 + R(t_1) \cdot LC(t_1, x) \]

Computing size bound for variable \(\nu \) after transition \(t \):

\[S(t, \nu) = S(t', \nu) + R(t) \cdot LC(t, \nu) \]

- \(LC(t, \nu) \): local change by one application of \(t \)
- \(t' \): pre-transition of \(t \)

- \(LC(t_1, x) = i \)

For global result:
- consider value of \(x \) before reaching \(t_1 \) (after \(t_0 \))
- consider how often \(t_1 \) is executed

\[\Rightarrow \text{multiply } t_1 \text{'s runtime bound } R(t_1) \text{ with local change } LC(t_1, x) \]
Size Bounds

Size bounds
\[S(t_0, v) = v_0, \quad S(t_1, i) = i_0, \quad S(t_1, x) = x_0 + i_0 \cdot LC(t_1, x) \]

Computing size bound for variable \(v \) after transition \(t \)
\[S(t, v) = S(t', v) + \mathcal{R}(t) \cdot LC(t, v) \]
- \(LC(t, v) \): local change by one application of \(t \)
- \(t' \): pre-transition of \(t \)
- \(\mathcal{R}(t) \): runtime bounds

\[LC(t_1, x) = i \]

For global result:
- consider value of \(x \) before reaching \(t_1 \) (after \(t_0 \))
- consider how often \(t_1 \) is executed

⇒ multiply \(t_1 \)'s runtime bound \(\mathcal{R}(t_1) \) with local change \(LC(t_1, x) \)
Size Bounds

Size bounds

\[S(t_0, \nu) = \nu_0, \quad S(t_1, i) = i_0, \quad S(t_1, x) = x_0 + i_0 \cdot \mathcal{LC}(t_1, x) \]

Computing size bound for variable \(\nu \) after transition \(t \)

\[S(t, \nu) = S(t', \nu) + \mathcal{R}(t) \cdot \mathcal{LC}(t, \nu) \]

- \(\mathcal{LC}(t, \nu) \): local change by one application of \(t \)
- \(t' \): pre-transition of \(t \)

For global result:
- consider value of \(x \) before reaching \(t_1 \) (after \(t_0 \))
- consider how often \(t_1 \) is executed
- consider values of \(\mathcal{LC}(t_1, x) \)'s variables in full run

\[\Rightarrow \text{multiply } t_1 \text{'s runtime bound } \mathcal{R}(t_1) \text{ with local change } \mathcal{LC}(t_1, x) \]
Size Bounds

Size bounds

\[S(t_0, v) = v_0, \ S(t_1, i) = i_0, \ S(t_1, x) = x_0 + i_0 \cdot LC(t_1, x) \]

Computing size bound for variable \(v \) after transition \(t \)

\[S(t, v) = S(t', v) + R(t) \cdot LC(t, v) \]

- \(LC(t, v) \): local change by one application of \(t \)
- \(t' \): pre-transition of \(t \)

- \(LC(t_1, x) = i \)

For global result:
- consider value of \(x \) before reaching \(t_1 \) (after \(t_0 \))
- consider how often \(t_1 \) is executed
- consider values of \(LC(t_1, x) \)'s variables in full run

\[\Rightarrow \text{replace } LC(t_1, x) \text{ by } LC(t_1, x)[i / \max(S(t_0, i), S(t_1, i))] \]
Size Bounds

Size bounds
\[S(t_0, v) = v_0, \ S(t_1, i) = i_0, \ S(t_1, x) = x_0 + i_0 \cdot LC(t_1, x) \]

Computing size bound for variable \(v \) after transition \(t \)
\[S(t, v) = S(t', v) + R(t) \cdot LC(t, v) [u / \max(S(t', u), S(t, u))] \]
- \(LC(t, v) \): local change by one application of \(t \)
- \(t' \): pre-transition of \(t \)

- \(LC(t_1, x) = i \)

For global result:
- consider value of \(x \) before reaching \(t_1 \) (after \(t_0 \))
- consider how often \(t_1 \) is executed
- consider values of \(LC(t_1, x) \)'s variables in full run

\[\Rightarrow \text{replace} \ LC(t_1, x) \text{ by} \ LC(t_1, x) [i / \max(S(t_0, i), S(t_1, i))] \]
Size Bounds

<table>
<thead>
<tr>
<th>Size bounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S(t_0, \nu) = \nu_0, \quad S(t_1, i) = i_0, \quad S(t_1, x) = x_0 + i_0 \cdot LC(t_1, x))</td>
</tr>
</tbody>
</table>

Computing size bound for variable \(\nu \) after transition \(t \)

\[S(t, \nu) = S(t', \nu) + R(t) \cdot LC(t, \nu)[u / \max(S(t', u), S(t, u))] \]

- \(LC(t, \nu) \): local change by one application of \(t \)
- \(t' \): pre-transition of \(t \)

- \(LC(t_1, x) = i \)
- For global result:
 - consider value of \(x \) before reaching \(t_1 \) (after \(t_0 \))
 - consider how often \(t_1 \) is executed
 - consider values of \(LC(t_1, x) \)'s variables in full run

⇒ replace \(LC(t_1, x) \) by \(LC(t_1, x)[i / \max(i_0, i_0)] \)
Size Bounds

Size bounds

\[S(t_0, v) = v_0, \quad S(t_1, i) = i_0, \quad S(t_1, x) = x_0 + i_0 \cdot \text{LC}(t_1, x) \]

Computing size bound for variable \(v \) after transition \(t \)

\[S(t, v) = S(t', v) + R(t) \cdot \text{LC}(t, v)[u / \max(S(t', u), S(t, u))] \]

- \(\text{LC}(t, v) \): local change by one application of \(t \)
- \(t' \): pre-transition of \(t \)

- \(\text{LC}(t_1, x) = i \)

For global result:

- consider value of \(x \) before reaching \(t_1 \) (after \(t_0 \))
- consider how often \(t_1 \) is executed
- consider values of \(\text{LC}(t_1, x) \)'s variables in full run

\[\Rightarrow \text{replace} \ \text{LC}(t_1, x) \text{ by } \text{LC}(t_1, x)[i / i_0] \]
Size Bounds

Size bounds
\[S(t_0, v) = v_0, \ S(t_1, i) = i_0, \ S(t_1, x) = x_0 + i_0 \cdot \text{LC}(t_1, x) \ [i / i_0] \]

Computing size bound for variable \(v \) after transition \(t \)
\[S(t, v) = S(t', v) + R(t) \cdot \text{LC}(t, v) [u / \max(S(t', u), S(t, u))] \]

- **LC**(\(t, v \)): local change by one application of \(t \)
- \(t' \): pre-transition of \(t \)

\[\text{LC}(t_1, x) = i \]

For global result:
- consider value of \(x \) before reaching \(t_1 \) (after \(t_0 \))
- consider how often \(t_1 \) is executed
- consider values of \(\text{LC}(t_1, x) \)'s variables in full run

⇒ replace \(\text{LC}(t_1, x) \) by \(\text{LC}(t_1, x) [i / i_0] \)
Size Bounds

Size bounds

\[S(t_0, v) = v_0, \quad S(t_1, i) = i_0, \quad S(t_1, x) = x_0 + i_0 \cdot \frac{i}{i_0} \]

Computing size bound for variable \(v \) after transition \(t \)

\[S(t, v) = S(t', v) + R(t) \cdot \mathcal{LC}(t, v)[u / \max(S(t', u), S(t, u))] \]

- \(\mathcal{LC}(t, v) \): local change by one application of \(t \)
- \(t' \): pre-transition of \(t \)

- \(\mathcal{LC}(t_1, x) = i \)

For global result:
- consider value of \(x \) before reaching \(t_1 \) (after \(t_0 \))
- consider how often \(t_1 \) is executed
- consider values of \(\mathcal{LC}(t_1, x) \)'s variables in full run

⇒ replace \(\mathcal{LC}(t_1, x) \) by \(\mathcal{LC}(t_1, x)[i / i_0] \)
Size Bounds

Size bounds

\[
S(t_0, v) = v_0, \quad S(t_1, i) = i_0, \quad S(t_1, x) = x_0 + i_0 \cdot i_0
\]

Computing size bound for variable \(v \) after transition \(t \)

\[
S(t, v) = S(t', v) + R(t) \cdot LC(t, v) [u / \max(S(t', u), S(t, u))]
\]

- \(LC(t, v) \): local change by one application of \(t \)
- \(t' \): pre-transition of \(t \)

\[
LC(t_1, x) = i
\]

- For global result:
 - consider value of \(x \) before reaching \(t_1 \) (after \(t_0 \))
 - consider how often \(t_1 \) is executed
 - consider values of \(LC(t_1, x) \)'s variables in full run

\[\Rightarrow \text{replace } LC(t_1, x) \text{ by } LC(t_1, x) [i / i_0] \]
Size Bounds

Size bounds

\[S(t_0, v) = v_0, \quad S(t_1, i) = i_0, \quad S(t_1, x) = x_0 + i_0^2 \]

Computing size bound for variable \(v \) after transition \(t \)

\[S(t, v) = S(t', v) + R(t) \cdot \mathcal{LC}(t, v)[u / \max(S(t', u), S(t, u))] \]

- \(\mathcal{LC}(t, v) \): local change by one application of \(t \)
- \(t' \): pre-transition of \(t \)

- \(\mathcal{LC}(t_1, x) = i \)

For global result:
- consider value of \(x \) before reaching \(t_1 \) (after \(t_0 \))
- consider how often \(t_1 \) is executed
- consider values of \(\mathcal{LC}(t_1, x) \)'s variables in full run

\[\Rightarrow \text{replace } \mathcal{LC}(t_1, x) \text{ by } \mathcal{LC}(t_1, x)[i / i_0] \]
Size Bounds

Size bounds

\[S(t_0, v) = v_0, \ S(t_1, i) = i_0, \ S(t_1, x) = x_0 + i_0^2 \]

Computing size bound for variable \(v \) after transition \(t \)

\[S(t, v) = S(t', v) + R(t) \cdot LC(t, v)[u / \max(S(t', u), S(t, u))] \]

- \(LC(t, v) \): local change by one application of \(t \)
- \(t' \): pre-transition of \(t \)

\[LC(t_2, x) = 0 \]

For global result:
- consider value of \(x \) before reaching \(t_1 \) (after \(t_0 \))
- consider how often \(t_1 \) is executed
- consider values of \(LC(t_1, x) \)'s variables in full run

\[\Rightarrow \text{replace } LC(t_1, x) \text{ by } LC(t_1, x)[i / i_0] \]
Size Bounds

Size bounds

\[S(t_0, v) = v_0, \ S(t_1, i) = i_0, \ S(t_1, x) = x_0 + i_0^2, \ S(t_2, x) = LC(t_2, x) \]

Computing size bound for variable \(v \) after transition \(t \)

\[S(t, v) = S(t', v) + R(t) \cdot LC(t, v)[u / \max(S(t', u), S(t, u))] \]

- \(LC(t, v) \): local change by one application of \(t \)
- \(t' \): pre-transition of \(t \)

- \(LC(t_2, x) = 0 \)

- For global result:
 - consider value of \(x \) before reaching \(t_1 \) (after \(t_0 \))
 - consider how often \(t_1 \) is executed
 - consider values of \(LC(t_1, x) \)'s variables in full run

\[\Rightarrow \text{replace } LC(t_1, x) \text{ by } LC(t_1, x)[i / i_0] \]
Size Bounds

Size bounds

\[S(t_0, v) = v_0, \ S(t_1, i) = i_0, \ S(t_1, x) = x_0 + i_0^2, \ S(t_2, x) = \mathcal{LC}(t_2, x) \]

Computing size bound for variable \(v \) after transition \(t \)

\[S(t, v) = S(t', v) + \mathcal{R}(t) \cdot \mathcal{LC}(t, v) \left[u / \max(S(t', u), S(t, u)) \right] \]

- \(\mathcal{LC}(t, v) \): local change by one application of \(t \)
- \(t' \): pre-transition of \(t \)

\[\mathcal{LC}(t_2, x) = 0 \]

For global result:

- consider value of \(x \) before reaching \(t_1 \) (after \(t_0 \))
- consider how often \(t_2 \) is executed
- consider values of \(\mathcal{LC}(t_2, x) \)'s variables in full run

\[\Rightarrow \text{replace } \mathcal{LC}(t_1, x) \text{ by } \mathcal{LC}(t_1, x) [i / i_0] \]
Size Bounds

Size bounds

\[S(t_0, v) = v_0, \ S(t_1, i) = i_0, \ S(t_1, x) = x_0 + i_0^2, \ S(t_2, x) = LC(t_2, x) \]

Computing size bound for variable \(v \) after transition \(t \)

\[S(t, v) = S(t', v) + R(t) \cdot LC(t, v) [u / \max(S(t', u), S(t, u))] \]

- \(LC(t, v) \): local change by one application of \(t \)
- \(t' \): pre-transition of \(t \)

\[LC(t_2, x) = 0 \]

For global result:
- consider value of \(x \) before reaching \(t_1 \) (after \(t_0 \))
- consider how often \(t_2 \) is executed
- consider values of \(LC(t_2, x) \)'s variables in full run

\[\Rightarrow \text{replace} \ LC(t_2, x) \text{ by} \ R(t_2) \cdot \ LC(t_2, x) [\ldots] \]
Size Bounds

Size bounds

\[S(t_0, \nu) = \nu_0, \ S(t_1, i) = i_0, \ S(t_1, x) = x_0 + i_0^2, \ S(t_2, x) = \mathcal{LC}(t_2, x) \]

Computing size bound for variable \(\nu \) after transition \(t \)

\[S(t, \nu) = S(t', \nu) + \mathcal{R}(t) \cdot \mathcal{LC}(t, \nu)[u / \max(S(t', u), S(t, u))] \]

- \(\mathcal{LC}(t, \nu) \): local change by one application of \(t \)
- \(t' \): pre-transition of \(t \)

\(\mathcal{LC}(t_2, x) = 0 \)

For global result:
- consider value of \(x \) before reaching \(t_1 \) (after \(t_0 \))
- consider how often \(t_2 \) is executed
- consider values of \(\mathcal{LC}(t_2, x) \)'s variables in full run

\[\Rightarrow \text{replace } \mathcal{LC}(t_2, x) \text{ by } 0 \]
Size Bounds

Size bounds

\[S(t_0, v) = v_0, \ S(t_1, i) = i_0, \ S(t_1, x) = x_0 + i_0^2, \ S(t_2, x) = \]

Computing size bound for variable \(v \) after transition \(t \)

\[S(t, v) = S(t', v) + R(t) \cdot \mathcal{LC}(t, v)[u / \max(S(t', u), S(t, u))] \]

- \(\mathcal{LC}(t, v) \): local change by one application of \(t \)
- \(t' \): pre-transition of \(t \)

\[\mathcal{LC}(t_2, x) = 0 \]

For global result:
- consider value of \(x \) before reaching \(t_1 \) (after \(t_0 \))
- consider how often \(t_2 \) is executed
- consider values of \(\mathcal{LC}(t_2, x) \)'s variables in full run

\[\Rightarrow \text{replace } \mathcal{LC}(t_2, x) \text{ by } 0 \]
Size Bounds

Size bounds

\[S(t_0, \nu) = \nu_0, \quad S(t_1, i) = i_0, \quad S(t_1, x) = x_0 + i_0^2, \quad S(t_2, x) = \]

Computing size bound for variable \(\nu \) after transition \(t \)

\[S(t, \nu) = S(t', \nu) + R(t) \cdot \mathcal{LC}(t, \nu)[u / \max(S(t', u), S(t, u))] \]

- \(\mathcal{LC}(t, \nu) \): local change by one application of \(t \)
- \(t' \): pre-transition of \(t \)

\[\mathcal{LC}(t_2, x) = 0 \]

For global result:

- consider value of \(x \) before reaching \(t_2 \) (after \(t_0 \) or \(t_1 \))
- consider how often \(t_2 \) is executed
- consider values of \(\mathcal{LC}(t_2, x) \)'s variables in full run

\(\Rightarrow \) replace \(\mathcal{LC}(t_2, x) \) by 0
Size Bounds

Size bounds

\[S(t_0, v) = v_0, \ S(t_1, i) = i_0, \ S(t_1, x) = x_0 + i_0^2, \ S(t_2, x) = \]

Computing size bound for variable \(v \) after transition \(t \)

\[S(t, v) = S(t', v) + R(t) \cdot LC(t, v)[u / \max(S(t', u), S(t, u))] \]

- \(LC(t, v) \): local change by one application of \(t \)
- \(t' \): pre-transition of \(t \)

\[LC(t_2, x) = 0 \]

For global result:
- consider value of \(x \) before reaching \(t_2 \) (after \(t_0 \) or \(t_1 \))
- consider how often \(t_2 \) is executed
- consider values of \(LC(t_2, x) \)'s variables in full run

\[\Rightarrow \text{add } \max(S(t_0, x), S(t_1, x)) \text{ to } LC(t_2, x) \]
Size Bounds

Size bounds

\[S(t_0, v) = v_0, \ S(t_1, i) = i_0, \ S(t_1, x) = x_0 + i_0^2, \ S(t_2, x) = \]

Computing size bound for variable \(v \) after transition \(t \)

\[S(t, v) = S(t', v) + R(t) \cdot \mathcal{LC}(t, v)[u / \max(S(t', u), S(t, u))] \]

- \(\mathcal{LC}(t, v) \): local change by one application of \(t \)
- \(t' \): pre-transition of \(t \)

\(\mathcal{LC}(t_2, x) = 0 \)

For global result:
- consider value of \(x \) before reaching \(t_2 \) (after \(t_0 \) or \(t_1 \))
- consider how often \(t_2 \) is executed
- consider values of \(\mathcal{LC}(t_2, x) \)'s variables in full run

\[\Rightarrow \text{add} \ \max(x_0, S(t_1, x)) \ \text{to} \ \mathcal{LC}(t_2, x) \]
Size Bounds

Size bounds
\[S(t_0, v) = v_0, \ S(t_1, i) = i_0, \ S(t_1, x) = x_0 + i_0^2, \ S(t_2, x) = \]

Computing size bound for variable \(v \) after transition \(t \)
\[S(t, v) = S(t', v) + R(t) \cdot LC(t, v)[u / \max(S(t', u), S(t, u))] \]

- \(LC(t,v) \): local change by one application of \(t \)
- \(t' \): pre-transition of \(t \)

\(LC(t_2, x) = 0 \)

For global result:
- consider value of \(x \) before reaching \(t_2 \) (after \(t_0 \) or \(t_1 \))
- consider how often \(t_2 \) is executed
- consider values of \(LC(t_2, x) \)'s variables in full run

\[\Rightarrow \text{add } \max(x_0, x_0 + i_0^2) \text{ to } LC(t_2, x) \]
Size Bounds

Size bounds

\[S(t_0, \nu) = \nu_0, \ S(t_1, i) = i_0, \ S(t_1, x) = x_0 + i_0^2, \ S(t_2, x) = \]

Computing size bound for variable \(\nu \) after transition \(t \)

\[S(t, \nu) = S(t', \nu) + \mathcal{R}(t) \cdot \mathcal{LC}(t, \nu)[u / \max(S(t', u), S(t, u))] \]

- \(\mathcal{LC}(t, \nu) \): local change by one application of \(t \)
- \(t' \): pre-transition of \(t \)

\[\mathcal{LC}(t_2, x) = 0 \]

For global result:
- consider value of \(x \) before reaching \(t_2 \) (after \(t_0 \) or \(t_1 \))
- consider how often \(t_2 \) is executed
- consider values of \(\mathcal{LC}(t_2, x) \)'s variables in full run

\[\Rightarrow \text{add} \quad x_0 + i_0^2 \quad \text{to} \quad \mathcal{LC}(t_2, x) \]
Size Bounds

Size bounds

\[
S(t_0, v) = v_0, \quad S(t_1, i) = i_0, \quad S(t_1, x) = x_0 + i_0^2, \quad S(t_2, x) = x_0 + i_0^2
\]

Computing size bound for variable \(v \) after transition \(t \)

\[
S(t, v) = S(t', v) + \mathcal{R}(t) \cdot \mathcal{LC}(t, v)[u / \max(S(t', u), S(t, u))]
\]

- \(\mathcal{LC}(t, v) \): local change by one application of \(t \)
- \(t' \): pre-transition of \(t \)

\[
\mathcal{LC}(t_2, x) = 0
\]

For global result:

- consider value of \(x \) before reaching \(t_2 \) (after \(t_0 \) or \(t_1 \))
- consider how often \(t_2 \) is executed
- consider values of \(\mathcal{LC}(t_2, x) \)'s variables in full run

⇒ add \(x_0 + i_0^2 \) to \(\mathcal{LC}(t_2, x) \)
Expected Size Bounds

\[SE(g_0, v) = v_0, \]
\[SE(g_1, i) = i_0, \]
\[SE(g_1, x) = SE(g_0, x) + x_0 + RE(g_1) \cdot 2 \cdot i_0 \cdot 2 \]

Computing expected size bound for variable \(v \) after transition \(g \):

\[SE(g, v) = E(SE(g', v)) + E(RE(g) \cdot LE(g, v) / \max(SE(g', u), ...)) \]

\(LE(g, v) \): expect. local change by \(g' \), \(t' \): pre-transition of \(g \), \(g \):

Expected value not multiplicative!

But:

\[LE(g_1, x) = i_2 \]

For global result:

consider expected value of \(x \) before reaching \(g_1 \) (after \(g_0 \))

consider how often \(g_1 \) is expected to be executed

consider values of \(LE(g_1, x) \)'s variables in full run

\(\ell_0 \)

\(t_0 \)

\(\ell_1 \)

\(t_1 \)

if \((i > 0)\)

\(x = x + i \)

\(i = i - 1 \)

\(\ell_2 \)

if \((i \leq 0)\)

\(t_2 \)

\(\ell_3 \)

if \((x > 0)\)

\(x = x - 1 \)
Expected Size Bounds

\[S_E(g_0, v) = v_0, \]
\[S_E(g_1, i) = i_0 \]
\[S_E(g_1, x) = S_E(g_0, x) + x_0 + \mathbb{E}(R_E(g_1) \cdot 2 \cdot i_0 / i_0) \]

Computing expected size bound for variable \(v \) after transition \(g \):

\[S_E(g', v) = \mathbb{E}(S_E(g', v)) + \mathbb{E}(R_E(g) \cdot \mathbb{L}(E(g, v) / \max(S_E(g', u), \ldots))) \]

\[\mathbb{L}(E)(g, v) : \text{expect. local change by } g, t' : \text{pre-transition of } g \]

\[\mathbb{E} \text{ not multiplicative!} \]

But:

\[\mathbb{L}(E) \text{ independent of runtime} \]

\[\mathbb{L}(E)(g_1, x) = i_2 \]

For global result:

consider expected value of \(x \) before reaching \(g_1 \) (after \(g_0 \))

consider how often \(g_1 \) is expected to be executed

consider values of \(\mathbb{L}(E)(g_1, x) \)'s variables in full run

\[t_0 \in g_0 \]
\[\frac{1}{2} : t_1 \in g_1 \]
\[\text{if}(i > 0) \]
\[x = x + i \]
\[i = i - 1 \]

\[t_2 \in g_2 \]
\[\text{if}(i \leq 0) \]

\[t_3 \in g_3 \]
\[\text{if}(x > 0) \]
\[x = x - 1 \]

\[t_4 \in g_1 \]
\[\frac{1}{2} : t_4 \in g_1 \]
\[\text{if}(i > 0) \]
Expected Size Bounds

Expected size bounds

\[S_E(g_0, v) = v_0, S_E(g_1, i) = i_0 \]
Expected Size Bounds

Expected size bounds

\[S_E(g_0, v) = v_0, \quad S_E(g_1, i) = i_0 \]

Computing size bound for variable v after transition g

\[S(g, v) = S(g', v) + R(g) \cdot LC(g, v)[u/\max(S(g', u), \ldots)] \]

- **LC** \((g, v)\): local change by \(g\)
- **\(g'\)**: pre-transition of \(g\)

![Diagram with states and transitions](image)
Expected Size Bounds

Expected size bounds

\[S_E(g_0, v) = v_0, \quad S_E(g_1, i) = i_0 \]

Computing expected size bound for variable v after transition g

\[S(g, v) = S(g', v) + R(g) \cdot LC (g, v) [u/ \max(S(g', u), ...)] \]

- \(LC (g, v) \): local change by \(g \)
- \(g' \): pre-transition of \(g \)
Expected Size Bounds

Expected size bounds

\[S_E(g_0, v) = v_0, \ S_E(g_1, i) = i_0 \]

Computing expected size bound for variable \(v \) after transition \(g \)

\[S_E(g, v) = \mathbb{E}(S(g', v) + \mathcal{R}(g) \cdot \mathcal{LC} (g, v) [u/ max(S(g', u), ...)]) \]

- \(\mathcal{LC} (g, v) \): local change by \(g \)
- \(g' \): pre-transition of \(g \)
Expected Size Bounds

Expected size bounds

\[S_E(g_0, v) = v_0, \quad S_E(g_1, i) = i_0 \]

Computing expected size bound for variable v after transition g

\[S_E(g, v) = \mathbb{E}(S(g', v)) + \mathbb{E}(R(g) \cdot \mathcal{LC}(g, v)[u/\max(S(g', u), ...)]) \]

- \(\mathcal{LC}(g, v) \): local change by \(g \)
- \(g' \): pre-transition of \(g \)

Diagram

- \(t_0 \in g_0 \)
- \(t_1 \in g_1 \)
- \(t_2 \in g_2 \)
- \(t_3 \in g_3 \)
- \(t_4 \in g_1 \)

Rules

- If \(i > 0 \):
 - \(x = x + i \)
 - \(i = i - 1 \)

- If \(i \leq 0 \):
 - \(x = x - 1 \)
Expected Size Bounds

Expected size bounds

\[S_E(g_0, v) = v_0, \quad S_E(g_1, i) = i_0 \]

Computing expected size bound for variable \(v \) after transition \(g \)

\[S_E(g, v) = S_E(g', v) + \mathbb{E}(R(g) \cdot LC(g, v) [u/ \max(S(g', u), ...)]) \]

- \(LC(g, v) \) : local change by \(g \)
- \(g' \) : pre-transition of \(g \)

Diagram

- From \(l_0 \):
 - If \(i > 0 \), then \(t_0 \in g_1 \) and \(t_1 \in g_1 \) if \(i > 0 \)
 - \(x = x + i \)
 - \(i = i - 1 \)
 - Otherwise, \(t_2 \in g_2 \) if \(i \leq 0 \)

- From \(l_1 \):
 - If \(i > 0 \), then \(t_3 \in g_3 \) if \(x > 0 \)
 - \(x = x - 1 \)

- From \(l_2 \):
 - \(t_2 \in g_2 \) if \(i \leq 0 \)

- From \(l_2 \):
 - \(t_3 \in g_3 \) if \(x > 0 \)
 - \(x = x - 1 \)
Expected Size Bounds

Expected size bounds

\[S_E(g_0, v) = v_0, \quad S_E(g_1, i) = i_0 \]

Computing expected size bound for variable \(v \) after transition \(g \)

\[S_E(g, v) = S_E(g', v) + \mathbb{E}(R(g) \cdot LC(g, v) [u/ \max(S(g', u), ...)]) \]

- \(LC(g, v) \): local change by \(g \)
- Expected value not multiplicative!
- \(g' \): pre-transition of \(g \)
Expected Size Bounds

Expected size bounds

\[S_E(g_0, v) = v_0, S_E(g_1, i) = i_0 \]

Computing expected size bound for variable v after transition g

\[S_E(g, v) = S_E(g', v) + \mathbb{E}(R(g) \cdot LC(g, v)[u/ \max(S(g', u), ...)]) \]

- **LC (g, v):** local change by g
- **g':** pre-transition of g

\[i \in g_0 \]

- \(\frac{1}{2} : t_1 \in g_1 \)
- \(\text{if}(i > 0) \)
 - \(x = x + i \)
 - \(i = i - 1 \)

\[\frac{1}{2} : t_4 \in g_1 \]
- \(\text{if}(i > 0) \)

\[t_2 \in g_2 \]
- \(\text{if}(i \leq 0) \)

\[t_3 \in g_3 \]
- \(\text{if}(x > 0) \)
 - \(x = x - 1 \)
Expected Size Bounds

Expected size bounds

\[S_E(g_0, v) = v_0, \quad S_E(g_1, i) = i_0 \]

Computing expected size bound for variable v after transition g

\[S_E(g, v) = S_E(g', v) + R_E(g) \cdot LC_E(g, v) [u/ max(S(t', u), ...)] \]

- \(LC_E(g, v) \): expect local change by \(g \)
- \(g', t' \): pre-transition of \(g \)

Expected value not multiplicative!

But: \(LC \) independent of runtime
Expected Size Bounds

Expected size bounds

\[S_E(g_0, v) = v_0, \ S_E(g_1, i) = i_0, \ S_E(g_1, x) = \frac{i}{2} \]

Computing expected size bound for variable v after transition g

\[S_E(g, v) = S_E(g', v) + R_E(g) \cdot LCE_E(g, v) [u/ max(S(t', u), ...)] \]

- \(LCE_E(g, v) \): *expected* local change by \(g \)
- \(g', t' \): pre-transition of \(g \)

\[LCE_E(g_1, x) = \frac{i}{2} \]

![Diagram](image)
Expected Size Bounds

Expected size bounds

\[S_E(g_0, v) = v_0, \ S_E(g_1, i) = i_0, \ S_E(g_1, x) = \frac{i}{2} \]

Computing expected size bound for variable v after transition g

\[S_E(g, v) = S_E(g', v) + R_E(g) \cdot LC_E(g, v) [u/ \max(S(t', u), ...)] \]

- \(LC_E(g, v) \): expected local change by g
- \(g', t' \): pre-transition of g

- \(LC_E(g_1, x) = \frac{i}{2} \)

- For global result:

\[t_0 \in g_0 \]

\[\frac{1}{2} : t_1 \in g_1 \]

\[x = x + i \]

\[i = i - 1 \]

\[\frac{1}{2} : t_4 \in g_1 \]

\[if(i > 0) \]

\[t_2 \in g_2 \]

\[if(i \leq 0) \]

\[t_3 \in g_3 \]

\[if(x > 0) \]

\[x = x - 1 \]
Expected Size Bounds

Expected size bounds

\[S_E(g_0, v) = v_0, \quad S_E(g_1, i) = i_0, \quad S_E(g_1, x) = \frac{1}{2} \]

Computing expected size bound for variable \(v \) after transition \(g \)

\[S_E(g, v) = S_E(g', v) + R_E(g) \cdot LC_E(g, v) \left[u/ \max(S(t', u), \ldots) \right] \]

- \(LC_E(g, v) \): expect. local change by \(g \)
- \(g', t' \): pre-transition of \(g \)

- \(LC_E(g_1, x) = \frac{1}{2} \)

- For global result:
 - consider expected value of \(x \) before reaching \(g_1 \) (after \(g_0 \))
Expected Size Bounds

Expected size bounds

\[
S_E(g_0, v) = v_0, \quad S_E(g_1, i) = i_0, \quad S_E(g_1, x) = \frac{i}{2}
\]

Computing expected size bound for variable \(v \) after transition \(g \)

\[
S_E(g, v) = S_E(g', v) + \mathcal{R}_E(g) \cdot \mathcal{LC}_E(g, v) [u/ \max(S(t', u), ...)]
\]

- \(\mathcal{LC}_E(g, v) \): expect. local change by \(g \)
- \(g', t' \): pre-transition of \(g \)

- \(\mathcal{LC}_E(g_1, x) = \frac{i}{2} \)

- For global result:
 - consider expected value of \(x \) before reaching \(g_1 \) (after \(g_0 \))

\(\Rightarrow \) add expected size bound \(S_E(g_0, x) \) to \(\mathcal{LC}_E(g_1, x) \)
Expected Size Bounds

Expected size bounds

\[S_E(g_0, v) = v_0, \quad S_E(g_1, i) = i_0, \quad S_E(g_1, x) = S_E(g_0, x) + \frac{1}{2} \]

Computing expected size bound for variable v after transition g

\[S_E(g, v) = S_E(g', v) + R_E(g) \cdot LC_E(g, v)[u/\max(S(t', u), ...)] \]

- **LC_E(g, v):** expect. local change by g
- **g', t':** pre-transition of g

- **LC_E(g_1, x) = \frac{1}{2}**
- For global result:
 - consider expected value of x before reaching \(g_1 \) (after \(g_0 \))

\[\Rightarrow \text{add expected size bound } S_E(g_0, x) \text{ to } LC_E(g_1, x) \]
Expected Size Bounds

Expected size bounds

\[
S_E(g_0, \nu) = \nu_0, \quad S_E(g_1, i) = i_0, \quad S_E(g_1, x) = x_0 + \frac{i}{2}
\]

Computing expected size bound for variable \(\nu \) after transition \(g \)

\[
S_E(g, \nu) = S_E(g', \nu) + R_E(g) \cdot LC_E(g, \nu) [u/ \max(S(t', u), ...)]
\]

- \(LC_E(g, \nu) \): expect. local change by \(g \)
- \(g', t' \): pre-transition of \(g \)

- \(LC_E(g_1, x) = \frac{i}{2} \)

- For global result:
 - consider expected value of \(x \) before reaching \(g_1 \) (after \(g_0 \))

\[\Rightarrow \text{add expected size bound } S_E(g_0, x) \text{ to } LC_E(g_1, x) \]
Expected Size Bounds

Expected size bounds

\[S_E(g_0, v) = v_0, \quad S_E(g_1, i) = i_0, \quad S_E(g_1, x) = x_0 + \frac{i_1}{2} \]

Computing expected size bound for variable \(v \) after transition \(g \)

\[S_E(g, v) = S_E(g', v) + R_E(g) \cdot LC_E(g, v)[u/\max(S(t', u), \ldots)] \]

- \(LC_E(g, v) \): expect. local change by \(g \)
- \(g', t' \): pre-transition of \(g \)

- \(LC_E(g_1, x) = \frac{i_2}{2} \)
- For global result:
 - consider expected value of \(x \) before reaching \(g_1 \) (after \(g_0 \))
 - consider how often \(g_1 \) is expected to be executed

⇒ add expected size bound \(S_E(g_0, x) \) to \(LC_E(g_1, x) \)
Expected Size Bounds

Expected size bounds

\[S_E(g_0, v) = v_0, \quad S_E(g_1, i) = i_0, \quad S_E(g_1, x) = x_0 + \frac{i}{2} \]

Computing expected size bound for variable \(v \) after transition \(g \)

\[S_E(g, v) = S_E(g', v) + R_E(g) \cdot LC_E(g, v) [u/ \max(S(t', u), ...)] \]

- \(LC_E(g, v) \): expect. local change by \(g \)
- \(g', t' \): pre-transition of \(g \)

\[LC_E(g_1, x) = \frac{i}{2} \]

For global result:
- consider expected value of \(x \) before reaching \(g_1 \) (after \(g_0 \))
- consider how often \(g_1 \) is expected to be executed

\[\Rightarrow \text{multiply } g_1 \text{'s expected runtime bound } R_E(g_1) \text{ with local change } LC_E(g_1, x) \]
Expected Size Bounds

Expected size bounds

\[S_E(g_0, v) = v_0, \quad S_E(g_1, i) = i_0, \quad S_E(g_1, x) = x_0 + R_E(g_1) \cdot \frac{1}{2} \]

Computing expected size bound for variable \(v \) after transition \(g \)

\[S_E(g, v) = S_E(g', v) + R_E(g) \cdot \mathcal{LC}_E(g, v) \left[u/\max(S(t', u), \ldots) \right] \]

- \(\mathcal{LC}_E(g, v) \): expected local change by \(g \)
- \(g', t' \): pre-transition of \(g \)

- \(\mathcal{LC}_E(g_1, x) = \frac{1}{2} \)

For global result:
- consider expected value of \(x \) before reaching \(g_1 \) (after \(g_0 \))
- consider how often \(g_1 \) is expected to be executed

\[\Rightarrow \text{multiply } g_1 \text{'s expected runtime bound } R_E(g_1) \text{ with local change } \mathcal{LC}_E(g_1, x) \]
Expected Size Bounds

Expected size bounds

\[S_E(g_0, v) = v_0, \ S_E(g_1, i) = i_0, \ S_E(g_1, x) = x_0 + 2 \cdot i_0 \cdot \frac{1}{2} \]

Computing expected size bound for variable v after transition g

\[S_E(g, v) = S_E(g', v) + R_E(g) \cdot LC_E(g, v) [u/ \text{max}(S(t', u), ...)] \]

- \(LC_E(g, v) \): expect. local change by \(g \)
- \(g', t' \): pre-transition of \(g \)

\[LC_E(g_1, x) = \frac{1}{2} \]

For global result:
- consider expected value of \(x \) before reaching \(g_1 \) (after \(g_0 \))
- consider how often \(g_1 \) is expected to be executed

⇒ multiply \(g_1 \)'s expected runtime bound \(R_E(g_1) \) with local change \(LC_E(g_1, x) \)
Expected Size Bounds

Expected size bounds

\[S_E(g_0, v) = v_0, \quad S_E(g_1, i) = i_0, \quad S_E(g_1, x) = x_0 + 2 \cdot i_0 \cdot \frac{i}{2} \]

Computing expected size bound for variable \(v \) after transition \(g \)

\[S_E(g, v) = S_E(g', v) + R_E(g) \cdot LC_E(g, v) \cdot [u/ \max(S(t', u), \ldots)] \]

- **\(LC_E(g, v) \):** *expected* local change by \(g \)
- **\(g', t' \):** pre-transition of \(g \)

- **\(LC_E(g_1, x) = \frac{i}{2} \)**

- For global result:
 - consider *expected* value of \(x \) before reaching \(g_1 \) (after \(g_0 \))
 - consider how often \(g_1 \) is *expected* to be executed
 - consider values of \(LC_E(g_1, x) \)'s variables in full run

\[⇒ \text{ multiply } g_1 \text{'s } \text{expected } \text{runtime bound } R_E(g_1) \text{ with local change } LC_E(g_1, x) \]
Expected Size Bounds

Expected size bounds

\[S_E(g_0, v) = v_0, \quad S_E(g_1, i) = i_0, \quad S_E(g_1, x) = x_0 + 2 \cdot i_0 \cdot \frac{1}{2} \]

Computing expected size bound for variable \(v \) after transition \(g \)

\[S_E(g, v) = S_E(g', v) + R_E(g) \cdot LC_E(g, v)[u/ \max(S(t', u), ...)] \]

- \(LC_E(g, v) \): expect. local change by \(g \)
- \(g', t' \): pre-transition of \(g \)

- \(LC_E(g_1, x) = \frac{1}{2} \)

For global result:
- consider expected value of \(x \) before reaching \(g_1 \) (after \(g_0 \))
- consider how often \(g_1 \) is expected to be executed
- consider values of \(LC_E(g_1, x) \)'s variables in full run

\[\Rightarrow \text{replace } LC_E(g_1, x) \text{ by } LC_E(g_1, x)[i/ \max(S(t_0, i), S(t_1, i), S(t_4, i))] \]
Expected Size Bounds

Expected size bounds
\[S_E(g_0, v) = v_0, \quad S_E(g_1, i) = i_0, \quad S_E(g_1, x) = x_0 + 2 \cdot i_0 \cdot \frac{1}{2} \]

Computing expected size bound for variable \(v \) after transition \(g \)

\[S_E(g, v) = S_E(g', v) + R_E(g) \cdot LCE_E(g, v) \cdot [u/\max(S(t', u), \ldots)] \]

- **\(LCE_E(g, v) \): expect. local change by \(g \)**
- **\(g', t' \): pre-transition of \(g \)**

\[LCE_E(g_1, x) = \frac{1}{2} \]

- For global result:
 - consider *expected* value of \(x \) before reaching \(g_1 \) (after \(g_0 \))
 - consider how often \(g_1 \) is *expected* to be executed
 - consider values of \(LCE_E(g_1, x) \)'s variables in full run

⇒ replace \(LCE_E(g_1, x) \) by \(LCE_E(g_1, x)[i / \max(0, i_0, 0, 0)] \)
Expected Size Bounds

Expected size bounds

\[S_E(g_0, v) = v_0, \; S_E(g_1, i) = i_0, \; S_E(g_1, x) = x_0 + 2 \cdot i_0 \cdot \frac{1}{2} \]

Computing expected size bound for variable \(v \) **after transition** \(g \)

\[S_E(g, v) = S_E(g', v) + R_E(g) \cdot LC_E(g, v) \left[u/\max(S(t', u), \ldots) \right] \]

- \(LC_E(g, v) \): **expected** local change by \(g \)
- \(g', t' \): pre-transition of \(g \)

- \(LC_E(g_1, x) = \frac{1}{2} \)

For global result:
- consider **expected** value of \(x \) before reaching \(g_1 \) (after \(g_0 \))
- consider how often \(g_1 \) is **expected** to be executed
- consider values of \(LC_E(g_1, x) \)'s variables in full run

\[\Rightarrow \text{replace } LC_E(g_1, x) \text{ by } LC_E(g_1, x)[i/i_0] \]
(Expected Size Bounds)

Expected size bounds:

\[S_E(g_0, v) = v_0, \quad S_E(g_1, i) = i_0, \quad S_E(g_1, x) = x_0 + 2 \cdot i_0 \cdot \frac{1}{2} [i / i_0] \]

Computing *expected* size bound for variable \(v \) after transition \(g \):

\[S_E(g, v) = S_E(g', v) + R_E(g) \cdot LC_E(g, v) \cdot [u / \max(S(t', u), ...)] \]

- \(LC_E(g, v) \): *expected* local change by \(g \)
- \(g', t' \): pre-transition of \(g \)

- \(LC_E(g_1, x) = \frac{1}{2} \)

For global result:

- consider *expected* value of \(x \) before reaching \(g_1 \) (after \(g_0 \))
- consider how often \(g_1 \) is *expected* to be executed
- consider values of \(LC_E(g_1, x) \)'s variables in full run

\[\Rightarrow \text{replace } LC_E(g_1, x) \text{ by } LC_E(g_1, x)[i / i_0] \]
Expected Size Bounds

Expected size bounds

\[S_E(g_0, v) = v_0, \quad S_E(g_1, i) = i_0, \quad S_E(g_1, x) = x_0 + 2 \cdot i_0 \cdot \frac{i_0}{2} \]

Computing expected size bound for variable \(v \) after transition \(g \)

\[S_E(g, v) = S_E(g', v) + R_E(g) \cdot LCE_E(g, v) [u/ \max(S(t', u), \ldots)] \]

- \(LCE_E(g, v) \): expect. local change by \(g \)
- \(g', t' \): pre-transition of \(g \)

For global result:
- consider *expected* value of \(x \) before reaching \(g_1 \) (after \(g_0 \))
- consider how often \(g_1 \) is expected to be executed
- consider values of \(LCE_E(g_1, x) \)'s variables in full run

⇒ replace \(LCE_E(g_1, x) \) by \(LCE_E(g_1, x)[i / i_0] \)
Expected Size Bounds

Expected size bounds

\[S_E(g_0, v) = v_0, \quad S_E(g_1, i) = i_0, \quad S_E(g_1, x) = x_0 + i_0^2 \]

Computing expected size bound for variable v after transition g

\[S_E(g, v) = S_E(g', v) + R_E(g) \cdot LC_E(g, v) \left[u / \max(S(t', u), ...) \right] \]

- **LC_E(g, v):** expected local change by \(g \)
- **g', t':** pre-transition of \(g \)

LC_E(g_1, x) = \frac{1}{2}

For global result:
- consider expected value of \(x \) before reaching \(g_1 \) (after \(g_0 \))
- consider how often \(g_1 \) is expected to be executed
- consider values of \(LC_E(g_1, x) \)'s variables in full run

\[t_0 \in g_0 \]

\[\frac{1}{2} : t_1 \in g_1 \]

\[\text{if} (i > 0) \]

\[x = x + i \]

\[i = i - 1 \]

\[t_2 \in g_2 \]

\[\text{if} (i \leq 0) \]

\[t_3 \in g_3 \]

\[\text{if} (x > 0) \]

\[x = x - 1 \]

\[\Rightarrow \text{replace } LC_E(g_1, x) \text{ by } LC_E(g_1, x)[i / i_0] \]
Expected Size Bounds

Expected size bounds

\[S_E(g_0, v) = v_0, \quad S_E(g_1, i) = i_0, \quad S_E(g_1, x) = x_0 + i_0^2 \]

Computing expected size bound for variable \(v \) after transition \(g \)

\[S_E(g, v) = S_E(g', v) + R_E(g) \cdot LC_E(g, v) [u/ \max(S(t', u), \ldots)] \]

- \(LC_E(g, v) \): expect. local change by \(g \)
- \(g', t' \): pre-transition of \(g \)

\[LC_E(g_2, x) = 0 \]

For global result:
- Consider expected value of \(x \) before reaching \(g_1 \) (after \(g_0 \))
- Consider how often \(g_1 \) is expected to be executed
- Consider values of \(LC_E(g_1, x) \)'s variables in full run

⇒ replace \(LC_E(g_1, x) \) by \(LC_E(g_1, x) [i / i_0] \)
Expected Size Bounds

Expected size bounds

\[S_E(g_0, v) = v_0, \ S_E(g_1, i) = i_0, \ S_E(g_1, x) = x_0 + i_0^2 \]

Computing expected size bound for variable \(v \) after transition \(g \)

\[S_E(g, v) = S_E(g', v) + R_E(g) \cdot LC_E(g, v)[u/\max(S(t', u), ...)] \]

- \(LC_E(g, v) \): expect. local change by \(g \)
- \(g', t' \): pre-transition of \(g \)

\[LC_E(g_2, x) = 0 \]

For global result:
- consider expected value of \(x \) before reaching \(g_2 \) (after \(g_0 \) or \(g_1 \))
- consider how often \(g_2 \) is expected to be executed
- consider values of \(LC_E(g_2, x) \)'s variables in full run

\[\Rightarrow \text{replace } LC_E(g_1, x) \text{ by } LC_E(g_1, x)[i/i_0] \]
Expected Size Bounds

Expected size bounds

\[S_E(g_0, v) = v_0, \quad S_E(g_1, i) = i_0, \quad S_E(g_1, x) = x_0 + i_0^2 \]

Computing expected size bound for variable \(v \) after transition \(g \)

\[S_E(g, v) = S_E(g', v) + R_E(g) \cdot \mathcal{LC}_E(g, v) \left[u / \max(S(t', u), ...) \right] \]

- \(\mathcal{LC}_E(g, v) \): expect. local change by \(g \)
- \(g', t' \): pre-transition of \(g \)

\[\mathcal{LC}_E(g_2, x) = 0 \]

For global result:
- consider expected value of \(x \) before reaching \(g_2 \) (after \(g_0 \) or \(g_1 \))
- consider how often \(g_2 \) is expected to be executed
- consider values of \(\mathcal{LC}_E(g_2, x) \)'s variables in full run

\[\Rightarrow \text{add } \max(S_E(g_0, x), S_E(g_1, x)) \text{ to } \mathcal{LC}_E(g_2, x) \]
Expected Size Bounds

Expected size bounds

\[S_E(g_0, v) = v_0, \quad S_E(g_1, i) = i_0, \quad S_E(g_1, x) = x_0 + i^2 \]

Computing expected size bound for variable v after transition g

\[S_E(g, v) = S_E(g', v) + R_E(g) \cdot LC_E(g, v)[u/\max(S(t', u), ...)] \]

- \(LC_E(g, v) \): expect. local change by \(g \)
- \(g', t' \): pre-transition of \(g \)

\[LC_E(g_2, x) = 0 \]

For global result:
- consider expected value of \(x \) before reaching \(g_2 \) (after \(g_0 \) or \(g_1 \))
- consider how often \(g_2 \) is expected to be executed
- consider values of \(LC_E(g_2, x) \)'s variables in full run

⇒ add \(\max(x_0, S_E(g_1, x)) \) to \(LC_E(g_2, x) \)
Expected Size Bounds

Expected size bounds

\[S_E(g_0, v) = v_0, \ S_E(g_1, i) = i_0, \ S_E(g_1, x) = x_0 + i^2_0 \]

Computing expected size bound for variable \(v \) after transition \(g \)

\[S_E(g, v) = S_E(g', v) + \mathcal{R}_E(g) \cdot \mathcal{LC}_E(g, v) \cdot [u / \max(S(t', u), ...)] \]

- \(\mathcal{LC}_E(g, v) \): *expect.* local change by \(g \)
- \(g', t' \): pre-transition of \(g \)

- \(\mathcal{LC}_E(g_2, x) = 0 \)

For global result:
- consider *expected* value of \(x \) before reaching \(g_2 \) (after \(g_0 \) or \(g_1 \))
- consider how often \(g_2 \) is *expected* to be executed
- consider values of \(\mathcal{LC}_E(g_2, x) \)'s variables in full run

\[\Rightarrow \text{add} \ \max(x_0, \ x_0 + i^2_0) \ \text{to} \ \mathcal{LC}_E(g_2, x) \]
Expected Size Bounds

Expected size bounds

\[S_E(g_0, v) = v_0, \quad S_E(g_1, i) = i_0, \quad S_E(g_1, x) = x_0 + i_0^2 \]

Computing expected size bound for variable \(v \) after transition \(g \)

\[S_E(g, v) = S_E(g', v) + R_E(g) \cdot LC_E(g, v) [u / \max(S(t', u), ...)] \]

- \(LC_E(g, v) \): expected local change by \(g \)
- \(g', t' \): pre-transition of \(g \)

\[LC_E(g_2, x) = 0 \]

For global result:
- consider expected value of \(x \) before reaching \(g_2 \) (after \(g_0 \) or \(g_1 \))
- consider how often \(g_2 \) is expected to be executed
- consider values of \(LC_E(g_2, x) \)'s variables in full run

\[\Rightarrow \text{ add } x_0 + i_0^2 \text{ to } LC_E(g_2, x) \]
Expected Size Bounds

Expected size bounds

\[S_E(g_0, v) = v_0, \quad S_E(g_1, i) = i_0, \quad S_E(g_1, x) = x_0 + i_0^2 \]

Computing expected size bound for variable \(v \) after transition \(g \)

\[S_E(g, v) = S_E(g', v) + R_E(g) \cdot LCE_E(g, v) \cdot [u/ \max(S(t', u), \ldots)] \]

- \(LCE_E(g, v) \): expect. local change by \(g \)
- \(g', t' \): pre-transition of \(g \)

- \(LCE_E(g_2, x) = 0 \)

For global result:
- consider expected value of \(x \) before reaching \(g_2 \) (after \(g_0 \) or \(g_1 \))
- consider how often \(g_2 \) is expected to be executed
- consider values of \(LCE_E(g_2, x) \)'s variables in full run

\[\Rightarrow \quad \text{add} \quad x_0 + i_0^2 \quad \text{to} \quad 0 \]
Expected Size Bounds

Expected size bounds

\[S_E(g_0, v) = v_0, \quad S_E(g_1, i) = i_0, \quad S_E(g_1, x) = x_0 + i_0^2 = S_E(g_2, x) \]

Computing expected size bound for variable v after transition g

\[S_E(g, v) = S_E(g', v) + R_E(g) \cdot \mathcal{LC}_E(g, v) \left[u / \max(S(t', u), \ldots) \right] \]

- \(\mathcal{LC}_E(g, v) \): expect. local change by g
- \(g', t' \): pre-transition of g

- \(\mathcal{LC}_E(g_2, x) = 0 \)

- For global result:
 - consider expected value of x before reaching \(g_2 \) (after \(g_0 \) or \(g_1 \))
 - consider how often \(g_2 \) is expected to be executed
 - consider values of \(\mathcal{LC}_E(g_2, x) \)'s variables in full run

\[\Rightarrow \quad \text{add} \quad x_0 + i_0^2 \quad \text{to} \quad 0 \]
Inferring *Expected* Runtimes of *Probabilistic* Programs

Implementation in KoAT
Inferring *Expected* Runtimes of *Probabilistic* Programs

- Implementation in *KoAT*
 - all 46 benchmarks from *Absynth*
Inferring *Expected* Runtimes of *Probabilistic* Programs

- Implementation in *KoAT*
 - all 46 benchmarks from *Absynth*
 - 29 new benchmarks including examples
 from TPDB enriched with randomization
Inferring *Expected* Runtimes of *Probabilistic* Programs

- Implementation in KoAT
 - all 46 benchmarks from Absynth
 - 29 new benchmarks including examples from TPDB enriched with randomization
 - timeout of 5 minutes
Inferring *Expected* Runtimes of *Probabilistic* Programs

- Implementation in **KoAT**
 - all 46 benchmarks from **Absynth**
 - 29 new benchmarks including examples from TPDB enriched with randomization
 - timeout of 5 minutes

<table>
<thead>
<tr>
<th>Bound</th>
<th>KoAT</th>
<th>Absynth</th>
<th>eco-imp</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O(1))</td>
<td>8</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>(O(n))</td>
<td>42</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>(O(n^2))</td>
<td>15</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>(O(n^2))</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EXP</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\infty)</td>
<td>7</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>TO</td>
<td>0</td>
<td>9</td>
<td>3</td>
</tr>
</tbody>
</table>

Avg. Time
- 4.26 s
- 3.53 s
- 0.93 s

Success
- 91%
- 68%
- 77%
Inferring *Expected* Runtimes of *Probabilistic* Programs

- Implementation in **KoAT**
 - all 46 benchmarks from **Absynth**
 - 29 new benchmarks including examples from TPDB enriched with randomization
 - timeout of 5 minutes

<table>
<thead>
<tr>
<th>Bound</th>
<th>KoAT</th>
<th>Absynth</th>
<th>eco-imp</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(1)$</td>
<td>8</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>42</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>$O(n^2)$</td>
<td>15</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>$O(n^{>2})$</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EXP</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>∞</td>
<td>7</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>TO</td>
<td>0</td>
<td>9</td>
<td>3</td>
</tr>
</tbody>
</table>

Avg. Time

- 4.26 s
- 3.53 s
- 0.93 s
Inferring *Expected* Runtimes of *Probabilistic* Programs

- Implementation in **KoAT**
 - all 46 benchmarks from **Absynth**
 - 29 new benchmarks including examples from TPDB enriched with randomization
 - timeout of 5 minutes

<table>
<thead>
<tr>
<th>Bound</th>
<th>KoAT</th>
<th>Absynth</th>
<th>eco-imp</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(1)$</td>
<td>8</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>42</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>$O(n^2)$</td>
<td>15</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>$O(n^{>2})$</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EXP</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>∞</td>
<td>7</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>TO</td>
<td>0</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>Avg. Time</td>
<td>4.26 s</td>
<td>3.53 s</td>
<td>0.93 s</td>
</tr>
<tr>
<td>Success</td>
<td>91 %</td>
<td>68 %</td>
<td>77 %</td>
</tr>
</tbody>
</table>
Inferring *Expected* Runtimes of *Probabilistic* Programs

- alternate finding expected **runtime** and **size** bounds

Implementation in KoAT
- all 46 benchmarks from **Absynth**
- 29 new benchmarks including examples from TPDB enriched with randomization
- timeout of 5 minutes

<table>
<thead>
<tr>
<th>Bound</th>
<th>KoAT</th>
<th>Absynth</th>
<th>eco-imp</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(1)$</td>
<td>8</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>42</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>$O(n^2)$</td>
<td>15</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>$O(n^{>2})$</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EXP</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>∞</td>
<td>7</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>TO</td>
<td>0</td>
<td>9</td>
<td>3</td>
</tr>
</tbody>
</table>

| **Avg. Time** | 4.26 s | 3.53 s | 0.93 s |
| **Success** | 91 % | 68 % | 77 % |
Inferring *Expected* Runtimes of *Probabilistic* Programs

- alternate finding expected runtime and size bounds
 - compute size bounds by combining local change bound with runtime bounds

- Implementation in KoAT
 - all 46 benchmarks from Absynth
 - 29 new benchmarks including examples from TPDB enriched with randomization
 - timeout of 5 minutes

<table>
<thead>
<tr>
<th>Bound</th>
<th>KoAT</th>
<th>Absynth</th>
<th>eco-imp</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(1)$</td>
<td>8</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>42</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>$O(n^2)$</td>
<td>15</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>$O(n^{>2})$</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EXP</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>∞</td>
<td>7</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>TO</td>
<td>0</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>Avg. Time</td>
<td>4.26 s</td>
<td>3.53 s</td>
<td>0.93 s</td>
</tr>
<tr>
<td>Success</td>
<td>91 %</td>
<td>68 %</td>
<td>77 %</td>
</tr>
</tbody>
</table>
Inferring *Expected* Runtimes of *Probabilistic* Programs

- alternate finding expected **runtime** and **size bounds**
 - compute **size bounds** by combining local change bound with **runtime bounds**
 - compute **runtime bounds** for program parts based on **size bounds** for preceding parts

Implementation in KoAT

- all 46 benchmarks from **Absynth**
- 29 new benchmarks including examples from TPDB enriched with randomization
- timeout of 5 minutes

<table>
<thead>
<tr>
<th>Bound</th>
<th>KoAT</th>
<th>Absynth</th>
<th>eco-imp</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O(1))</td>
<td>8</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>(O(n))</td>
<td>42</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>(O(n^2))</td>
<td>15</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>(O(n^{<2}))</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EXP</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\infty)</td>
<td>7</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>TO</td>
<td>0</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>Avg. Time</td>
<td>4.26 s</td>
<td>3.53 s</td>
<td>0.93 s</td>
</tr>
<tr>
<td>Success</td>
<td>91 %</td>
<td>68 %</td>
<td>77 %</td>
</tr>
</tbody>
</table>
Inferring *Expected* Runtimes of *Probabilistic* Programs

- alternate finding expected runtime and size bounds
 - compute size bounds by combining local change bound with runtime bounds
 - compute runtime bounds for program parts based on size bounds for preceding parts
 - based on both expected and non-probabilistic bounds for program parts

- Implementation in *KoAT*
 - all 46 benchmarks from *Absynth*
 - 29 new benchmarks including examples from TPDB enriched with randomization
 - timeout of 5 minutes

<table>
<thead>
<tr>
<th>Bound</th>
<th>KoAT</th>
<th>Absynth</th>
<th>eco-imp</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(1)$</td>
<td>8</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>42</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>$O(n^2)$</td>
<td>15</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>$O(n^{>2})$</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EXP</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>∞</td>
<td>7</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>TO</td>
<td>0</td>
<td>9</td>
<td>3</td>
</tr>
</tbody>
</table>

| Avg. Time | 4.26 s | 3.53 s | 0.93 s |
| Success | 91 % | 68 % | 77 % |
Inferring *Expected* Runtimes of *Probabilistic* Programs

- alternate finding expected **runtime** and **size** bounds
 - compute **size bounds** by combining local change bound with **runtime bounds**
 - compute **runtime bounds** for program parts based on **size bounds** for preceding parts
 - based on both *expected* and *non-probabilistic* bounds for program parts

- **modular:** only consider small program parts at a time

Implementation in **KoAT**

- all 46 benchmarks from **Absynth**
- 29 new benchmarks including examples from TPDB enriched with randomization
- timeout of 5 minutes

<table>
<thead>
<tr>
<th>Bound</th>
<th>KoAT</th>
<th>Absynth</th>
<th>eco-imp</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(1)$</td>
<td>8</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>42</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>$O(n^2)$</td>
<td>15</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>$O(n^2)$</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EXP</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>∞</td>
<td>7</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>TO</td>
<td>0</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>Avg. Time</td>
<td>4.26 s</td>
<td>3.53 s</td>
<td>0.93 s</td>
</tr>
<tr>
<td>Success</td>
<td>91 %</td>
<td>68 %</td>
<td>77 %</td>
</tr>
</tbody>
</table>
Inferring *Expected* Runtimes of *Probabilistic* Programs

- alternate finding expected runtime and size bounds
 - compute size bounds by combining local change bound with runtime bounds
 - compute runtime bounds for program parts based on size bounds for preceding parts
 - based on both expected and non-probabilistic bounds for program parts

- **modular**: only consider small program parts at a time
 - linear probabilistic ranking functions

- Implementation in *KoAT*
 - all 46 benchmarks from *Absynth*
 - 29 new benchmarks including examples from TPDB enriched with randomization
 - timeout of 5 minutes

<table>
<thead>
<tr>
<th>Bound</th>
<th>KoAT</th>
<th>Absynth</th>
<th>eco-imp</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{O}(1)$</td>
<td>8</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>$\mathcal{O}(n)$</td>
<td>42</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>$\mathcal{O}(n^2)$</td>
<td>15</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>$\mathcal{O}(n^{>2})$</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EXP</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>∞</td>
<td>7</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>TO</td>
<td>0</td>
<td>9</td>
<td>3</td>
</tr>
</tbody>
</table>

| Avg. Time | 4.26 s | 3.53 s | 0.93 s |
| Success | 91 % | 68 % | 77 % |
Inferring *Expected* Runtimes of *Probabilistic* Programs

- alternate finding expected *runtime* and *size bounds*
 - compute *size bounds* by combining local change bound with *runtime bounds*
 - compute *runtime bounds* for program parts based on *size bounds* for preceding parts
 - based on both *expected* and *non-probabilistic* bounds for program parts

- **modular**: only consider small program parts at a time
 - linear probabilistic ranking functions
 - approach scales to larger programs

Implementation in **KoAT**
- all 46 benchmarks from **Absynth**
- 29 new benchmarks including examples from TPDB enriched with randomization
- timeout of 5 minutes

<table>
<thead>
<tr>
<th>Bound</th>
<th>KoAT</th>
<th>Absynth</th>
<th>eco-imp</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{O}(1)$</td>
<td>8</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>$\mathcal{O}(n)$</td>
<td>42</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>$\mathcal{O}(n^2)$</td>
<td>15</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>$\mathcal{O}(n^3)$</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EXP</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>∞</td>
<td>7</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>TO</td>
<td>0</td>
<td>9</td>
<td>3</td>
</tr>
</tbody>
</table>

Avg. Time: 4.26 s, 3.53 s, 0.93 s

Success: 91%, 68%, 77%