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Abstract

We define a general framework to handle liveness and related properties by reduction
strategies in abstract reduction and term rewriting. Classically, reduction strategies
in rewriting are used to simulate the evaluation process in programming languages.
The aim of our work is to use reduction strategies to also study liveness questions
which are of high importance in practice (e.g., in protocol verification for distributed
processes). In particular, we show how the problem of verifying liveness is related
to termination of term rewrite systems (TRSs). Using our results, techniques for
proving termination of TRSs can be used to verify liveness properties.

1 Introduction

In this paper, we give a formal definition of safety and liveness using the frame-
work of abstract reduction (Sect. 2). In particular, liveness is formalized by
imposing a suitable reduction strategy. In Sect. 3 we show how the reduction-
based definitions of safety and liveness correspond to standard definitions from
the literature [1]. Then in Sect. 4 the notion of liveness is specialized to the
framework of term rewriting. In Sect. 5 we investigate the connection between
liveness and termination. More precisely, we show how termination of ordi-
nary rewriting is related to termination under the reduction strategy required
for liveness properties. To this end, we present a transformation such that
termination of the transformed TRS is equivalent to the liveness property of
the original TRS. In [11], a similar transformation was presented for liveness
properties of a certain form (global liveness), but we show that such transfor-
mations can also be given for other liveness properties (local liveness). With
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these results, (existing) termination techniques for TRSs can be used to infer
liveness. So our approach differs from most previous applications of rewrit-
ing techniques in process verification which were mainly concerned with the
verification of other properties (e.g., reachability [4,7] or equivalence [5,13]).

2 Formalizing Safety and Liveness

We define safety and liveness using the framework of abstract reduction. Let S
be a set of states and let →⊆ S×S where “t → u” means that a computation
step from t to u is possible. A computation sequence or reduction is a finite
sequence t0, t1, . . . , tn or an infinite sequence t0, t1, t2, . . . with ti → ti+1. As
usual, →∗ is the reflexive transitive closure of →. To define safety and liveness
we assume a set G⊆S of goal states and a set I⊆S of initial states.

2.1 Formalizing Safety

For safety, G represents “good” states and safety means that nothing bad will
happen. So in every reduction starting in initial states, all states are good.

Definition 2.1 (Safety) Safe(I,→, G) iff ∀t ∈ I, u ∈ S : (t →∗ u) ⇒ u ∈ G.

Usually safety properties are proved by choosing an invariant. Then one
proves that the invariant is true initially and that the invariant holds for every
state u where t → u for some state t satisfying the invariant. In this way safety
is proved in a purely local way: only one-step reductions are considered in the
proof. In other words, safety is proved by induction on the length of the
reduction, and a claim about arbitrary reductions can be made by analyzing
only one-step reductions. It is a natural question whether this approach covers
all safety properties. The next theorem answers this question positively. Here,
the set G′ represents the set of all states satisfying the invariant.

Theorem 2.2 (Proving Safety) Safe(I,→, G) iff there is a set G′ ⊆ S with

• I ⊆ G′ ⊆ G, and

• ∀t ∈ G′, u ∈ S : (t → u) ⇒ u ∈ G′.

Proof. For the “if”-part, let G′ satisfy the properties above and t = t0 →
t1 → · · · → tn = u for t ∈ I. By induction on i, one can show that ti ∈ G′ for
every i = 0, . . . , n. This implies tn = u ∈ G′ ⊆ G, which we had to prove.

For the “only if”-direction we assume Safe(I,→, G) and let G′ = {u ∈
S | ∃t ∈ I : t →∗ u }. Now we show that G′ satisfies the properties above.

• I ⊆ G′ holds since t →∗ t,

• G′ ⊆ G is implied by Safe(I,→, G), and

• ∀t ∈ G′, u ∈ S : (t → u) ⇒ u ∈ G′ follows from the definition of G′. 2

Note that the “only if”-direction cannot be proved simply by defining G′ =
G, since in general, G is not invariant. For instance, if S = {1, 2, 3}, →=
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{(1, 1), (2, 3)}, I = {1} and G = {1, 2}, then Safe(I,→, G), but u ∈ G does
not always hold if t ∈ G and t → u. Essentially this corresponds to the
difference between “always true” and “invariant” as pointed out in [14].

2.2 Formalizing Liveness

Liveness properties state that some goal will eventually be reached. To for-
malize “eventuality” we consider maximal reductions that continue as long as
possible. A reduction is maximal if it is infinite or its last element is a normal
form from NF = {t ∈ S | ¬∃u : t → u}. The liveness property Live(I,→,G)
holds if every maximal reduction starting in I contains an element of G.

Definition 2.3 (Liveness) Live(I,→, G) holds iff

(i) ∀t0, t1, t2, . . . : (t0 ∈ I ∧ ∀i ∈ IN : ti → ti+1) ⇒ ∃i ∈ IN : ti ∈ G, and

(ii) ∀t0, t1, . . . , tn : (t0 ∈ I ∧ tn ∈ NF ∧ ∀i ∈ {0, . . . , n− 1} : ti → ti+1) ⇒
∃i ∈ {0, . . . , n} : ti ∈ G.

For example, termination (or strong normalization) is a special liveness
property describing the non-existence of infinite reductions, i.e.,

SN(I,→) = ¬(∃t0, t1, t2, . . . : t0 ∈ I ∧ ∀i ∈ IN : ti → ti+1).

Theorem 2.4 (SN is a Liveness Prop. [11]) SN(I,→) iff Live(I,→, NF).

The next theorem states a kind of converse. Here, we impose a reduction
strategy such that “→” may only proceed if the current state is not in G.

Definition 2.5 (→G) Let →G⊆ S × S where t →G u iff t → u and t 6∈ G.

Now one can show that Live(I,→, G) is equivalent to SN(I,→G). The
“only if”-part holds without any further conditions. For the “if”-part, G
must contain all normal forms NF(I) reachable from I, where NF(I) = {u ∈
NF | ∃t ∈ I : t →∗ u}. Otherwise, if there is a terminating sequence t0 →
. . . → tn with all ti /∈ G, we might have SN(I,→G) but not Live(I,→, G).

Theorem 2.6 (Equivalence of Liveness and Termination [11])
Let NF(I) ⊆ G. Then Live(I,→, G) holds iff SN(I,→G) holds.

By Thm. 2.6 we can verify actual liveness properties: if NF(I) ⊆ G, then
one can instead verify termination of →G. If NF(I) 6⊆ G, then SN(I,→G) still
implies liveness for all infinite computations. In Sect. 5 we discuss how tech-
niques to prove full termination of TRSs can be used for termination of →G.

3 Connection to Previous Formalization

In this section we show that our notions of safety and liveness specialize the
“standard” definitions of Alpern and Schneider [1]. In their framework, a
property P is a set of infinite sequences of states. Terminating executions of a
program are represented by repeating the final state infinitely often. According
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to [1], a property P is a safety property iff the following condition holds:

If 〈t0, t1, . . .〉 /∈ P , then there is an i ∈ IN such that
for all 〈ti+1, ti+2, . . .〉 we have 〈t0, . . . , ti, ti+1, ti+2, . . .〉 /∈ P .

(1)

In other words, if an infinite sequence 〈t0, t1, . . .〉 does not satisfy a safety
property P , then there is a finite prefix 〈t0, . . . , ti〉 of the sequence which
already violates it. So irrespective of how this finite prefix is extended to an
infinite sequence 〈t0, . . . , ti, ti+1, ti+2, . . .〉, the property P is not fulfilled.

In [1], for a liveness property P , every finite prefix of states can be extended
into an infinite sequence satisfying P . So P is a liveness property iff

For all 〈t0, . . . , ti〉 there exist 〈ti+1, ti+2, . . .〉 such that
〈t0, . . . , ti, ti+1, ti+2, . . .〉 ∈ P .

(2)

In contrast to safety, this liveness definition does not require that there is
a discrete point in the infinite sequence from which on the liveness condition
is always fulfilled. To ease the checking of a liveness property (in the rewriting
framework), it turns out to be useful to add this demand. We call P a discrete
property iff it satisfies the following discreteness condition:

If 〈t0, t1, . . .〉 ∈ P , then there is an i ∈ IN such that
for all 〈ti+1, ti+2, . . .〉 we have 〈t0, . . . , ti, ti+1, ti+2, . . .〉 ∈ P .

(3)

In other words, if an infinite sequence satisfies the property P , then this
is due to a finite prefix 〈t0, . . . , ti〉. No matter how this prefix is extended, the
property will always be preserved. A discrete liveness property is a property
satisfying both (2) and (3). An example for a non-discrete liveness property is
starvation freedom which states that a process makes progress infinitely often.

There is a natural correspondence between safety and discreteness: P is a
safety property iff P ’s complement is a discreteness property. This indicates
that it is often more intuitive to use discreteness as the definition of “liveness”.
Indeed, one may argue that non-discrete liveness properties like starvation
freedom should rather be called fairness instead of liveness properties.

Now we compare the definitions of [1] to our formalizations in Sect. 2. We
defined safety and liveness not as properties of arbitrary sequences of states,
but of sequences representing computation. So if P2 is a safety or liveness
property of sequences of states and P1 is the property that a sequence of
states corresponds to a particular computation, then we formulate statements
like “P1 ⊆ P2” expressing that P1 implies P2. Moreover, in our approach the
“goals” to be reached are made explicit as properties of states. We demonstrate
that our notions of safety and liveness nevertheless correspond to the notions
of [1] provided that their liveness definition is restricted to discrete liveness.

First, we show that our safety and liveness concepts can be simulated by
the concepts of Alpern and Schneider. In other words, our definitions of safety
and liveness are also safety and (discrete) liveness properties according to [1].
Here, PI→ is the property that a sequence of states corresponds to a compu-
tation starting in I. Then Safe(I,→, G) can be formulated as “PI→ ⊆ P safe

G ”
and Live(I,→, G) can be formulated as “PI→ ⊆ P live

G ” for suitable safety and

4



Giesl and Zantema

liveness properties P safe
G and P live

G in the framework of Alpern and Schneider.

Theorem 3.1 (Simulating Def. 2.1 and 2.3 in [1]) Let G 6= ∅. We de-
fine the following properties (i.e., sets of infinite sequences of states):

• PI→ = {〈t0, t1, . . .〉 | t0 ∈ I, ∀i ∈ IN : ti → ti+1 or ti ∈ NF and ti = ti+1}
• P safe

G = {〈t0, t1, . . .〉 | ti ∈ G for all i ∈ IN}
• P live

G = {〈t0, t1, . . .〉 | ti ∈ G for some i ∈ IN}
(a) PI→ and P safe

G are safety properties, P live
G is a discrete liveness property.

(b) Safe(I,→, G) iff PI→ ⊆ P safe
G

(c) Live(I,→, G) iff PI→ ⊆ P live
G

Proof.

(a) If 〈t0, t1, . . .〉 /∈ PI→, then we have t0 /∈ I or ti /∈ NF and ti 6→ ti+1 or
ti ∈ NF and ti 6= ti+1 for some i. In the first case, every infinite sequence
starting with the prefix t0 will not be in PI→. In the second and third
case, every infinite sequence starting with 〈t0, . . . , ti, ti+1〉 will not be in
PI→. Hence, PI→ is indeed a safety property (i.e., it satisfies (1)).

If 〈t0, t1, . . .〉 /∈ P safe
G , then there is a ti 6∈ G. So every infinite sequence

starting with 〈t0, . . . , ti〉 is not in P safe
G and thus, P safe

G is a safety property.
Let 〈t0, . . . , ti〉 be arbitrary states. Since G 6= ∅, there is a ti+1 ∈ G.

So every finite prefix 〈t0, . . . , ti〉 can be extended to an infinite sequence
〈t0, . . . , ti, ti+1, . . .〉 satisfying P live

G . Hence, P live
G is a liveness property.

Let 〈t0, t1, . . .〉 ∈ P live
G . Then there is a ti ∈ G. Hence, if one ex-

tends 〈t0, . . . , ti〉 by an arbitrary sequence 〈ti+1, ti+2, . . .〉 we again have
〈t0, . . . , ti, ti+1, ti+2, . . .〉 ∈ P live

G . Thus, P live
G is a discrete liveness property.

(b) For “only if”, let 〈t0, t1, . . .〉 ∈ PI→. So t0 ∈ I and for all i we have t0 →∗

ti. By Safe(I,→, G) this implies ti ∈ G. So we obtain 〈t0, t1, . . .〉 ∈ P safe
G .

For the “if”-direction, let t0 ∈ I and t0 →∗ ti. Then there exists an
infinite sequence 〈t0, . . . , ti, . . .〉 ∈ PI→. So PI→ ⊆ P safe

G implies ti ∈ G.

(c) For the “only if”-direction, let 〈t0, t1, . . .〉 ∈ PI→ and therefore t0 ∈ I. If
ti → ti+1 for all i, then by Live(I,→, G) there is a ti ∈ G. If there is
a tn ∈ NF and tn = tm for all m > n, then by Live(I,→, G) there is a
ti ∈ G for i ≤ n. Therefore, in both cases we obtain 〈t0, t1, . . .〉 ∈ P live

G .
For “if’, let t0 ∈ I. If t0 → t1 → ... is infinite, then 〈t0, t1, ...〉 ∈ PI→ ⊆

P live
G and ti ∈ G for some i. Similarly, if t0 → ... → tn for tn ∈ NF, then
〈t0, ..., tn, tn, tn, . . .〉 ∈ PI→ ⊆ P live

G and therefore ti ∈ G for some i. 2

Now we prove the converse, i.e., all safety and (discrete) liveness properties
of [1] can also be expressed in our framework. One can even simulate every
discrete property by a liveness property in our framework. So if P safe is a
safety and P live is a discrete property in [1] (i.e., P safe satisfies (1), P live satis-
fies (3)), then for any property P , “P ⊆ P safe” is a safety and “P ⊆ P live” is a
liveness property in our framework. Thus, both frameworks are equally power-
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ful for examining properties “P1 ⊆ P2” of computations (if the liveness defini-
tion of [1] is restricted to discrete liveness). In [1], a goal not only depends on a
state itself but also on the way that state is reached. In contrast, in our ap-
proach being a goal is just a property of the state alone. However, the concept
of goals in [1] can be simulated in our framework as well. For that purpose,
the notion of state is extended until it covers all relevant information for being
a goal. So instead of the original states we now consider finite tuples of states
(t0, . . . , ti) which stand for “state ti, if reached by the sequence 〈t0, . . . , ti〉”.
The initial “tuple-state” is the empty tuple ( ). To encode questions like
“P1 ⊆ P2” in our framework, we simulate the first property P1 by a relation
→P1 on tuple-states. Here, →P1 builds up elements of P1 step by step.

Theorem 3.2 (Simulating [1] in Def. 2.1 and 2.3) Let P 6= ∅ be an ar-
bitrary property, let P safe satisfy (1), and let P live satisfy (3). Let S ′ =
{(t0, . . . , tn) | ti ∈ S, n ≥ 0} and let Gsafe, Glive ⊆ S ′ with

• Gsafe = {(t0, . . . , ti) | 〈t0, . . . , ti, ti+1, . . .〉 ∈ P safe for some 〈ti+1, . . .〉}
• Glive = {(t0, . . . , ti) | 〈t0, . . . , ti, ti+1, . . .〉 ∈ P live for all 〈ti+1, . . .〉}
We define the relation →P⊆ S ′×S ′ as (t0, . . . , ti) →P (t0, . . . , ti, ti+1) iff there
exist 〈ti+2, . . .〉 such that 〈t0, . . . , ti, ti+1, ti+2, . . .〉 ∈ P . Then we have:

(a) P ⊆ P safe iff Safe(( ),→P , Gsafe)

(b) P ⊆ P live iff Live(( ),→P , Glive)

Proof.

(a) For the “if”-direction, let 〈t0, t1, . . .〉 ∈ P . So we have ( ) →P (t0) →P

(t0, t1) →P . . . By Safe(( ),→P , Gsafe) this implies (t0, . . . , ti) ∈ Gsafe for all
i. Assume that 〈t0, t1, . . .〉 /∈ P safe. Since P safe is a safety property, there
is an i such that for all 〈ti+1, ti+2, . . .〉 we have 〈t0, . . . , ti, ti+1, ti+2, . . .〉 /∈
P safe. This implies (t0, . . . , ti) /∈ Gsafe which is a contradiction.

For “only if”, let ( ) →∗
P (t0, . . . , ti). By definition of →P , there is 〈ti+1,

ti+2, . . .〉 with 〈t0, . . . , ti, ti+1, . . .〉 ∈ P ⊆ P safe. Hence, (t0, . . . , ti) ∈ Gsafe.

(b) For “if”, let 〈t0, t1, . . .〉 ∈ P , i.e., ( ) →P (t0) →P (t0, t1) →P . . . By
definition, →P has no normal forms. By Live(( ),→P , Glive) there is an i
with (t0, . . . , ti) ∈ Glive. So for all infinite extensions of 〈t0, . . . , ti〉, the
resulting sequence is in P live. In particular, we obtain 〈t0, t1, . . .〉 ∈ P live.

For “only if”, let ( ) →P (t0) →P (t0, t1) →P . . . By definition of →P

we have 〈t0, . . .〉 ∈ P ⊆ P live. Since P live satisfies (3), there is an i such
that for all 〈ti+1, ti+2, . . .〉 we have 〈t0, . . . , ti, ti+1, ti+2, . . .〉 ∈ P live. In
other words, (t0, . . . , ti) ∈ Glive for some i and thus Live(( ),→P , Glive). 2

4 Liveness in Term Rewriting

Now we focus on liveness in rewriting. More precisely, we study the property
Live(I,→R, G) where →R is the rewrite relation corresponding to a TRS R.
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For an introduction to term rewriting, the reader is referred to [3], for example.

Let Σ be a signature with at least one constant and let V be a set of
variables. T (Σ,V) is the set of terms over Σ and V and T (Σ) is the set of
ground terms. Now T (Σ,V) represents computation states and G ⊆ T (Σ,V).

By Thm. 2.6, Live(I,→, G) is equivalent to SN(I,→G), if NF(I) ⊆ G. To
verify liveness, we want to prove termination of →G by approaches for ter-
mination proofs of ordinary TRSs. But due to the reduction strategy in the
definition of →G, classical termination techniques are not applicable directly.
In Sect. 5 we present a transformation from a TRS R and a set G of terms to
a TRS R′ such that →G terminates iff the rewrite relation →R′ terminates. A
transformation where “if” holds is called sound and if the “only if”-direction
holds, it is called complete. The existence of a sound and complete transfor-
mation means that liveness and termination are essentially equivalent.

Depending on the form of G, different transformations have to be devel-
oped. We concentrate on two kinds of liveness properties: local liveness where
G is closed under contexts and substitutions and global liveness where the com-
plement of G is closed under contexts and substitutions. In global liveness, the
property of the term to be reached eventually is that a certain pattern does
not occur anywhere in the term, which is a global property of the term. In
local liveness, the desired property is that a certain pattern occurs somewhere
in the term, being a local property. Clearly, there exist liveness properties
which do not belong to our classes of local or global liveness. However, in [11]
and in the following sections, we demonstrate that local and global liveness
indeed capture many interesting liveness properties.

4.1 Global Liveness

A liveness property Live(I,→R, G) is called global if G has the form 3

G = {t | t does not contain an instance of p} for some term p.

In other words, G consists of all terms which cannot be written as C[pσ] for
any context C and substitution σ. As before, t →G u holds iff t →R u and
t /∈ G. So a term t may be reduced whenever it contains an instance of the
term p. Note that for sets G as above, the relation →G is a rewrite relation
(i.e., it is closed under substitutions and contexts). This also makes clear that
ground termination of →G is equivalent to full termination of →G.

A typical global liveness property is that eventually all processes requesting
a resource are granted access, cf. [11, Sect. 5.3]. Here, the network of processes
is described by a term t and processes that have not yet gained access to the
resource are represented as an instance of the subterm old(x). The aim is to
prove that eventually, t reduces to a term without old. This form of liveness is
called “global” since the goal situation is stated as a condition on all processes.

For arbitrary terms and TRSs, →G is not useful: if there is a symbol f of

3 An easy extension is to permit G = {t|t contains no instances of terms p1, . . . , or pn}.
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arity > 1 or if p contains a variable x (i.e., if p = C[x] for some context C), then
termination of →G implies termination of the full rewrite relation →R. The
reason is that any infinite reduction t0 →R t1 →R · · · gives rise to an infinite
reduction f(t0, p, . . .) →R f(t1, p, . . .) →R · · · or C[t0] →R C[t1] →R · · · where
in both cases none of the terms is in G. Therefore we concentrate on the
particular case of top rewrite systems in which there is a designated unary
symbol tp which may only occur on the root position of terms. Moreover, if
the root of one side of a rule is tp, then the other side must also start with tp.

Top rewrite systems typically suffice to model networks of processes, since
the whole network is represented by a top term [8]. Clearly, in top rewrite
systems, top terms can only be reduced to top terms again. In such systems
we consider properties Live(Ttop,→R, G), where Ttop is the set of ground terms
with tp on root position. So the goal is to prove that every maximal reduction
of ground top terms contains a term without an instance of p. Transformations
by which this can be treated are elaborated extensively in [11].

4.2 Local Liveness

In the remainder we concentrate on local liveness, where G has the form 4

G = {t | t contains an instance of p} for some term p.

So in local liveness, G is closed under substitutions and contexts, whereas in
global liveness the complement of G is closed under substitutions and contexts.
Now t →G u holds if t →R u and t contains no instance of p. A typical local
liveness property is that eventually at least one process requesting a resource is
granted access, rather than requiring this for all processes as in global liveness.

Example 4.1 (Waiting Lines) This TRS describes the behavior of two wai-
ting lines of processes. The combination of the lines has a bounded size, i.e.,
a new process can only enter a waiting line if some process was “served”. The
processes in the lines are served on a “first in - first out” basis. So at the front
end of a waiting line, a process may be served, where serving is denoted by a
constant serve. If a process is served, its place in the line is replaced by a free
place, denoted by free. If the place in front of some process is free, this process
may take the free place, creating a free place on its original position. If a line
has a free place at its back end, a new process new may enter any waiting line
and the free place is deleted. Apart from new processes represented by new we
also consider old processes represented by old, which were already in the line
initially. Introducing the binary symbol tp having the representations of the
waiting lines as its arguments, this network is described by the following top
rewrite system R. Here, the leftmost symbol of a term represents the “back

4 Again, the approach can easily be extended to sets G of the form {t | t contains an
instance of p1, p2, or pn} for terms p1, . . . , pn.
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end” of the waiting line and the rightmost symbol is the “front end”.

tp(free(x), y) → tp(new(x), y) new(free(x)) → free(new(x))

tp(free(x), y) → tp(x, new(y)) old(free(x)) → free(old(x))

tp(x, free(y)) → tp(new(x), y) new(serve) → free(serve)

tp(x, free(y)) → tp(x, new(y)) old(serve) → free(serve)

For various variations of this system we proved global liveness with respect
to p = old(x) in [11], stating that eventually all old clients will be served.
However, for this version this global liveness property does not hold: we have
an infinite reduction of top terms all containing the symbol old:

tp(new(serve), old(serve)) →R tp(free(serve), old(serve)) →R

tp(new(serve), old(serve)) →R . . .

But we can prove the weaker local liveness property that eventually some client
will be served. In our formalism this is done by choosing G = {t | t contains an
instance of free(serve)}, since free(serve) always occurs after serving a client.

Now →G is not a rewrite relation since it is neither closed under contexts
nor under substitutions. Moreover, ground termination of →G does not imply
termination of→G. To permit the restriction to ground terms, when regarding
local liveness, we always assume that our signature contains at least an extra
constant c and an extra unary function symbol h which do not appear in p.
In this case, ground termination and full termination of →G are equivalent.

5 Transformations for Local Liveness

Now we investigate the correspondence between liveness and termination in
the framework of term rewriting. Then all existing techniques for termination
proofs of TRSs (including future developments) can be used for liveness prop-
erties. A first step into this direction was taken in [8], where the termination
proof technique of dependency pairs was used to verify certain liveness prop-
erties of telecommunication processes. However, we now develop an approach
to connect liveness and termination in general. While in [11] we considered
global liveness, we now show that a similar approach is possible for local
liveness, although →G is no longer a rewrite relation. Hence, let G = {t|
t contains an instance of p}. Our goal is to present a transformation L such
that SN(→G) iff SN(L(R, p)), i.e., iff all L(R, p)-reductions are terminating. 5

As a first approach we choose a sound transformation Ls defined by

Ls(R, p) = { l → r ∈ R | p does not occur in r }.
Clearly, rules creating instances of p may not be applied in infinite →G-
reductions. Hence, SN(Ls(R, p)) implies SN(→G), i.e., Ls is sound. To prove

5 To ease the presentation, we only present transformations without regarding initial states
I. However, our transformations can easily be extended to take I into account.

9
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liveness in Ex. 4.1, for p = free(serve), Ls(R, p) consists of R’s first 6 rules and
termination is easily proved by dependency pairs [2].

However, Ls is not complete: SN(→G) does not imply SN(Ls(R, p)). As
an example let R = {f(x) → f(f(x))} and let p = f10(x). In the sequel we will
see that SN(→G) holds. However, Ls(R, p) = R is clearly not terminating.
The rest of this section is devoted to a sound and complete transformation L.

L(R, p)’s construction is motivated by an existing transformation [9,10]
developed for a completely different purpose (termination of context-sensitive
rewriting). We introduce a fresh binary symbol mat, fresh unary symbols
tp, chk, active, mark, no, and for every variable in p we introduce one fresh
constant. Let p be the ground term obtained by replacing every variable in
p by its corresponding fresh constant and ΣG denotes the resulting extended
signature. As in [9,10], the symbol active is used to specify potential next
redexes and mark means that its argument must be inspected in order to
identify those subterms which may be reduced next. In [9,10], this depends
on the position of a subterm (only subterms in “active” positions of all function
symbols above them are marked with active). In contrast, now all subterms
that do not contain an instance of p may be marked with active.

To simplify the mat-rules, we restrict ourselves to linear terms p where any
variable occurs at most once. Here, mat(p, t) checks whether p does not match
t. A corresponding transformation is also possible for non-linear terms p, but
then mat would would also fail if two occurrences of a variable would have to
be instantiated differently. The TRS L(R, p) consists of the following rules.

active(l) → mark(r) for all rules l → r in R

tp(mark(x)) → tp(chk(mat(p, x)))

mat(f(x1, . . . , xn), f(y1, . . . , yn)) → f(y1, . . . ,mat(xi, yi), . . . , yn)

for f ∈ Σ of arity n > 0 in p, 1 ≤ i ≤ n

mat(f(x1, . . . , xn), g(y1, . . . , ym)) → no(g(y1, . . . , ym))

for f, g ∈ Σ, f occurs in p, f 6= g

f(x1, . . . , no(xi), . . . , xn) → no(f(x1, . . . , xn))

for f ∈ Σ of arity n > 0, 1 ≤ i ≤ n

chk(no(f(x1, . . . , xn))) → f(chk(mat(p, x1)), . . . , chk(mat(p, xn)))

for f ∈ Σ of arity n > 0

chk(no(c)) → active(c) for c ∈ Σ of arity 0

f(active(x1), . . . , active(xn)) → active(f(x1, .., xn)) for f ∈Σ, arity n>0

f(active(x1), ..,mark(xi), .., active(xn)) → mark(f(x1, . . . , xn))

for f ∈ Σ of arity n > 0, 1 ≤ i ≤ n

Theorem 5.1 Let p ∈ T (Σ,V) be linear. The relation →G is terminating if

10
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and only if the TRS L(R, p) is terminating.

The proof of Thm. 5.1 is given in the appendix. As an example, let R
again consist of the rule f(x) → f(f(x)) and let p = f10(x). We required Σ to
contain at least one extra constant c and one extra unary symbol h. To ease
the presentation, here we omit h and let Σ = {c, f}. We obtain p = f10(X)
where X is a fresh constant. L(R, p) consists of the rules

active(f(x)) → mark(f(f(x))) chk(no(f(x))) → f(chk(mat(f10(X), x)))

mat(f(x), f(y)) → f(mat(x, y)) chk(no(c)) → active(c)

mat(f(x), c) → no(c) f(active(x)) → active(f(x))

f(no(x)) → no(f(x)) f(mark(x)) → mark(f(x))

tp(mark(x)) → tp(chk(mat(f10(X), x)))

Now the step f(c) →G f(f(c)) transforms to the following reduction in L(R, p):

tp(mark(f(c))) → tp(chk(mat(f10(X), f(c)))) →

tp(chk(f(mat(f9(X), c)))) → tp(chk(f(no(c)))) →

tp(chk(no(f(c)))) → tp(f(chk(mat(f10(X), c)))) →

tp(f(chk(no(c)))) → tp(f(active(c))) →

tp(active(f(c))) → tp(mark(f(f(c))))

In general, for a ground term t ∈ T (Σ), an L(R, p)-reduction of tp(mark(t))
starts with checking whether p matches t. If not, then on every position below
the root, a chk is created, after which a similar matching check can be done
on the direct subterms. This goes on until leaves are reached. Hence, active is
created only if none of the subterms on the path to the leaf is matched by
p. Then these active-symbols may move back to the root, while during this
process exactly one R-step may be applied, changing active into mark. (Several
R-steps are impossible, since mark can only be propagated upwards in terms
f(active(x1), ..., mark(xi), ..., active(xn)) where only one argument of f has the
root mark.) The TRS L(R, p) is designed in such a way that infinite reductions
are only possible if this process is repeated infinitely often. In our example
one can prove termination of L(R, p) by the dependency pair method [2].

6 Conclusion

In this paper, we showed how to define safety and liveness in terms of abstract
reduction and rewriting. In particular, liveness is defined by imposing a suit-
able reduction strategy. We have shown that our definitions are comparable
with existing definitions of safety and liveness in the literature [1]. While
safety properties can be proved in a local way (Thm. 2.2), for proving liveness
properties, it is useful to investigate the connection between liveness and ter-
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mination: It turns out that liveness and termination are essentially equivalent.
Depending on the form of the liveness condition, different transformations can
be given such that termination of the transformed TRS is equivalent to the
desired liveness property to be proved. This means that techniques for termi-
nation analysis of ordinary TRSs can be used to verify liveness properties.

While the formalization of liveness using abstract reduction was already
presented in [11], we extended the results of [11] by regarding safety (Sect. 2),
by comparing our notions with the ones of Alpern and Schneider [1] (Sect. 3),
and by introducing local liveness (Sect. 4 and 5).

To increase the applicability of this approach, instead of the sound and
complete transformation, one may use simpler sound (but incomplete) trans-
formations like Ls, since proving termination of L(R, p) can be very hard in
general. Then termination of the transformed TRS still implies the desired
local liveness property, but not vice versa. In [11] we already presented such
techniques for global liveness which permit automated proofs of liveness prop-
erties for interesting process protocols (e.g., networks with shared resources
and a token ring protocol). In contrast to model checking and related meth-
ods, this approach does not require finiteness of the state space. We plan to
refine and to develop such approaches further in future work.

A Appendix: The Proof of Theorem 5.1

We first present auxiliary lemmata required in the proof of Thm. 5.1. Lemma
A.1 describes the behavior of mat and it is the only lemma where the linearity
restriction on p is used. As explained in Sect. 5, a similar transformation (with
more complicated mat-rules) is also possible for non-linear terms p.

Lemma A.1 (Reductions with mat) For p ∈ T (Σ,V), p linear, t ∈ T (Σ),
we have mat(p, t) →+

L(R,p) no(u) iff t = u and no substitution σ satisfies pσ = t.

Proof. We apply induction on the structure of p. The cases where p is a con-
stant or a variable, or p and t have distinct root symbols follow directly from
the analysis of the shape of the rules. For the remaining case p = f(p1, . . . , pn),
t = f(t1, . . . , tn) we need the induction hypothesis and the property that for
a linear term p = f(p1, . . . , pn) we have ∃σ∀i : piσ = ti ⇐⇒ ∀i∃σ : piσ = ti.2

The next lemma shows that the rule tp(mark(x)) → tp(chk(mat(p, x))) is
crucial for the termination behavior of L(R, p).

Lemma A.2 (Termination Behavior of L(R, p)) Let L′(R, p) = L(R, p)\
{tp(mark(x)) → tp(chk(mat(p, x)))}. Then L′(R, p) is terminating.

Proof. Let R1 consist of the mat-rules and the rules of the form f(x1, . . . ,
no(xi), . . . , xn) → no(f(x1, . . . , xn)) from L(R, p). Termination of R1 can be
shown by the RPO [6] with the precedence mat > f > no for all f ∈ Σ.

We define a filtering fil where fil(t) is the normal form with respect to the
two rules no(x) → x and mat(x, y) → y. Moreover, let R2 consist of

12



Giesl and Zantema

active(l)→mark(r)

chk(f(x1, . . . , xn))→ f(chk(x1), . . . , chk(xn))

chk(c)→ active(c)

f(active(x1), . . . , active(xn))→ active(f(x1, . . . , xn))

f(active(x1), .., mark(xi), .., active(xn))→mark(f(x1, . . . , xn))

for all l → r in R, all f ∈ Σ with arity n > 0, and all constants c ∈ Σ.

If t →L′(R,p) u then either fil(t) →R2 fil(u) or both fil(t) = fil(u) and t →R1

u. Hence, for termination of L′(R, p) it suffices to prove termination of R2.

For any term t we define the multiset M(t) over the natural numbers as
follows: for every path from the root to a leaf of t we count the total number
of active and chk symbols on this path, and put the resulting number in M(t).
For example, if t = chk(active(c), chk(active(c))) then M(t) = {2, 3}. Now:

M(t) > M(u) if the step t →R2 u was done by applying a rule of the form
active(l) → mark(r) (for a duplicating rule l → r it is
possible that M(u) is obtained from M(t) by replacing one
element of M(t) by a number of smaller elements)

M(t) ≥ M(u) if the step t →R2 u was done by applying another rule of R2.

By the well-foundedness of the multiset order we conclude that in an in-
finite R2-reduction, rules of the form active(l) → mark(r) are applied only
finitely many times. Hence it remains to prove termination of the rest of R2:

chk(f(x1, . . . , xn))→ f(chk(x1), . . . , chk(xn))

chk(c)→ active(c)

f(active(x1), . . . , active(xn))→ active(f(x1, . . . , xn))

f(active(x1), .., mark(xi), .., active(xn))→mark(f(x1, . . . , xn))

We use RPO with precedence chk > f > active > mark for all f ∈ Σ. 2

Now we can formulate a lemma which relates L(R, p) to →R.

Lemma A.3 (Relationship between L(R, p) and →R) If t, u ∈ T (ΣG \
{tp}) and chk(mat(p, t)) →+

L(R,p) mark(u) then t, u ∈ T (Σ) and t →R u. More-

over, if chk(mat(p, t)) →+
L(R,p) active(u), then t, u ∈ T (Σ) and t = u.

Proof. Since t does not contain tp, in the reduction one can only use rules
from L′(R, p) (L′(R, p) is defined as in Lemma A.2). Let t % u hold iff fil(t)
(→R2 ∪ �Σ)∗ fil(u). Here, fil and R2 are defined as in the proof of Lemma
A.2 and �Σ is the subterm relation for symbols from Σ, i.e., it is the rewrite
relation of the TRS with the rules f(x1, . . . , xi, . . . , xn) → xi for all f ∈ Σ.
Let �= % \ - be the strict part of %. The well-foundedness of � follows from
the well-foundedness of R2, which was shown in the proof of Lemma A.2.

We use induction on �. When reducing chk(mat(p, t)) to mark(u) or
active(u), first some reductions may take place inside t. Hence, t is reduced
to t′ with t →∗

L′(R,p) t′. As shown in the proof of Lemma A.2, this implies

fil(t) →∗
R2

fil(t′) and hence, t % t′. Then, the redex mat(p, t′) is reduced.
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Hence, t′ = f(t1, . . . , tn) and f ∈ Σ (otherwise no mat-rule is applicable).

If f 6= root(p) and f is a constant (i.e., n = 0), then we have

chk(mat(p, t)) →∗
L′(R,p) chk(mat(p, t′))

= chk(mat(p, f))

→L′(R,p) chk(no(f))

→L′(R,p) active(f)

and active(f) →L′(R,p) mark(r) if f → r ∈ R, which proves the lemma.

Now we regard the case where f 6= root(p) and n > 0. Here we have

chk(mat(p, t)) →∗
L′(R,p) chk(mat(p, t′))

= chk(mat(p, f(t1, . . . , tn)))

→L′(R,p) chk(no(f(t1, . . . , tn)))

→+
L′(R,p) f(chk(mat(p, t′1)), . . . , chk(mat(p, t′n)))

with ti →∗
L′(R,p) t′i. This term can only rewrite to mark(u) if there is a j such

that chk(mat(p, t′j)) rewrites to some mark(uj) and chk(mat(p, t′i)) rewrites to
a term of the form active(ui) for all i 6= j. Similarly, f(chk(mat(p, t′1)), . . . ,
chk(mat(p, t′n))) can only rewrite to active(u) if all chk(mat(p, t′i)) rewrite to
terms of the form active(ui). Since t % t′ � ti % t′i for all i, we can apply the
induction hypothesis which implies the lemma.

Finally, if f = root(p) then we have

chk(mat(p, t′)) = chk(mat(p, f(t1, . . . , tn)))

→L′(R,p) chk(f(t1, . . . , mat(p, ti), . . . , tn)).

Reducing a tj with j 6= i to a term no(uj) and then lifting this no on top of f
would lead to a term chk(no(f(. . . , t′i, . . .))) →L′(R,p) f(. . . , chk(mat(p, t′i)), . . .)
with t′i 6∈ T (Σ). Note that t % t′ � ti % t′i. By the induction hypothesis, the
term chk(mat(p, t′i)) cannot reduce to a term of the form mark(ui) or active(ui)
and thus, the whole term cannot reduce to mark(u) or active(u).

So mat(p, ti) →+
L′(R,p) no(ui) for some ui and the reduction continues with:

chk(f(t1, . . . , mat(p, ti), . . . , tn)) →+
L′(R,p)

f(chk(mat(p, t′1)), . . . , chk(mat(p, u′i)), . . . chk(mat(p, t′n)))

where tj →∗
L′(R,p) t′j and ui →∗

L′(R,p) u′i. Note that t % t′ � tj % t′j for j 6= i

and t % t′ � ti % u′i. The reason for ti % u′i is that mat(p, ti) →∗
L′(R,p) no(ui)

implies fil(ti) = fil(mat(p, ti)) →∗
R2

fil(no(ui)) = fil(ui). So similar to the case
where f 6= root(p), now the conjecture follows from the induction hypothesis.2

Now we can formulate a lemma on the relationship between L(R, p) and →G.

Lemma A.4 (Relating L(R, p) and →G) Let p ∈ T (Σ,V) be linear. For
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ground terms t over Σ we have t →+
G u iff tp(mark(t)) →+

L(R,p) tp(mark(u)).

Proof. For “only if”, we must show that tp(mark(t)) →+
L(R,p) tp(mark(u)) if t

→G u. By the assumption t →G u we know t 6∈ G, hence mat(p, t′) →+
L(R,p)

no(t′) for subterms t′ of t (Lemma A.1). Now the reduction tp(mark(t)) →+
L(R,p)

tp(mark(u)) can easily be constructed by propagating the chk-symbols to the
leaves until all leaves c are replaced by active(c). Then these active-symbols can
be propagated back to the root. During this propagation the redex from the
reduction t →G u is reduced and the corresponding active-symbol is replaced
by a mark-symbol. Hence, we end up in tp(mark(u)).

For the converse, since t ∈ T (Σ), we must have tp(mark(t)) →L(R,p)

tp(chk(mat(p, t))) →+
L(R,p) tp(mark(u)). Hence, Lemma A.3 implies t →R u.

We still need to prove that t 6∈ G. Note that chk(mat(p, t)) →+
L(R,p)

mark(u) implies that chk is propagated downwards to the leaves of t. By
Lemma A.1 this implies that no subterm of t is matched by p. Thus, the
active(. . .) → mark(. . .) step done in the reduction chk(mat(p, t)) →+

L(R,p)

mark(u) can also be done with →G. Note that in the reduction chk(mat(p, t))
→+

L(R,p) mark(u) we perform exactly one such step (if one would perform an-

other active(. . .) → mark(. . .) step, then mark could no longer be propagated
to the top since the rules

f(active(x1), . . . , mark(xi), . . . , active(xn)) → mark(f(x1, . . . , xn))

can only be applied if there is exactly one occurrence of mark). 2

Now we prove Thm. 5.1: →G is terminating iff the TRS L(R, p) is terminating.

Proof. We first show the “if”-direction. If →G were not terminating, then
there would be an infinite reduction

t0 →G t1 →G . . .

of ground terms over Σ. (We extended the signature such that ground termi-
nation already implies termination of →G.) By Lemma A.4 this would imply

tp(mark(t0)) →+
L(R,p) tp(mark(t1)) →+

L(R,p) . . .

in contradiction to the termination of L(R, p).

For “only if”, assume that L(R, p) is not terminating. Then by type intro-
duction [12,15] one can show that there is an infinite L(R, p)-reduction where
every term has tp as root, whereas tp does not occur below the root. Due
to Lemma A.2 the reduction contains infinitely many applications of the rule
tp(mark(x)) → tp(chk(. . .)). Hence, the reduction has the form

tp(mark(t0)) →L(R,p) tp(chk(mat(p, t0))) →+
L(R,p)

tp(mark(t1)) →L(R,p) tp(chk(mat(p, t1))) →+
L(R,p) . . .

By Lemma A.3 this implies t0, t1, . . . ∈ T (Σ). Thus, Lemma A.4 implies

t0 →+
G t1 →+

G . . .
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in contradiction to the termination of →G. 2
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