
Inferring Expected Runtimes of Probabilistic Programs

Jürgen Giesl

LuFG Informatik 2, RWTH Aachen University, Germany

joint work with Marcel Hark and Fabian Meyer



Complexity Analysis for Integer Programs

Termination analysis of imperative programs: ranking functions

Goal: use ranking functions for complexity analysis

Problem: complexity from combination of ranking functions

Termination: lexicographic combination of
f1(x, i) = i

f2(x, i) = x

Complexity: linear

i0 + “size”(x)

while i > 0 do

x = x + i

i = i− 1
done

while x > 0 do
x = x− 1

done

Solution: modular approach which alternates between finding runtime and size bounds
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Complexity Analysis for Probabilistic Programs

Probabilistic ranking functions

Expected value of ranking function must decrease by at least 1

f1(x, i) ≥ 1
2 · f1(x + i, i− 1) + 1

2 · f1(x, i) + 1

Probabilistic ranking functions for each loop
f1(x, i) = 2 · i
f2(x, i) = x

Expected runtime: quadratic

2 · i0 + “expected size”(x)

while i > 0 do

{

x = x + i

i = i− 1

} [
1
2

] {
x = x

i = i

}

done

while x > 0 do
x = x− 1

done

Solution: modular approach which alternates between finding runtime and size bounds
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Runtime and Size Bounds

while i > 0 do{
x = x + i

i = i− 1

} [
1
2

] {
x = x

i = i

}
done

while x > 0 do
x = x− 1

done

=⇒

`0

`1

`2

t0 ∈ g0

1
2 : t1 ∈ g1
if(i > 0)
x = x + i

i = i− 1

1
2 : t4 ∈ g1
if(i > 0)

t2 ∈ g2
if(i ≤ 0)

t3 ∈ g3
if(x > 0)
x = x− 1

Goal: find complexity bounds w.r.t.
Goal: the sizes (absolute values) of the input variables

Runtime bound R(t):

bound on number of times
that transition t occurs in executions

R(t0) = 1 R(t2) = 1

R(t1) = i0 R(t3) = x0 + i20

Size bound S(t, v):

bound on size of v
after using transition t in program executions

e.g., S(t1, x) = x0 + i20

Overall runtime is bounded by R(t0) + . . . +R(t3) = 1 + i0 + 1 + x0 + i20.
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Runtime Bounds from Ranking Functions

Initial bounds

R(t0) = 1, R(t2) = 1 as t0 and t2 are not in loops

Ranking function r for program P

r maps locations to R[v1, . . . , vn]

Non-Increase: no transition in P increases value of r

Decrease: value of r decreases by at least 1 for P� ⊆ P

Boundedness: r ≥ 0 after P� ⊆ P
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r(`) = i for all locations `

Thus: t1 ∈ P�
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Modular Runtime Bounds from Ranking Functions

Current bounds

R(t0) = 1, R(t2) = 1, R(t1) = i0

Computing runtime bound for t ∈ P ′

R(t) =

R(t ′) ·

r(`)

[v /S(t ′, v)]

`: entry location of P ′

t ′: pre-transition of P ′
use size bounds to
compute runtime bounds

Modular use of ranking function for subset P ′ = {t3}

r(`2) = x

Executions of P ′ starting in `2 use t3 at most r(`2) = x times.

For global result:
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t ′: pre-transition of P ′

use size bounds to
compute runtime bounds

Modular use of ranking function for subset P ′ = {t3}
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R(t0) = 1, R(t2) = 1, R(t1) = i0, R(t3) =
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Modular Runtime Bounds from Ranking Functions
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R(t) = R(t ′) · r(`) [v /S(t ′, v)]
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Modular use of ranking function for subset P ′ = {t3}

r(`2) = x Thus: t3 ∈ P ′�
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Modular Runtime Bounds from Ranking Functions
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R(t) = R(t ′) · r(`) [v /S(t ′, v)]
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r(`2) = x Thus: t3 ∈ P ′�
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Modular Runtime Bounds from Ranking Functions

Runtime bounds

R(t0) = 1, R(t2) = 1, R(t1) = i0, R(t3) = x0 + i20

Computing runtime bound for t ∈ P ′

R(t) = R(t ′) · r(`) [v /S(t ′, v)]

`: entry location of P ′
t ′: pre-transition of P ′

use size bounds to
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Modular use of ranking function for subset P ′ = {t3}

r(`2) = x Thus: t3 ∈ P ′�
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Modular Runtime Bounds from Ranking Functions

Runtime bounds

R(t0) = 1, R(t2) = 1, R(t1) = i0, R(t3) = x0 + i20
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`: entry location of P ′
t ′: pre-transition of P ′
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Expected Runtime Bounds from Probabilistic Ranking Functions

Initial bounds

Expected

RE(g0)=1, RE(g2)=1 as g0 and g2 are not in loops

Probabilistic

ranking function r for program P

r maps locations to R[v1, . . . , vn]

Non-Increase: no transition in P increases

expected

value of r

Decrease:

expected

value of r decreases by 1 for P� ⊆ P

Boundedness: r ≥ 0 after P� ⊆ P
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r(`) = 2 · i for all locations `

Thus: g1 ∈ P�

r(`1)

2 · i

≥ 1
2 · r(`1) [x / x + i, i / i− 1]

2 · (i− 1)

+ 1
2 · r(`1) [x / x, i / i]

2 · i

+ 1
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Expected Runtime Bounds from Probabilistic Ranking Functions
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Expected

RE(g0)=1, RE(g2)=1 as g0 and g2 are not in loops

Probabilistic ranking function r for program P
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Expected Runtime Bounds from Probabilistic Ranking Functions

Initial bounds

Expected

RE(g0)=1, RE(g2)=1, RE(g1)=2·i0

Probabilistic ranking function r for program P

for all g ∈ P�, set RE(g) = r(`0)

Non-Increase: no transition in P increases expected value of r

Decrease: expected value of r decreases by 1 for P� ⊆ P

Boundedness: r ≥ 0 after P� ⊆ P
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Modular Expected Runtime Bounds from Probabilistic Ranking Functions

Current bounds

Expected

RE(g0)=1, RE(g2)=1, RE(g1)=2·i0

Computing

expected

runtime bound for g ∈ P ′

R

E

(g) =

E(

R(g ′

t ′

) ·

E(

r(`) [v /S

E

(g ′, v)]

)

`: entry location of P ′
g ′

, t ′

: pre-transition of P ′

Expected value not multiplicative!

⇒ restrict to linear ranking functions r

Modular use of ranking function for subset P ′ = {g3}

r(`2) = x

Executions of P ′ starting in `2 use g3 at most r(`2) = x times.

For global result:
consider how often P ′ is reached (by t2)

consider expected value of P ′’s initial variable x in full run

`0

`1

`2

t0 ∈ g0

1
2 : t1 ∈ g1
if(i > 0)
x = x + i

i = i− 1

1
2 : t4 ∈ g1
if(i > 0)

t2 ∈ g2
if(i ≤ 0)

t3 ∈ g3
if(x > 0)
x = x− 1
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t ′ ) ·

E(

r(`) [v /SE(g ′, v)]

)

`: entry location of P ′
g ′, t ′: pre-transition of P ′

Expected value not multiplicative!
⇒ restrict to linear ranking functions r

Modular use of ranking function for subset P ′ = {g3}

r(`2) = x Thus: g3 ∈ P ′�
Executions of P ′ starting in `2 use g3 at most r(`2) = x times.

For global result:
consider how often P ′ is reached (by t2)
consider expected value of P ′’s initial variable x in full run

`0

`1

`2

t0 ∈ g0

1
2 : t1 ∈ g1
if(i > 0)
x = x + i

i = i− 1

1
2 : t4 ∈ g1
if(i > 0)

t2 ∈ g2
if(i ≤ 0)

t3 ∈ g3
if(x > 0)
x = x− 1

⇒ replace r(`2) by r(`2) [x /SE(g2, x)]



Modular Expected Runtime Bounds from Probabilistic Ranking Functions

Expected runtime bounds

RE(g0)=1, RE(g2)=1, RE(g1)=2·i0, RE(g3)=x0 + i20

Computing expected runtime bound for g ∈ P ′

RE(g) =

E(

R(

g ′

t ′ ) ·

E(

r(`) [v /SE(g ′, v)]

)

`: entry location of P ′
g ′, t ′: pre-transition of P ′

Expected value not multiplicative!
⇒ restrict to linear ranking functions r

Modular use of ranking function for subset P ′ = {g3}

r(`2) = x Thus: g3 ∈ P ′�
Executions of P ′ starting in `2 use g3 at most r(`2) = x times.

For global result:
consider how often P ′ is reached (by t2)
consider expected value of P ′’s initial variable x in full run

`0

`1

`2

t0 ∈ g0

1
2 : t1 ∈ g1
if(i > 0)
x = x + i

i = i− 1

1
2 : t4 ∈ g1
if(i > 0)

t2 ∈ g2
if(i ≤ 0)

t3 ∈ g3
if(x > 0)
x = x− 1

⇒ replace r(`2) by r(`2) [x /SE(g2, x)]



Modular Expected Runtime Bounds from Probabilistic Ranking Functions

Expected runtime bounds

RE(g0)=1, RE(g2)=1, RE(g1)=2·i0, RE(g3)=x0 + i20

Computing expected runtime bound for g ∈ P ′

RE(g) =

E(

R(

g ′

t ′ ) ·

E(

r(`) [v /SE(g ′, v)]

)

`: entry location of P ′
g ′, t ′: pre-transition of P ′

Expected value not multiplicative!
⇒ restrict to linear ranking functions r

Modular use of ranking function for subset P ′ = {g3}

r(`2) = x Thus: g3 ∈ P ′�
Executions of P ′ starting in `2 use g3 at most r(`2) = x times.

For global result:
consider how often P ′ is reached (by t2)
consider expected value of P ′’s initial variable x in full run

`0

`1

`2

t0 ∈ g0

1
2 : t1 ∈ g1
if(i > 0)
x = x + i

i = i− 1

1
2 : t4 ∈ g1
if(i > 0)

t2 ∈ g2
if(i ≤ 0)

t3 ∈ g3
if(x > 0)
x = x− 1

Overall expected runtime is bounded by RE(g0) + . . . +RE(g3) = 1 + 2 · i0 + 1 + x0 + i20.



Size Bounds
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S(t0, v) = v0, S(t1, i) = i0, S(t1, x) =

S(t0, x) +

x0 +

R(t1) ·

i0 · LC(t1, x)

i

0

[i / i0]

Computing size bound for variable v after transition t

S(t, v) = S(t ′, v) + R(t) · LC(t, v)

[u / max(S(t ′, u), S(t, u) )]

LC(t,v): local change by one application of t
t ′: pre-transition of t

use runtime bounds to
compute size bounds

LC(t1, x) = i

For global result:
consider value of x before reaching t1 (after t0)
consider how often t1 is executed
consider values of LC(t1, x)’s variables in full run

`0

`1

`2

t0

∈ g0

t1

∈ g1 : 1
2

if(i > 0)
x = x + i

i = i− 1

1
2 : t4 ∈ g1
if(i > 0)

t2

∈ g2

if(i ≤ 0)

t3

∈ g3

if(x > 0)
x = x− 1

⇒ multiply t1’s runtime bound R(t1) with local change LC(t1, x)

i20



Size Bounds

Size bounds

S(t0, v) = v0, S(t1, i) = i0, S(t1, x) =

S(t0, x) +

x0 +

R(t1) ·

i0 · LC(t1, x)

i

0

[i / i0]

Computing size bound for variable v after transition t

S(t, v) = S(t ′, v) + R(t) · LC(t, v)

[u / max(S(t ′, u), S(t, u) )]

LC(t,v): local change by one application of t
t ′: pre-transition of t

use runtime bounds to
compute size bounds

LC(t1, x) = i

For global result:
consider value of x before reaching t1 (after t0)
consider how often t1 is executed
consider values of LC(t1, x)’s variables in full run

`0

`1

`2

t0

∈ g0

t1

∈ g1 : 1
2

if(i > 0)
x = x + i

i = i− 1

1
2 : t4 ∈ g1
if(i > 0)

t2

∈ g2

if(i ≤ 0)

t3

∈ g3

if(x > 0)
x = x− 1

⇒ replace LC(t1, x) by LC(t1, x) [i / max(S(t0, i), S(t1, i) )]

i20



Size Bounds

Size bounds

S(t0, v) = v0, S(t1, i) = i0, S(t1, x) =

S(t0, x) +

x0 +

R(t1) ·

i0 · LC(t1, x)

i

0

[i / i0]

Computing size bound for variable v after transition t

S(t, v) = S(t ′, v) + R(t) · LC(t, v) [u / max(S(t ′, u), S(t, u) )]

LC(t,v): local change by one application of t
t ′: pre-transition of t

use runtime bounds to
compute size bounds

LC(t1, x) = i

For global result:
consider value of x before reaching t1 (after t0)
consider how often t1 is executed
consider values of LC(t1, x)’s variables in full run

`0

`1

`2

t0

∈ g0

t1

∈ g1 : 1
2

if(i > 0)
x = x + i

i = i− 1

1
2 : t4 ∈ g1
if(i > 0)

t2

∈ g2

if(i ≤ 0)

t3

∈ g3

if(x > 0)
x = x− 1

⇒ replace LC(t1, x) by LC(t1, x) [i / max(S(t0, i), S(t1, i) )]

i20



Size Bounds

Size bounds

S(t0, v) = v0, S(t1, i) = i0, S(t1, x) =

S(t0, x) +

x0 +

R(t1) ·

i0 · LC(t1, x)

i

0

[i / i0]

Computing size bound for variable v after transition t

S(t, v) = S(t ′, v) + R(t) · LC(t, v) [u / max(S(t ′, u), S(t, u) )]

LC(t,v): local change by one application of t
t ′: pre-transition of t

use runtime bounds to
compute size bounds

LC(t1, x) = i

For global result:
consider value of x before reaching t1 (after t0)
consider how often t1 is executed
consider values of LC(t1, x)’s variables in full run

`0

`1

`2

t0

∈ g0

t1

∈ g1 : 1
2

if(i > 0)
x = x + i

i = i− 1

1
2 : t4 ∈ g1
if(i > 0)

t2

∈ g2

if(i ≤ 0)

t3

∈ g3

if(x > 0)
x = x− 1

⇒ replace LC(t1, x) by LC(t1, x) [i / max( i0, i0 )]

i20



Size Bounds

Size bounds

S(t0, v) = v0, S(t1, i) = i0, S(t1, x) =

S(t0, x) +

x0 +

R(t1) ·

i0 · LC(t1, x)

i

0

[i / i0]

Computing size bound for variable v after transition t

S(t, v) = S(t ′, v) + R(t) · LC(t, v) [u / max(S(t ′, u), S(t, u) )]

LC(t,v): local change by one application of t
t ′: pre-transition of t

use runtime bounds to
compute size bounds

LC(t1, x) = i

For global result:
consider value of x before reaching t1 (after t0)
consider how often t1 is executed
consider values of LC(t1, x)’s variables in full run

`0

`1

`2

t0

∈ g0

t1

∈ g1 : 1
2

if(i > 0)
x = x + i

i = i− 1

1
2 : t4 ∈ g1
if(i > 0)

t2

∈ g2

if(i ≤ 0)

t3

∈ g3

if(x > 0)
x = x− 1

⇒ replace LC(t1, x) by LC(t1, x) [i / i0]

i20



Size Bounds

Size bounds

S(t0, v) = v0, S(t1, i) = i0, S(t1, x) =

S(t0, x) +

x0 +

R(t1) ·

i0 · LC(t1, x)

i

0

[i / i0]

Computing size bound for variable v after transition t

S(t, v) = S(t ′, v) + R(t) · LC(t, v) [u / max(S(t ′, u), S(t, u) )]

LC(t,v): local change by one application of t
t ′: pre-transition of t

use runtime bounds to
compute size bounds

LC(t1, x) = i

For global result:
consider value of x before reaching t1 (after t0)
consider how often t1 is executed
consider values of LC(t1, x)’s variables in full run

`0

`1

`2

t0

∈ g0

t1

∈ g1 : 1
2

if(i > 0)
x = x + i

i = i− 1

1
2 : t4 ∈ g1
if(i > 0)

t2

∈ g2

if(i ≤ 0)

t3

∈ g3

if(x > 0)
x = x− 1

⇒ replace LC(t1, x) by LC(t1, x) [i / i0]

i20



Size Bounds

Size bounds

S(t0, v) = v0, S(t1, i) = i0, S(t1, x) =

S(t0, x) +

x0 +

R(t1) ·

i0 ·

LC(t1, x)

i

0

[i / i0]

Computing size bound for variable v after transition t

S(t, v) = S(t ′, v) + R(t) · LC(t, v) [u / max(S(t ′, u), S(t, u) )]

LC(t,v): local change by one application of t
t ′: pre-transition of t

use runtime bounds to
compute size bounds

LC(t1, x) = i

For global result:
consider value of x before reaching t1 (after t0)
consider how often t1 is executed
consider values of LC(t1, x)’s variables in full run

`0

`1

`2

t0

∈ g0

t1

∈ g1 : 1
2

if(i > 0)
x = x + i

i = i− 1

1
2 : t4 ∈ g1
if(i > 0)

t2

∈ g2

if(i ≤ 0)

t3

∈ g3

if(x > 0)
x = x− 1

⇒ replace LC(t1, x) by LC(t1, x) [i / i0]

i20



Size Bounds

Size bounds

S(t0, v) = v0, S(t1, i) = i0, S(t1, x) =

S(t0, x) +

x0 +

R(t1) ·

i0 ·

LC(t1, x)

i0

[i / i0]

Computing size bound for variable v after transition t

S(t, v) = S(t ′, v) + R(t) · LC(t, v) [u / max(S(t ′, u), S(t, u) )]

LC(t,v): local change by one application of t
t ′: pre-transition of t

use runtime bounds to
compute size bounds

LC(t1, x) = i

For global result:
consider value of x before reaching t1 (after t0)
consider how often t1 is executed
consider values of LC(t1, x)’s variables in full run

`0

`1

`2

t0

∈ g0

t1

∈ g1 : 1
2

if(i > 0)
x = x + i

i = i− 1

1
2 : t4 ∈ g1
if(i > 0)

t2

∈ g2

if(i ≤ 0)

t3

∈ g3

if(x > 0)
x = x− 1

⇒ replace LC(t1, x) by LC(t1, x) [i / i0]

i20



Size Bounds

Size bounds

S(t0, v) = v0, S(t1, i) = i0, S(t1, x) =

S(t0, x) +

x0 + i20

Computing size bound for variable v after transition t

S(t, v) = S(t ′, v) + R(t) · LC(t, v) [u / max(S(t ′, u), S(t, u) )]

LC(t,v): local change by one application of t
t ′: pre-transition of t

use runtime bounds to
compute size bounds

LC(t1, x) = i

For global result:
consider value of x before reaching t1 (after t0)
consider how often t1 is executed
consider values of LC(t1, x)’s variables in full run

`0

`1

`2

t0

∈ g0

t1

∈ g1 : 1
2

if(i > 0)
x = x + i

i = i− 1

1
2 : t4 ∈ g1
if(i > 0)

t2

∈ g2

if(i ≤ 0)

t3

∈ g3

if(x > 0)
x = x− 1

⇒ replace LC(t1, x) by LC(t1, x) [i / i0]

i20



Size Bounds

Size bounds

S(t0, v) = v0, S(t1, i) = i0, S(t1, x) =

S(t0, x) +

x0 + i20

Computing size bound for variable v after transition t

S(t, v) = S(t ′, v) + R(t) · LC(t, v) [u / max(S(t ′, u), S(t, u) )]

LC(t,v): local change by one application of t
t ′: pre-transition of t

use runtime bounds to
compute size bounds

LC(t2, x) = 0

For global result:
consider value of x before reaching t1 (after t0)
consider how often t1 is executed
consider values of LC(t1, x)’s variables in full run

`0

`1

`2

t0

∈ g0

t1

∈ g1 : 1
2

if(i > 0)
x = x + i

i = i− 1

1
2 : t4 ∈ g1
if(i > 0)

t2

∈ g2

if(i ≤ 0)

t3

∈ g3

if(x > 0)
x = x− 1

⇒ replace LC(t1, x) by LC(t1, x) [i / i0]

i20



Size Bounds

Size bounds

S(t0, v) = v0, S(t1, i) = i0, S(t1, x) =

S(t0, x) +

x0 + i20, S(t2, x) = LC(t2, x)

Computing size bound for variable v after transition t

S(t, v) = S(t ′, v) + R(t) · LC(t, v) [u / max(S(t ′, u), S(t, u) )]

LC(t,v): local change by one application of t
t ′: pre-transition of t

use runtime bounds to
compute size bounds

LC(t2, x) = 0

For global result:
consider value of x before reaching t1 (after t0)
consider how often t1 is executed
consider values of LC(t1, x)’s variables in full run

`0

`1

`2

t0

∈ g0

t1

∈ g1 : 1
2

if(i > 0)
x = x + i

i = i− 1

1
2 : t4 ∈ g1
if(i > 0)

t2

∈ g2

if(i ≤ 0)

t3

∈ g3

if(x > 0)
x = x− 1

⇒ replace LC(t1, x) by LC(t1, x) [i / i0]

i20



Size Bounds

Size bounds

S(t0, v) = v0, S(t1, i) = i0, S(t1, x) =

S(t0, x) +

x0 + i20, S(t2, x) = LC(t2, x)

Computing size bound for variable v after transition t

S(t, v) = S(t ′, v) + R(t) · LC(t, v) [u / max(S(t ′, u), S(t, u) )]

LC(t,v): local change by one application of t
t ′: pre-transition of t

use runtime bounds to
compute size bounds

LC(t2, x) = 0

For global result:
consider value of x before reaching t1 (after t0)
consider how often t2 is executed
consider values of LC(t2, x)’s variables in full run

`0

`1

`2

t0

∈ g0

t1

∈ g1 : 1
2

if(i > 0)
x = x + i

i = i− 1

1
2 : t4 ∈ g1
if(i > 0)

t2

∈ g2

if(i ≤ 0)

t3

∈ g3

if(x > 0)
x = x− 1

⇒ replace LC(t1, x) by LC(t1, x) [i / i0]

i20



Size Bounds

Size bounds

S(t0, v) = v0, S(t1, i) = i0, S(t1, x) =

S(t0, x) +

x0 + i20, S(t2, x) = LC(t2, x)

Computing size bound for variable v after transition t

S(t, v) = S(t ′, v) + R(t) · LC(t, v) [u / max(S(t ′, u), S(t, u) )]

LC(t,v): local change by one application of t
t ′: pre-transition of t

use runtime bounds to
compute size bounds

LC(t2, x) = 0

For global result:
consider value of x before reaching t1 (after t0)
consider how often t2 is executed
consider values of LC(t2, x)’s variables in full run

`0

`1

`2

t0

∈ g0

t1

∈ g1 : 1
2

if(i > 0)
x = x + i

i = i− 1

1
2 : t4 ∈ g1
if(i > 0)

t2

∈ g2

if(i ≤ 0)

t3

∈ g3

if(x > 0)
x = x− 1

⇒ replace LC(t2, x) by R(t2) · LC(t2, x)[. . .]

i20



Size Bounds

Size bounds

S(t0, v) = v0, S(t1, i) = i0, S(t1, x) =

S(t0, x) +

x0 + i20, S(t2, x) = LC(t2, x)

Computing size bound for variable v after transition t

S(t, v) = S(t ′, v) + R(t) · LC(t, v) [u / max(S(t ′, u), S(t, u) )]

LC(t,v): local change by one application of t
t ′: pre-transition of t

use runtime bounds to
compute size bounds

LC(t2, x) = 0

For global result:
consider value of x before reaching t1 (after t0)
consider how often t2 is executed
consider values of LC(t2, x)’s variables in full run

`0

`1

`2

t0

∈ g0

t1

∈ g1 : 1
2

if(i > 0)
x = x + i

i = i− 1

1
2 : t4 ∈ g1
if(i > 0)

t2

∈ g2

if(i ≤ 0)

t3

∈ g3

if(x > 0)
x = x− 1

⇒ replace LC(t2, x) by 0

i20



Size Bounds

Size bounds

S(t0, v) = v0, S(t1, i) = i0, S(t1, x) =

S(t0, x) +

x0 + i20, S(t2, x) =

Computing size bound for variable v after transition t

S(t, v) = S(t ′, v) + R(t) · LC(t, v) [u / max(S(t ′, u), S(t, u) )]

LC(t,v): local change by one application of t
t ′: pre-transition of t

use runtime bounds to
compute size bounds

LC(t2, x) = 0

For global result:
consider value of x before reaching t1 (after t0)
consider how often t2 is executed
consider values of LC(t2, x)’s variables in full run

`0

`1

`2

t0

∈ g0

t1

∈ g1 : 1
2

if(i > 0)
x = x + i

i = i− 1

1
2 : t4 ∈ g1
if(i > 0)

t2

∈ g2

if(i ≤ 0)

t3

∈ g3

if(x > 0)
x = x− 1

⇒ replace LC(t2, x) by 0

i20



Size Bounds

Size bounds

S(t0, v) = v0, S(t1, i) = i0, S(t1, x) =

S(t0, x) +

x0 + i20, S(t2, x) =

Computing size bound for variable v after transition t

S(t, v) = S(t ′, v) + R(t) · LC(t, v) [u / max(S(t ′, u), S(t, u) )]

LC(t,v): local change by one application of t
t ′: pre-transition of t

use runtime bounds to
compute size bounds

LC(t2, x) = 0

For global result:
consider value of x before reaching t2 (after t0 or t1)
consider how often t2 is executed
consider values of LC(t2, x)’s variables in full run

`0

`1

`2

t0

∈ g0

t1

∈ g1 : 1
2

if(i > 0)
x = x + i

i = i− 1

1
2 : t4 ∈ g1
if(i > 0)

t2

∈ g2

if(i ≤ 0)

t3

∈ g3

if(x > 0)
x = x− 1

⇒ replace LC(t2, x) by 0

i20



Size Bounds

Size bounds

S(t0, v) = v0, S(t1, i) = i0, S(t1, x) =

S(t0, x) +

x0 + i20, S(t2, x) =

Computing size bound for variable v after transition t

S(t, v) = S(t ′, v) + R(t) · LC(t, v) [u / max(S(t ′, u), S(t, u) )]

LC(t,v): local change by one application of t
t ′: pre-transition of t

use runtime bounds to
compute size bounds

LC(t2, x) = 0

For global result:
consider value of x before reaching t2 (after t0 or t1)
consider how often t2 is executed
consider values of LC(t2, x)’s variables in full run

`0

`1

`2

t0

∈ g0

t1

∈ g1 : 1
2

if(i > 0)
x = x + i

i = i− 1

1
2 : t4 ∈ g1
if(i > 0)

t2

∈ g2

if(i ≤ 0)

t3

∈ g3

if(x > 0)
x = x− 1

⇒ add max(S(t0, x)

x0

, S(t1, x)

x0 + i20

) to LC(t2, x)



Size Bounds

Size bounds

S(t0, v) = v0, S(t1, i) = i0, S(t1, x) =

S(t0, x) +

x0 + i20, S(t2, x) =

Computing size bound for variable v after transition t

S(t, v) = S(t ′, v) + R(t) · LC(t, v) [u / max(S(t ′, u), S(t, u) )]

LC(t,v): local change by one application of t
t ′: pre-transition of t

use runtime bounds to
compute size bounds

LC(t2, x) = 0

For global result:
consider value of x before reaching t2 (after t0 or t1)
consider how often t2 is executed
consider values of LC(t2, x)’s variables in full run

`0

`1

`2

t0

∈ g0

t1

∈ g1 : 1
2

if(i > 0)
x = x + i

i = i− 1

1
2 : t4 ∈ g1
if(i > 0)

t2

∈ g2

if(i ≤ 0)

t3

∈ g3

if(x > 0)
x = x− 1

⇒ add max(

S(t0, x)

x0 , S(t1, x)

x0 + i20

) to LC(t2, x)



Size Bounds

Size bounds

S(t0, v) = v0, S(t1, i) = i0, S(t1, x) =

S(t0, x) +

x0 + i20, S(t2, x) =

Computing size bound for variable v after transition t

S(t, v) = S(t ′, v) + R(t) · LC(t, v) [u / max(S(t ′, u), S(t, u) )]

LC(t,v): local change by one application of t
t ′: pre-transition of t

use runtime bounds to
compute size bounds

LC(t2, x) = 0

For global result:
consider value of x before reaching t2 (after t0 or t1)
consider how often t2 is executed
consider values of LC(t2, x)’s variables in full run

`0

`1

`2

t0

∈ g0

t1

∈ g1 : 1
2

if(i > 0)
x = x + i

i = i− 1

1
2 : t4 ∈ g1
if(i > 0)

t2

∈ g2

if(i ≤ 0)

t3

∈ g3

if(x > 0)
x = x− 1

⇒ add max(

S(t0, x)

x0 ,

S(t1, x)

x0 + i20 ) to LC(t2, x)



Size Bounds

Size bounds

S(t0, v) = v0, S(t1, i) = i0, S(t1, x) =

S(t0, x) +

x0 + i20, S(t2, x) =

Computing size bound for variable v after transition t

S(t, v) = S(t ′, v) + R(t) · LC(t, v) [u / max(S(t ′, u), S(t, u) )]

LC(t,v): local change by one application of t
t ′: pre-transition of t

use runtime bounds to
compute size bounds

LC(t2, x) = 0

For global result:
consider value of x before reaching t2 (after t0 or t1)
consider how often t2 is executed
consider values of LC(t2, x)’s variables in full run

`0

`1

`2

t0

∈ g0

t1

∈ g1 : 1
2

if(i > 0)
x = x + i

i = i− 1

1
2 : t4 ∈ g1
if(i > 0)

t2

∈ g2

if(i ≤ 0)

t3

∈ g3

if(x > 0)
x = x− 1

⇒ add

max(S(t0, x)x0 , S(t1, x)

x0 + i20

)

to LC(t2, x)



Size Bounds

Size bounds

S(t0, v) = v0, S(t1, i) = i0, S(t1, x) =

S(t0, x) +

x0 + i20, S(t2, x) = x0 + i20

Computing size bound for variable v after transition t

S(t, v) = S(t ′, v) + R(t) · LC(t, v) [u / max(S(t ′, u), S(t, u) )]

LC(t,v): local change by one application of t
t ′: pre-transition of t

use runtime bounds to
compute size bounds

LC(t2, x) = 0

For global result:
consider value of x before reaching t2 (after t0 or t1)
consider how often t2 is executed
consider values of LC(t2, x)’s variables in full run

`0

`1

`2

t0

∈ g0
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SE(g0, x) +

x0 +

RE(g1) ·2 · i0 ·

i
2

i

0

2 [i / i0]

Computing expected size bound for variable v after transition g

SE(g , v) =

E(S

SE(g ′, v)

)

+

E(R

RE(g) · LCE(g , v) [u/max(S(t ′, u), ...)]

)

LCE(g ,v): expect. local change by g
g ′, t ′: pre-transition of g

Expected value not multiplicative!
But: LC independent of runtime

LCE(g1, x) = i
2

For global result:
consider expected value of x before reaching g1 (after g0)
consider how often g1 is expected to be executed

consider values of LCE(g1, x)’s variables in full run

`0

`1

`2

t0 ∈ g0

1
2 : t1 ∈ g1
if(i > 0)
x = x + i

i = i− 1

1
2 : t4 ∈ g1
if(i > 0)

t2 ∈ g2
if(i ≤ 0)

t3 ∈ g3
if(x > 0)
x = x− 1

⇒ multiply g1’s expected runtime bound RE(g1) with local change LCE(g1, x)
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2 · i0 ·

i
2

i

0

2 [i / i0]

Computing expected size bound for variable v after transition g

SE(g , v) =

E(S

SE(g ′, v)

)

+

E(R

RE(g) · LCE(g , v) [u/max(S(t ′, u), ...)]

)

LCE(g ,v): expect. local change by g
g ′, t ′: pre-transition of g

Expected value not multiplicative!
But: LC independent of runtime

LCE(g1, x) = i
2

For global result:
consider expected value of x before reaching g1 (after g0)
consider how often g1 is expected to be executed

consider values of LCE(g1, x)’s variables in full run

`0

`1

`2

t0 ∈ g0

1
2 : t1 ∈ g1
if(i > 0)
x = x + i

i = i− 1

1
2 : t4 ∈ g1
if(i > 0)

t2 ∈ g2
if(i ≤ 0)

t3 ∈ g3
if(x > 0)
x = x− 1

⇒ multiply g1’s expected runtime bound RE(g1) with local change LCE(g1, x)
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SE(g0, x) +

x0 +

RE(g1) ·

2 · i0 · i
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0

2 [i / i0]

Computing expected size bound for variable v after transition g

SE(g , v) =

E(S

SE(g ′, v)

)

+

E(R

RE(g) · LCE(g , v) [u/max(S(t ′, u), ...)]

)

LCE(g ,v): expect. local change by g
g ′, t ′: pre-transition of g

Expected value not multiplicative!
But: LC independent of runtime

LCE(g1, x) = i
2

For global result:
consider expected value of x before reaching g1 (after g0)
consider how often g1 is expected to be executed

consider values of LCE(g1, x)’s variables in full run

`0

`1

`2

t0 ∈ g0

1
2 : t1 ∈ g1
if(i > 0)
x = x + i

i = i− 1

1
2 : t4 ∈ g1
if(i > 0)

t2 ∈ g2
if(i ≤ 0)

t3 ∈ g3
if(x > 0)
x = x− 1

⇒ multiply g1’s expected runtime bound RE(g1) with local change LCE(g1, x)

i20
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SE(g0, v) = v0, SE(g1, i) = i0, SE(g1, x) =

SE(g0, x) +

x0 +

RE(g1) ·

2 · i0 · i
2
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0

2 [i / i0]

Computing expected size bound for variable v after transition g

SE(g , v) =

E(S

SE(g ′, v)

)

+

E(R

RE(g) · LCE(g , v) [u/max(S(t ′, u), ...)]

)

LCE(g ,v): expect. local change by g
g ′, t ′: pre-transition of g

Expected value not multiplicative!
But: LC independent of runtime

LCE(g1, x) = i
2

For global result:
consider expected value of x before reaching g1 (after g0)
consider how often g1 is expected to be executed
consider values of LCE(g1, x)’s variables in full run

`0

`1

`2

t0 ∈ g0

1
2 : t1 ∈ g1
if(i > 0)
x = x + i

i = i− 1

1
2 : t4 ∈ g1
if(i > 0)

t2 ∈ g2
if(i ≤ 0)

t3 ∈ g3
if(x > 0)
x = x− 1

⇒ multiply g1’s expected runtime bound RE(g1) with local change LCE(g1, x)
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Expected size bounds
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SE(g0, v) = v0, SE(g1, i) = i0, SE(g1, x) =

SE(g0, x) +

x0 +

RE(g1) ·

2 · i0 · i
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Computing expected size bound for variable v after transition g

SE(g , v) =

E(S

SE(g ′, v)

)

+

E(R

RE(g) · LCE(g , v) [u/max(S(t ′, u), ...)]

)

LCE(g ,v): expect. local change by g
g ′, t ′: pre-transition of g

Expected value not multiplicative!
But: LC independent of runtime

LCE(g1, x) = i
2

For global result:
consider expected value of x before reaching g1 (after g0)
consider how often g1 is expected to be executed
consider values of LCE(g1, x)’s variables in full run

`0

`1

`2

t0 ∈ g0

1
2 : t1 ∈ g1
if(i > 0)
x = x + i

i = i− 1

1
2 : t4 ∈ g1
if(i > 0)

t2 ∈ g2
if(i ≤ 0)

t3 ∈ g3
if(x > 0)
x = x− 1

⇒ replace LCE(g1, x) by LCE(g1, x) [i / max(S(t0, i), S(t1, i),S(t4, i) ) ]
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SE(g0, x) +

x0 +

RE(g1) ·
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Computing expected size bound for variable v after transition g

SE(g , v) =

E(S

SE(g ′, v)

)

+

E(R

RE(g) · LCE(g , v) [u/max(S(t ′, u), ...)]

)

LCE(g ,v): expect. local change by g
g ′, t ′: pre-transition of g

Expected value not multiplicative!
But: LC independent of runtime

LCE(g1, x) = i
2

For global result:
consider expected value of x before reaching g1 (after g0)
consider how often g1 is expected to be executed
consider values of LCE(g1, x)’s variables in full run
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t0 ∈ g0

1
2 : t1 ∈ g1
if(i > 0)
x = x + i

i = i− 1

1
2 : t4 ∈ g1
if(i > 0)

t2 ∈ g2
if(i ≤ 0)

t3 ∈ g3
if(x > 0)
x = x− 1

⇒ replace LCE(g1, x) by LCE(g1, x) [i / max( i0, i0, i0 ) ]
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SE(g0, x) +

x0 +

RE(g1) ·

2 · i0 · i
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2 [i / i0]

Computing expected size bound for variable v after transition g

SE(g , v) =

E(S

SE(g ′, v)

)

+

E(R

RE(g) · LCE(g , v) [u/max(S(t ′, u), ...)]

)

LCE(g ,v): expect. local change by g
g ′, t ′: pre-transition of g

Expected value not multiplicative!
But: LC independent of runtime

LCE(g1, x) = i
2

For global result:
consider expected value of x before reaching g1 (after g0)
consider how often g1 is expected to be executed
consider values of LCE(g1, x)’s variables in full run

`0

`1

`2

t0 ∈ g0

1
2 : t1 ∈ g1
if(i > 0)
x = x + i

i = i− 1

1
2 : t4 ∈ g1
if(i > 0)

t2 ∈ g2
if(i ≤ 0)

t3 ∈ g3
if(x > 0)
x = x− 1

⇒ replace LCE(g1, x) by LCE(g1, x) [i / i0 ]
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Expected size bounds
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2

SE(g0, v) = v0, SE(g1, i) = i0, SE(g1, x) =

SE(g0, x) +

x0 +

RE(g1) ·

2 · i0 · i
2

i

0

2

[i / i0]

Computing expected size bound for variable v after transition g

SE(g , v) =

E(S

SE(g ′, v)

)

+

E(R

RE(g) · LCE(g , v) [u/max(S(t ′, u), ...)]

)

LCE(g ,v): expect. local change by g
g ′, t ′: pre-transition of g

Expected value not multiplicative!
But: LC independent of runtime

LCE(g1, x) = i
2

For global result:
consider expected value of x before reaching g1 (after g0)
consider how often g1 is expected to be executed
consider values of LCE(g1, x)’s variables in full run

`0

`1

`2

t0 ∈ g0

1
2 : t1 ∈ g1
if(i > 0)
x = x + i

i = i− 1

1
2 : t4 ∈ g1
if(i > 0)

t2 ∈ g2
if(i ≤ 0)

t3 ∈ g3
if(x > 0)
x = x− 1

⇒ replace LCE(g1, x) by LCE(g1, x) [i / i0 ]
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SE(g0, v) = v0, SE(g1, i) = i0, SE(g1, x) =

SE(g0, x) +

x0 +

RE(g1) ·

2 · i0 ·

i
2

i0
2

[i / i0]

Computing expected size bound for variable v after transition g

SE(g , v) =

E(S

SE(g ′, v)

)

+

E(R

RE(g) · LCE(g , v) [u/max(S(t ′, u), ...)]

)

LCE(g ,v): expect. local change by g
g ′, t ′: pre-transition of g

Expected value not multiplicative!
But: LC independent of runtime

LCE(g1, x) = i
2

For global result:
consider expected value of x before reaching g1 (after g0)
consider how often g1 is expected to be executed
consider values of LCE(g1, x)’s variables in full run

`0

`1

`2

t0 ∈ g0

1
2 : t1 ∈ g1
if(i > 0)
x = x + i

i = i− 1

1
2 : t4 ∈ g1
if(i > 0)

t2 ∈ g2
if(i ≤ 0)

t3 ∈ g3
if(x > 0)
x = x− 1

⇒ replace LCE(g1, x) by LCE(g1, x) [i / i0 ]

i20



Expected Size Bounds

Expected size bounds

i0
2

SE(g0, v) = v0, SE(g1, i) = i0, SE(g1, x) =

SE(g0, x) +

x0 + i20

Computing expected size bound for variable v after transition g

SE(g , v) =

E(S

SE(g ′, v)

)

+

E(R

RE(g) · LCE(g , v) [u/max(S(t ′, u), ...)]

)

LCE(g ,v): expect. local change by g
g ′, t ′: pre-transition of g

Expected value not multiplicative!
But: LC independent of runtime

LCE(g1, x) = i
2

For global result:
consider expected value of x before reaching g1 (after g0)
consider how often g1 is expected to be executed
consider values of LCE(g1, x)’s variables in full run

`0

`1

`2

t0 ∈ g0

1
2 : t1 ∈ g1
if(i > 0)
x = x + i

i = i− 1

1
2 : t4 ∈ g1
if(i > 0)

t2 ∈ g2
if(i ≤ 0)

t3 ∈ g3
if(x > 0)
x = x− 1

⇒ replace LCE(g1, x) by LCE(g1, x) [i / i0 ]

i20



Expected Size Bounds

Expected size bounds

i0
2

SE(g0, v) = v0, SE(g1, i) = i0, SE(g1, x) =

SE(g0, x) +

x0 + i20

Computing expected size bound for variable v after transition g

SE(g , v) =

E(S

SE(g ′, v)

)

+

E(R

RE(g) · LCE(g , v) [u/max(S(t ′, u), ...)]

)

LCE(g ,v): expect. local change by g
g ′, t ′: pre-transition of g

Expected value not multiplicative!
But: LC independent of runtime

LCE(g2, x) = 0

i
2

For global result:
consider expected value of x before reaching g1 (after g0)
consider how often g1 is expected to be executed
consider values of LCE(g1, x)’s variables in full run

`0

`1

`2

t0 ∈ g0

1
2 : t1 ∈ g1
if(i > 0)
x = x + i

i = i− 1

1
2 : t4 ∈ g1
if(i > 0)

t2 ∈ g2
if(i ≤ 0)

t3 ∈ g3
if(x > 0)
x = x− 1

⇒ replace LCE(g1, x) by LCE(g1, x) [i / i0 ]
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Expected Size Bounds

Expected size bounds

i0
2

SE(g0, v) = v0, SE(g1, i) = i0, SE(g1, x) =

SE(g0, x) +

x0 + i20

Computing expected size bound for variable v after transition g

SE(g , v) =

E(S

SE(g ′, v)

)

+

E(R

RE(g) · LCE(g , v) [u/max(S(t ′, u), ...)]

)

LCE(g ,v): expect. local change by g
g ′, t ′: pre-transition of g

Expected value not multiplicative!
But: LC independent of runtime

LCE(g2, x) = 0

i
2

For global result:
consider expected value of x before reaching g2 (after g0 or g1)
consider how often g2 is expected to be executed
consider values of LCE(g2, x)’s variables in full run

`0

`1

`2

t0 ∈ g0

1
2 : t1 ∈ g1
if(i > 0)
x = x + i

i = i− 1

1
2 : t4 ∈ g1
if(i > 0)

t2 ∈ g2
if(i ≤ 0)

t3 ∈ g3
if(x > 0)
x = x− 1

⇒ replace LCE(g1, x) by LCE(g1, x) [i / i0 ]

i20



Expected Size Bounds

Expected size bounds

i0
2

SE(g0, v) = v0, SE(g1, i) = i0, SE(g1, x) =

SE(g0, x) +

x0 + i20

Computing expected size bound for variable v after transition g

SE(g , v) =

E(S

SE(g ′, v)

)

+

E(R

RE(g) · LCE(g , v) [u/max(S(t ′, u), ...)]

)

LCE(g ,v): expect. local change by g
g ′, t ′: pre-transition of g

Expected value not multiplicative!
But: LC independent of runtime

LCE(g2, x) = 0

i
2

For global result:
consider expected value of x before reaching g2 (after g0 or g1)
consider how often g2 is expected to be executed
consider values of LCE(g2, x)’s variables in full run

`0

`1

`2

t0 ∈ g0

1
2 : t1 ∈ g1
if(i > 0)
x = x + i

i = i− 1

1
2 : t4 ∈ g1
if(i > 0)

t2 ∈ g2
if(i ≤ 0)

t3 ∈ g3
if(x > 0)
x = x− 1

⇒ add max(SE(g0, x)

x0

, SE(g1, x)

x0 + i20

) to LCE(g2, x)



Expected Size Bounds

Expected size bounds

i0
2

SE(g0, v) = v0, SE(g1, i) = i0, SE(g1, x) =

SE(g0, x) +

x0 + i20

Computing expected size bound for variable v after transition g

SE(g , v) =

E(S

SE(g ′, v)

)

+

E(R

RE(g) · LCE(g , v) [u/max(S(t ′, u), ...)]

)

LCE(g ,v): expect. local change by g
g ′, t ′: pre-transition of g

Expected value not multiplicative!
But: LC independent of runtime

LCE(g2, x) = 0

i
2

For global result:
consider expected value of x before reaching g2 (after g0 or g1)
consider how often g2 is expected to be executed
consider values of LCE(g2, x)’s variables in full run

`0

`1

`2

t0 ∈ g0

1
2 : t1 ∈ g1
if(i > 0)
x = x + i

i = i− 1

1
2 : t4 ∈ g1
if(i > 0)

t2 ∈ g2
if(i ≤ 0)

t3 ∈ g3
if(x > 0)
x = x− 1

⇒ add max(

SE(g0, x)

x0 , SE(g1, x)

x0 + i20

) to LCE(g2, x)
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Expected size bounds

i0
2

SE(g0, v) = v0, SE(g1, i) = i0, SE(g1, x) =

SE(g0, x) +

x0 + i20

Computing expected size bound for variable v after transition g

SE(g , v) =

E(S

SE(g ′, v)

)

+

E(R

RE(g) · LCE(g , v) [u/max(S(t ′, u), ...)]

)

LCE(g ,v): expect. local change by g
g ′, t ′: pre-transition of g

Expected value not multiplicative!
But: LC independent of runtime

LCE(g2, x) = 0

i
2

For global result:
consider expected value of x before reaching g2 (after g0 or g1)
consider how often g2 is expected to be executed
consider values of LCE(g2, x)’s variables in full run

`0

`1

`2

t0 ∈ g0

1
2 : t1 ∈ g1
if(i > 0)
x = x + i

i = i− 1

1
2 : t4 ∈ g1
if(i > 0)

t2 ∈ g2
if(i ≤ 0)

t3 ∈ g3
if(x > 0)
x = x− 1

⇒ add max(

SE(g0, x)

x0 ,

SE(g1, x)

x0 + i20 ) to LCE(g2, x)



Expected Size Bounds

Expected size bounds

i0
2

SE(g0, v) = v0, SE(g1, i) = i0, SE(g1, x) =

SE(g0, x) +

x0 + i20

Computing expected size bound for variable v after transition g

SE(g , v) =

E(S

SE(g ′, v)

)

+

E(R

RE(g) · LCE(g , v) [u/max(S(t ′, u), ...)]

)

LCE(g ,v): expect. local change by g
g ′, t ′: pre-transition of g

Expected value not multiplicative!
But: LC independent of runtime

LCE(g2, x) = 0

i
2

For global result:
consider expected value of x before reaching g2 (after g0 or g1)
consider how often g2 is expected to be executed
consider values of LCE(g2, x)’s variables in full run

`0

`1

`2

t0 ∈ g0

1
2 : t1 ∈ g1
if(i > 0)
x = x + i

i = i− 1

1
2 : t4 ∈ g1
if(i > 0)

t2 ∈ g2
if(i ≤ 0)

t3 ∈ g3
if(x > 0)
x = x− 1

⇒ add

max(SE(g0, x)x0 , SE(g1, x)

x0 + i20

)

to LCE(g2, x)
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Expected size bounds

i0
2

SE(g0, v) = v0, SE(g1, i) = i0, SE(g1, x) =

SE(g0, x) +

x0 + i20

Computing expected size bound for variable v after transition g

SE(g , v) =

E(S

SE(g ′, v)

)

+

E(R

RE(g) · LCE(g , v) [u/max(S(t ′, u), ...)]

)

LCE(g ,v): expect. local change by g
g ′, t ′: pre-transition of g

Expected value not multiplicative!
But: LC independent of runtime

LCE(g2, x) = 0

i
2

For global result:
consider expected value of x before reaching g2 (after g0 or g1)
consider how often g2 is expected to be executed
consider values of LCE(g2, x)’s variables in full run

`0

`1

`2

t0 ∈ g0

1
2 : t1 ∈ g1
if(i > 0)
x = x + i

i = i− 1

1
2 : t4 ∈ g1
if(i > 0)

t2 ∈ g2
if(i ≤ 0)

t3 ∈ g3
if(x > 0)
x = x− 1

⇒ add

max(SE(g0, x)x0 , SE(g1, x)

x0 + i20

)

to 0



Expected Size Bounds

Expected size bounds

i0
2

SE(g0, v) = v0, SE(g1, i) = i0, SE(g1, x) =

SE(g0, x) +

x0 + i20 = SE(g2, x)

Computing expected size bound for variable v after transition g

SE(g , v) =

E(S

SE(g ′, v)

)

+

E(R

RE(g) · LCE(g , v) [u/max(S(t ′, u), ...)]

)

LCE(g ,v): expect. local change by g
g ′, t ′: pre-transition of g

Expected value not multiplicative!
But: LC independent of runtime

LCE(g2, x) = 0

i
2

For global result:
consider expected value of x before reaching g2 (after g0 or g1)
consider how often g2 is expected to be executed
consider values of LCE(g2, x)’s variables in full run

`0

`1

`2

t0 ∈ g0

1
2 : t1 ∈ g1
if(i > 0)
x = x + i

i = i− 1

1
2 : t4 ∈ g1
if(i > 0)

t2 ∈ g2
if(i ≤ 0)

t3 ∈ g3
if(x > 0)
x = x− 1

⇒ add

max(SE(g0, x)x0 , SE(g1, x)

x0 + i20

)

to 0



Inferring Expected Runtimes of Probabilistic Programs

alternate finding expected runtime and size bounds

compute size bounds by combining local change bound with runtime bounds

compute runtime bounds for program parts based on size bounds for preceding parts

based on both expected and non-probabilistic bounds for program parts

modular: only consider small program parts at a time

linear probabilistic ranking functions

approach scales to larger programs

Implementation in KoAT

all 46 benchmarks from Absynth

29 new benchmarks including examples
from TPDB enriched with randomization

timeout of 5 minutes

Bound KoAT Absynth eco-imp

O(1) 8 7 8
O(n) 42 35 35
O(n2) 15 9 15
O(n>2) 2 0 0

EXP 1 0 0
∞ 7 15 14
TO 0 9 3

Avg. Time 4.26 s 3.53 s 0.93 s
Success 91 % 68 % 77 %
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Inferring Expected Runtimes of Probabilistic Programs

alternate finding expected runtime and size bounds

compute size bounds by combining local change bound with runtime bounds
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