
AProVE: Non-Termination Witnesses

for C Programs⋆

(Competition Contribution)

Jera Hensel� , Constantin Mensendiek , and Jürgen Giesl

LuFG Informatik 2, RWTH Aachen University, Germany

Abstract. To (dis)prove termination of C programs, AProVE uses sym-
bolic execution to transform the program's LLVM code into an integer
transition system, which is then analyzed by several backends. The trans-
formation steps in AProVE and the tools in the backend only produce
sub-proofs in their domains. Hence, we now developed new techniques
to automatically combine the essence of these proofs. If non-termination
is proved, then they yield an overall witness, which identi�es a non-
terminating path in the original C program.

1 Veri�cation Approach and Software Architecture

To prove (non-)termination of a C program, AProVE uses the Clang compiler [7]
to translate it to the intermediate representation of the LLVM framework [15].
Then AProVE symbolically executes the LLVM program and uses abstraction to
obtain a �nite symbolic execution graph (SEG) containing all possible program
runs. We refer to [14,17] for further details on our approach to prove termination.

To prove non-termination, AProVE runs three approaches in parallel, see Fig.
1. The �rst two approaches transform the lassos of the SEG to integer transition
systems (ITSs), which are then passed to the tools T2 [6] and LoAT [11]. If one
of the tools returns a proof of non-termination, AProVE uses it to construct a
non-terminating path through the C program. The path of the �rst succeed-
ing approach is returned to the user while all other computations are stopped.
T2's proof consists of a recurrent set characterizing those variable assignments
that lead to a non-terminating ITS run. Here, AProVE uses an SMT solver to
identify a corresponding concrete assignment of the variables in the ITS (which
correspond to the variables in the (abstract) program states of the SEG). The
third approach transforms the lassos of the SEG directly to SMT formulas which
are only satis�able if there is a non-terminating path, and in this case, we can
deduce a variable assignment from the model of the formulas returned by the
solver. While the �rst and the third approach were already available in AProVE

before [13], we now extended them by the generation of non-termination wit-
nesses. To this end, the variable assignment obtained from these approaches

⋆ funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Founda-
tion) - 235950644 (Project GI 274/6-2)

http://orcid.org/0000-0003-2852-9830
http://orcid.org/0000-0002-7081-8065
http://orcid.org/0000-0003-0283-8520


C

Program
LLVM

Program

Symbolic
Execution
Graph

Lasso

ITS

SMT
Formula

NO + LoAT Proof

NO + Recurrent Set

Simpli�cation
Tree

NO +
Variable

assignment

Concrete
Execution

Path in SEG

Path
in LLVM
Program

Path
in C

Program

LoAT

T2

SMT Solvers

Fig. 1: AProVE's Work�ow for Non-Termination Analysis

is used by AProVE to step through the corresponding lasso of the SEG in or-
der to obtain a concrete execution path which witnesses non-termination. To
ensure that the generation of the path terminates, AProVE stops as soon as a
program state of the SEG is visited twice. Thus, this approach only succeeds if
the �rst loop on the path whose body is executed several times is already the
non-terminating loop. However, it does not �nd non-termination witnesses for
programs with several loops, where the non-terminating path �rst leads through
several iterations of other loops before it ends in a non-terminating loop.

void f(x,y) {

y = 0;

while (x > 0) {

x = x-1;

y = y+1;

}

while (y > 1)

y = y;

}

Fig. 2: Example C Function

To handle such programs as well, we now
developed a novel second approach for prov-
ing non-termination which uses our tool LoAT
in the backend. To understand how LoAT �nds
non-termination proofs, consider the function f

in Fig. 2. The �rst loop decrements x as long
as x is positive and increments y by the
same amount. Afterwards, the second loop
does not terminate if y is greater than 1.
Hence, the function f does not terminate if
the initial value of the parameter x is greater than 1. LoAT can de-
tect such coherences in the corresponding ITS (Fig. 3a) generated by
AProVE. To this end, LoAT uses di�erent forms of loop acceleration:

r0: f(x, y) → ℓ1(x, 0)

r1: ℓ1(x, y) → ℓ1(x−1, y+1) [x > 0]

r2: ℓ1(x, y) → ℓ2(x, y) [x ≤ 0]

r3: ℓ2(x, y) → ℓ2(x, y) [y > 1]

Fig. 3a: Corresponding ITS

r4: ℓ1(x, y) → ℓ1(0, y + x) [x > 0]

r5: ℓ2(x, y) → ∞ [y > 1]

r6: f(x, y) → ℓ1(0, x) [x > 0]

r7: f(x, y) → ℓ2(0, x) [x > 0]

r8: f(x, y) → ∞ [x > 1]

Fig. 3b: Simpli�ed Rules

Finite acceleration combines several itera-
tions of a looping rule into a new rule. LoAT
applies this simpli�cation to the rule r1 rep-
resenting the �rst loop, resulting in the new
rule r4 in Fig. 3b. In the second looping rule
r3, the guard is invariant w.r.t. the update
of the variables in this rule. In such a case,
LoAT applies non-terminating acceleration,
transforming r3 to r5. Finally, chaining al-
lows to represent the successive execution of
two rules. For example, the rule r6 is the
result of chaining r0 and r4. The exact sim-
pli�cation steps performed by LoAT in this
example are shown in Fig. 3c. Note that the
�nal rule r8 starts from the initial function

2



symbol and directly goes to non-termination. Every variable assignment satisfy-
ing the respective �nal guard x > 1 results in a non-terminating run.

r8

r7

r6

r0

r4

r1 r2

r5

r3

chaining

chaining

chaining

�nite

acceleration

non-terminating

acceleration

Fig. 3c: Simpli�cation Tree

The simpli�cation tree in Fig. 3c is also the
starting point for our new technique to generate
non-termination witnesses. AProVE constructs
this tree from LoAT's proof output. Then, by
processing the leaves of the simpli�cation tree
from left to right, a path through the SEG can
be derived. To determine how often one has to
traverse earlier loops on the path to the non-
terminating loop, AProVE uses an SMT solver
to �nd a concrete variable assignment that satis�es the �nal guard. In our ex-
ample, the �nal guard x > 1 would be satis�ed by {x = 2, y = 0}, for example.
Consequently, the corresponding concrete execution path includes two iterations
of the �rst loop before reaching the non-terminating second loop.

Once the path is constructed, AProVE extracts the LLVM program positions
from the states, obtaining a non-terminating path through the LLVM program in
form of a lasso. Using the Clang debug information output, AProVE then matches
the LLVM lines to the lines in the C program. The resulting C witness can be
validated by the tools CPAchecker [5] and Ultimate Automizer [12].

2 Discussion of Strengths and Weaknesses

In general, AProVE is especially powerful on programs where a precise modeling
of the values of program variables and memory contents is needed to (dis)prove
termination. However, on large programs containing many variables which are
not relevant for termination, tools with CEGAR-based approaches are often
faster. The reason is that AProVE does not implement any techniques to decide
which variables are relevant for (non-)termination.

Furthermore, one of AProVE's most crucial weaknesses when proving non-
termination in past editions of SV-COMP was to produce a meaningful witness.
Therefore, in the two approaches for proving non-termination in AProVE that
are based on T2 or on the direct analysis of lassos of the SEG, we added the
novel techniques presented in the current paper to generate non-termination
witnesses from the obtained variable assignments. Here, the problem is that
when computing a concrete execution path, we cannot be sure when to stop the
computation: Whenever we visit a program position repeatedly, we do not know
if this position is part of the non-terminating loop of the lasso, or if it is still
part of the �nite path to the non-terminating loop.

In contrast, in our new approach based on LoAT, the simpli�cation tree al-
lows us to infer the order in which the loops of the program are traversed and
this tree also contains the information which loop is the non-terminating one.
Thus, this approach extends AProVE's power substantially, since it can �nd
non-termination witnesses for programs where all non-terminating paths lead
through several iterations of more than one loop. On the other hand, there are

3



also examples where the other two approaches outperform the approach based on
LoAT, e.g., if T2 �nds a non-termination proof and LoAT does not. Our observa-
tion is that especially for small programs containing only a single loop, the other
approaches are often faster. This is also con�rmed by our results in the Termina-
tion category of SV-COMP 2022 : While in the sub-categories MainControlFlow

and MainHeap, 83% of the non-termination proofs are found using T2 or the
direct SMT approach, in Termination-Other, 95% of the non-termination proofs
result from the LoAT approach. This set consists of especially large programs,
which often contain more than one loop.

More information about SV-COMP 2022 including the competition results
can be found in the competition report [3].

3 Setup and Con�guration

AProVE is developed in the �Programming Languages and Veri�cation� group
headed by J. Giesl at RWTH Aachen University. On the web site [2], AProVE
can be downloaded or accessed via a web interface. Moreover, [2] also contains a
list of external tools used by AProVE and a list of present and past contributors.

In SV-COMP 2022, AProVE only participates in the category �Termination�.
All �les from the submitted archive must be extracted into one folder. AProVE
is implemented in Java and needs a Java 11 Runtime Environment. Moreover,
AProVE requires the Clang compiler [7] to translate C to LLVM. To analyze the
resulting ITSs in the backend, AProVE uses LoAT [11] and T2 [6]. Furthermore,
it applies the satis�ability checkers Z3 [8], Yices [9], and MiniSAT [10] in parallel
(our archive contains all these tools). As a dependency of T2, Mono [16] (version
≥ 4.0) needs to be installed. Extending the path environment is necessary so that
AProVE can �nd these programs. Using the wrapper script aprove.py in the
BenchExec repository, AProVE can be invoked, e.g., on the benchmarks de�ned
in aprove.xml in the SV-COMP repository. The most recent version of AProVE
with the improved witness generation can be downloaded at [1].

Data Availability Statement. All data of SV-COMP 2022 are archived as described

in the competition report [3] and available on the competition web site. This includes

the veri�cation tasks, results, witnesses, scripts, and instructions for reproduction.

The version of our veri�er as used in the competition is archived together with other

participating tools [4].

References

1. AProVE: https://github.com/aprove-developers/aprove-releases/releases
2. AProVE Website: https://aprove.informatik.rwth-aachen.de/
3. Beyer, D.: Progress on software veri�cation: SV-COMP 2022. In: Proc. TACAS '22.

LNCS (2022)
4. Beyer, D.: Veri�ers and validators of the 11th Intl. Competition on Software Veri�-

cation (SV-COMP 2022). Zenodo (2022), https://doi.org/10.5281/zenodo.5959149

4

https://sv-comp.sosy-lab.org/2022/
https://github.com/aprove-developers/aprove-releases/releases
https://aprove.informatik.rwth-aachen.de/
https://doi.org/10.5281/zenodo.5959149


5. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for con�gurable software veri�ca-
tion. In: Proc. CAV '11. pp. 184�190. LNCS 6806 (2011), https://doi.org/10.1007/
978-3-642-22110-1_16

6. Brockschmidt, M., Cook, B., Ishtiaq, S., Khlaaf, H., Piterman, N.: T2: Temporal
property veri�cation. In: Proc. TACAS '16. pp. 387�393. LNCS 9636 (2016), https:
//doi.org/10.1007/978-3-662-49674-9_22

7. Clang: https://clang.llvm.org
8. de Moura, L., Bjørner, N.: Z3: An e�cient SMT solver. In: Proc. TACAS '08. pp.

337�340. LNCS 4963 (2008), https://doi.org/10.1007/978-3-540-78800-3_24
9. Dutertre, B., de Moura, L.: System Description: Yices 1.0 (2006), https://yices.csl.

sri.com/papers/yices-smtcomp06.pdf
10. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Proc. SAT '03. pp. 502�518.

LNCS 2919 (2003), https://doi.org/10.1007/978-3-540-24605-3_37
11. Frohn, F., Giesl, J.: Proving non-termination via loop acceleration. In: Proc. FM-

CAD '19. pp. 221�230 (2019), https://doi.org/10.23919/FMCAD.2019.8894271
12. Heizmann, M., Dietsch, D., Leike, J., Musa, B., Podelski, A.: Ultimate Automizer

with array interpolation. In: Proc. TACAS '15. pp. 455�457. LNCS 9035 (2015),
https://doi.org/10.1007/978-3-662-46681-0_43

13. Hensel, J., Emrich, F., Frohn, F., Ströder, T., Giesl, J.: AProVE: Proving and
disproving termination of memory-manipulating C programs (competition contri-
bution). In: Proc. TACAS '17. pp. 350�354. LNCS 10206 (2017), https://doi.org/
10.1007/978-3-662-54580-5_21

14. Hensel, J., Giesl, J., Frohn, F., Ströder, T.: Termination and complexity analysis
for programs with bitvector arithmetic by symbolic execution. Journal of Logical
and Algebraic Methods in Programming 97, 105�130 (2018), https://doi.org/10.
1016/j.jlamp.2018.02.004

15. Lattner, C., Adve, V.S.: LLVM: A compilation framework for lifelong program
analysis & transformation. In: Proc. CGO '04. pp. 75�88 (2004), https://doi.org/
10.1109/CGO.2004.1281665

16. Mono: https://www.mono-project.com/
17. Ströder, T., Giesl, J., Brockschmidt, M., Frohn, F., Fuhs, C., Hensel, J., Schneider-

Kamp, P., Aschermann, C.: Automatically proving termination and memory safety
for programs with pointer arithmetic. J. of Aut. Reasoning 58(1), 33�65 (2017),
https://doi.org/10.1007/s10817-016-9389-x

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter's

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter's Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

5

https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-662-49674-9_22
https://doi.org/10.1007/978-3-662-49674-9_22
https://clang.llvm.org
https://doi.org/10.1007/978-3-540-78800-3_24
https://yices.csl.sri.com/papers/yices-smtcomp06.pdf
https://yices.csl.sri.com/papers/yices-smtcomp06.pdf
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.23919/FMCAD.2019.8894271
https://doi.org/10.1007/978-3-662-46681-0_43
https://doi.org/10.1007/978-3-662-54580-5_21
https://doi.org/10.1007/978-3-662-54580-5_21
https://doi.org/10.1016/j.jlamp.2018.02.004
https://doi.org/10.1016/j.jlamp.2018.02.004
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://www.mono-project.com/
https://doi.org/10.1007/s10817-016-9389-x
https://creativecommons.org/licenses/by/4.0/

	AProVE: Non-Termination Witnesses for C Programs

