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@ Solution: modular approach which alternates between finding runtime and size bounds
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Computing runtime bound for t € P’ to

R(t) = R(t') - (&) [v/S(t',v)] tr
@ /: entry location of P’ i@ > 0). ED
p .. p Xx=x+1
@ t': pre-transition of P L
i=i-—-1 B

@ Modular use of ranking function for subset P’ = {t3} if(i <0)
o t(fh)=x Thus: t3 € PL 0
@ Executions of P’ starting in ¢ use t3 at most t(¢;) = x times. t3
@ For global result: ;{f(i ;_0)1

o consider how often P’ is reached (by 1)
e consider value of P’’s initial variable x in full run

= replace t(¢2) by v(l2) [x / S(tr, %))



Modular Runtime Bounds from Ranking Functions

Current bounds
R(to) =1, R(t) =1, R(t1) = i0, R(t3) = 1 - S(i.x%) @
Computing runtime bound for t € P’ to
R(t) = R(t') - (&) [v/S(t',v)] tr
@ /: entry location of P’ i@ > 0). ED
p .. p Xx=x+1

@ t': pre-transition of P L

i=i-—-1 B
@ Modular use of ranking function for subset P’ = {t3} if(i <0)
o t(fh)=x Thus: t3 € PL 0
@ Executions of P’ starting in ¢ use t3 at most t(¢;) = x times. t3
@ For global result: ;{f(i ;_0)1

o consider how often P’ is reached (by 1)
e consider value of P’’s initial variable x in full run

= replace t(¢2) by v(l2) [x / S(tr, %))



Modular Runtime Bounds from Ranking Functions

Current bounds

. P l
R(tg) =1, R(t2) =1, R(tl) = 1ip, R(t3) = 1 - (XO } 16) @
Computing runtime bound for t € P’ to

R(t) = R(t') - (&) [v/S(t,v)] t;
@ (: entry location of P’ (i > 0). ED
p . p Xx=x+1
@ t': pre-transition of P .
i=i-—-1 B

@ Modular use of ranking function for subset P’ = {t3} if(1 < 0)
o () =x Thus: t3 € PL 0
@ Executions of P’ starting in ¢ use t3 at most t(¢z) = x times. t3
@ For global result: ;{f(f ;_0)1

o consider how often P’ is reached (by 1)
o consider value of P’'s initial variable x in full run

= replace t(¢2) by t(l2) [x / S(t0. %))



Modular Runtime Bounds from Ranking Functions

Runtime bounds
R(tg) =1, R(t2) =1, R(tl) =1ip, R(t3) = Xg + i% @
Computing runtime bound for t € P’ to
R(t) = R(t') - () [v/S(t,v)] tr
@ /: entry location of P’ if(i > 0). ED
p . p X=x+1

@ t': pre-transition of P .

i=i-—-1 B
@ Modular use of ranking function for subset P’ = {t3} if(1 < 0)
Y t(ﬂz) =x Thus: t3 € P; I
@ Executions of P’ starting in ¢ use t3 at most t(¢y) = x times. t3
@ For global result: == 1)

x=x-—1

o consider how often P’ is reached (by 1)
o consider value of P’'s initial variable x in full run

= replace t(¢2) by t(l2) [x / S(t2. )]



Modular Runtime Bounds from Ranking Functions
Runtime bounds
, 'R(fz) =1, R(tl) = 1ip, R(t3) = Xg + i%

Computing runtime bound for t € P’

R(t) = R(t") - «(O)[v/S(t,v)] ty

@ ¢: entry location of P’ ;f(i ig)l
@ t’: pre-transition of P’ i _ i—1

@ Modular use of ranking function for subset P’ = {t3} f(1 <0)
o t(lh) =x Thus: t3 € PL

@ Executions of P’ starting in ¢ use t3 at most t(¢y) = x times. t3

@ For global result: ;f(i ;_0)1

o consider how often P’ is reached (by 1)
o consider value of P’'s initial variable x in full run

Overall runtime is bounded by R(ty) + ...+ R(t3) = 1 + ig + | + xo + i2.



Expected Runtime Bounds from Probabilistic Ranking Functions

to

itfl(i > 0) ED

x=x+4+1i
i=i-—1 t
if(i <0)

@
t3
if(x > 0)

x=x—1




Expected Runtime Bounds from Probabilistic Ranking Functions

to € 80
%:tlegl %:t4€g1
if(i > 0) ED:) if(i > 0)
x=x+4+1i
i:i—l t2€g2

if(i <0)

%)
t3 € 83
if(x > 0)

x=x—1




Expected Runtime Bounds from Probabilistic Ranking Functions

Initial bounds
, Ri(go) =1 as gy and g» are not in loops




Expected Runtime Bounds from Probabilistic Ranking Functions

Initial bounds
REe(g)=1, Re(g2)=1 as go and g» are not in loops @
to € 80
ranking function t for program P 1
] 7 heg %:t46g1
@ t maps locations to R[vq, ..., v,] if(i > 0) 121 if(i > 0)
@ Non-Increase: no transition in P increases value of ¢ = }F+ *
i=i-1 th € &
o Decrease: value of t decreases by 1 for P.. C P if(i < 0)
@ Boundedness: v > 0 after P C P
y €2
3 € &3
if(x > 0)

x=x—1




Expected Runtime Bounds from Probabilistic Ranking Functions

Initial bounds
Re(go)=1, Re(g2)=1 as go and gz are not in loops @
to € 8o
Probabilistic ranking function t for program P 1
;- heg %:t46g1
@ t maps locations to R[vy, ..., vy] if(i > 0) ED:) if(i > 0)
@ Non-Increase: no transition in P increases value of t X - }F+ :
i=i-1 t € &
@ Decrease: value of v decreases by 1 for P.. C P if(i <0)
@ Boundedness: v > 0 after P C P
4 €2
3 € &3
if(x > 0)

x=x—1




Expected Runtime Bounds from Probabilistic Ranking Functions

Initial bounds
: o
REe(g)=1, Re(g2)=1 as go and g» are not in loops
to € 8o
Probabilistic ranking function t for program P 1
?:tlegl %:t46g1
o for all g € P., set Re(g) = v(4) if(i > 0) 01 if(i > 0)
@ Non-Increase: no transition in P increases value of t X - }F+ :
i=i-1 t € &
@ Decrease: value of v decreases by 1 for P.. C P if(i <0)
@ Boundedness: v > 0 after P C P .
2
3 € &3
if(x > 0)

x=x—1




Expected Runtime Bounds from Probabilistic Ranking Functions

Initial bounds
: o
REe(g)=1, Re(g2)=1 as go and g» are not in loops
to € 8o
Probabilistic ranking function t for program P 1
?:tlegl %:t46g1
o for all g € P., set Re(g) = v(4) if(i > 0) 01 if(i > 0)
@ Non-Increase: no transition in P increases expected value of t X - }F+ :
i=i-1 t € &
@ Decrease: value of v decreases by 1 for P.. C P if(i <0)
@ Boundedness: v > 0 after P C P
4 €2
3 € &3
if(x > 0)

x=x—1




Expected Runtime Bounds from Probabilistic Ranking Functions

Initial bounds
: o
REe(g)=1, Re(g2)=1 as go and g» are not in loops
to € 80
Probabilistic ranking function t for program P 1
2'hEa ;i tEg
o for all g € P., set Re(g) = v(4) if(i > 0) 01 if(i > 0)
@ Non-Increase: no transition in P increases expected value of t X - }F+ :
i=i-1 th € &
@ Decrease: expected value of t decreases by 1 for P C P if(i <0)
@ Boundedness: v > 0 after P. C P
4 €2
3 € &3
if(x > 0)

x=x—1




Expected Runtime Bounds from Probabilistic Ranking Functions

Initial bounds
: o
REe(g)=1, Re(g2)=1 as go and g» are not in loops
to € 80
Probabilistic ranking function t for program P 1
?:tlegl %:t46g1
o for all g € P., set Re(g) = v(4) if(i > 0) 01 if(i > 0)
@ Non-Increase: no transition in P increases expected value of t X - }F+ :
i=i-1 th € &
@ Decrease: expected value of t decreases by 1 for P C P if(i <0)
@ Boundedness: v > 0 after P C P
4 €2
3 € &3
@ t(¢) =2-1i for all locations ¢ if(x > 0)
x=x-—1




Expected Runtime Bounds from Probabilistic Ranking Functions

Initial bounds
: o
REe(g)=1, Re(g2)=1 as go and g» are not in loops

Probabilistic ranking function t for program P

;iheg 3itiEg
@ forall g € P, set Ri(g) = t(fo) if(i > 0) 141 if(1 > 0)
X=X 1

@ Non-Increase: no transition in P increases expected value of t

i=1i-— 1 t2 (S g2
@ Decrease: expected value of t decreases by 1 for P C P if(i < 0)
@ Boundedness: t > 0 after P.. C P .
2
t3 € 83
@ t(¢) =2-1i for all locations ¢ if(x > 0)
x=x—1

@ Thus: g1 € Po .




Expected Runtime Bounds from Probabilistic Ranking Functions

Initial bounds
: o
REe(g)=1, Re(g2)=1 as go and g» are not in loops

Probabilistic ranking function t for program P

;iheg 3itiEg
@ forall g € P, set Ri(g) = t(fo) if(i > 0) 141 if(1 > 0)
X=X 1

@ Non-Increase: no transition in P increases expected value of t

i=i-1 t € &
@ Decrease: expected value of t decreases by 1 for P C P if(i < 0)
@ Boundedness: t > 0 after P.. C P .
2
t3 € 83
@ t(¢) =2-1i for all locations ¢ if(x > 0)
x=x—1
@ Thus: g1 € Po .

v(l1) > 5 v(l)[x/x+i,1/i—1] + () [x/x i/i] +1



Expected Runtime Bounds from Probabilistic Ranking Functions

Initial bounds
: o
REe(g)=1, Re(g2)=1 as go and g» are not in loops

Probabilistic ranking function t for program P

;iheg 3itiEg
@ forall g € P, set Ri(g) = t(fo) if(i > 0) 141 if(1 > 0)
X=X 1

@ Non-Increase: no transition in P increases expected value of t

i=i-1 t € &
@ Decrease: expected value of t decreases by 1 for P C P if(i < 0)
@ Boundedness: t > 0 after P.. C P .
2
t3 € 83
@ t(¢) =2-1i for all locations ¢ if(x > 0)
x=x—1
@ Thus: g1 € Po .

2-i > Lol [x/x+i,i/i-1] + 3oe(t)[x/x,1/1] +1



Expected Runtime Bounds from Probabilistic Ranking Functions

Initial bounds
: o
REe(g)=1, Re(g2)=1 as go and g» are not in loops

Probabilistic ranking function t for program P

;iheg 3itiEg
@ forall g € P, set Ri(g) = t(fo) if(i > 0) 141 if(1 > 0)
X=X 1

@ Non-Increase: no transition in P increases expected value of t

i=i-1 t € &
@ Decrease: expected value of t decreases by 1 for P C P if(i < 0)
@ Boundedness: t > 0 after P.. C P .
2
t3 € 83
@ t(¢) =2-1i for all locations ¢ if(x > 0)
x=x—1
@ Thus: g1 € Po .

21 > 5. 2-(i—1) + Lov(ly)[x/x,1/4] + 1



Expected Runtime Bounds from Probabilistic Ranking Functions

Initial bounds
: o
REe(g)=1, Re(g2)=1 as go and g» are not in loops

Probabilistic ranking function t for program P

;iheg 3itiEg
@ forall g € P, set Ri(g) = t(fo) if(i > 0) 141 if(1 > 0)
X=X 1

@ Non-Increase: no transition in P increases expected value of t

i=1i-— 1 t2 (S g2
@ Decrease: expected value of t decreases by 1 for P C P if(i < 0)
@ Boundedness: t > 0 after P.. C P .
2
t3 € 83
@ t(¢) =2-1i for all locations ¢ if(x > 0)
x=x—1
@ Thus: g1 € Po .
2.1 > 1. 2-(i—1) + 1 2.1 +1



Expected Runtime Bounds from Probabilistic Ranking Functions

Initial bounds
. Y4
Re(g0)=1, Re(g2)=1, Re(g1)=2-10 @

Probabilistic ranking function t for program P

;iheg 3itiEg
@ forall g € P, set Ri(g) = t(fo) if(i > 0) 141 if(1 > 0)
X=X 1

@ Non-Increase: no transition in P increases expected value of t

i=i—-1 th €
@ Decrease: expected value of t decreases by 1 for P C P if(i < 0)
@ Boundedness: t > 0 after P.. C P .
2
t3 € 83
@ t(¢) =2-1i for all locations ¢ if(x > 0)
x=x—1
@ Thus: g1 € Po .
2.1 > 1. 2-(i—1) + 1 2.1 +1



Modular Expected Runtime Bounds from Probabilistic Ranking Functions

Current bounds
()

Re(g)=1, Re(g2)=1 Re(g1)=2-io
to € 8o
%3t1€g1 Linea
i > 0) EDD if(i > 0)
X=x-+1
i=1i-— 1 t2 E &
if(i < 0)

4o
t3 € 83
if(x > 0)

x=x—1




Modular Expected Runtime Bounds from Probabilistic Ranking Functions

Current bounds
()

Re(g)=1 Re(g2)=1, Re(g1)=2"1io
Computing runtime bound for g € P’ to € 8o
R (g) = 'R,(g/) . t(ﬁ)[v/s (g/7v)] %:tIEgl %:t46g1

@ /: entry location of P’ :(f(i ;-I(—))l EDD if(1 > 0)
@ g’ : pre-transition of P’ i—i-1 bEg

= 2 €82

if(i <0)
1%
i3 € g3
if(x > 0)




Modular Expected Runtime Bounds from Probabilistic Ranking Functions

Current bounds
()

Re(g)=1, Re(g2)=1 Re(g1)=2-io
Computing expected runtime bound for g € P’ to € 8o
R (g) = 'R,(g/) . t(ﬁ)[v/s (g/7v)] %:tIEgl %:t46g1

@ /: entry location of P’ :(f(i ;-I(—))l EDD if(1 > 0)
@ g’ : pre-transition of P’ i—i-1 bEg

= 2 € &2

if(1 < 0)
1%
t3 € 83
if(x > 0)




Modular Expected Runtime Bounds from Probabilistic Ranking Functions

Current bounds
()

Re(g)=1, Re(g2)=1 Re(g1)=2-io
Computing expected runtime bound for g € P’ to € 8o
Re(g) = E(R(g") - w(O[v/S (&', v)]) 3 heEg litneg

@ /: entry location of P’ :(f(i ;-I(—))l EDD if(1 > 0)
@ g’ : pre-transition of P’ i—i-1 bEg

= 2 € &2

if(1 < 0)
1%
t3 € 83
if(x > 0)




Modular Expected Runtime Bounds from Probabilistic Ranking Functions

Current bounds
(o)

Re(g)=1, Re(g2)=1 Re(g1)=2-io
Computing expected runtime bound for g € P’ to € 8o
Re(g) = E(R(g)) - w(O[v/S (g, v)]) 3 thEg litweg

@ /: entry location of P’ :(f(i ;-I(—))l EDD if(1 > 0)
@ g’ : pre-transition of P’ i—i-1 bEg

= 2 € &2

if(1 < 0)
0o
t3 € 83
if(x > 0)




Modular Expected Runtime Bounds from Probabilistic Ranking Functions

Current bounds
()

Re(g0) =1, Re(g2)=1, Re(g1)=2-10
Computing expected runtime bound for g € P’ to € 8o
Re(g) =  R() - E(x(O[v/S (g',v)]) 3 hEg litweg

@ /: entry location of P’ :(f(i ;-I(—))l EDD if(1 > 0)
@ g’,t’: pre-transition of P’ i—i-1 bie g

= 2 € &2

if(1 < 0)
1%
t3 € 83
if(x > 0)




Modular Expected Runtime Bounds from Probabilistic Ranking Functions

Current bounds
()

Re(g0) =1, Re(g2)=1, Re(g1)=2-10
Computing expected runtime bound for g € P’ to € 8o
Re(g) =  R() - E(x(O[v/S (g',v)]) 3 hEg litweg

@ /: entry location of P’ :(f(i ;-E)l EDD if(1 > 0)
@ g’,t’: pre-transition of P’ i—i-1 bie g

= 2 € &2

if(1 < 0)
1%
t3 € 83
if(x > 0)




Modular Expected Runtime Bounds from Probabilistic Ranking Functions

Current bounds
(o)

Re(g0) =1, Re(g2)=1, Re(g1)=2-10
Computing expected runtime bound for g € P’ to € 8o
Rz(g) =  R(t') - w(O)[v/Selg' V)] 1heEam litweg

@ /: entry location of P’ :(f(i ij_))l EDD if(1 > 0)
@ g’,t': pre-transition of P’ i—i-1 bie g

= 2 € &2

if(1 < 0)
%)
t3 € 83
if(x > 0)




Modular Expected Runtime Bounds from Probabilistic Ranking Functions

Current bounds
()

Re(g)=1, Re(g2)=1 Re(g1)=2-io
Computing expected runtime bound for g € P’ to € 8o
Rz(g) =  R(t') - w(O)[v/Selg' V)] 1iheEam litneg

@ /: entry location of P’ :(f(i ;-I(—))l EDD if(1 > 0)
@ g’,t': pre-transition of P’ i—i-1 bie g

= 2 €8

@ Modular use of ranking function for subset P’ = {g3} if(i <0)
1%
3 € 83
if(x > 0)




Modular Expected Runtime Bounds from Probabilistic Ranking Functions

Current bounds
()

Re(g)=1, Re(g2)=1 Re(g1)=2-io
Computing expected runtime bound for g € P’ to € 8o
Rz(g) =  R(t') - w(O)[v/Selg' V)] 1iheEam litweg
@ /: entry location of P’ :(f(i ;-I(—))l EDD if(1 > 0)
@ g’,t': pre-transition of P’ i—i-1 bie g
= 2 €8
@ Modular use of ranking function for subset P’ = {g3} if(i <0)
° t(lh)=x 0
3 € 83
if(x > 0)




Modular Expected Runtime Bounds from Probabilistic Ranking Functions

Current bounds
Y4
t(£2) @

Re(g0)=1, Re(g2)=1, Re(g1)=2-i0, Re(g3)=
Computing expected runtime bound for g € P’ to € 8o
Ri(g) = R(t') - w(0)[v/S:(g’ V)] % it Egl % it € g1
@ /: entry location of P’ :(f(i i-l(-))l EDD if(1 > 0)
@ g’ t': pre-transition of P’ i—i-1 ble g
= 2 € &
@ Modular use of ranking function for subset P’ = {g3} if(1 <0)
Py t(fg) =x Thus: g3 € ’P; E2
i3 € &3
if(x > 0)




Modular Expected Runtime Bounds from Probabilistic Ranking Functions

Current bounds
Y4
t(£2) @

Re(g)=1 Re(g2)=1, Re(g1) =210, Re(gs)=
Computing expected runtime bound for g € P’ to € &
Ri(g) = R(t') - w(0)[v/S:(g’ V)] % it Egl % it € g1
@ /: entry location of P’ :(f(i i-l(-))l EDD if(1 > 0)
@ g’,t': pre-transition of P’ i=1i-1 g
= 2 € &

@ Modular use of ranking function for subset P’ = {g3} if(1 <0)

@ t(fh)=x Thus: g3 € PL A

@ Executions of P’ starting in ¢, use g3 at most t({2) = x times. t3 € g3

if(x > 0)




Modular Expected Runtime Bounds from Probabilistic Ranking Functions

Current bounds

Re(go)=1, Re(g)=1, Re(g1)=2-i0, Re(gs)= t(£2)

Computing expected runtime bound for g € P’

Re(g) =  R(t) e(€) [v/Se(g’, vl

@ /. entry location of P’
@ g’ t': pre-transition of P’

@ Modular use of ranking function for subset P’ = {g3}

e t(lh)=x Thus: g3 € PL

@ Executions of P’ starting in ¢, use g3 at most t({2) = x times.

@ For global result:
e consider how often P’ is reached (by 1)

: 1
: '. —:t46g1
if(i > 0) EDD if(i > 0)
x=x+4+1i




Modular Expected Runtime Bounds from Probabilistic Ranking Functions

Current bounds

Re(go)=1, Re(g)=1, Re(g1)=2-i0, Re(gs)= t(£2)

Computing expected runtime bound for g € P’

Re(g) =  R() - w(O)[v/S(g', V)]

@ /. entry location of P’
@ g’ t': pre-transition of P’

@ Modular use of ranking function for subset P’ = {g3}

e t(lh)=x Thus: g3 € PL

@ Executions of P’ starting in ¢, use g3 at most t({2) = x times.

@ For global result:
e consider how often P’ is reached (by 1)

to € 8o
%:tlegl Tiueg
if(1 > 0) EDD if(1 > 0)
x=x+4+1i
i=i-1 t) € &
if(i <0)
%)
t3 € 83
if(x > 0)
x=x—1

= multiply t>'s non-probabilistic runtime bound 72(1,) with local bound t(¢>)



Modular Expected Runtime Bounds from Probabilistic Ranking Functions

Current bounds

Computing expected runtime bound for g € P’
Ri(g) = R(t'") - w(0)[v/S:(g’ V)] % it Egl % Tt € g1
@ /: entry location of P’ :(f(i i_ﬁ)l EDD if(i > 0)
@ g’,t': pre-transition of P’ i—i-1 o
2 € 82

@ Modular use of ranking function for subset P’ = {g3} if(1 <0)

Py t(fg) =x Thus: g3 € ’P; E2

@ Executions of P’ starting in ¢, use g3 at most t({2) = x times. t3 € g3

if|
@ For global result: ;{(i ;_0)1

e consider how often P’ is reached (by 1)

= multiply t>'s non-probabilistic runtime bound 72(1,) with local bound t(¢>)



Modular Expected Runtime Bounds from Probabilistic Ranking Functions

Current bounds

Re(go)=1 Re(g)=1 Re(g1)=2-i0, Re(gz)= 1 - t(f2)

Computing expected runtime bound for g € P’

Re(g) =  R() - w(O)[v/S(g', V)]

@ /. entry location of P’
@ g’,t': pre-transition of P’

@ Modular use of ranking function for subset P’ = {g3}

e t(lh)=x Thus: g3 € PL

@ Executions of P’ starting in ¢, use g3 at most t({2) = x times.

@ For global result:
e consider how often P’ is reached (by 1)

to € 8o
%:tlegl Tiueg
if(1 > 0) EDD if(1 > 0)
x=x+4+1i
i=i-1 t) € &
if(i <0)
%)
t3 € 83
if(x > 0)
x=x—1

= multiply t>'s non-probabilistic runtime bound 72(1,) with local bound t(¢>)



Modular Expected Runtime Bounds from Probabilistic Ranking Functions

Current bounds

Re(go)=1 Re(g)=1, Re(g1)=2-i0, Re(g3)= t(¢2)

Computing expected runtime bound for g € P’

Re(g) =  R(t) - w(O)[v/S(g',v)]

@ /. entry location of P’
@ g’ t': pre-transition of P’

@ Modular use of ranking function for subset P’ = {g3}

e t(lh)=x Thus: g3 € PL

@ Executions of P’ starting in ¢> use g3 at most t({2) = x times.

@ For global result:
e consider how often P’ is reached (by 1)

to € 8o
%:tlegl Tiueg
if(1 > 0) EDD if(1 > 0)
x=x+4+1i
i=i-1 t) € &
if(i <0)
%)
t3 € 83
if(x > 0)
x=x—1

= multiply t>'s non-probabilistic runtime bound 72(1,) with local bound t(¢>)



Modular Expected Runtime Bounds from Probabilistic Ranking Functions

Current bounds
. l
Re(g)=1, Re(g2)=1 Re(g1)=2-io, Re(g3)= t(2) @
Computing expected runtime bound for g € P’ to € &
Ri(g) = R(t') - w(0)[v/S:(g’ V)] % it €81 % it €41
@ /: entry location of P’ ;f(i i_ﬁ)l EDD if(1 > 0)
@ g’ t': pre-transition of P’ i=1i-1 -
2 € &2

@ Modular use of ranking function for subset P’ = {g3} if(1 <0)

@ t(fh)=x Thus: g3 € PL A

@ Executions of P’ starting in ¢> use g3 at most t({2) = x times. t3 € g3

if
@ For global result: ;{(i ;_0)1

e consider how often P’ is reached (by 1)
o consider expected value of P’’s initial variable x in full run

= multiply t>'s non-probabilistic runtime bound 72(1,) with local bound t(¢>)




Modular Expected Runtime Bounds from Probabilistic Ranking Functions

Current bounds
. l
Re(g)=1, Re(g2)=1 Re(g1)=2-io, Re(g3)= t(2) @
Computing expected runtime bound for g € P’ to € &
Ri(g) = R(t') - w(0)[v/S:(g’ V)] % it €81 % it €41
@ /: entry location of P’ :(f(i i_ﬁ)l EDD if(1 > 0)
@ g’ t': pre-transition of P’ i=1i-1 -
2 € &2

@ Modular use of ranking function for subset P’ = {g3} if(1 <0)

@ t(fh)=x Thus: g3 € PL A

@ Executions of P’ starting in ¢> use g3 at most t({2) = x times. t3 € g3

if
@ For global result: ;{(i ;_0)1

e consider how often P’ is reached (by 1)
o consider expected value of P’’s initial variable x in full run

= replace t(¢2) by t(l2) [x/ Sr(g0. )]



Modular Expected Runtime Bounds from Probabilistic Ranking Functions

Current bounds
. . l
Re(g)=1 Re(g2)=1 Re(g1)=2-i0, Rr(g3)= t(£2) [x/S:(g2. x)] @
Computing expected runtime bound for g € P’ to € &
Ri(g) = R(t') - w(0)[v/S:(g’ V)] % it €81 % it €41
@ /: entry location of P’ :(f(i i_ﬁ)l EDD if(1 > 0)
@ g’ t': pre-transition of P’ i=1i-1 -
2 € &2

@ Modular use of ranking function for subset P’ = {g3} if(1 <0)

@ t(fh)=x Thus: g3 € PL A

@ Executions of P’ starting in ¢> use g3 at most t({2) = x times. t3 € g3

if
@ For global result: ;{(i ;_0)1

e consider how often P’ is reached (by 1)
o consider expected value of P’’s initial variable x in full run

= replace t(¢2) by t(l2) [x/ Sr(g0. )]



Modular Expected Runtime Bounds from Probabilistic Ranking Functions

Current bounds
. . l
Re(g)=1 Re(g2)=1 Re(g)=2-i0, Re(gs)= =x [x/Sz(g2. ¥)] @
Computing expected runtime bound for g € P’ to € &
Ri(g) = R(t') - w(0)[v/S:(g’ V)] % it €81 % it €41
@ /: entry location of P’ :(f(i i_ﬁ)l EDD if(1 > 0)
@ g’ t': pre-transition of P’ i=1i-1 -
2 € &2

@ Modular use of ranking function for subset P’ = {g3} if(1 <0)

@ t(fh)=x Thus: g3 € PL A

@ Executions of P’ starting in ¢> use g3 at most t({2) = x times. t3 € g3

if
@ For global result: ;{(i ;_0)1

e consider how often P’ is reached (by 1)
o consider expected value of P’’s initial variable x in full run

= replace t(¢2) by t(l2) [x/ Sr(g0. )]



Modular Expected Runtime Bounds from Probabilistic Ranking Functions

Current bounds
Re(g)=1, Re(g2)=1 Re(g1)=2-i0, Re(g3)=5(g. x)

Computing expected runtime bound for g € P’

Re(g) =  R(t) e(€) [v/Se(g’, v)]

@ /. entry location of P’
@ g’ t': pre-transition of P’

@ Modular use of ranking function for subset P’ = {g3}
e t(lh)=x Thus: g3 € PL
@ Executions of P’ starting in ¢> use g3 at most t({2) = x times.

@ For global result:
e consider how often P’ is reached (by 1)
o consider expected value of P’’s initial variable x in full run

= replace t(¢2) by t(l2) [x/ Sr(g0. )]

%itlegl
if(i > 0)
x=x+4+1i
i=i—-1
t3 € 83
if(x > 0)
x=x—1

EDD i%f(i > 0)




Modular Expected Runtime Bounds from Probabilistic Ranking Functions

Expected runtime bounds
. ) l
Re(go)=1, Re(g2)=1, Re(g1)=2-1i0, Rr(gs)=x%o + i3 @
Computing expected runtime bound for g € P’ to € &
R(e) = R(Y) - (Ov/Sulgv)] Lineg T
@ /: entry location of P’ If(i = 0). EDD if(1 > 0)
o X=x+1
@ g, t’: pre-transition of P’ P11 o
2 € &2
@ Modular use of ranking function for subset P’ = {g3} if(1 <0)
Py t(ﬁz) =x Thus: 83 € ,P; E2
@ Executions of P’ starting in 5 use g3 at most t({,) = x times. t3 € g3
if
@ For global result: ;(f ;_0)1
o consider how often P’ is reached (by 1) -

o consider expected value of P’'s initial variable x in full run

= replace t(¢2) by t(l2) [x / Sr(g0. )]



Modular Expected Runtime Bounds from Probabilistic Ranking Functions

Expected runtime bounds
, Ri(g2) =1, Re(g1)=2-10, Re(gs)==%0 + i§

Computing expected runtime bound for g € P’

Re(g) = R(t') - w(0)[v/S:(e',v)] % ‘hEg litheg
@ (: entry location of P’ 'f(i >0) if(i > 0)

@ g, t’: pre-transition of P’

@ Modular use of ranking function for subset P’ = {g3}

@ t(l)=x Thus: g3 € PL @

@ Executions of P’ starting in 5 use g3 at most t({,) = x times. t3 € g3
if(x > 0)

@ For global result: o= 5% — 1l

o consider how often P’ is reached (by 1)
o consider expected value of P’'s initial variable x in full run

Overall expected runtime is bounded by R(go) + ...+ Rr(g3) = 1 +2-ip+ 1 +xo + i3.




Size Bounds

t
if(i > 0) a

x=x+1
if(i < 0)

t3

if(x > 0)
x=x—1




t
if(i > 0) a

x=x+1
if(i < 0)

t3

if(x > 0)
x=x—1




Size bounds
S(to, V) = v, S(tl, i) =iy @
to
t
if(i > 0) C@D
XxX=x4+1
i=i—1 t
if(i <0)
%!
t3
if(x > 0)

x=x—1




Size bounds
(o)

S(to, V) =\, S(tl, i) =iy
Computing size bound for variable v after transition t to
S(t,v) = LC(t,v) ty

if(i > 0) ED
@ LC(t,v): local change by one application of ¢ XxX=x-+1i

i=i-—1 t

if(i <0)
12!
t3
if(x > 0)

x=x—1




Size bounds
S(th V) = Vo, S(t17 1) =1 @
Computing size bound for variable v after transition t to
S(t,v) = LC(t,v) ty
if(i > 0) C@D
@ LC(t,v): local change by one application of ¢ x=x-+1i
i=i—1 t
if(i <0)
o ﬁC(tl,X) =1
2
t3
if(x > 0)

x=x—1




Size bounds
S(to,v): Vo, S(tl,i)zio,S(tl,X) = EC(tl,X) @
Computing size bound for variable v after transition t to
S(t,v) = LC(t,v) t1

if(i > 0) C@D
@ LC(t,v): local change by one application of t Xx=x-+1i

i=i—1 t

if(i <0)
o ﬁC(tl,X) =1
12!
t3

if(x > 0)
x=x—1




Size bounds
S(to,v): Vo, S(tl,i)zio,S(tl,X) = EC(tl,X) @
Computing size bound for variable v after transition t to
S(t,v) = LC(t,v) ty

if(i > 0) C@D
@ LC(t,v): local change by one application of t Xx=x-+1i

i=i—1 t

if(i <0)
o ﬁC(tl,X) =1
2

@ For global result: t3

if(x > 0)
x=x—1




Size bounds
S(to, V) =\, S(tl, i) = ig, S(tl,X) = EC(tl,X)

Computing size bound for variable v after transition t

S(t,v) = LC(t,v) ty
if(i > 0) @
@ LC(t,v): local change by one application of t x=x-+1i
i=1i-1 to
if(i <0)
(] ﬁC(tl,X) =1 @
@ For global result: t3
o consider value of x before reaching t; (after 1) if(x > 0)

x=x—1




Size bounds
S(to,v): Vo, S(tl,i)zio,S(tl,X) = EC(tl,X)
Computing size bound for variable v after transition t
S(t,v) = LC(t,v) ty
if(i > 0) @
@ LC(t,v): local change by one application of t x=x-+1i
i=i—1 t
if(i <0)
o LC(t1,x)=1 @
@ For global result: t3
o consider value of x before reaching t; (after 1) if(x > 0)
x=x—1

= add size bound to LC(t1,x)



Size bounds
S(to,v): Vo, S(tl,i)zio,S(tl,X) = aF EC(tl,X)
Computing size bound for variable v after transition t
S(t,v) = LC(t,v) ty
if(i > 0) @
@ LC(t,v): local change by one application of t x=x-+1i
i=i—1 t
if(i <0)
o LC(t1,x)=1 @
@ For global result: t3
o consider value of x before reaching t; (after 1) if(x > 0)
x=x—1

= add size bound to LC(t1,x)



Size bounds
S(to,v): Vo, S(tl,i)zio,S(tl,X) = aF EC(tl,X)
Computing size bound for variable v after transition t
S(t,v) = S(t',v) + LC(t,v) ty
if(i > 0) @
@ LC(t,v): local change by one application of t x=x-+1i
o t': pre-transition of t i=i-1 it
if(i <0)
o LC(t1,x)=1 @
@ For global result: t3
o consider value of x before reaching t; (after 1) if(x > 0)
x=x—1

= add size bound to LC(t1,x)



Size bounds
S(to,v): Vo, S(tl,i)zio,S(tl,X) =X + EC(tl,X) @
Computing size bound for variable v after transition t to
S(t,v) = S(t',v) + LC(t,v) ty
if(1 > 0) C@D
@ LC(t,v): local change by one application of t x=x-+1i
o t': pre-transition of t i=i-1 it
if(i <0)
o ﬁC(tl,X) =1
2

@ For global result: t3

o consider value of x before reaching t; (after 1) if(x > 0)

x=x—1

= add size bound to LC(t1,x)



Size bounds
S(to,v): Vo, S(tl,i)zio,S(tl,X) =X + EC(tl,X) @
Computing size bound for variable v after transition t to
S(t,v) = S(t',v) + LC(t,v) ty
if(1 > 0) C@D
@ LC(t,v): local change by one application of t x=x-+1i
o t': pre-transition of t i=i-1 it
if(i <0)
o ﬁC(tl,X) =1
12!

@ For global result: t3

o consider value of x before reaching t; (after 1) if(x > 0)

e consider how often t; is executed x=x—1

= add size bound to LC(t1,x)



Size bounds
S(to,v): Vo, S(tl,i)zio,S(tl,X) =X + EC(tl,X) @
Computing size bound for variable v after transition t to
S(t,v) = S(t',v) + LC(t,v) ty
if(1 > 0) C@D
@ LC(t,v): local change by one application of t x=x-+1i
o t': pre-transition of t i=i-1 it
if(i <0)
o ﬁC(tl,X) =1
12!

@ For global result: t3

o consider value of x before reaching t; (after 1) if(x > 0)

e consider how often t; is executed x=x—1

= multiply t;'s runtime bound R(t;) with local change £C(t1,x)



Size bounds
S(to, V) = v, S(tl, i) = ig, S(tl,X) =Xo + R(tl) 'EC(tl,X) @
Computing size bound for variable v after transition t to
S(t,v) = S(t',v) + LC(t,v) ty
if(i > 0) C@D
@ LC(t,v): local change by one application of t x=x-+1i
o t': pre-transition of t i=i-1 it
if(i <0)
o ﬁC(tl,X) =1
2

@ For global result: t3

o consider value of x before reaching t; (after 1) if(x > 0)

e consider how often t; is executed x=x—1

= multiply t;'s runtime bound R(t;) with local change £C(t1,x)



Size bounds
S(to, V) = v, S(tl, i) = ig, S(tl,X) =Xo + R(tl) 'EC(tl,X) @

Computing size bound for variable v after transition t

S(t,v) = S(t',v) + R(t) - LC(t,v) t1

if(i > 0) C@D
@ LC(t,v): local change by one application of t x=x+1
@ t’: pre-transition of t _ i=i-—1 it

if(i <0)
o ﬁC(tl,X) =1
1)
@ For global result: t3
o consider value of x before reaching t; (after 1) if(x > 0)
e consider how often t; is executed x=x—1

= multiply t;'s runtime bound R(t;) with local change £C(t1,x)



Size bounds
S(to,v): Vo, S(tl,i)zio,S(thX) =Xo + io-EC(tl,X) @

Computing size bound for variable v after transition t

S(t,v) = S(t',v) + R(t) - LC(t,v) t1

if(i > 0) C@D
@ LC(t,v): local change by one application of t x=x+1
@ t’: pre-transition of t _ i=i-—1 it

if(i <0)
o ﬁC(tl,X) =1
1)
@ For global result: t3
o consider value of x before reaching t; (after 1) if(x > 0)
e consider how often t; is executed x=x—1

= multiply t;'s runtime bound R(t;) with local change £C(t1,x)



Size bounds
S(to,v): Vo, S(tl,i)zio,S(tl,X):Xo—‘r io-EC(tl,X) @
Computing size bound for variable v after transition t to
S(t,v) = S(t',v) + R(t) - LC(t,v) t1
if(1 > 0) C@D
@ LC(t,v): local change by one application of t x=x-+1i
o t': pre-transition of t i=i-1 it
if(i <0)
o ﬁC(tl,X) =1
12!

@ For global result: t3

o consider value of x before reaching t; (after 1) if(x > 0)

e consider how often t; is executed x=x—1

o consider values of LC(t1,x)’s variables in full run )

= multiply t;'s runtime bound R(t;) with local change £C(t1,x)



Size bounds

S(to,v): Vo, S(tl,i)zio,S(tl,X) =Xo + io-EC(tl,X)
Computing size bound for variable v after transition t
S(t,v) = S(t',v) + R(t) - LC(t,v) t1
if(i > 0) @
@ LC(t,v): local change by one application of t x=x-+1i
o t': pre-transition of t i=i-1 it
if(i <0)
o LC(t1,x)=1 @
@ For global result: t3
o consider value of x before reaching t; (after 1) if(x > 0)
e consider how often t; is executed x=x—1
o consider values of LC(t1,x)’s variables in full run )

= replace LC(t1,x) by LC(t1,x)[1/ max( , S(tr,1))]



Size bounds

S(to,v): Vo, S(tl,i)zio,S(tl,X):Xo+ io-EC(tl,X)
Computing size bound for variable v after transition t
S(t,v) = S(t',v) + R(t) - LC(t,v)[u/ max(S(t',u), S(t,u))] | &
if(i > 0) @
@ LC(t,v): local change by one application of ¢ x=x-+1i
o t': pre-transition of t i=i-1 it
if(i <0)
o ﬁC(tl,X) =1
@ For global result: t3
o consider value of x before reaching t; (after 1) if(x > 0)
e consider how often t; is executed x=x—1
o consider values of LC(t1,x)’s variables in full run )

= replace LC(t1,x) by LC(t1,x)[1/ max( , S(t1,1) )]



Size bounds

S(to,v): Vo, S(tl,i)zio,S(tl,X):Xo+ io-EC(tl,X)
Computing size bound for variable v after transition t
S(t,v) = S(t',v) + R(t) - LC(t,v)[u/ max(S(t',u), S(t,u))] | &
if(i > 0) @
@ LC(t,v): local change by one application of ¢ x=x-+1i
o t': pre-transition of t i=i-1 it
if(i <0)
o ﬁC(tl,X) =1
@ For global result: t3
o consider value of x before reaching t; (after 1) if(x > 0)
e consider how often t; is executed x=x—1
o consider values of LC(t1,x)’s variables in full run )

= replace LC(t1,x) by LC(t1,%)[1i/ max(ip,1i0)]



Size bounds
S(to,v): Vo, S(tl,i)zio,S(tl,X):Xo—‘r io-EC(tl,X) @
Computing size bound for variable v after transition t to
S(t,v) = S(t',v) + R(t) - LC(t,v)[u/ max(S(t',u), S(t,u))] | &
if(i > 0) C@D
@ LC(t,v): local change by one application of ¢ x=x-+1i
o t': pre-transition of t i=i-1 it
if(i <0)
o ﬁC(tl,X) =1
12!

@ For global result: t3

o consider value of x before reaching t; (after 1) if(x > 0)

e consider how often t; is executed x=x—1

o consider values of LC(t1,x)’s variables in full run )

= replace LC(t1,x) by LC(t1,x)[1/ i0]



Size bounds
S(to,v): Vo, S(tl,i)zio,S(tl,X) =Xo + io-EC(tl,X) [i/io] @
Computing size bound for variable v after transition t to
S(t,v) = S(t',v) + R(t) - LC(t,v)[u/ max(S(t',u), S(t,u))] | &
if(i > 0) C@D
@ LC(t,v): local change by one application of ¢ x=x-+1i
o t': pre-transition of t i=i-1 it
if(i <0)
o ﬁC(tl,X) =1
12!

@ For global result: t3

o consider value of x before reaching t; (after 1) if(x > 0)

e consider how often t; is executed x=x—1

o consider values of LC(t1,x)’s variables in full run )

= replace LC(t1,x) by LC(t1,x)[1/ i0]



Size bounds
S(to,v): Vo, S(tl,i)zio,S(tl,X):Xo+ ig - i [i/io] @
Computing size bound for variable v after transition t to
S(t,v) = S(t',v) + R(t) - LC(t,v)[u/ max(S(t',u), S(t,u))] | &
if(i > 0) C@D
@ LC(t,v): local change by one application of t x=x-+1i
o t': pre-transition of t i=i-1 it
if(i <0)
o ﬁC(tl,X) =1
2

@ For global result: t3

o consider value of x before reaching t; (after 1) if(x > 0)

e consider how often t; is executed x=x—1

o consider values of LC(t1,x)’s variables in full run )

= replace LC(t1,x) by LC(t1,x)[1/ i0]



Size bounds
S(to,v): Vo, S(tl,i)zio,S(tl,X):Xo+ ig - ig @
Computing size bound for variable v after transition t to
S(t,v) = S(t',v) + R(t) - LC(t,v)[u/ max(S(t',u), S(t,u))] | &
if(i > 0) C@D
@ LC(t,v): local change by one application of t x=x-+1i
o t': pre-transition of t i=i-1 it
if(i <0)
o ﬁC(tl,X) =1
2

@ For global result: t3

o consider value of x before reaching t; (after 1) if(x > 0)

e consider how often t; is executed x=x—1

o consider values of LC(t1,x)’s variables in full run )

= replace LC(t1,x) by LC(t1,x)[1/ i0]



Size bounds
S(to,v): Vo, S(tl,i)zio,S(tl,X) :XoJrig @
Computing size bound for variable v after transition t to
S(t,v) = S(t',v) + R(t) - LC(t,v)[u/ max(S(t',u), S(t,u))] | &
if(i > 0) C@D
@ LC(t,v): local change by one application of t Xx=x-+1i
@ t": pre-transition of t i=i-—1 B
if(i <0)
o LC(tl,X) =1
0o

@ For global result: t3

o consider value of x before reaching t; (after 1) if(x > 0)

e consider how often t; is executed x=x—1

o consider values of LC(t1,x)’s variables in full run )

= replace LC(t1,x) by LC(t1,x)[1/ o]



Size bounds
S(thV): Vo, S(tlvi):i078(tlvx):X0+i% @
Computing size bound for variable v after transition t to
S(t,v) = S(t',v) + R(t) - LC(t,v)[u/ max(S(t',u), S(t,u))] | &
if(i > 0) €D
@ LC(t,v): local change by one application of t XxX=x+1i
@ t': pre-transition of ¢ i=i-1 i
if(i < 0)
o L‘C(th):o ]
2
@ For global result: t3
o consider value of x before reaching t; (after 1) if(x > 0)
e consider how often t; is executed x=x—1

o consider values of LC(t1,x)’s variables in full run

= replace LC(t1,x) by LC(t1,x)[1/ o]



Size bounds
S(to, v) = w, S(t1,1) = 1o, S(t1,%x) =%0 + i%, S(tr, x) = LC(t, %) @
Computing size bound for variable v after transition t to
S(t,v) = S(t',v) + R(t) - LC(t,v)[u/ max(S(t',u), S(t,u))] | &
if(i > 0) €D
@ LC(t,v): local change by one application of t Xx=x-+1i
@ t': pre-transition of ¢t i=i-1 i
if(i < 0)
® L£C(ty,x) =0 :
0>
@ For global result: t3
o consider value of x before reaching t; (after 1) if(x > 0)
e consider how often t; is executed x=x—1

o consider values of LC(t1,x)’s variables in full run

= replace LC(t1,x) by LC(t1,x)[1/ i0]



Size bounds
S(to, v) = w, S(t1,1) = 1o, S(t1,%x) =%0 + i%, S(tr, x) = LC(t, %) @
Computing size bound for variable v after transition t to
S(t,v) = S(t',v) + R(t) - LC(t,v)[u/ max(S(t',u), S(t,u))] | &
if(i > 0) €D
@ LC(t,v): local change by one application of t Xx=x-+1i
@ t': pre-transition of ¢t i=i-1 i
if(i < 0)
® L£C(ty,x) =0 :
0>
@ For global result: t3
o consider value of x before reaching t; (after 1) if(x > 0)
e consider how often 1, is executed x=x—1

o consider values of £C(t,,x)'s variables in full run

= replace LC(t1,x) by LC(t1,x)[1/ i0]



Size bounds
S(to, v) = w, S(t1,1) = 1o, S(t1,%x) =%0 + i%, S(tr, x) = LC(t, %) @
Computing size bound for variable v after transition t to
S(t,v) = S(t',v) + R(t) - LC(t,v)[u/ max(S(t',u), S(t,u))] | &
if(i > 0) €D
@ LC(t,v): local change by one application of t Xx=x-+1i
@ t': pre-transition of ¢t i=i-1 i
if(i < 0)
® L£C(ty,x) =0 :
0>
@ For global result: t3
o consider value of x before reaching t; (after 1) if(x > 0)
e consider how often 1, is executed x=x—1

o consider values of £C(t,,x)'s variables in full run

= replace LC(tr.x) by R(to) - LCO(to. %) . ]



Size bounds
S(to, v) = w, S(t1,1) = 1o, S(t1,%x) =%0 + i%, S(tr, x) = LC(t, %) @
Computing size bound for variable v after transition t to
S(t,v) = S(t',v) + R(t) - LC(t,v)[u/ max(S(t',u), S(t,u))] | &
if(i > 0) €D
@ LC(t,v): local change by one application of t Xx=x-+1i
@ t': pre-transition of ¢t i=i-1 i
if(i < 0)
® L£C(ty,x) =0 :
0>
@ For global result: t3
o consider value of x before reaching t; (after 1) if(x > 0)
e consider how often 1, is executed x=x—1

o consider values of £C(t,,x)'s variables in full run

= replace LC(t. %) by 0



Size bounds
S(t07 V) = Vo, S(tlv 1) = i, S(tl,X) =Xo + i%? 8(t2‘X) - @
Computing size bound for variable v after transition t to
S(t,v) = S(t',v) + R(t) - LC(t,v)[u/ max(S(t',u), S(t,u))] | &
if(i > 0) €D
@ LC(t,v): local change by one application of t XxX=x-+1i
@ t": pre-transition of t i=i-—1 i
if(i < 0)
o L‘C(th):o ]
2
@ For global result: t3
o consider value of x before reaching t; (after 1) if(x > 0)
e consider how often 1, is executed x=x—1

o consider values of £C(t,,x)'s variables in full run

= replace LC(t. %) by 0



Size bounds
S(to, v) = w, S(t1,1) = 1o, S(t1,%x) =%0 + i%, S(tr,x) =

Computing size bound for variable v after transition t

S(t,v) = S(t',v) + R(t) - LC(t,v)[u/ max(S(t',u), S(t,u))] | &

if(i > 0)
@ LC(t,v): local change by one application of t x=x-+1i

@ t': pre-transition of t i=i-1 t
if(i <0)
(] L‘C(th):o
@ For global result: t3
o consider value of x before reaching t, (after iy or t;) if(x > 0)
e consider how often 1, is executed x=x—1
o consider values of LC (1>, x)’s variables in full run )

= replace LC(t. %) by 0



Size bounds
S(to, v) = w, S(t1,1) = 1o, S(t1,%x) =%0 + i%, S(tr,x) =

Computing size bound for variable v after transition t

S(t,v) = S(t',v) + R(t) - LC(t,v)[u/ max(S(t',u), S(t,u))] | &

if(i > 0)
@ LC(t,v): local change by one application of t x=x-+1i

@ t': pre-transition of t i=i-1 t
if(i <0)
(] L‘C(th):o
@ For global result: t3
o consider value of x before reaching t, (after iy or t;) if(x > 0)
e consider how often 1, is executed x=x—1
o consider values of LC (1>, x)’s variables in full run )

= add max( . S(t1,%) ) to LC(t2, %)



Size bounds
S(to, v) = w, S(t1,1) = 1o, S(t1,%x) =%0 + i%, S(tr,x) =

Computing size bound for variable v after transition t

S(t,v) = S(t',v) + R(t) - LC(t,v)[u/ max(S(t',u), S(t,u))] | &

if(i > 0)
@ LC(t,v): local change by one application of t x=x-+1i

@ t': pre-transition of t i=i-1 t
if(i <0)
(] L‘C(th):o
@ For global result: t3
o consider value of x before reaching t, (after iy or t;) if(x > 0)
e consider how often 1, is executed x=x—1
o consider values of LC (1>, x)’s variables in full run )

= add max( . S(t1,%) ) to LC(t2, %)



Size bounds
S(to, v) = w, S(t1,1) = 1o, S(t1,%x) =%0 + i%, S(tr,x) =

Computing size bound for variable v after transition t

S(t,v) = S(t',v) + R(t) - LC(t,v)[u/ max(S(t',u), S(t,u))] | &

if(i > 0)
@ LC(t,v): local change by one application of t x=x-+1i

@ t': pre-transition of t i=i-1 t
if(i <0)
(] L‘C(th):o
@ For global result: t3
o consider value of x before reaching t, (after iy or t;) if(x > 0)
e consider how often 1, is executed x=x—1
o consider values of LC (1>, x)’s variables in full run )

= add max( , X0 + 13 ) to LC(t, %)



Size bounds
S(to, v) = w, S(t1,1) = 1o, S(t1,%x) =%0 + i%, S(tr,x) =

Computing size bound for variable v after transition t

S(t,v) = S(t',v) + R(t) - LC(t,v)[u/ max(S(t',u), S(t,u))] | &

if(i > 0)
@ LC(t,v): local change by one application of t x=x-+1i

@ t': pre-transition of t i=i-1 t
if(i <0)
(] L‘C(th):o
@ For global result: t3
o consider value of x before reaching t, (after iy or t;) if(x > 0)
e consider how often 1, is executed x=x—1
o consider values of LC (1>, x)’s variables in full run )

= add Xg + i% to L‘C(fz.x)



Size bounds
S(to, V) = v, S(tl, i) =i, S(tl,X) =x0 + i%, S(t}X) = X0 + ié

Computing size bound for variable v after transition t

S(t,v) = S(t',v) + R(t) - LC(t,v)[u/ max(S(t',u), S(t,u))] | &

if(i > 0)
@ LC(t,v): local change by one application of t x=x-+1i

@ t': pre-transition of t i=i-1 t
if(i <0)
(] L‘C(th):o
@ For global result: t3
o consider value of x before reaching t, (after iy or t;) if(x > 0)
e consider how often 1, is executed x=x—1
o consider values of LC (1>, x)’s variables in full run )

= add Xg + i% to L‘C(fz.x)



Expected Size Bounds

(o)

to
t
if(i > 0) €D
x=x+1i
i=i-—1 t
if(i <0)

0>
t3
if(x > 0)

x=x—1




Expected Size Bounds

th € &
1
sheEa 1.
2" e g
if(i > 0) eD:; (i > 0)
x=x+1i
l—i—l t2€g2
if(i <0)
12
t3 € 83
if(x > 0)

x=x—1




Expected Size Bounds
()

Expected size bounds

Se(go,v) = w, Se(g1,1) = io

th € &
1
s:heq 1.4
2/ > lheg
if(i > 0) €D:) if(i > 0)
x=x+1i
i=i-—1 thEg
if(i <0)
%)
t3 € 83
if(x > 0)

x=x—1




Expected Size Bounds

Expected size bounds
(%)

Sk(go, v) = vo, Sk(g1,1) = 1o
Computing size bound for variable v after transition g t € &
S(gv) = S(gv) + R(g) LC (gv)[u/max(S(ghu),..)] | 2 thE@ Liyeg
if(i > 0) fD:) if(i > 0)
e LC (g,v): localchangeby g x=x+1
@ g’ :pre-transition of g i=i-1 tr € &2
if(i <0)
%)
t3 € &3
if(x > 0)




Expected Size Bounds

Expected size bounds
(%)

Se(go,v) = w, Se(g1,1) = io

Computing expected size bound for variable v after transition g

S(gv) = SEv) + R(g)-LC (g,v)[u/max(S(glu),.)] | 3 thea 2 tEa
g £ S & ¢ if(1 > 0) EDZD if(it>€0)g

° LC (g,v): localchange by g =
@ g’ :pre-transition of g i=i_—1 b€ g
if(i <0)
%)
t3 € 83
if(x > 0)




Expected Size Bounds

Expected size bounds
(%)

Se(go,v) = w, Se(g1,1) = io

Computing expected size bound for variable v after transition g

Se(g.v) = B(S(g'v) + R(g)LC (g,v)[u/max(S(g,u),..)])| 2 €@ 21t €8
g £ S & ¢ if(1 > 0) EDZD if(it>€0)g

° LC (g,v): localchange by g =
@ g’ :pre-transition of g i=i_—1 b€ g
if(i <0)
%)
t3 € 83
if(x > 0)




Expected Size Bounds

Expected size bounds
(%)

Se(go,v) = w, Se(g1,1) = io

Computing expected size bound for variable v after transition g

Sa(g,v) = E(S(g,v)) +E(R(g) - LC (g, v)[u/ max(S(g’,u),..)])| 3t € &1 > € g
g £ S & ¢ if(1 > 0) EDZD if(it>€0)g

° LC (g,v): localchange by g =
@ g’ :pre-transition of g i=i_—1 b€ g
if(i <0)
%)
t3 € 83
if(x > 0)




Expected Size Bounds

Expected size bounds
(%)

Se(go,v) = w, Se(g1,1) = io

Computing expected size bound for variable v after transition g

Su(g,v) = Su(ghv) +E(R(g) - LC (g,v)[u/max(S(g,u),..)])| 3: €& Jitea
g £ S & ¢ if(1 > 0) EDZD if(it>€0)g

° LC (g,v): localchange by g =
@ g’ :pre-transition of g i=i_—1 b€ g
if(i <0)
%)
t3 € 83
if(x > 0)




Expected Size Bounds

Expected size bounds Q
0

Sk(80, V) = vo, Sk(g1,1) = io

Computing expected size bound for variable v after transition g

Si(g.v) = Sulghv) +E(R(g)- LC (g.v)[u/ max(S(g'u),-))| 2 =
g g g g S if(i > 0) EDZD if(i > 0)

e LC (g,v): local change by g x=x+1
" . pre-transition of g i=i-1 th € &
if(i <0)

°g




Expected Size Bounds

Expected size bounds Q
0

Sk(80, V) = vo, Sk(g1,1) = io

Computing expected size bound for variable v after transition g

Si(g.v) = Sulghv) +E(R(g)- LC (g.v)[u/ max(S(g'u),-))| 2 =
g g g g S if(i > 0) EDZD if(i > 0)

e LC (g,v): local change by g x=x+1
" . pre-transition of g i=i-1 th € &
if(i <0)

°g




Expected Size Bounds

Expected size bounds Q
0

Sk(80, V) = vo, Sk(g1,1) = io

Computing expected size bound for variable v after transition g

Su(g,v) = Sz(ghv) + Re(g) - LCx(g,v)[u/ max(S(t, u),..)] i ;
g g g g if(i > 0) EDZD if(i > 0)

@ LCr(g,v): expect. local change by g x=x+1
@ g/, t': pre-transition of g i=i-1 t €&
if(i <0)




Expected Size Bounds

Expected size bounds
Sk(go, v) = vo, Sk(81,1) = 10, Su(g1,x) =

N+

Computing expected size bound for variable v after transition g

Se(gv) + Re(g) - LCx(g,v)[u/ max(S(t', u),...)]

S]E(g7 V) =

@ LCr(g,v): expect. local change by g
@ g/, t': pre-transition of g

] ECE(glA‘ X) =

2

th € 8o
siheEm litaeg
if(i > 0) C@DD if(i > 0)
XxX=x+1
1:1—1 t2€g2

if(i <0)
0>
t3 € &3
if(x > 0)




Expected Size Bounds

Expected size bounds

N+

Sk (8o, v) = vo, Se(g1,1) = 1o, S(g1,%) =
Computing expected size bound for variable v after transition g to € 8o
1.
Su(g,v) = Sz(ghv) + Ra(g) LCx(g,v)[u/max(S(t',u),..)] | 2 B Ea ;itiEg
if(i > 0) C@D@ if(i > 0)
@ LCr(g,v): expect. local change by g x=x+1
@ g/, t': pre-transition of g i=i-1 t € &
if(i <0)
o ﬁCE(glﬁX) = % 62
@ For global result: t3 € 83
if(x > 0)

x=x—1




Expected Size Bounds

Expected size bounds

Sk(80, V) = vo, Sk(g1,1) = io, Se(g1, %) =

N[+

Computing expected size bound for variable v after transition g

Su(g,v) = Su(ghv) + Ru(g) - LCu(g,v)[u/max(S(t', u),...)]

@ LCr(g,v): expect. local change by g
@ g/, t': pre-transition of g

o ﬁCE(glﬁX) = %

@ For global result:
o consider expected value of x before reaching g1 (after )




Expected Size Bounds

Expected size bounds

Sk(80, V) = vo, Sk(g1,1) = io, Se(g1, %) =

N[+

Computing expected size bound for variable v after transition g

Su(g,v) = Su(g,v) + Rulg) - LCu(g,v)[u/max(S(t,u),...)]

@ LCr(g,v): expect. local change by g
@ g/, t': pre-transition of g

o ﬁCE(glﬁX) = %

@ For global result:
o consider expected value of x before reaching g1 (after )

= add expected size bound to LCp(g1,x)



Expected Size Bounds

Expected size bounds
Sk(go, v) = vo, Se(g1,1) = 1o, Se(gi.x) = -

Su(g,v) = Su(g,v) + Rulg) - LCu(g,v)[u/max(S(t,u),...)]

@ LCr(g,v): expect. local change by g
@ g/, t': pre-transition of g

o ﬁCE(glﬁX) = %

@ For global result:
o consider expected value of x before reaching g1 (after )

= add expected size bound to LCp(g1,x)



Expected Size Bounds

Expected size bounds

N[+

S]E(gOa V) = Vo, S]E(g17 i) = 1o, S]E(gl,X) = Xo +
Computing expected size bound for variable v after transition g fo € &0
1.
Se(g,v) = Se(ghv) + Re(g) - LCx(g,v)[u/max(S(t,u),..)] | 2 1 €8l ;g
if(i > 0) C@D@ if(i > 0)
@ LCr(g,v): expect. local change by g x=x+1
@ g/, t': pre-transition of g i=i-1 t € &
if(i <0)
o ﬁCE(glﬁX) = % 62
@ For global result: t3 € 83
e consider expected value of x before reaching g; (after g9) if(x > 0)
x=x-—1

= add expected size bound to LCp(g1,x)



Expected Size Bounds

Expected size bounds

N[+

S]E(gOa V) = Vo, S]E(g17 i) = 1o, S]E(gl,X) = Xo +
Computing expected size bound for variable v after transition g fo € &0
1.
Se(g,v) = Se(ghv) + Re(g) - LCx(g,v)[u/max(S(t,u),..)] | 21 €8l ;g
if(i > 0) C@D@ if(i > 0)
@ LCr(g,v): expect. local change by g x=x+1
@ g/, t': pre-transition of g i=i-1 t € &
if(i <0)
o ﬁCE(glﬁX) = % 62
@ For global result: t3 € 83
e consider expected value of x before reaching g; (after g9) if(x > 0)
x=x—1

e consider how often gy is expected to be executed

= add expected size bound to LCp(g1,x)



Expected Size Bounds

Expected size bounds

S]E(gOa V) = Vo, S]E(g17 i) = 1o, S]E(gl,X) = Xo +

N+

Computing expected size bound for variable v after transition g

v) = "v : ,v) [u x(S(t', u), ... sihegm Lo &m
Si(g, v) Su(ghv) + Re(g) - LCk(g,v)[u/ max(S(t', u),...)] if(i>0)gCQDD izf(it>60)g

@ LCr(g,v): expect. local change by g x=x+1
@ g/, t': pre-transition of g i=i-1 t € &
if(i <0)
o ﬁCE(glﬁX) = % 62
@ For global result: t3 € 83
e consider expected value of x before reaching g; (after g9) if(x > 0)
x=x—1

e consider how often gy is expected to be executed

= multiply g1's expected runtime bound Rp(g1) with local change LCr(g1,x)



Expected Size Bounds

Expected size bounds
(%)

Sk(go, v) = vo, Se(g1,1) = io, Se(g1,%) = %0 + Re(g1) - 3

Computing expected size bound for variable v after transition g

v) = "v : ,v) [u x(S(t', u), ... sihegm Lo &m
Si(g, v) Su(ghv) + Re(g) - LCk(g,v)[u/ max(S(t', u),...)] if(i>0)gCQDD izf(it>60)g

@ LCr(g,v): expect. local change by g x=x+1
@ g/, t': pre-transition of g i=i-1 t € &
if(i <0)
o ﬁCE(glﬁX) = % 62
@ For global result: t3 € 83
e consider expected value of x before reaching g; (after g9) if(x > 0)
x=x—1

e consider how often gy is expected to be executed

= multiply g1's expected runtime bound Rp(g1) with local change LCr(g1,x)



Expected Size Bounds

Expected size bounds

Sk(8o0, v) = vo, Se(g1,1) = io, Se(g1,%) = x0+ 2-ip- 5

Computing expected size bound for variable v after transition g

v) = "v : ,v) [u x(S(t', u), ... sihegm Lo &m
Si(g, v) Su(ghv) + Re(g) - LCk(g,v)[u/ max(S(t', u),...)] if(i>0)gCQDD izf(it>60)g

@ LCr(g,v): expect. local change by g x=x+1
@ g/, t': pre-transition of g i=i-1 t € &
if(i <0)
o ﬁCE(glﬁX) = % 62
@ For global result: t3 € 83
e consider expected value of x before reaching g; (after g9) if(x > 0)
x=x—1

e consider how often gy is expected to be executed

= multiply g1's expected runtime bound Rp(g1) with local change LCr(g1,x)



Expected Size Bounds

Expected size bounds

Sk(8o0, v) = vo, Se(g1,1) = io, Se(g1,%) = x0+ 2-ip- 5

Computing expected size bound for variable v after transition g

v) = "v : ,v) [u x(S(t', u), ... sihegm Lo &m
Si(g, v) Su(ghv) + Re(g) - LCk(g,v)[u/ max(S(t', u),...)] if(i>0)gCQDD izf(it>60)g

@ LCr(g,v): expect. local change by g x=x+1
@ g/, t': pre-transition of g i=i-1 t € &
if(i <0)
o ﬁCE(glﬁX) = % 62
@ For global result: t3 € 83
e consider expected value of x before reaching g; (after g9) if(x > 0)
x=x—1

e consider how often gy is expected to be executed
o consider values of LCg(g1.x)'s variables in full run

= multiply g1's expected runtime bound Rp(g1) with local change LCr(g1,x)



Expected Size Bounds
Expected size bounds

Su(g,v) = Su(g,v) + Rulg) - LCu(g,v)[u/max(S(t,u),...)]

@ LCr(g,v): expect. local change by g
@ g/, t': pre-transition of g

o ﬁCE(glﬁX) = %

@ For global result:
o consider expected value of x before reaching g1 (after )
e consider how often gy is expected to be executed
o consider values of LCg(g1.x)'s variables in full run 4

= replace LCx(g1,x) by LCr(g1,x)[1/ max( , S(t1,1),8(t,1) )]



Expected Size Bounds
Expected size bounds

Su(g,v) = Su(g,v) + Rulg) - LCu(g,v)[u/max(S(t,u),...)]

@ LCr(g,v): expect. local change by g
@ g/, t': pre-transition of g

o ﬁCE(glﬁX) = %

@ For global result:
o consider expected value of x before reaching g1 (after )
e consider how often gy is expected to be executed
o consider values of LCg(g1.x)'s variables in full run 4

= replace LCr(g1,%) by LCr(g1,%)[1/ max(ip,10,10)]



Expected Size Bounds

Expected size bounds

Sk (o, v) = vo, Se(g1,1) = 10, Se(g1,%) = %0+ 2-1i0- 3
Computing expected size bound for variable v after transition g fo € &0
1.
Su(g,v) = Sz(ghv) + Re(g) LCx(g,v)[u/max(S(t',u),..)] | 2 - hEa sitheg
if(i > 0) C@D@ if(i > 0)
@ LCr(g,v): expect. local change by g x=x+1
@ g/, t': pre-transition of g i=i-1 t € &
if(i <0)
o ﬁCE(glﬁX) = % 62
@ For global result: t3 € &3
o consider expected value of x before reaching g1 (after go) if(x > 0)
x=x—1

e consider how often gy is expected to be executed
o consider values of LCg(g1.x)'s variables in full run

= replace LCr(g1,x) by LCr(g1,x)[1/10]



Expected Size Bounds

Expected size bounds
(%)

Sk(go, v) = vo, Se(g1,1) = i0, Se(g1,%x) = %0+ 2-i0- % [i/io]

Computing expected size bound for variable v after transition g fo € &0
1.
Si(gv) = Su(ghv) + Ralg) - LCslg,v)[u/ max(S(,u),..)] | 3itce L hea
if(i > 0) C@D@ if(i > 0)
@ LCr(g,v): expect. local change by g x=x+1
@ g/, t': pre-transition of g i=i-1 t € &
if(i <0)
o ﬁCE(glﬁX) = % 62
@ For global result: t3 € 83
e consider expected value of x before reaching g; (after g9) if(x > 0)
x=x—1

e consider how often gy is expected to be executed
o consider values of LCg(g1.x)'s variables in full run

= replace LCr(g1,x) by LCr(g1,x)[1/10]



Expected Size Bounds

Expected size bounds
(%)

Sk(go, v) = vo, Se(g1,1) = io, Se(g1,%) = %0+ 2-ig- 2

Computing expected size bound for variable v after transition g fo € &0
1.
Su(gv) = Su(ghv) + Ralg) - LCslg,v)[u/ max(S(,u),..)] | 3:tce L hea
if(i > 0) C@D@ if(i > 0)
® LCr(g,v): expect. local change by g x=x+1
@ g/, t': pre-transition of g i=i-1 t € &
if(i <0)
o ﬁCE(glﬁX) = % 62
@ For global result: t3 € 83
e consider expected value of x before reaching g; (after g9) if(x > 0)
x=x—1

e consider how often gy is expected to be executed
o consider values of LCg(g1.x)'s variables in full run

= replace LCr(g1,x) by LCr(g1,x)[1/10]



Expected Size Bounds

Expected size bounds
(%)

Sk(go, v) = vo, Se(g1,1) = io, Se(g1,%) = %o + 13

Computing expected size bound for variable v after transition g fo € &0
1.
Su(gv) = Su(ghv) + Ralg) - LCslg,v)[u/ max(S(,u),..)] | 3:tce L hea
if(i > 0) C@D@ if(i > 0)
® LCr(g,v): expect. local change by g x=x+1
@ g/, t': pre-transition of g i=i-1 t € &
if(i <0)
o ﬁCE(glﬁX) = % 62
@ For global result: t3 € 83
e consider expected value of x before reaching g; (after g9) if(x > 0)
x=x—1

e consider how often gy is expected to be executed
o consider values of LCg(g1.x)'s variables in full run

= replace LCr(g1,x) by LCr(g1,x)[1/10]



Expected Size Bounds

Expected size bounds
(%)

Sk(go, v) = vo, Se(g1,1) = io, Se(g1,%) = %0 + 13

Computing expected size bound for variable v after transition g

Su(g,v) = Sz(ghv) + Re(g) - LCx(g,v)[u/ max(S(t', u),..)] s heEa Jitea
g £ S & if(1 > 0) EDZD if(it>€0)g

® LCr(g,v): expect. local change by g x=x+1i
@ g/, t': pre-transition of g i=i-1 th € @
if(i < 0)
("] £(7r(g3.x) =0 62
@ For global result: t3 € 83
o consider expected value of x before reaching g1 (after go) if(x > 0)
x=x-—1

e consider how often gy is expected to be executed
o consider values of LCg(g1.x)'s variables in full run

= replace LCr(g1,x) by LCr(g1,x)[1/10]



Expected Size Bounds

Expected size bounds

Sk(go, v) = vo, Se(g1,1) = io, Se(g1,%) = %0 + 13

Computing expected size bound for variable v after transition g

Su(g,v) = Se(gv - LCr(g, v) [u/ max(S(t', u), ... liheg L oteg
(8, v) (g, v) + Ra(g) - LCe(g,v)[u/ max(S(t', u), ...)] if(i>Ofi?(it>e())g

® LCr(g,v): expect. local change by g x=x+1i
@ g/, t': pre-transition of g i=i-1 th € &
if(i <0)
® LCr(g,x)=0
@ For global result: t3 € 83
e consider expected value of x before reaching g, (after g, or g1) if(x > 0)
x=x-—1

e consider how often g is expected to be executed
o consider values of £C;:(go, x)'s variables in full run

= replace LCr(g1,x) by LCr(g1,x)[1/10]



Expected Size Bounds

Expected size bounds
Se(go, v) = o, Se(81,1) = 1o, Se(g1,%) = xo + 1]
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® LCr(g,v): expect. local change by g
@ g/, t': pre-transition of g

® LCr(g,x)=0 @

@ For global result:
o consider expected value of x before reaching g (after g or g1)

e consider how often g is expected to be executed
o consider values of £C;:(go, x)'s variables in full run
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o consider values of £C;:(go, x)'s variables in full run

= add xo+i(2) to 0



Expected Size Bounds

Expected size bounds ’
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@ alternate finding expected runtime and size bounds

e compute size bounds by combining local change bound with runtime bounds
e compute runtime bounds for program parts based on size bounds for preceding parts

e based on both expected and non-probabilistic bounds for program parts

@ modular: only consider small program parts at a time

o linear probabilistic ranking functions Bound | KoAT | Absynth | eco-imp

e approach scales to larger programs oQ1) 8 7 8
O(n) 42 35 35
. O(n?) 15 9 15
@ Implementation in KoAT o) 5 0 0
e all 46 benchmarks from Absynth EXP 1 0 0
e 29 new benchmarks including examples 0 7 15 14
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