
Aachen
Department of Computer S
ien
e

Te
hni
al Report

A
olle
tion of examples for termina-

tion of term rewriting using dependen
y

pairs

Thomas Arts and J�urgen Giesl

ISSN 0935{3232 � Aa
hener Informatik Beri
hte � AIB-2001-09

RWTH Aa
hen � Department of Computer S
ien
e � September 2001

The publi
ations of the Department of Computer S
ien
e of RWTH Aa
hen

(Aa
hen University of Te
hnology) are in general a

essible through the World

Wide Web.

http://aib.informatik.rwth-aa
hen.de/

A
olle
tion of examples for termination of term

rewriting using dependen
y pairs

Thomas Arts

1

and J�urgen Giesl

2

1

Eri
sson, Computer S
ien
e Laboratory, Box 1505, 125 25

�

Alvsj�o, Sweden

Email: thomas�
slab.eri
sson.se

2

LuFG Informatik II, RWTH Aa
hen, Ahornstr. 55, 52074 Aa
hen, Germany

Email: giesl�informatik.rwth-aa
hen.de

Abstra
t. This report
ontains a
olle
tion of examples to demonstrate the use

and the power of the dependen
y pair te
hnique developed by Arts and Giesl.

This te
hnique allows automated termination and innermost termination proofs

for many term rewrite systems for whi
h su
h proofs were not possible before.

1 Introdu
tion

In many appli
ations of term rewrite systems (TRSs), termination is an im-

portant property. A TRS is said to be terminating if it does not allow in�nite

redu
tions. Sin
e termination is in general unde
idable [HL78℄, several methods

for proving this property have been developed; for surveys see e.g. [Der87,Ste95b℄.

Pra
ti
ally all known methods that are amenable to automation use simpli�
a-

tion orderings [Der79,Der87,Ste95b,MZ97℄.

However, there exist numerous term rewrite systems for whi
h termination

annot be proved by this kind of orderings. For that reason, Arts and Giesl

[AG97a,AG97b,AG98,AG00,GA01,GAO01℄ developed the so-
alled dependen
y

pair approa
h. Given a TRS, the dependen
y pair te
hnique automati
ally gen-

erates a set of
onstraints and the existen
e of a well-founded (quasi-)ordering

satisfying these
onstraints is suÆ
ient for termination. The advantage is that

standard (automati
) te
hniques
an often synthesize su
h a well-founded or-

dering even if a dire
t termination proof with the same te
hniques fails. In this

way, simpli�
ation orderings
an now be used to prove termination of non-simply

terminating TRSs.

This report
ontains a
olle
tion of several su
h systems from di�erent areas

of
omputer s
ien
e (in
luding many
hallenging problems from the literature).

Moreover, appli
ations of dependen
y pairs for realisti
 industrial problems in

the area of distributed tele
ommuni
ation pro
esses are dis
ussed in [GA01℄.

For an implementation of the dependen
y pair approa
h see [Art00℄ or [CiM99℄.

Dependen
y pairs have also been su

essfully applied in automati
 termination

proofs of logi
 programs, see [Ohl01,OCM00℄.

In Se
tion 2 we brie
y re
apitulate the basi
 results of the dependen
y pair

approa
h. Se
tion 3
ontains a
olle
tion of examples to demonstrate the use

of dependen
y pairs for termination proofs of TRSs and Se
tion 4
ontains a

orresponding
olle
tion for innermost termination proofs.

2 The dependen
y pair method

In the following we des
ribe the notions relevant to the dependen
y pair method

(where we assume the reader to be familiar with the basi
 notions of term rewrit-

ing [DJ90,Klo92,BN98℄). In Se
tion 2.1 we illustrate how dependen
y pairs are

used for automati
 termination proofs and in Se
tion 2.2 we explain their use

for innermost termination proofs. For motivations and further re�nements see

[AG00,GA01,GAO01℄. We adopt the notation of [GM00℄ and [KNT99℄. The root

of a term f(: : :) is the leading fun
tion symbol f . For a TRS R over a signature

F , D = froot(l)jl ! r 2 Rg is the set of the de�ned symbols and C = F n D

is the set of
onstru
tors of R. Let F

℄

denote the union of the signature F

and ff

℄

j f is a de�ned symbol of Rg, where f

℄

has the same arity as f . The

fun
tions f

℄

are
alled tuple symbols, where we often write F for f

℄

, et
. Given

a term t = f(t

1

; : : : ; t

n

) 2 T (F ;V) with f de�ned, we write t

℄

for the term

t = f

℄

(t

1

; : : : ; t

n

).

De�nition 1 (Dependen
y pair). If l ! r 2 R and t is a subterm of r with

de�ned root symbol, then the rewrite rule l

℄

! t

℄

is
alled a dependen
y pair of

R. The set of all dependen
y pairs of R is denoted by DP(R).

2.1 Termination

In this se
tion we explain how dependen
y pairs
an be used to prove termination

of TRSs.

De�nition 2 (Chain). A sequen
e of dependen
y pairs s

1

! t

1

, s

2

! t

2

; : : : is

an R-
hain if there exists a substitution � su
h that t

j

�!

�

R

s

j+1

� holds for every

two
onse
utive pairs s

j

! t

j

and s

j+1

! t

j+1

in the sequen
e.

We always assume that di�erent (o

urren
es of) dependen
y pairs have dis-

joint sets of variables and we always
onsider substitutions whose domains may

be in�nite. In
ase R is
lear from the
ontext we often write
hain instead of

R-
hain. As proved in [AG97a,AG00℄, the absen
e of in�nite
hains is a suÆ
ient

and ne
essary
riterion for termination.

Theorem 1 (Termination
riterion). A TRS R is terminating if and only if

there exists no in�nite R-
hain.

Some dependen
y pairs
an never o

ur twi
e in any
hain and hen
e they

need not be
onsidered when proving that no in�nite
hain exists. For identifying

these insigni�
ant dependen
y pairs, the notion of dependen
y graph has been

introdu
ed [AG97a,AG00℄.

De�nition 3 (Dependen
y graph). The dependen
y graph of a TRS R is

the dire
ted graph whose nodes are the dependen
y pairs and there is an ar
 from

s! t to v ! w i� s! t, v ! w is a
hain.

4

A non-empty set P of dependen
y pairs is
alled a
y
le if for any two pairs

s! t and v ! w in P there is a non-empty path from s! t to v ! w whi
h

only traverses pairs from P . Sin
e we only regard �nite TRSs, any in�nite
hain

of dependen
y pairs
orresponds to a
y
le in the dependen
y graph. Hen
e, the

dependen
y pairs that are not on a
y
le in the dependen
y graph are insigni�
ant

for the termination proof. One
an prove termination of a TRS in a modular way,

by proving absen
e of in�nite
hains separately for every
y
le [AG98,GAO01℄.

Theorem 2 (Modular termination
riterion). A TRS R is terminating if

and only if for ea
h
y
le P in the dependen
y graph there exists no in�nite

R-
hain of dependen
y pairs from P.

This theorem
an be re�ned by narrowing
ertain dependen
y pairs [AG00℄.

De�nition 4 (Narrowing). Let R be a TRS. A term t narrows to a term t

0

via the substitution � if there exists a non-variable position p in t, � is the most

general uni�er of tj

p

and l for some rewrite rule l ! r of R, and t

0

= t�[r�℄

p

.

(Here, the variables of l ! r must have been renamed to fresh variables.)

De�nition 5 (Narrowing pairs). Let R be a TRS. If a term t narrows to a

term t

0

via the substitution �, then we say that the pair of terms s! t narrows

to the pair s�! t

0

.

Theorem 3 (Narrowing re�nement for termination). Let R be a TRS and

let P be a set of pairs of terms. Let s! t in P su
h that t is linear and for all

v ! w in P the terms t and v are not uni�able (after renaming the variables).

Let

P

0

= P n fs! tg [fs

0

! t

0

j s

0

! t

0

is a narrowing of s! tg:

There exists an in�nite R-
hain of pairs from P if and only if there exists an

in�nite R-
hain of pairs from P

0

.

Stri
tly spoken, if in a set P a dependen
y pair is repla
ed by its narrowings,

the resulting set is not a set of dependen
y pairs, but rather a set of pairs. The

above theorem, however, states that we may use these sets of pairs instead of the

original sets of dependen
y pairs in the other theorems stated here.

In order to
he
k that no in�nite
hain of dependen
y pairs exists, sets of

inequalities are generated. These inequalities should be satis�ed by some pair

(%;�)
onsisting of a quasi-rewrite ordering % (i.e., % must be a re
exive and

transitive relation that is (weakly) monotoni
 and
losed under substitutions)

and an ordering � with the properties

� � is
losed under substitutions and well founded

� % Æ ��� or � Æ %��.

(Note that � need not be monotoni
.) Su
h a pair is
alled a redu
tion pair

[KNT99℄. A termination proof for a
ertain TRS is transformed into the problem

of �nding several redu
tion pairs [AG98,GAO01℄.

5

Theorem 4 (Modular termination proofs I). A TRS R is terminating if

and only if for ea
h
y
le P in the dependen
y graph there is a redu
tion pair

(%

P

;�

P

) su
h that

(a) l %

P

r for all rules l ! r in R,

(b) s %

P

t for all dependen
y pairs s! t from P, and

(
) s �

P

t for at least one dependen
y pair s! t from P.

Of
ourse, our aim is to use standard te
hniques to generate suitable re-

du
tion pairs satisfying the
onstraints of Theorem 4. However, most existing

methods generate orderings whi
h are strongly monotoni
, whereas for the de-

penden
y pair approa
h we only need a weakly monotoni
 quasi-ordering. For

that reason, before synthesizing a suitable ordering, some of the arguments of the

fun
tion symbols
an be eliminated. To perform this elimination of arguments

resp. of fun
tion symbols the
on
ept of argument �ltering was introdu
ed in

[AG97a,AG00℄ (here we use the notation of [KNT99℄).

De�nition 6 (Argument �ltering). An argument �ltering for a signature

F is a mapping � that asso
iates with every n-ary fun
tion symbol an argument

position i 2 f1; : : : ; ng or a (possibly empty) list [i

1

; : : : ; i

m

℄ of argument positions

with 1 � i

1

< : : : < i

m

� n. The signature F

�

onsists of all fun
tion symbols f

su
h that �(f) = [i

1

; : : : ; i

m

℄, where in F

�

the arity of f is m. Every argument

�ltering � indu
es a mapping from T (F ;V) to T (F

�

;V), also denoted by �, whi
h

is de�ned as:

�(t) =

8

<

:

t if t is a variable,

�(t

i

) if t = f(t

1

; : : : ; t

n

) and �(f) = i,

f(�(t

i

1

); : : : ; �(t

i

m

)) if t = f(t

1

; : : : ; t

n

) and �(f) = [i

1

; : : : ; i

m

℄.

Theorem 5 (Modular termination proofs II). A TRS R over a signature

F is terminating if and only if for ea
h
y
le P in the dependen
y graph there is

an argument �ltering �

P

for F

℄

and a redu
tion pair (%

P

;�

P

) su
h that

(a) �

P

(l) %

P

�

P

(r) for all rules l ! r in R,

(b) �

P

(s) %

P

�

P

(t) for all dependen
y pairs s! t from P, and

(
) �

P

(s) �

P

�

P

(t) for at least one dependen
y pair s! t from P.

For the automation of the te
hnique, we need to
ompute the dependen
y

graph, �nd argument �lterings, and synthesize a redu
tion pair for ea
h set of

inequalities. Sin
e it is in general unde
idable whether two dependen
y pairs form

a
hain, we need to estimate the dependen
y graph in su
h a way that all
y
les

in the real graph are also
y
les in the estimated graph. Our estimation depends

on two transformations that are applied to the right-hand side of a dependen
y

pair [AG97a,AG00℄.

Let
ap(t) result from repla
ing all subterms of t that have a de�ned root

symbol by di�erent fresh variables and let ren(t) result from repla
ing all vari-

ables in t by di�erent fresh variables. Then, to determine whether v ! w
an

follow s! t in a
hain, we
he
k whether ren(
ap(t)) uni�es with v.

6

De�nition 7 (Estimated dependen
y graph). The estimated dependen
y

graph of a TRS R is the dire
ted graph whose nodes are the dependen
y pairs

and there is an ar
 from s! t to v ! w if and only if ren(
ap(t)) and v are

uni�able.

With this de�nition Theorems 2, 4, and 5 also hold if we repla
e dependen
y

graph by estimated dependen
y graph [GAO01℄.

The estimated dependen
y graph is
omputable, hen
e all the
y
les in the

graph are
omputable. The argument �ltering
an be found automati
ally by

an exhaustive sear
h. For every possible argument �ltering one
an try quasi-

simpli�
ation orderings (QSOs) like RPO, LPO, KBO, polynomial interpreta-

tions, et
., to �nd a redu
tion pair that satis�es the inequalities [Art00℄. Ter-

mination proved in this way is
alled DP quasi-simple termination. Be
ause

of the te
hniques we use to �nd a redu
tion pair, we restri
t ourselves in the

following to argument �lterings su
h that for every pair/rule s ! t we have

Var(�(t)) � Var(�(s)) and �(s) 62 V . Only for those argument �lterings the

te
hniques are potentially su

essful in pra
ti
e.

De�nition 8 (DP quasi-simple termination). A TRS R over a signature

F is
alled DP quasi-simply terminating if and only if for ea
h
y
le P in the

estimated dependen
y graph there exists an argument �ltering �

P

for F

℄

and a

redu
tion pair (%

P

;�

P

) with a QSO %

P

su
h that

(a) �

P

(l) %

P

�

P

(r) for all rules l ! r in R,

(b) �

P

(s) %

P

�

P

(t) for all dependen
y pairs s! t from P, and

(
) �

P

(s) �

P

�

P

(t) for at least one dependen
y pair s! t from P.

If a quasi-simpli�
ation ordering exists su
h that either s � t or s is synta
-

ti
ally equal to t for all inequalities s % t, one obtains the notion of DP simple

termination.

De�nition 9 (DP simple termination). A TRS R over a signature F is

alled DP simply terminating if and only if for ea
h
y
le P in the estimated

dependen
y graph there is an argument �ltering � for F

℄

and a simpli�
ation

ordering �

P

su
h that

(a) �

P

(l) �

P

�

P

(r) for all rules l ! r in R,

(b) �

P

(s) �

P

�

P

(t) for all dependen
y pairs s! t from P, and

(
) �

P

(s) �

P

�

P

(t) for at least one dependen
y pair s! t from P.

The information that systems are DP quasi-simple terminating
an be used

when
ombining these systems and proving termination of the resulting TRS

[GO00,GAO01℄.

Theorem 6 (Modularity of DP quasi-simple termination). Let R

1

and

R

2

be two TRSs over disjoint signatures F

1

and F

2

, respe
tively. Then their

union R = R

1

[R

2

is DP quasi-simply terminating if and only if both R

1

and

R

2

are DP quasi-simply terminating.

7

For DP simple termination the modularity result for disjoint unions does not

hold. The problem is that one of the two systems might have no
y
le at all in

the graph and is therefore, trivially, DP simply terminating. Combined with a

system with a
y
le, however, the inequalities
orresponding to the rules should

be satis�ed, whi
h is not always possible by a QSO in whi
h the equivalen
e

part is synta
ti
 equivalen
e. Thus, Constraint (a) of De�nition 9 must even be

satis�ed if the TRS only has the empty
y
le P . Furthermore, by restri
ting the

argument �lterings used in a suitable way, one
an even extend the modularity

result to
onstru
tor-sharing and
omposable
ombinations of TRSs [GAO01℄.

For that purpose, we introdu
e the notion of G-restri
ted DP simple termination.

De�nition 10 (G-restri
ted DP simple termination). A TRS R over a

signature F is
alled G-restri
ted DP simply terminating for a signature G if and

only if for ea
h
y
le P in the estimated dependen
y graph (in
luding the empty

one) there is an argument �ltering �

P

for F

℄

and a simpli�
ation ordering �

P

su
h that

(a) �

P

(l) �

P

�

P

(r) for all rules l ! r in R,

(b) �

P

(s) �

P

�

P

(t) for all dependen
y pairs s! t from P,

(
) �

P

(s) �

P

�

P

(t) for at least one dependen
y pair s! t from P if P 6= ;,

(d) �

P

(f) = [1; : : : ; n℄ for every f 2 F \ G, where n is the arity of f , and

(e) for every rule l ! r 2 R: if root(l) 62 G, then root(�

P

(l)) 62 G.

From the de�nition it is
lear that G-restri
ted DP simple termination implies

DP simple termination. With this restri
ted notion of DP simple termination we

obtain modularity for
omposable systems (and therefore also for systems with

shared
onstru
tors and disjoint unions).

Theorem 7 (Modularity of G-restri
ted DP simple termination). Let

R

1

and R

2

be
omposable TRSs over the signatures F

1

and F

2

, respe
tively.

If F

1

\ F

2

� G, then their
ombined system R = R

1

[R

2

is G-restri
ted DP

simply terminating if and only if both R

1

and R

2

are G-restri
ted DP simply

terminating.

2.2 Innermost termination

In [AG97b,AG00℄, we showed that the dependen
y pair approa
h
an be modi�ed

in order to verify innermost termination.

De�nition 11 (Innermost
hain). A sequen
e of dependen
y pairs s

1

! t

1

,

s

2

! t

2

, : : : is an innermost R-
hain if there exists a substitution � su
h that

all s

j

� are in normal form and t

j

�

i

!

�

R

s

j+1

� holds for every two
onse
utive

pairs s

j

! t

j

and s

j+1

! t

j+1

in the sequen
e. Here, `

i

!' denotes innermost

redu
tions.

The absen
e of in�nite innermost
hains is a suÆ
ient and ne
essary
riterion

for innermost termination.

8

Theorem 8 (Innermost termination
riterion). A TRS R is innermost

terminating if and only if there exists no in�nite innermost R-
hain.

Analogous to Se
tion 2.1, the notion of a graph is de�ned for innermost

hains.

De�nition 12 (Innermost dependen
y graph). The innermost dependen
y

graph of a TRS R is the dire
ted graph whose nodes are the dependen
y pairs

and there is an ar
 from s! t to v ! w i� s! t, v ! w is an innermost
hain.

Similar to termination, one
an also prove innermost termination of TRSs in

a modular way [AG98,GAO01℄.

Theorem 9 (Modular innermost termination
riterion). A TRS R is in-

nermost terminating if and only if for ea
h
y
le P in the innermost dependen
y

graph there is no in�nite innermost R-
hain of dependen
y pairs from P.

This theorem
an also be re�ned by narrowing
ertain dependen
y pairs

[AG00,GA01℄.

Theorem 10 (Narrowing re�nement for innermost termination). Let

R be a TRS and let P be a set of pairs of terms. Let s! t in P su
h that

Var(t) � Var(s) and su
h that for all v ! w in P the terms t and v are not

uni�able (after renaming the variables). Let

P

0

= P n fs! tg [fs

0

! t

0

j s

0

! t

0

is a narrowing of s! tg:

If there exists no in�nite innermost
hain of pairs from P

0

, then there exists no

in�nite innermost
hain of pairs from P either.

Moreover, if R is innermost terminating and non-overlapping, then the
on-

verse holds as well (i.e., if there exists no in�nite innermost
hain of pairs from

P, then there exists no in�nite innermost
hain of pairs from P

0

either).

Further re�nements of this theorem as well as additional te
hniques for modifying

dependen
y pairs by rewriting and by instantiation
an be found in [GA01℄.

To prove innermost termination automati
ally, we again generate a set of

inequalities for every
y
le P and sear
h for a redu
tion pair (%

P

;�

P

) satisfying

them. However, to ensure t� %

P

v� whenever t� redu
es to v�, now it is suÆ
ient

to require l %

P

r only for those rules that are usable in a redu
tion of t� (for

normal substitutions �).

De�nition 13 (Usable rules). Let R be a term rewrite system. For any symbol

f let Rules

R

(f) = fl ! r 2 R j root(l) = fg. For any term we de�ne the usable

rules:

� U

R

(x) = ;,

� U

R

(f(t

1

; : : : ; t

n

)) = Rules

R

(f) [

S

l!r2Rules

R

(f)

U

R

0

(r) [

S

n

j=1

U

R

0

(t

j

),

9

where R

0

= RnRules

R

(f). Moreover, for any set P of dependen
y pairs we de�ne

U

R

(P) =

S

s!t2P

U

R

(t).

Now we
an state the theorem for innermost termination proofs.

Theorem 11 (Modular innermost termination proofs). A TRS R over

a signature F is innermost terminating if for ea
h
y
le P in the innermost

dependen
y graph there is an argument �ltering � for F

℄

and a redu
tion pair

(%

P

;�

P

) su
h that

(a) �(l) %

P

�(r) for all rules l ! r in U

R

(P),

(b) �(s) %

P

�(t) for all dependen
y pairs s! t from P, and

(
) �(s) �

P

�(t) for at least one dependen
y pair s! t from P.

For the purpose of automation we again need an estimation of the innermost

dependen
y graph, sin
e in general it is unde
idable whether two dependen
y

pairs s! t and v ! w form an innermost
hain. To this end, we again repla
e

subterms in t with de�ned root symbols by new variables and
he
k whether this

modi�
ation of t uni�es with v, but in
ontrast to Se
tion 2.1 we do not rename

multiple o

urren
es of the same variable.

Moreover, to eliminate de�ned symbols we use a modi�ed transformation

ap

s

where
ap

s

(t) only repla
es those subterms of t by di�erent fresh variables

whi
h have a de�ned root symbol and whi
h are no subterms of s. Then to re�ne

the approximation of innermost dependen
y graphs instead of
ap(t) we
he
k

whether
ap

s

(t) uni�es with v. Finally, if � is the most general uni�er (mgu)

of
ap

s

(t) and v, then there
an only be an ar
 from s! t to v ! w in the

innermost dependen
y graph, if both s� and v� are in normal form.

De�nition 14 (Estimated innermost dependen
y graph). The estimated

innermost dependen
y graph of a TRS R is the dire
ted graph whose nodes are

the dependen
y pairs and there is an ar
 from s! t to v ! w if and only if

ap

s

(t) and v are uni�able by a most general uni�er � su
h that s� and v� are

normal forms.

With this de�nition Theorems 9 and 11 also hold if we repla
e innermost depen-

den
y graph by estimated innermost dependen
y graph.

In [AG98,GAO01℄, two
orollaries of the above results were presented whi
h

are parti
ularly useful in pra
ti
e.

Corollary 15 (Innermost termination for hierar
hi
al
ombinations)

Let R be the hierar
hi
al
ombination of R

1

and R

2

.

(a) R is innermost terminating if and only if R

1

is innermost terminating and

there exists no in�nite innermost R-
hain of R

2

-dependen
y pairs.

(b) R is innermost terminating if R

1

is innermost terminating and if there exists

a redu
tion pair (%;�) su
h that for all dependen
y pairs s! t of R

2

10

� l % r for all rules l ! r in U

R

(t) and

� s � t.

The following
orollary of Theorem 9 shows that the
onsideration of
y
les

in the (estimated) innermost dependen
y graph
an also be used to de
ompose

a TRS into modular subsystems. In the following, let O(P) denote the origin of

the dependen
y pairs in P , i.e., O(P) is a set of those rules where the dependen
y

pairs of P stem from. If a dependen
y pair of P may stem from several rules,

then it is suÆ
ient if O(P) just
ontains one of them.

Corollary 16 (Modularity for subsystems) Let R be a TRS, let P

1

; : : : ;P

n

be the
y
les in its (estimated) innermost dependen
y graph, and let R

j

be subsys-

tems of R su
h that U

R

(P

j

)[O(P

j

) � R

j

(for all j 2 f1; : : :; ng). If R

1

; : : : ;R

n

are innermost terminating, then R is also innermost terminating.

For further
orollaries and results on the relation of our modularity results

to previous modularity results the reader is referred to [GAO01℄.

3 Examples for termination

This se
tion
ontains a
olle
tion of TRSs where termination
an be proved

by the te
hnique des
ribed above. The majority of them o

urred as
hallenge

problems in the literature, whereas the other examples are added to point out

spe
i�
 failures of existing te
hniques. Several of these examples are not simply

terminating. Thus, all methods based on simpli�
ation orderings fail in proving

termination of these systems. For those examples whi
h are overlay systems with

joinable
riti
al pairs, termination
an also be veri�ed by proving innermost

termination using the te
hnique of Se
tion 2.2.

In the examples, we refer to the sets of inequalities that result from a
y
le in

the estimated dependen
y graph and the rules of the system as \the inequalities"

(
f. Theorem 4 and 5). However, in most of the examples, only the inequalities

resulting from dependen
y pairs on
y
les are mentioned. But of
ourse, the

inequalities l % r are also synthesized for ea
h rewrite rule l ! r in the term

rewrite system. The argument �lterings that we use are only des
ribed for those

fun
tion symbols f with arity n for whi
h �(f) 6= [1; : : : ; n℄, i.e., only those

fun
tion symbols where some arguments are really �ltered.

In this
olle
tion of examples, three di�erent te
hniques are used to �nd a

redu
tion pair, viz. the re
ursive path ordering, the lexi
ographi
 path ordering,

and polynomial interpretations. For Examples 3.39 { 3.46 we need the re�nement

of narrowing dependen
y pairs and Examples 3.47 { 3.57 illustrate the use of our

modularity results.

3.1 Division, version 1

The TRS

11

minus(x; 0)! x

minus(s(x); s(y))! minus(x; y)

quot(0; s(y))! 0

quot(s(x); s(y))! s(quot(minus(x; y); s(y)))

is not simply terminating. In this example, we have two
y
les, viz.

fMINUS(s(x); s(y))! MINUS(x; y)g

fQUOT(s(x); s(y))! QUOT(minus(x; y); s(y))g:

Apart from the four inequalities
orresponding to the rewrite rules, one stri
t

inequality is obtained per
y
le. Both sets of inequalities are solved by the argu-

ment �ltering �(minus) = [1℄ and RPO. Hen
e DP simple termination is proved.

3.2 Division, version 2

This TRS for division uses di�erent minus-rules. Again, it is not simply termi-

nating.

pred(s(x))! x

minus(x; 0)! x

minus(x; s(y))! pred(minus(x; y))

quot(0; s(y))! 0

quot(s(x); s(y))! s(quot(minus(x; y); s(y)))

The
y
les in the estimated dependen
y graph are given by:

fMINUS(x; s(y))! MINUS(x; y)g

fQUOT(s(x); s(y))! QUOT(minus(x; y); s(y))g

Finding a suitable ordering is as easy as it was for the previous example, by

hoosing the argument �ltering �(minus) = 1 and �(pred) = 1. Then DP simple

termination
an be shown by RPO.

3.3 Division, version 3

This TRS for division uses again di�erent minus-rules. Similar to the pre
eding

examples it is not simply terminating. In the examples of this
olle
tion, we often

use fun
tions like if

minus

to en
ode
onditions. This ensures that
onditions are

evaluated �rst (to true or to false) and that the
orresponding result is evaluated

afterwards. Hen
e, the �rst argument of if

minus

is the
ondition that has to be

tested and the other arguments are the original arguments of minus. Further

12

evaluation is only possible after the
ondition has been redu
ed to true or to

false.

le(0; y)! true

le(s(x); 0)! false

le(s(x); s(y))! le(x; y)

minus(0; y)! 0

minus(s(x); y)! if

minus

(le(s(x); y); s(x); y)

if

minus

(true; s(x); y)! 0

if

minus

(false; s(x); y)! s(minus(x; y))

quot(0; s(y))! 0

quot(s(x); s(y))! s(quot(minus(x; y); s(y)))

The
y
les are

fLE(s(x); s(y))! LE(x; y)g

fMINUS(s(x); y)! IF

minus

(le(s(x); y); s(x); y);

IF

minus

(false; s(x); y)! MINUS(x; y)g

fQUOT(s(x); s(y))! QUOT(minus(x; y); s(y))g:

Note that only one of the dependen
y pairs on a
y
le in the dependen
y graph

should result in a stri
t inequality, therefore the inequality

�(MINUS(s(x); y)) % �(IF

minus

(le(s(x); y); s(x); y))

need not be stri
t. By normalizing the inequalities with respe
t to the argument

�ltering �(minus) = �(MINUS) = 1 and �(if

minus

) = �(IF

minus

) = 2 the inequali-

ties for DP simple termination are satis�ed by the re
ursive path ordering.

3.4 Plus and minus

The following example demonstrates the use of the dependen
y graph. For that

purpose we extend the TRS of Ex. 3.1 by three additional rules and write in�x

operators for the de�ned symbols minus and plus to ease readability.

x� 0! x

s(x)� s(y)! x� y

quot(0; s(y))! 0

quot(s(x); s(y))! s(quot(x� y; s(y)))

0+ y! y

s(x) + y! s(x+ y)

(x� y)� z ! x� (y + z)

13

In this example, termination
annot be proved with our method using a sim-

pli�
ation ordering, unless we use the dependen
y graph to determine that the

dependen
y pair MINUS(: : :) ! PLUS(: : :) does not o

ur on any
y
le. There

are �ve
y
les in the estimated dependen
y graph.

fMINUS(s(x); s(y))! MINUS(x; y)g

fMINUS(x� y; z)! MINUS(x; y + z)g

fMINUS(s(x); s(y))! MINUS(x; y);

MINUS(x� y; z)! MINUS(x; y + z)g

fQUOT(s(x); s(y))! QUOT(x� y; s(y))g

fPLUS(s(x); y)! PLUS(x; y)g

After applying the argument �ltering �(�) = [1℄, �(MINUS) = [1℄, the inequal-

ities are satis�ed by the re
ursive path ordering and DP simple termination is

proved. Note that in su
h examples, we need not
onsider all sub
y
les of a
y
le

if the inequalities in the larger
y
le are all
hosen to be stri
t.

3.5 Remainder, version 1 { 3

Similar to the TRSs for division, three versions of the following TRS are obtained,

whi
h again are not simply terminating. Only one of them is presented.

le(0; y)! true

le(s(x); 0)! false

le(s(x); s(y))! le(x; y)

minus(x; 0)! x

minus(s(x); s(y))! minus(x; y)

mod(0; y)! 0

mod(s(x); 0)! 0

mod(s(x); s(y))! if

mod

(le(y; x); s(x); s(y))

if

mod

(true; s(x); s(y))! mod(minus(x; y); s(y))

if

mod

(false; s(x); s(y))! s(x)

The
y
les are

fLE(s(x); s(y))! LE(x; y)g

fMINUS(s(x); s(y))! MINUS(x; y)g

fMOD(s(x); s(y))! IF

mod

(le(y; x); s(x); s(y));

IF

mod

(true; s(x); s(y))! MOD(minus(x; y); s(y))g:

By applying the argument �ltering, �(minus) = �(mod) = �(MOD) = 1 and

�(if

mod

) = �(IF

mod

) = 2, the inequalities obtained for DP simple termination are

satis�ed by the re
ursive path ordering.

14

3.6 Greatest
ommon divisor, version 1 { 3

There are also three versions of the following TRS for the
omputation of the

greatest
ommon divisor, whi
h are not simply terminating. Again, only one of

them is presented.

le(0; y)! true

le(s(x); 0)! false

le(s(x); s(y))! le(x; y)

pred(s(x))! x

minus(x; 0)! x

minus(x; s(y))! pred(minus(x; y))

g
d(0; y)! y

g
d(s(x); 0)! s(x)

g
d(s(x); s(y))! if

g
d

(le(y; x); s(x); s(y))

if

g
d

(true; s(x); s(y))! g
d(minus(x; y); s(y))

if

g
d

(false; s(x); s(y))! g
d(minus(y; x); s(x))

(Of
ourse the ordering of the arguments in the right-hand side of the last rule

ould have been swit
hed. But this version here is even more diÆ
ult: Termina-

tion of the
orresponding algorithm
annot be proved by the method of Walther

[Wal94℄, be
ause this method
annot deal with permutations of arguments.)

The
y
les in the estimated dependen
y graph of this TRS are

(1) fLE(s(x); s(y))! LE(x; y)g

(2) fMINUS(x; s(y))! MINUS(x; y)g

(3) fGCD(s(x); s(y))! IF

g
d

(le(y; x); s(x); s(y));

IF

g
d

(true; s(x); s(y))! GCD(minus(x; y); s(y));

IF

g
d

(false; s(x); s(y))! GCD(minus(y; x); s(x))g;

where (3) has two sub
y
les. Note that by the argument �ltering �(pred) =

�(minus) = 1, �(if

g
d

) = �(IF

g
d

) = [2; 3℄ the inequalities are solved by RPO,

also those that are related to the sub
y
les. In this
onstru
tion, however, GCD

and IF

g
d

have to be
hosen equal in the pre
eden
e and therefore we only show

DP quasi-simple termination.

This example was taken from Boyer and Moore [BM79℄ and Walther [Wal91℄.

A variant of this example
ould be proved terminating using Steinba
h's method

for the automated generation of transformation orderings [Ste95a℄, but there the

rules for le and minus were missing.

3.7 Logarithm, version 1

The following TRS
omputes the dual logarithm.

15

half(0)! 0

half(s(s(x)))! s(half(x))

log(s(0))! 0

log(s(s(x)))! s(log(s(half(x))))

The
y
les are

fHALF(s(s(x)))! HALF(x)g

fLOG(s(s(x)))! LOG(s(half(x)))g:

Without �ltering arguments the inequalities are satis�ed by the re
ursive path

ordering. (Termination of the original system
an also be proved using the re-

ursive path ordering with pre
eden
e log > s > half.)

3.8 Logarithm, version 2 { 4

The following TRS again
omputes the dual logarithm, but instead of half now

the fun
tion quot is used. Depending on whi
h version of quot one
hooses, three

di�erent versions of the TRS are obtained (all of whi
h are not simply terminat-

ing, sin
e the quot TRS already was not simply terminating).

minus(x; 0)! x

minus(s(x); s(y))! minus(x; y)

quot(0; s(y))! 0

quot(s(x); s(y))! s(quot(minus(x; y); s(y)))

log(s(0))! 0

log(s(s(x)))! s(log(s(quot(x; s(s(0))))))

There are three
y
les in the estimated dependen
y graph:

fMINUS(s(x); s(y))! MINUS(x; y)g

fQUOT(s(x); s(y))! QUOT(minus(x; y); s(y))g

fLOG(s(s(x)))! LOG(s(quot(x; s(s(0)))))g:

After applying the argument �ltering �(quot) = �(minus) = 1, the inequalities

for DP simple termination are satis�ed by the re
ursive path ordering.

3.9 Eliminating dupli
ates

The following TRS eliminates dupli
ates from a list. To represent lists the
on-

stru
tors nil and add are used, where nil represents the empty list and add(n; x)

represents the insertion of n into the list x.

eq(0; 0)! true

eq(0; s(x))! false

16

eq(s(x); 0)! false

eq(s(x); s(y))! eq(x; y)

rm(n; nil)! nil

rm(n; add(m;x))! if

rm

(eq(n;m); n; add(m;x))

if

rm

(true; n; add(m;x))! rm(n; x)

if

rm

(false; n; add(m;x))! add(m; rm(n; x))

purge(nil)! nil

purge(add(n; x))! add(n; purge(rm(n; x)))

The
y
les are

fEQ(s(x); s(y))! EQ(x; y)g

fRM(n; add(m;x))! IF

rm

(eq(n;m); n; add(m;x));

IF

rm

(true; n; add(m;x))! RM(n; x)g

fRM(n; add(m;x))! IF

rm

(eq(n;m); n; add(m;x));

IF

rm

(false; n; add(m;x))! RM(n; x)g

fRM(n; add(m;x))! IF

rm

(eq(n;m); n; add(m;x));

IF

rm

(true; n; add(m;x))! RM(n; x);

IF

rm

(false; n; add(m;x))! RM(n; x)g

fPURGE(add(n; x))! PURGE(rm(n; x))g:

By applying the argument �ltering �(rm) = �(RM) = 2, �(if

rm

) = �(IF

rm

) = 3,

the obtained inequalities are satis�ed by the re
ursive path ordering and DP

simple termination is proved.

This example
omes from Walther [Wal91℄ and a similar example was men-

tioned by Steinba
h [Ste95a℄, but in Steinba
h's version the rules for eq and if

rm

were missing.

If in the right-hand side of the last rule, add(n; purge(rm(n; x))), the n is

repla
ed by a term
ontaining add(n; x) then a non-simply terminating TRS is

obtained, but termination
an still be proved in the same way.

3.10 Minimum sort

This TRS
an be used to sort a list x by repeatedly removing its minimum. For

that purpose elements of x are shifted into the se
ond argument of minsort, until

the minimum of the list is rea
hed. Then the fun
tion rm is used to eliminate

all o

urren
es of the minimum and �nally minsort is
alled re
ursively on the

remaining list. Hen
e, minsort does not only sort a list but it also eliminates dupli-

ates. (The
orresponding version of minsort where dupli
ates are not eliminated

ould also be proved terminating with our te
hnique.)

eq(0; 0)! true

eq(0; s(x))! false

eq(s(x); 0)! false

17

eq(s(x); s(y))! eq(x; y)

le(0; y)! true

le(s(x); 0)! false

le(s(x); s(y))! le(x; y)

app(nil; y)! y

app(add(n; x); y)! add(n; app(x; y))

min(add(n; nil))! n

min(add(n; add(m;x)))! if

min

(le(n;m); add(n; add(m;x)))

if

min

(true; add(n; add(m;x)))! min(add(n; x))

if

min

(false; add(n; add(m;x)))! min(add(m;x))

rm(n; nil)! nil

rm(n; add(m;x))! if

rm

(eq(n;m); n; add(m;x))

if

rm

(true; n; add(m;x))! rm(n; x)

if

rm

(false; n; add(m;x))! add(m; rm(n; x))

minsort(nil; nil)! nil

minsort(add(n; x); y)! if

minsort

(eq(n;min(add(n; x))); add(n; x); y)

if

minsort

(true; add(n; x); y)! add(n;minsort(app(rm(n; x); y); nil))

if

minsort

(false; add(n; x); y)! minsort(x; add(n; y))

The
y
les in the estimated dependen
y graph and an argument �ltering that

does not �lter any argument result in the following set of inequalities.

EQ(s(x); s(y)) � EQ(x; y)

LE(s(x); s(y)) � LE(x; y)

APP(add(n; x); y) � APP(x; y)

MIN(add(n; add(m;x))) % IF

min

(le(n;m); add(n; add(m;x)))

IF

min

(true; add(n; add(m;x))) �MIN(add(n; x))

IF

min

(false; add(n; add(m;x))) �MIN(add(m;x))

RM(n; add(m;x)) % IF

rm

(eq(n;m); n; add(m;x))

IF

rm

(true; n; add(m;x)) � RM(n; x)

IF

rm

(false; n; add(m;x)) � RM(n; x)

MINSORT(add(n; x); y) � IF

minsort

(eq(n;min(add(n; x))); add(n; x); y)

IF

minsort

(true; add(n; x); y) %MINSORT(app(rm(n; x); y); nil)

IF

minsort

(false; add(n; x); y) %MINSORT(x; add(n; y)):

These
onstraints together with the
onstraints on the rules are satis�ed by a

polynomial ordering where false, true, 0, nil, eq and le are mapped to 0, s(x) is

mapped to x + 1, min(x), if

min

(b; x), EQ(x; y), LE(x; y), MIN(x), and IF

min

(b; x)

are mapped to x, add(n; x) is mapped to n+ x+ 1, app(x; y) and APP(x; y) are

18

mapped to x + y, rm(n; x), if

rm

(b; n; x), RM(n; x), and IF

rm

(b; n; x) are mapped

to x, minsort(x; y) and if

minsort

(b; x; y) are mapped to x + y, MINSORT(x; y) is

mapped to (x+y)

2

+2x+y+1, and IF

minsort

(b; x; y) is mapped to (x+y)

2

+2x+y.

This example is inspired by an algorithm from Boyer and Moore [BM79℄ and

Walther [Wal94℄. In the
orresponding example from Steinba
h [Ste95a℄ the rules

for eq, le, if

rm

, and if

min

were missing.

Note that we have only shown DP quasi-simple termination by using this

polynomial interpretation in whi
h synta
ti
ally unequal terms are identi�ed by

the equivalen
e relation. (The given polynomial ordering is not a QSO, sin
e the

polynomials for symbols like eq or le do not
ontain all variables
orresponding to

their arguments. However, by using a suitable argument �ltering before (where

�(eq) = �(le) = [℄, et
.), one
an easily repla
e the
urrent polynomial ordering

by a polynomial ordering whi
h is indeed a QSO. Similar observations also hold

for the other examples where polynomial interpretations are used.)

3.11 Qui
ksort

The following TRS is used to sort a list by the well-known qui
ksort algorithm.

It uses the fun
tions low(n; x) (resp. high(n; x)) whi
h return the sublist of x

ontaining only the elements smaller than or equal to (resp. greater than) n.

le(0; y)! true

le(s(x); 0)! false

le(s(x); s(y))! le(x; y)

app(nil; y)! y

app(add(n; x); y)! add(n; app(x; y))

low(n; nil)! nil

low(n; add(m;x))! if

low

(le(m;n); n; add(m;x))

if

low

(true; n; add(m;x))! add(m; low(n; x))

if

low

(false; n; add(m;x))! low(n; x)

high(n; nil)! nil

high(n; add(m;x))! if

high

(le(m;n); n; add(m;x))

if

high

(true; n; add(m;x))! high(n; x)

if

high

(false; n; add(m;x))! add(m; high(n; x))

qui
ksort(nil)! nil

qui
ksort(add(n; x))! app(qui
ksort(low(n; x));

add(n; qui
ksort(high(n; x))))

Every set of inequalities asso
iated with a
y
le in the estimated dependen
y

graph of this TRS is satis�ed when we solve the inequalities resulting from the

rules together with the following inequalities

19

�(LE(s(x); s(y))) � �(LE(x; y))

�(APP(add(n; x); y)) � �(APP(x; y))

�(LOW(n; add(m;x))) % �(IF

low

(le(m;n); n; add(m;x)))

�(IF

low

(true; n; add(m;x))) � �(LOW(n; x))

�(IF

low

(false; n; add(m;x))) � �(LOW(n; x))

�(HIGH(n; add(m;x))) % �(IF

high

(le(m;n); n; add(m;x)))

�(IF

high

(true; n; add(m;x))) � �(HIGH(n; x))

�(IF

high

(false; n; add(m;x))) � �(HIGH(n; x))

�(QUICKSORT(add(n; x))) � �(QUICKSORT(low(n; x)))

�(QUICKSORT(add(n; x))) � �(QUICKSORT(high(n; x))):

by applying the argument �ltering �(low) = �(high) = 2, �(if

low

) = �(if

high

) = 3,

�(IF

low

) = �(IF

high

) = [2; 3℄ and RPO. Sin
e in the inequalities �(LOW(: : :)) %

�(IF

low

(: : :)) and �(HIGH(: : :)) % �(IF

high

(: : :)) synta
ti
ally di�erent terms are

equivalent, this only proves DP-quasi simple termination (see the remarks in Ex.

3.10 on how to turn su
h a polynomial ordering into a QSO).

Steinba
h
ould prove termination of a
orresponding example with transfor-

mation orderings [Ste95a℄, but in his example the rules for le, if

low

, if

high

, and

app were omitted.

If in the right-hand side of the last rule,

app(qui
ksort(low(n; x)); add(n; qui
ksort(high(n; x))));

one of the n's is repla
ed by a term
ontaining add(n; x) then a non-simply

terminating TRS is obtained. With our te
hnique, termination
an still be proved

in the same way.

3.12 Permutation of lists

This example is a TRS from Walther [Wal94℄ to
ompute a permutation of a list.

For instan
e, shu�e([1; 2; 3; 4; 5℄) redu
es to [1; 5; 2; 4; 3℄.

app(nil; y)! y

app(add(n; x); y)! add(n; app(x; y))

reverse(nil)! nil

reverse(add(n; x))! app(reverse(x); add(n; nil))

shu�e(nil)! nil

shu�e(add(n; x))! add(n; shu�e(reverse(x)))

The
y
les in the estimated dependen
y graph are

fAPP(add(n; x); y)! APP(x; y)g

fREVERSE(add(n; x))! REVERSE(x)g

fSHUFFLE(add(n; x))! SHUFFLE(reverse(x))g:

20

A suitable polynomial interpretation of the fun
tion symbols is: nil is mapped

to 0, add(n; x) is mapped to x + 1, shu�e(x), SHUFFLE(x), reverse(x), and

REVERSE(x) are mapped to x, and app(x; y) and APP(x; y) are mapped to x+y.

This proves DP-quasi simple termination.

3.13 Rea
hability on dire
ted graphs

To
he
k whether there is a path from the node x to the node y in a dire
ted

graph g, the term rea
h(x; y; g; �) must be redu
ible to true with the rules of the

following TRS from Giesl [Gie95℄. The fourth argument of rea
h is used to store

edges that have already been examined but that are not in
luded in the a
tual

solution path. If an edge from u to v (with x 6= u) is found, then it is reje
ted

at �rst. If an edge from x to v (with v 6= y) is found then one either sear
hes

for further edges beginning in x (then one will never need the edge from x to v

again) or one tries to �nd a path from v to y and now all edges that were reje
ted

before have to be
onsidered again.

The fun
tion union is used to unite two graphs. The
onstru
tor � denotes

the empty graph and edge(x; y; g) represents the graph g extended by an edge

from x to y. Nodes are labelled with natural numbers.

eq(0; 0)! true

eq(0; s(x))! false

eq(s(x); 0)! false

eq(s(x); s(y))! eq(x; y)

or(true; y)! true

or(false; y)! y

union(�; h)! h

union(edge(x; y; i); h)! edge(x; y; union(i; h))

rea
h(x; y; �; h)! false

rea
h(x; y; edge(u; v; i); h)! if

rea
h 1

(eq(x; u); x; y; edge(u; v; i); h)

if

rea
h 1

(true; x; y; edge(u; v; i); h)! if

rea
h 2

(eq(y; v); x; y; edge(u; v; i); h)

if

rea
h 2

(true; x; y; edge(u; v; i); h)! true

if

rea
h 2

(false; x; y; edge(u; v; i); h)! or(rea
h(x; y; i; h);

rea
h(v; y; union(i; h); �))

if

rea
h 1

(false; x; y; edge(u; v; i); h)! rea
h(x; y; i; edge(u; v; h))

The inequalities obtained from dependen
y pairs on
y
les in the estimated de-

penden
y graph are given by

EQ(s(x); s(y)) � EQ(x; y)

UNION(edge(x; y; i); h) � UNION(i; h)

REACH(x; y; edge(u; v; i); h) % IF

rea
h 1

(eq(x; u); x; y; edge(u; v; i); h)

21

IF

rea
h 1

(true; x; y; edge(u; v; i); h) % IF

rea
h 2

(eq(y; v); x; y; edge(u; v; i); h)

IF

rea
h 2

(false; x; y; edge(u; v; i); h) � REACH(x; y; i; h)

IF

rea
h 2

(false; x; y; edge(u; v; i); h) � REACH(v; y; union(i; h); �)

IF

rea
h 1

(false; x; y; edge(u; v; i); h) � REACH(x; y; i; edge(u; v; h)):

A mapping to polynomials results in a suitable ordering. The interpretation

is: eq(x; y), true, false, �, and 0 are mapped to 0, or(x; y) is mapped to x +

y, s(x) is mapped to x + 1, EQ(x; y) is mapped to x, edge(x; y; g) is mapped

to g + 2, union(g; h) and UNION(g; h) are mapped to g + h, rea
h(x; y; g; h),

if

rea
h 1

(b; x; y; g; h), and if

rea
h 2

(b; x; y; g; h) are mapped to 0, REACH(x; y; g; h)

is mapped to (g+ h)

2

+ 2g+ h+ 2, IF

rea
h 1

(b; x; y; g; h) is mapped to (g+ h)

2

+

2g + h+ 1, and IF

rea
h 2

(b; x; y; g; h) is mapped to (g + h)

2

+ 2g + h.

Note that we showed DP quasi-simple termination of this TRS, sin
e synta
-

ti
ally di�erent terms in the %-inequalities are mapped to the same number by

this polynomial interpretation.

3.14 Comparison of binary trees

This TRS is used to �nd out if one binary tree has less leaves than another

one. It uses a fun
tion
on
at(x; y) to repla
e the rightmost leaf of x by y. Here,

ons(u; v) is used to built a tree with the two dire
t subtrees u and v.

on
at(leaf; y)! y

on
at(
ons(u; v); y)!
ons(u;
on
at(v; y))

less leaves(x; leaf)! false

less leaves(leaf;
ons(w; z))! true

less leaves(
ons(u; v);
ons(w; z))! less leaves(
on
at(u; v);
on
at(w; z))

The
y
les in the dependen
y graph are:

fCONCAT(
ons(u; v); y)! CONCAT(v; y)g

fLESS LEAVES(
ons(u; v);
ons(w; z))! LESS LEAVES(
on
at(u; v);
on
at(w; z))g:

A suitable (polynomial) interpretation for DP-quasi simple termination is: leaf,

false, and true are mapped to 0,
ons(u; v) is mapped to 1+u+v,
on
at(u; v) and

CONCAT(u; v) are mapped to u+v, and less leaves(x; y) and LESS LEAVES(x; y)

are mapped to x.

If
on
at(w; z) in the se
ond argument of less leaves (in the right-hand side

of the last rule) would be repla
ed by an appropriate argument, we would obtain

a non-simply terminating TRS whose termination
ould be proved in the same

way.

22

3.15 Average of naturals

The following lo
ally
on
uent overlay system
omputes the average of two num-

bers [DH95℄.

average(s(x); y)! average(x; s(y))

average(x; s(s(s(y))))! s(average(s(x); y))

average(0; 0)! 0

average(0; s(0))! 0

average(0; s(s(0)))! s(0)

The inequalities resulting from the
y
les are

AVERAGE(s(x); y) � AVERAGE(x; s(y))

AVERAGE(x; s(s(s(y)))) � AVERAGE(s(x); y)):

By the following polynomial interpretation, DP-quasi simple termination of this

TRS is easily proved: 0 is mapped to 0, s(x) is mapped to x+ 1, average(x; y) is

mapped to x+ y, and AVERAGE(x; y) is mapped to 2x+ y.

3.16 Plus and times

The following TRS [DH95℄ is a lo
ally
on
uent overlay system. To ease read-

ability we use an in�x notation for + and �.

x� 0! 0

x� s(y)! (x� y) + x

x+ 0! x

0+ x! x

x+ s(y)! s(x+ y)

s(x) + y! s(x+ y)

Applying the te
hnique results in a set of inequalities whi
h is satis�ed by the

polynomial interpretation where 0 is mapped to 0, s(x) is mapped to x+1, x+y

is mapped to the sum of x and y, x � y is mapped to the produ
t of x and y,

TIMES(x; y) is mapped to y, and PLUS(x; y) is mapped to the sum of x and y

(where PLUS denotes `+

℄

').

3.17 Summing elements of lists

This TRS, whi
h has overlapping rules,
an be used to
ompute the sum of all

elements of a list [AG97a℄. Here, x�l represents the insertion of a number x into

a list l (where x�y�l abbreviates (x�(y�l))), app
omputes the
on
atenation of

23

lists, and sum(l) is used to
ompute the sum of all numbers in l (e.g., sum applied

to the list [1; 2; 3℄ returns [1 + 2 + 3℄).

app(nil; k)! k

app(l; nil)! l

app(x�l; k)! x�app(l; k)

sum(x�nil)! x�nil

sum(x�y�l)! sum((x+ y)�l)

sum(app(l; x�y�k))! sum(app(l; sum(x�y�k)))

0+ y! y

s(x) + y! s(x+ y)

While this system is not simply terminating, the inequalities generated by the

te
hnique are satis�ed by the polynomial ordering where nil is mapped to the

onstant 0, x�l is mapped to l + 1, x + y is mapped to the sum of x and y,

app(l; k) is mapped to l + k + 1, sum(l) is mapped to the
onstant 1, APP(l; k)

and SUM(l) are both mapped to l, and PLUS(x; y) is mapped to x. In this way we

have shown DP quasi-simple termination. The polynomial interpretation is su
h

that the synta
ti
ally unequal terms sum(x�y�l) and sum((x+ y)�l) are mapped

to the same value.

DP simple termination of this system
an also be shown by �rst applying

the argument �ltering �(�) = [2℄, �(sum) = [℄, �(SUM) = �(APP) = 1. Now the

inequalities

�(sum(x�y�l)) % �(sum((x+ y)�l))

�(sum(app(l; x�y�k))) % �(sum(app(l; sum(x�y�k))))

have synta
ti
ally identi
al left- and right-hand sides. For all other inequalities

we need to give an ordering that satis�es them in a stri
t way. We provide again

a polynomial interpretation, viz. 0 and nil are mapped to 0, s(x) is mapped to

x + 1, �l is mapped to l + 2, PLUS(x; y) is mapped to x + y, sum is mapped to

3, and both app(x; y) and x+ y are mapped to 2x+ y + 1.

If the above TRS is extended by the rules

sum(0�x+ y�l)! pred(sum(s(x)�y�l))

pred(s(x)�nil)! x�nil;

then DP quasi-simple termination
an still be proved by the �rst polynomial

ordering (where the polynomial interpretation should map pred(l) to the
onstant

1).

3.18 Addition and subtra
tion

The following system is again overlapping and not simply terminating.

24

minus(x; 0)! x

minus(s(x); s(y))! minus(x; y)

double(0)! 0

double(s(x))! s(s(double(x)))

plus(0; y)! y

plus(s(x); y)! s(plus(x; y))

plus(s(x); y)! plus(x; s(y))

plus(s(x); y)! s(plus(minus(x; y); double(y)))

After applying the argument �ltering �(minus) = 1, the inequalities generated

for DP simple termination by our te
hnique are satis�ed by the lexi
ographi

path ordering.

3.19 Addition with nested re
ursion, version 1

If the following additional rule is added to the above system, then it is turned into

a TRS that is not an overlay system any more and whi
h furthermore introdu
es

nested re
ursion.

plus(s(plus(x; y)); z) ! s(plus(plus(x; y); z))

Still, the resulting inequalities are satis�ed using the same argument �ltering and

the lexi
ographi
 path ordering.

3.20 Addition with nested re
ursion, version 2

The following alternative TRS for addition from Steinba
h [Ste95a℄ has nested

re
ursion, too.

0+ y! y

s(x) + 0! s(x)

s(x) + s(y)! s(s(x) + (y + 0))

The `natural' polynomial interpretation (where + is mapped to the addition)

maps left and right-hand sides of the rules to the same numbers. Therefore this

polynomial ordering
annot be used for a dire
t termination proof, but it never-

theless satis�es the inequalities generated by the dependen
y pair te
hnique. In

this way, DP-quasi simple termination
an easily be proved.

3.21 Multipli
ation and addition

The following example is taken from Dershowitz [Der87℄.

x� (y + 1)! (x� (y + (1� 0))) + x

x� 1! x

x+ 0! x

x� 0! 0

25

The only inequality resulting from a dependen
y pair on a
y
le in the estimated

dependen
y graph is TIMES(x; y + 1) � TIMES(x; y + (1� 0)).

This system is not simply terminating (and Dershowitz illustrates the use of

the semanti
 path ordering with it). However, termination of this example
an

be proved automati
ally. The inequalities obtained are satis�ed by the natural

polynomial ordering, where TIMES(x; y) is mapped to y.

By
hoosing the natural interpretation on numbers, the terms x � 0 in the

inequality
orresponding to the last rule are equivalent to 0, even though synta
-

ti
ally they are not equal. Therefore, we have shown DP quasi-simple termination

of this TRS.

3.22 Extended multipli
ation and addition

Similarly, termination of the following `extended' version of the above system

an be proved. In this system, the full rules for + and � are added. Again, this

system is not an overlay system.

x� (y + s(z))! (x� (y + (s(z)� 0))) + (x� s(z))

x� 0! 0

x� s(y)! (x� y) + x

x+ 0! x

x+ s(y)! s(x+ y)

The generated inequalities for this extended example, i.e., the inequalities
orre-

sponding to the rewrite rules and

TIMES(x; y + s(z)) % TIMES(x; s(z))

TIMES(x; y + s(z)) � TIMES(x; y + (s(z)� 0))

TIMES(x; s(y)) � TIMES(x; y)

PLUS(x; s(y)) � PLUS(x; y)

are satis�ed by the same polynomial ordering that has been used above (where

PLUS(x; y) and TIMES(x; y) are both mapped to y).

3.23 Nested re
ursion, version 1

The following system was introdu
ed by Giesl [Gie97, `nest2'℄ as an example for

a small TRS with nested re
ursion where all simpli�
ation orderings fail.

f(0; y)! 0

f(s(x); y)! f(f(x; y); y)

For this example, a polynomial ordering
an be used where 0 and s are interpreted

as usual and both f(x; y) and F(x; y) are mapped to x.

Alternatively, one
an use the argument �ltering �(f) = 1 and RPO to prove

termination. In that way, one easily sees that the system is DP simply terminat-

ing.

26

3.24 Nested re
ursion, version 2

This system byWalther, whi
h is similar to the pre
eding one, has been examined

in [Ste95a℄.

f(0)! s(0)

f(s(0))! s(0)

f(s(s(x)))! f(f(s(x)))

The inequalities resulting from our transformation are satis�ed by the polynomial

ordering, where f(x) is mapped to the
onstant 1, F(x) is mapped to x, and where

0 and s are interpreted as usual. In this way, we have shown DP quasi-simple

termination of this TRS.

3.25 Nested re
ursion, version 3

The following TRS by Ferreira and Zantema [FZ93℄ is a string rewrite system

with minimal ordinal !

!

asso
iated to it.

f(g(x))! g(f(f(x)))

f(h(x))! h(g(x))

The
y
les in the estimated dependen
y graph are

fF(g(x))! F(x)g

fF(g(x))! F(f(x))g

fF(g(x))! F(x);F(g(x))! F(f(x))g:

After applying the argument �ltering �(h) = [℄, �(f) = 1, all inequalities are

satis�ed by the re
ursive path ordering. This shows that the system is DP simply

terminating.

3.26 Nested re
ursion, version 4

The following TRS is again an example of a TRS for whi
h all kind of path

orderings
annot show termination dire
tly, but these path orderings
an be

used for solving the inequalities resulting from our te
hnique.

f(x)! s(x)

f(s(s(x)))! s(f(f(x)))

The inequalities to satisfy are

f(x) % s(x)

f(s(s(x))) % s(f(f(x)))

F(s(s(x))) � F(x)

F(s(s(x))) � F(f(x)):

An appropriate path ordering is found by
hoosing f and s to be equal in the

pre
eden
e. Note that therefore we proved DP quasi-simple termination of the

system.

27

3.27 Nested symbols on left-hand sides

The following example is from Dershowitz [Der93℄. It has been proved terminat-

ing by a lexi
ographi

ombination of two orderings.

f(f(x))! g(f(x))

g(g(x))! f(x)

The inequalities
orresponding to dependen
y pairs on
y
les in the estimated

dependen
y graph are

F(f(x)) � F(x)

F(f(x)) % G(f(x))

G(g(x)) � F(x):

By
hoosing f and g as well as F and G equal in the pre
eden
e, the inequalities

are satis�ed by the re
ursive path ordering. Again, this shows DP quasi-simple

termination of the TRS.

3.28 Nested symbols on both sides of rules

Termination of the following TRS
annot be proved by the lexi
ographi
 path

ordering and therefore this is one of the systems for whi
h the semanti
 path

ordering has been used in literature [Der93℄. However, the system
an be shown

to terminate using the lexi
ographi
 path ordering after applying our te
hnique,

sin
e the demanded ordering may now be a weakly monotoni
 ordering instead

of a monotoni
 ordering. Therefore, after mapping some fun
tion symbols to

some of their arguments or to a
onstant the lexi
ographi
 path ordering
an

nevertheless be used to prove termination of the TRS.

(x� y)� z ! x� (y � z)

(x+ y)� z ! (x� z) + (y � z)

z � (x+ f(y))! g(z; y)� (x+ a)

Apart from the three inequalities
orresponding to the rewrite rules, four other

inequalities are obtained from the
y
les in the dependen
y graph.

TIMES(x� y; z) � TIMES(y; z)

TIMES(x� y; z) � TIMES(x; y � z)

TIMES(x+ y; z) � TIMES(x; z)

TIMES(x+ y; z) � TIMES(y; z)

After applying the argument �ltering �(g) = 1, the seven inequalities are satis�ed

by the lexi
ographi
 path ordering, whi
h proves DP simple termination.

28

3.29 A TRS that is not left-linear, version 1

The following TRS, originally from Geerling [Gee91℄,
annot be proved terminat-

ing by the re
ursive path ordering (but one needs a generalization of the re
ursive

path ordering as de�ned by Ferreira [Fer95℄). It is also very easily proved termi-

nating by the automati
 te
hnique des
ribed in this paper.

f(s(x); y; y)! f(y; x; s(x))

The only two generated inequalities are

f(s(x); y; y) % f(y; x; s(x))

F(s(x); y; y) � F(y; x; s(x))

whi
h are satis�ed by mapping f(x; y; z) to 0, mapping s(x) to x+1, and mapping

F(x; y; z) to x+ y. For showing DP simple termination of this TRS, one
an use

the argument �ltering �(f) = [℄, �(F) = [1; 2℄ and RPO.

3.30 Advantage of the dependen
y graph, version 1

The following system is from [Ste95a℄.

f(a; b)! f(a;
)

f(
; d)! f(b; d)

With our method, the termination proof for this system is trivial, be
ause its

estimated dependen
y graph does not
ontain any
y
les. Similar, termination

of the one rule TRS f(g(x)) ! f(h(g(x))) from Bellegarde and Les
anne [BL88℄

and of the one rule system f(g(x; y); y)! f(h(g(x; y)); a) from Steinba
h [Ste95a℄

an also be proved by absen
e of
y
les.

3.31 Advantage of the dependen
y graph, version 2

Another example where the dependen
y graph plays an important role is a TRS

introdu
ed by Ferreira and Zantema [FZ95℄ to demonstrate the te
hnique of

`dummy elimination'.

f(g(x))! f(a(g(g(f(x))); g(f(x))))

Sin
e F(a(y; z)) does not unify with F(g(x)), the only two inequalities to satisfy

are

�(f(g(x))) % �(f(a(g(g(f(x))); g(f(x)))))

�(F(g(x))) � �(F(x)):

For �(a) = [℄ these inequalities are trivially satis�ed by the re
ursive path order-

ing and DP simple termination of the TRS is shown. For a thorough
omparison

of dependen
y pairs and dummy elimination see [GM00℄.

29

3.32 A TRS that is not totally terminating, version 1

The most famous example of a TRS that is terminating, but not totally termi-

nating is the following [Der87℄.

f(a)! f(b)

g(b)! g(a)

With our approa
h, termination of this system is obvious, be
ause the estimated

dependen
y graph does not
ontain any
y
les.

3.33 A TRS that is not totally terminating, version 2

A TRS introdu
ed by Ferreira [Fer95℄ as an example of a TRS that is not totally

terminating and in parti
ular for whi
h the re
ursive path ordering and the

Knuth-Bendix ordering
annot be used to prove termination, is given by:

p(f(f(x)))! q(f(g(x)))

p(g(g(x)))! q(g(f(x)))

q(f(f(x)))! p(f(g(x)))

q(g(g(x)))! p(g(f(x))):

Termination is trivially
on
luded from the fa
t that there are no
y
les in the

estimated dependen
y graph.

3.34 Systems with `unde�ned' fun
tion symbols

The following well-known system from Dershowitz [Der87℄ is one of the smallest

non-simply terminating TRSs.

f(f(x)) ! f(g(f(x)))

The only dependen
y pair on a
y
le of the estimated dependen
y graph is

F(f(x))! F(x). By the argument �ltering �(g) = 1 and RPO the system is shown

DP simply terminating.

3.35 Mutual re
ursion, version 1

The following system is from Steinba
h [Ste95a℄ again.

g(s(x))! f(x)

f(0)! s(0)

f(s(x))! s(s(g(x)))

g(0)! 0

30

The inequalities resulting from
y
les are

�(G(s(x))) % �(F(x))

�(F(s(x))) � �(G(x)):

After applying the argument �ltering �(g) = 1, the
onstraints are satis�ed by

the re
ursive path ordering. Sin
e s and f have to be equal in the pre
eden
e in

order to satisfy the resulting inequalities s(x) % f(x) and f(0) % s(0), this proves

DP-quasi simple termination.

3.36 Mutual re
ursion, version 2

The following system was given to us by K�uhler.

minus(x; 0)! x

minus(s(x); s(y))! minus(x; y)

f(0)! s(0)

f(s(x))! minus(s(x); g(f(x)))

g(0)! 0

g(s(x))! minus(s(x); f(g(x)))

The inequalities resulting from dependen
y pairs on
y
les of the estimated de-

penden
y graph are

�(MINUS(s(x); s(y))) � �(MINUS(x; y))

�(F(s(x))) � �(F(x))

�(F(s(x))) % �(G(f(x)))

�(G(s(x))) � �(G(x))

�(G(s(x))) � �(F(g(x))):

After applying the argument �ltering �(minus) = 1, the resulting inequalities are

satis�ed by the re
ursive path ordering (using a pre
eden
e where f and s are

equal and greater than g). Thus, the system is DP quasi-simply terminating.

3.37 Even and odd

The following (non-simply terminating) TRS
an be used to �nd out whether a

natural number is even resp. odd. More pre
isely, evenodd(t; 0) redu
es to true if t

is even and evenodd(t; s(0)) redu
es to true if t is odd. (In other words, the se
ond

argument of evenodd determines whether evenodd
omputes the `even' or the `odd'

fun
tion. Su
h rewrite systems are often obtained when transforming mutually

re
ursive fun
tions into one fun
tion without mutual re
ursion,
f. [Gie97℄.)

31

not(true)! false

not(false)! true

evenodd(x; 0)! not(evenodd(x; s(0)))

evenodd(0; s(0))! false

evenodd(s(x); s(0))! evenodd(x; 0)

We obtain one
y
le in the estimated dependen
y graph.

fEVENODD(x; 0)! EVENODD(x; s(0));

EVENODD(s(x); s(0))! EVENODD(x; 0)g

With the argument �ltering �(not) = [℄, �(EVENODD) = 1 and the re
ursive

path ordering, DP simple termination is shown.

3.38 Reversing lists

The following system is a slight variant of a TRS proposed by Huet and Hullot

[HH82, `brev'℄. Given a list x�l, the fun
tion rev
alls two other fun
tions rev1

and rev2, where rev1(x; l) returns the last element of x�l and rev2(x; l) returns

the reversed list rev(x�l) without its �rst element. Hen
e, rev(rev2(y; l)) returns

the list y�l without its last element. Note that this system is mutually re
ursive

and that mutually re
ursive fun
tions also o

ur nested.

rev(nil)! nil

rev(x�l)! rev1(x; l)�rev2(x; l)

rev1(0; nil)! 0

rev1(s(x); nil)! s(x)

rev1(x; y�l)! rev1(y; l)

rev2(x; nil)! nil

rev2(x; y�l)! rev(x�rev(rev2(y; l)))

The inequalities resulting from the
y
les of the estimated dependen
y graph are

�(REV(x�l)) � �(REV2(x; l))

�(REV1(x; y�l)) � �(REV1(y; l))

�(REV2(x; y�l)) � �(REV2(y; l))

�(REV2(x; y�l)) � �(REV(rev2(y; l)))

�(REV2(x; y�l)) % �(REV(x�rev(rev2(y; l)))):

By using the argument �ltering �(�) = [2℄, �(s) = [℄, �(rev) = �(REV) = 1,

�(rev1) = �(rev2) = �(REV1) = �(REV2) = 2, the resulting
onstraints are

satis�ed by the re
ursive path ordering. This proves DP simple termination of

the TRS.

32

3.39 Narrowing of dependen
y pairs

The following example [AG00℄ demonstrates the need for narrowing dependen
y

pairs. We repla
e the last rule of the TRS in Ex. 3.4 by a `
ommutativity' rule:

x� 0! x

s(x)� s(y)! x� y

quot(0; s(y))! 0

quot(s(x); s(y))! s(quot(x� y; s(y)))

0+ y! y

s(x) + y! s(x+ y)

(x� s(0)) + (y � s(s(z)))! (y � s(s(z))) + (x� s(0)):

Without the use of narrowing, we would obtain the
onstraint

�(PLUS(x� s(0); y � s(s(z)))) � �(PLUS(y � s(s(z)); x� s(0)));

be
ause the dependen
y pair PLUS(x� s(0); y� s(s(z)))! PLUS(y� s(s(z)); x�

s(0)) forms a
y
le of the estimated dependen
y graph. In order to use a simpli-

�
ation ordering we have to
hose an argument �ltering � su
h that �(�) = [1℄

or �(�) = 1. However, then this
onstraint is not satis�ed by any well-founded

ordering
losed under substitution. Therefore we repla
e this dependen
y pair

by its narrowings

PLUS(x� s(0); sy � s(s(z)))! PLUS(y � s(z); x� s(0))

PLUS(s(x)� s(0); y � s(s(z)))! PLUS(y � s(s(z)); x� 0):

Now the resulting
onstraints are again satis�ed by the re
ursive path ordering

if we use the argument �ltering �(�) = �(�

℄

) = 1.

3.40 Narrowing to approximate the dependen
y graph

Narrowing of dependen
y pairs may also be helpful in examples where the fail-

ure of the automation is due to our approximation of dependen
y graphs. For

example, let us add the following se
ond `
ommutation' rule to the TRS from

Ex. 3.39

(x+ s(0)) + (y + s(s(z)))! (y + s(s(z))) + (x+ s(0)):

Now we obtain three additional dependen
y pairs.

PLUS(x+ s(0); y + s(s(z)))! PLUS(y; s(s(z))) (1)

PLUS(x+ s(0); y + s(s(z)))! PLUS(x; s(0)) (2)

PLUS(x+ s(0); y + s(s(z)))! PLUS(y + s(s(z)); x+ s(0)) (3)

33

We have to
ompute a graph
ontaining the dependen
y graph. For that purpose,

we draw an ar
 from a dependen
y pair s! t to v ! w whenever ren(
ap(t))

and v are uni�able. However, for some examples this approximation is too rough.

Note that in our approximation of the dependen
y graph there would be an

ar
 from (3) to itself, be
ause after repla
ing y + s(s(z)) and x + s(0) by new

variables, the right- and the left-hand side of (3) obviously unify. Hen
e, we have

to demand that the dependen
y pair (3) is stri
tly de
reasing, i.e.,

�(PLUS(x+ s(0); y + s(s(z)))) � �(PLUS(y + s(s(z)); x+ s(0))):

But this
onstraint is not satis�ed by any polynomial or any path ordering

amenable to automation

1

.

However, in the real dependen
y graph, there is no ar
 from (3) to itself,

be
ause there is no substitution � su
h that y + s(s(z))� redu
es to x + s(0)�.

Hen
e, there is no
y
le
onsisting of (3) only and therefore it is suÆ
ient if

(3) is just weakly de
reasing. In this way, the
onstraints resulting from this

example would again be satis�ed by the re
ursive path ordering (after applying

the argument �ltering mentioned in Ex. 3.39).

Note that the narrowing re�nement [AG00℄ also serves to
ompute a better

approximation of the dependen
y graph. The right-hand side of (3) is linear and

it does not unify with the left-hand side of any dependen
y pair. Hen
e, we may

repla
e (3) by its narrowings:

PLUS(x+ s(0); 0+ s(s(z)))! PLUS(s(s(z)); x+ s(0)) (4)

PLUS(x+ s(0); s(y) + s(s(z)))! PLUS(s(y + s(z)); x+ s(0)) (5)

PLUS(0+ s(0); y + s(s(z)))! PLUS(y + s(s(z)); s(0)) (6)

PLUS(s(x) + s(0); y + s(s(z)))! PLUS(y + s(s(z)); s(x+ 0)): (7)

Now it is immediately
lear that (4) - (7) are not on a
y
le of the estimated

dependen
y graph, be
ause appli
ation of ren and
ap to their right-hand sides

yields terms of the form PLUS(s(: : :); : : :) or PLUS(: : : ; s(: : :)) whi
h do not unify

with PLUS(: : :+ : : : ; : : :+ : : :).

3.41 Fa
torial

The following non-simply terminating TRS for
omputing the fa
torial of a nat-

ural number (
f. [Ste95a,Zan95℄)

1

This inequality is not satis�ed by any path ordering (that
an be generated automati-

ally), be
ause neither a lexi
ographi

omparison nor a
omparison as multisets makes

(x+ s(0); y + s(s(z))) greater than (y + s(s(z)); x+ s(0)). When using polynomial orderings,

PLUS is mapped to some polynomial p. Then we either have lim

y!1

(p(y; x)� p(x; y)) =1

or lim

y!1

(p(y; x)�p(x; y)) = �1. In the �rst
ase, PLUS(y+s(s(z)); x+s(0)) � PLUS(x+

s(0); y+s(s(z))) holds for large enough y and in the se
ond
ase PLUS(y+s(s(z)); x+s(0)) �

PLUS(x+ s(0); y + s(s(z))) holds for large enough x.

34

p(s(x))! x

fa
(0)! s(0)

fa
(s(x))! s(x)� fa
(p(s(x)))

annot be proved terminating by the te
hnique des
ribed in [AG97a℄, sin
e there

narrowing dependen
y pairs was not
onsidered. By using narrowing, the depen-

den
y pair

FAC(s(x))! FAC(p(s(x)))

is repla
ed by the pair

FAC(s(x))! FAC(x)

resulting in inequalities whi
h
an easily be satis�ed.

3.42 Binary numbers

The following non-simply terminating example is due to Geser [BL90,Ste95a℄.

half(0)! 0

half(s(0))! 0

half(s(s(x)))! s(half(x))

lastbit(0)! 0

lastbit(s(0))! s(0)

lastbit(s(s(x)))! lastbit(x)

onv(0)! nil�0

onv(s(x))!
onv(half(s(x)))�lastbit(s(x))

Narrowing the dependen
y pair CONV(s(x))! CONV(half(s(x))) results in

CONV(s(0))! CONV(0) and CONV(s(s(x)))! CONV(s(half(x))). After this re-

pla
ement, the pairs on a
y
le in the estimated dependen
y graph are

fHALF(s(s(x)))! HALF(x)g

fLASTBIT(s(s(x)))! LASTBIT(x)g

fCONV(s(s(x)))! CONV(s(half(x)))g:

After applying the argument �ltering �(half) = �(�) = 1, the
onstraints are

satis�ed by the re
ursive path ordering.

3.43 Termination by narrowing, version 1

The following TRS by Plaisted [Pla86,Ste95a℄

f(
)! g(h(
))

h(g(x))! g(h(f(x)))

k(x; h(x);
)! h(x)

k(f(x); y; x)! f(x)

35

an automati
ally be proved terminating by only repla
ing the dependen
y pair

H(g(x))! H(f(x)) by its narrowing H(g(
))! H(g(h(
))) and
omputing the

estimated dependen
y graph. As there is no
y
le
onsisting of the resulting

pairs, the TRS is terminating.

3.44 Termination by narrowing, version 2

To prove termination of the following TRS from Ba
hmair [Ba
87,Ste95a℄

f(h(x))! f(i(x))

g(i(x))! g(h(x))

h(a)! b

i(a)! b

the dependen
y pairs

F(h(x))! F(i(x))

G(i(x))! G(h(x))

are repla
ed by their narrowings

F(h(a))! F(b)

G(i(a))! G(b):

Then termination is automati
ally proved by the fa
t that the estimated depen-

den
y graph has no
y
les.

3.45 Termination by narrowing, version 3

For the following TRS we also need narrowing in order to prove its termination

using a quasi-simpli�
ation ordering.

f(s(x))! f(x)

g(0�y)! g(y)

g(s(x)�y)! s(x)

h(x�y)! h(g(x�y))

Narrowing the dependen
y pair H(x�y)! H(g(x�y)) results in

H(0�y)! H(g(y))

H(s(x)�y)! H(s(x)):

Now the
y
les are

fF(s(x))! F(x)g

fG(0�y)! G(y)g

fH(0�y)! H(g(y))g:

After applying the argument �ltering �(h) = [℄, the resulting
onstraints are

satis�ed by the re
ursive path ordering.

36

3.46 A non-totally terminating TRS

The following example is from Steinba
h [Ste95a℄.

f(x; x)! f(a; b)

b!

This TRS is not totally terminating and without using narrowing, the inequal-

ities generated by our te
hnique are not satis�ed by any total well-founded

weakly monotoni
 quasi-ordering. However, after applying one narrowing step

to F(x; x)! F(a; b), the pair F(x; x)! F(a;
) is obtained, whose right-hand side

is not uni�able with F(x; x). Hen
e, there is no
y
le in the dependen
y graph.

Thus, the TRS is terminating.

3.47 An overlapping system

The following TRS is a leading example of [AG98℄ and [GAO01℄ whi
h is not

simply terminating.

f(x;
(y))! f(x; s(f(y; y)))

f(s(x); y)! f(x; s(
(y)))

The
y
les in the estimated dependen
y graph are:

fF(x;
(y))! F(y; y)g

fF(s(x); y)! F(x; s(
(y)))g

and the two sets of generated inequalities are:

�

1

(f(x;
(y))) %

1

�

1

(f(x; s(f(y; y))))

�

1

(f(s(x); y)) %

1

�

1

(f(x; s(
(y))))

�

1

(F(x;
(y))) �

1

�

1

(F(y; y))

�

2

(f(x;
(y))) %

2

�

2

(f(x; s(f(y; y))))

�

2

(f(s(x); y)) %

2

�

2

(f(x; s(
(y))))

�

2

(F(s(x); y)) �

2

�

2

(F(x; s(
(y)))):

By
hoosing the argument �lterings �

1

(f) = 1, �

1

(F) = 2 and �

2

(f) = �

2

(F) = 1

the inequalities are solved by RPO and the TRS is proved to be DP simply

terminating.

Note that the
onstraints obtained without using our modularity results

would in
lude �(F(x;
(y))) � �(F(y; y)) and �(F(s(x); y)) � �(F(x; s(
(y)))). In

this example �
annot eliminate the arguments of s or
. Then no simpli�
ation

ordering satis�es the above
onstraints, as they imply

�(F(x;
(s(x)))) � �(F(s(x); s(x))) � �(F(x; s(
(s(x))))):

Note also that the system is overlapping (and not lo
ally
on
uent). Hen
e,

we
annot prove termination by verifying innermost termination, but we really

have to use Thm. 5 for the termination proof instead.

37

3.48 Another overlapping system

The following system is an overlapping TRS whi
h is inspired by Ex. 4.35 for

renaming in the Lambda Cal
ulus.

f(0)! true

f(1)! false

f(s(x))! f(x)

if(true; s(x); s(y))! s(x)

if(false; s(x); s(y))! s(y)

g(x;
(y))!
(g(x; y))

g(x;
(y))! g(x; if(f(x);
(g(s(x); y));
(y)))

The system is not simply terminating as the last rule is self-embedding. As

it is overlapping (and not lo
ally
on
uent), here it is not suÆ
ient to prove

innermost termination only. Without modularity, the automated termination

proof would fail, be
ause the third argument of if and the argument of

an-

not be eliminated. But no quasi-simpli�
ation ordering satis�es G(x;
(y)) �

G(x; if(: : : ; : : : ;
(y))).

There is just one
y
le in the estimated dependen
y graph whi
h
ontains

an F-dependen
y pair, viz. fF(s(x))! F(x)g. Absen
e of in�nite
hains of this

dependen
y pair
an be proved by RPO, if we use the argument �ltering �(
) =

�(g) = [℄. Then all rules are weakly de
reasing (using the pre
eden
e f > true,

f > false, g >
). For all other
y
les one
an eliminate the arguments of s, f, and

if before using RPO.

3.49 Maximal
y
les

One
ould think of formulating Thm. 5 (and also the other modularity theorems)

in an alternative way by just
onsidering maximal
y
les for modularity. Here,

a
y
le P is
alled maximal if there is no proper superset of P whi
h is also a

y
le. As an example
onsider the following system:

f(
(s(x); y))! f(
(x; s(y)))

f(
(s(x); s(y)))! g(
(x; y))

g(
(x; s(y)))! g(
(s(x); y))

g(
(s(x); s(y)))! f(
(x; y))

We obtain the following dependen
y pairs:

F(
(s(x); y)! F(
(x; s(y))) (8)

F(
(s(x); s(y)))! G(
(x; y)) (9)

G(
(x; s(y)))! G(
(s(x); y)) (10)

G(
(s(x); s(y)))! F(
(x; y)) (11)

38

The
y
les of the estimated dependen
y graph are f(8)g; f(10)g; f(9); (11)g; f(8);

(9); (11)g; f(9); (10); (11)g; and f(8); (9); (10); (11)g. So the only maximal
y
le

in this example is f(8); (9); (10); (11)g. A simple way to
ompute the set of all

maximal
y
les is to eliminate all edges and all dependen
y pairs in the esti-

mated dependen
y graph whi
h are not part of any
y
le. Then the remaining

un
onne
ted graphs
orrespond to the maximal
y
les.

Now a modi�
ation of Thm. 2 would be that a TRS is terminating i� for ea
h

maximal
y
le P there exists no in�nite R-
hain of dependen
y pairs from P .

Then, for ea
h sub
y
le P

0

of P one would have to use the same quasi-ordering

%

P

to prove the absen
e of in�nite
hains from P

0

.

However, to use the same quasi-ordering for all sub
y
les of the maximal

y
le
an be too weak. In our example, all dependen
y pairs are on the maximal

y
le. However, if one would have to use the same quasi-ordering for all sub
y
les

of this maximal
y
le, then the resulting
onstraints would not be satis�ed by

any path ordering amenable to automation or by any polynomial ordering.

Due to our modularity result we
an prove absen
e of in�nite
hains sep-

arately for every
y
le. We use polynomial orderings where both f(x; y) and

g(x; y) are mapped to 0 and s(x) is mapped to x+1. For the
y
le f(8)g,
(x; y)

is mapped to x, whereas for the
y
le f(10)g we map
(x; y) to y. For the other

y
les,
(x; y) is mapped to x+ y. Then these polynomial orderings
an be used

to prove absen
e of in�nite
hains for all
y
les.

3.50 DP quasi-simple, but not DP simple, version 1

The following is an example of a TRS that is DP quasi-simply terminating, but

not DP simply terminating (
f. [GAO01℄).

f(f(x))! f(
(f(x)))

f(f(x))! f(d(f(x)))

g(
(x))! x

g(d(x))! x

g(
(0))! g(d(1))

g(
(1))! g(d(0))

The only
y
le in the estimated dependen
y graph is

fF(f(x))! F(x)g:

In order to show DP quasi-simple termination, we
hoose the argument �ltering

�(
) = �(d) = 1 and use RPO with 0 and 1 equal in the pre
eden
e. However,

the TRS is not DP simply terminating, be
ause due to the �rst four rules, the

argument �ltering must redu
e
(x) and d(x) to their arguments. But then g(0) �

g(1) and g(1) � g(0) lead to a
ontradi
tion.

39

3.51 DP quasi-simple, but not DP simple, version 2

The de�nition of argument �ltering
ould be modi�ed by not only eliminating

arguments but by also identifying di�erent fun
tion symbols. This would
hange

the notion of DP simple termination, but DP simple termination and DP quasi-

simple termination would still not
oin
ide. This is demonstrated by the following

example [GAO01℄.

f(f(x))! f(
(f(x)))

f(f(x))! f(d(f(x)))

g(
(x))! x

g(d(x))! x

g(
(h(0)))! g(d(1))

g(
(1))! g(d(h(0)))

g(h(x))! g(x):

The dependen
y graph of this TRS has two
y
les:

fF(f(x))! F(x)g

fG(h(x))! G(x)g:

For the �rst
y
le we use the argument �ltering �(
) = �(d) = �(h) = 1 and

RPO with 0 and 1 equal in the pre
eden
e. For the se
ond
y
le we
annot

hoose �(h) = 1. Without any �ltering on arguments, but with a polynomial

interpretation that maps 0 to 0, 1 to 1, h(x) to x + 1, and all other symbols to

the identity, the inequalities are solved.

However, even with the new de�nition of argument �ltering, the system is

still not DP simply terminating. The reason is that again, the argument �lter-

ing � must map
 and d to their arguments. Then the third and fourth g-rule

imply �(g(h(0))) = �(g(1)). Sin
e �(g) 6= [℄ due to the �rst g-rule, this implies

�(h(0)) = �(1). Due to the dependen
y pair G(h(x))! G(x), � may neither map

h to its argument nor to any
onstant like 1. Hen
e, even with this alternative

de�nition of argument �ltering, these
onstraints are not satis�able.

3.52 A TRS that is not left-linear, version 2

The following TRS o

urs in [GAO01℄.

f(0; 1; x)! f(s(x); x; x)

f(x; y; s(z))! s(f(0; 1; z)):

The
y
les in the estimated dependen
y graph are

fF(0; 1; x)! F(s(x); x; x); (12)

F(x; y; s(z))! F(0; 1; z)g (13)

fF(x; y; s(z))! F(0; 1; z)g: (14)

40

Therefore, it suÆ
es to �nd an argument �ltering su
h that the following in-

equalities are satis�ed:

�(f(0; 1; x)) % �(f(s(x); x; x))

�(f(x; y; s(z))) % �(s(f(0; 1; z)))

�(F(0; 1; x)) % �(F(s(x); x; x))

�(F(x; y; s(z))) � �(F(0; 1; z)):

A suitable argument �ltering is �(f) = �(F) = 3. By using RPO, DP simple

termination of the TRS is proved.

3.53 Disjoint systems, DP quasi-simple termination

By Theorem 6 we may
on
lude DP quasi-simple termination of several
ombi-

nations of the above TRSs. To mention only a few:

{ the
ombination of the TRSs in Ex. 3.1, 3.12, and 3.14 is DP quasi-simply

terminating,

{ the TRS g(x; y)! x, g(x; y)! y in
ombination with either Ex. 3.29 or Ex.

3.52 is DP quasi-simply terminating.

3.54 Disjoint systems, G-restri
ted DP simple termination

If G is
hosen to be the empty set, ;-restri
ted DP simple termination of the

TRS
onsisting of Ex. 3.25 and Ex. 3.29 follows immediately from Theorem 7

(where unary f and ternary f are di�erent symbols).

3.55 Shared
onstru
tors, G-restri
ted DP simple termination 1

By Theorem 7 we may
on
lude G-restri
ted DP simple termination of the
om-

bination of the division example (Ex. 3.1) and the qui
ksort example (Ex. 3.11)

where G = f0; sg.

3.56 Shared
onstru
tors, G-restri
ted DP simple termination 2

The TRS

g(
(x; s(y)))! g(
(s(x); y))

is simply terminating, as
an for example be shown by LPO
omparing subterms

right-to-left. The TRS

f(
(s(x); y))! f(
(x; s(y)))

f(f(x))! f(d(f(x)))

f(x)! x

41

also has
 and s as
onstru
tors. DP simple termination of the TRS
an be

shown by an argument �ltering �(d) = [℄ and LPO
omparing subterms left-

to-right. A simple
he
k
on�rms that both systems are fs;
g-restri
ted DP

simply terminating. Hen
e, the
ombination is also fs;
g-restri
ted DP simply

terminating.

DP simple termination of both R

1

and R

2

an be proved with a standard

te
hnique like LPO, whereas su
h standard orderings fail if one wants to prove

DP simple termination of their union dire
tly. The reason is that the
onstraints

for the
y
le fG(
(x; s(y)))! G(
(s(x); y))g are not satis�ed by LPO (nor by

RPO nor by any polynomial ordering). Thus, there are indeed TRSs where ter-

mination of the subsystems
an be shown with dependen
y pairs and LPO, but

(without our modularity result) termination of their union
annot be proved with

dependen
y pairs and LPO.

3.57 Composable systems, G-restri
ted DP simple termination

The TRSs of Ex. 3.4 and of Ex. 3.17 are both f0; s;+g-restri
ted DP simply

terminating. Note that the resulting TRSs are
omposable, sin
e they both
on-

tain the same
onstru
tors 0 and s and they also share the de�ned symbol +,

but both TRSs
ontain the same +-rules. As both TRSs are f0; s;+g-restri
ted

DP simply terminating, Theorem 7 allows us to
on
lude f0; s;+g-restri
ted DP

simple termination of the
ombined system.

4 Examples for innermost termination

This se
tion
ontains a
olle
tion of examples to demonstrate the use of the

innermost termination te
hnique presented in Se
t. 2.2. The examples 4.1 { 4.21

are term rewrite systems that are innermost terminating, but not terminating.

The remainder of the examples (4.22 { 4.37) are non-overlapping term rewrite

systems for whi
h innermost termination suÆ
es to guarantee termination. Note

that for the examples 4.6 { 4.9, 4.14 { 4.21, and 4.25 { 4.37 we used re�nements

whi
h were not in
luded in the method of [AG97b℄. In parti
ular, the examples

4.19 { 4.21 and 4.32 { 4.37 are TRSs, where an innermost termination proof

without modularity is impossible with quasi-simpli�
ation orderings (or, in some

examples, at least with the standard path orderings amenable to automation),

whereas with our modularity results innermost termination
an easily be veri�ed

automati
ally.

4.1 Toyama example

A famous example of a TRS that is innermost terminating, but not terminating,

is the following system by Toyama [Toy87℄.

f(0; 1; x)! f(x; x; x)

g(x; y)! x

g(x; y)! y

42

This TRS has only one dependen
y pair, viz. F(0; 1; x)! F(x; x; x). This depen-

den
y pair does not o

ur on a
y
le in the innermost dependen
y graph, sin
e

F(x

1

; x

1

; x

1

) does not unify with F(0; 1; x

2

). Thus, no inequalities are generated

and therefore the TRS is innermost terminating.

4.2 Variations on the Toyama example, version 1

The following example is a non-terminating TRS

f(g(x); s(0); y)! f(y; y; g(x))

g(s(x))! s(g(x))

g(0)! 0

with only one dependen
y pair on a
y
le in the innermost dependen
y graph,

viz. G(s(x))! G(x). Sin
e no de�ned symbols o

ur in G(x), there are no usable

rules. Therefore, the only
onstraint on the ordering is given by

G(s(x)) � G(x)

whi
h is easily satis�ed by the re
ursive path ordering. Hen
e, the TRS is inner-

most terminating.

4.3 Variations on the Toyama example, version 2

Similar to the pre
eding example, the following modi�
ation of the Toyama ex-

ample

f(g(x; y); x; z)! f(z; z; z)

g(x; y)! x

g(x; y)! y

is not a
onstru
tor system, sin
e the subterm g(x; y) o

urs in the left-hand side

of the �rst rule. Again the innermost dependen
y graph does not
ontain any

y
les and hen
e, this TRS is innermost terminating. This TRS is, however, not

terminating.

4.4 Variations on the Toyama example, version 3

The non-terminating TRS

f(g(x); x; y)! f(y; y; g(y))

g(g(x))! g(x)

is no
onstru
tor system either. The pair F(g(x); x; y)! F(y; y; g(y))
annot o
-

ur in an in�nite innermost
hain, sin
e
ap

F(g(x

1

); x

1

; y

1

)

(F(y

1

; y

1

; g(y

1

))) does

not unify with F(g(x

2

); x

2

; y

2

). The dependen
y pair G(g(x))! G(x)
annot o
-

ur in an in�nite innermost
hain either, sin
e by unifying the right proje
tion

of this dependen
y pair with a renaming of it, the left proje
tion is instantiated

in su
h a way that it is not a normal form. Hen
e, there are no
y
les in the

innermost dependen
y graph and therefore the TRS is innermost terminating.

43

4.5 Redex in left-hand side

The following system

f(0)! f(0)

0! 1

is innermost terminating, be
ause there is no
y
le in the innermost dependen
y

graph. The reason is that the left-hand side F(0) of the (only) dependen
y pair

is not a normal form.

4.6 Narrowing required, version 1

In the following, again non-terminating, variant of the Toyama example

f(0; 1; x)! f(g(x; x); x; x)

g(x; y)! x

g(x; y)! y

one narrowing step is needed to determine that there are no
y
les in the inner-

most dependen
y graph (be
ause F(0; 1; x)! F(g(x; x); x; x) narrows to F(0; 1; x)

! F(x; x; x)). Thus, this TRS is also innermost terminating.

4.7 Narrowing required, version 2

The following example
an be solved in a similar way:

f(s(x))! f(g(x; x))

g(0; 1)! s(0)

0! 1:

The dependen
y pair F(s(x))! F(g(x; x)) may be deleted as it
annot be nar-

rowed. Hen
e, there is no dependen
y pair left and therefore, innermost termi-

nation is proved.

4.8 Narrowing required, version 3

Consider the following TRS

x+ 0! x

x+ s(y)! s(x+ y)

f(0; s(0); x)! f(x; x+ x; x)

g(x; y)! x

g(x; y)! y

44

whi
h is not terminating as
an be seen by the in�nite redu
tion

f(0; s(0); g(0; s(0)))! f(g(0; s(0)); g(0; s(0)) + g(0; s(0)); g(0; s(0)))

! f(0; g(0; s(0)) + g(0; s(0)); g(0; s(0)))

! f(0; s(0) + g(0; s(0)); g(0; s(0)))

! f(0; s(0) + 0; g(0; s(0)))

! f(0; s(0); g(0; s(0)))

! : : :

Innermost termination of this TRS
an be proved if the dependen
y pair F(0; s(0);

x)! F(x; x+ x; x) is repla
ed by its narrowings

F(0; s(0); 0)! F(0; 0; 0)

F(0; s(0); s(y))! F(s(y); s(s(y) + y); s(y)):

Now our approximation determines that these dependen
y pairs are not on
y
les

in the innermost dependen
y graph. Therefore, the only inequality generated for

this TRS is

PLUS(x; s(y)) � PLUS(x; y)

whi
h is satis�ed by the re
ursive path ordering. Hen
e, this TRS is proved

innermost terminating.

4.9 Narrowing required, version 4

The following modi�
ation of the above TRS

x+ 0! x

x+ s(y)! s(x+ y)

double(x)! x+ x

f(0; s(0); x)! f(x; double(x); x)

g(x; y)! x

g(x; y)! y

is also non-terminating. Similar to the example above, we now need two narrow-

ing steps to derive that the narrowings of the dependen
y pair

F(0; s(0); x)! F(x; double(x); x)

do not o

ur on
y
les in the innermost dependen
y graph. The generated in-

equality is therefore the same as for the above example, whi
h is satis�ed by the

re
ursive path ordering. Hen
e, this TRS is proved innermost terminating.

45

4.10 Non-normal most general uni�er

The following TRS

f(x; g(x))! f(1; g(x))

g(1)! g(0)

is obviously not terminating as f(1; g(1))
an be redu
ed to itself. The dependen
y

pair

F(x; g(x))! F(1; g(x))

does not o

ur on a
y
le in the innermost dependen
y graph, be
ause

ap

F(x

1

; g(x

1

))

(F(1; g(x

1

))) = F(1; g(x

1

))

and the most general uni�er of F(1; g(x

1

)) and F(x

2

; g(x

2

)) repla
es x

1

and x

2

by

1. Hen
e, the instantiation of the left proje
tion is not a normal form. Obviously,

the other dependen
y pairs F(x; g(x))! G(x) and G(1)! G(0)
annot o

ur

on
y
les either. Thus, there are no
y
les in the innermost dependen
y graph.

Hen
e, the TRS is innermost terminating.

4.11 Innermost
hains of arbitrary �nite length

The following non-terminating TRS has an innermost
hain of any �nite length,

but it has no in�nite innermost
hain, hen
e it is innermost terminating.

h(x; z)! f(x; s(x); z)

f(x; y; g(x; y))! h(0; g(x; y))

g(0; y)! 0

g(x; s(y))! g(x; y)

An in�nite redu
tion is given by

h(0; g(0; s(0))! f(0; s(0); g(0; s(0)))! h(0; g(0; s(0))! : : :

So the TRS is not terminating.

The inequality resulting from the dependen
y pair on the only
y
le in the

innermost dependen
y graph is

G(x; s(y)) � G(x; y):

(The reason is that the most general uni�er of
ap

H(x

1

; z

1

)

(F(x

1

; s(x

1

); z

1

)) and

F(x

2

; y

2

; g(x

2

; y

2

)) does not instantiate the latter term to a normal form.)

There are no usable rules. Thus, innermost termination is easily proved by

the re
ursive path ordering.

46

4.12 Negative
oeÆ
ients

The following non-terminating TRS has two dependen
y pairs on a
y
le in the

innermost dependen
y graph, but it has no in�nite innermost
hain. Hen
e, it is

innermost terminating.

h(0; x)! f(0; x; x)

f(0; 1; x)! h(x; x)

g(x; y)! x

g(x; y)! y

An in�nite redu
tion is given by

f(0; 1; g(0; 1))! h(g(0; 1); g(0; 1))

! h(0; g(0; 1))

! f(0; g(0; 1); g(0; 1))

! f(0; 1; g(0; 1)) ! : : :

The inequalities resulting from the dependen
y pairs on a
y
le in the innermost

dependen
y graph are

H(0; x) % F(0; x; x)

F(0; 1; x) � H(x; x)

and there are no usable rules. These inequalities are satis�ed by the polynomial

interpretation where 0 and 1 are interpreted as usual and where H(x; y) and

F(x; y; z) are both mapped to (x� y)

2

.

Note that the inequalities obtained in this example are not satis�ed by any

weakly monotoni
 total well-founded quasi-ordering. For that reason a polyno-

mial ordering with negative
oeÆ
ients has been used. In innermost termination

proofs this is possible if the quasi-ordering is weakly monotoni
 on all symbols

apart from the tuple symbols and if it satis�es the
ondition

x

1

% y

1

^ : : : ^ x

n

% y

n

) C[x

1

; : : : ; x

n

℄ % C[y

1

; : : : ; y

n

℄;

for all dependen
y pairs s! C[f

1

(u

1

); : : : ; f

n

(u

n

)℄, where C is a
ontext without

de�ned symbols and f

1

; : : : ; f

n

are de�ned symbols.

In a similar way one
an also prove innermost termination of the system

where the �rst rule has been
hanged to

h(x; y)! f(x; y; x):

47

4.13 Drosten example

A
on
uent and innermost terminating TRS that is not terminating was given

by Drosten [Dro89℄.

f(0; 1; x)! f(x; x; x)

f(x; y; z)! 2

0! 2

1! 2

g(x; x; y)! y

g(x; y; y)! x

As there exists no
y
le in the innermost dependen
y graph, the TRS is innermost

terminating.

4.14 Better approximations of the innermost dependen
y graph,

version 1

For the approximation of innermost dependen
y graphs we use the fun
tion
ap

s

(instead of just the fun
tion
ap). An example where this re�nement is needed

an be obtained from Ex. 4.2 by modi�
ation of the �rst rule.

f(g(x); s(0))! f(g(x); g(x))

g(s(x))! s(g(x))

g(0)! 0

If we would approximate the innermost dependen
y graph by just using
ap

then in our approximation we would draw an ar
 from the dependen
y pair

F(g(x); s(0))! F(g(x); g(x))

to itself, be
ause
ap(F(g(x); g(x))) = F(x

1

; x

2

) uni�es with its left-hand side.

But then we would have to demand that this dependen
y pair is stri
tly de
reas-

ing, i.e., F(g(x); s(0)) � F(g(x); g(x)). However, then the resulting
onstraints

would imply

F(g(s(0)); s(0)) � F(g(s(0)); g(s(0))) % F(g(s(0)); s(g(0))) % F(g(s(0)); s(0)):

Hen
e, they would not be satis�ed by any well-founded ordering
losed under

substitution. Therefore the approa
h of [AG97b℄ would fail with this example.

However, by the re�ned approximation of using
ap

s

we
an immediately

determine that this dependen
y pair is not on a
y
le of the innermost depen-

den
y graph. The reason is that
ap

F(g(x

1

); s(0))

(F(g(x

1

); g(x

1

)) = F(g(x

1

); g(x

1

))

does not unify with F(g(x

2

); s(0)). (This example
ould also be solved by nar-

rowing the dependen
y pair. But there are also examples where the innermost

48

termination proof using
ap

s

su

eeds whereas it would not su

eed when using

narrowing and
ap,
f. the next example, Ex. 4.15.) Now the only remaining

onstraint is

G(s(x)) � G(x)

from the se
ond rule of the TRS. For example, this
onstraint is satis�ed by the

re
ursive path ordering.

In a similar way we
an also handle the following modi�
ation of Ex. 4.4:

f(g(x); x)! f(g(x); g(x))

g(g(x))! g(x):

4.15 Better approximations of the innermost dependen
y graph,

version 2

This is a variation of the Toyama example where the approximation using
ap

s

is

ne
essary to perform the innermost termination proof. In
ontrast to the pre
ed-

ing example, here narrowing the dependen
y pairs (and just using
ap instead

of
ap

s

) would not help.

f(0; 1; g(x; y); z)! f(g(x; y); g(x; y); g(x; y); h(x))

g(0; 1)! 0

g(0; 1)! 1

h(g(x; y))! h(x)

The dependen
y pair

F(0; 1; g(x; y); z)! F(g(x; y); g(x; y); g(x; y); h(x))

is not on a
y
le of the innermost dependen
y graph. This
an also be determined

by our approximation, be
ause
ap

F(0; 1; g(x;y); z)

(F(g(x; y); g(x; y); g(x; y); h(x)))

= F(g(x; y); g(x; y); g(x; y); h(x)) does not unify with F(0; 1; : : :).

However, if we use just the approximation with
ap, then we would have

an ar
 from this dependen
y pair to itself. Now the resulting
onstraints would

imply

F(0; 1; g(0; 1); h(0)) � F(g(0; 1); g(0; 1); g(0; 1); h(0)) % F(0; 1; g(0; 1); h(0)):

Hen
e, they would not be satis�ed by any well-founded ordering
losed under

substitution.

Note that in this example narrowing the dependen
y pair would not help,

be
ause the narrowings would in
lude the pair

F(0; 1; g(g(x

0

; y

0

); y); z)! F(g(g(x

0

; y

0

); y); g(g(x

0

; y

0

); y); g(g(x

0

; y

0

); y); h(x

0

))

whi
h would lead to the same problem. (The same statement holds for repeated

appli
ations of narrowing.) Hen
e, this example demonstrates that we really need

the re�nement of
ap

s

to approximate innermost dependen
y graphs.

49

4.16 Instantiation with normal form

The following TRS

f(s(0); g(x))! f(x; g(x))

g(s(x))! g(x)

is obviously not terminating as
an be seen by the following in�nite redu
tion

f(s(0); g(s(0)))! f(s(0); g(s(0)))! : : :

The dependen
y pair

F(s(0); g(x))! F(x; g(x))

is not on a
y
le of the innermost dependen
y graph, as
ap

F(s(0); g(x

1

))

(F(x

1

;

g(x

1

))) and F(s(0); g(x

2

)) unify using a most general uni�er that instantiates

F(s(0); g(x

2

)) in su
h a way that it is not a normal form. (However, this would

not have been determined by the approximation of innermost dependen
y graphs

as presented in [AG97b℄.) The only dependen
y pair that o

urs on a
y
le in

the innermost dependen
y graph is G(s(x))! G(x), resulting in the inequality

G(s(x)) � G(x)

whi
h is easily satis�ed by the re
ursive path ordering.

4.17 Narrowing of pairs where right-hand sides unify with left-hand

sides

In the following example we have to narrow a pair whose right-hand side uni�es

with a left-hand side of a dependen
y pair. When proving innermost termination,

we may indeed perform this narrowing as long as the mgu does not instantiate

the left-hand sides of the dependen
y pairs under
onsideration to normal forms.

f(g(x); s(0); y)! f(g(s(0)); y; g(x))

g(s(x))! s(g(x))

g(0)! 0

The dependen
y pair

F(g(x); s(0); y)! F(g(s(0)); y; g(x))

does not form a
y
le in the innermost dependen
y graph, be
ause an instantia-

tion of its right-hand side
an only redu
e to an instantiation of its left-hand side

where x is instantiated by s(0). But then this instantiated left-hand side would

ontain the redex g(s(0)).

However, in our approximation there would be an ar
 from this dependen
y

pair to itself, be
ause
ap

F(g(x

1

); s(0); y

1

)

(F(g(s(0)); y

1

; g(x

1

))) = F(z; y

1

; g(x

1

))

50

uni�es with F(g(x

2

); s(0); y

2

) (and the mgu instantiates the left-hand sides to

normal forms). So one would have to demand that this dependen
y pair should

be stri
tly de
reasing, i.e., one would obtain the
onstraint F(g(x); s(0); y) �

F(g(s(0)); y; g(x)). However, together with the remaining
onstraints, this in-

equality is not satis�ed by any well-founded ordering
losed under substitution,

be
ause we would have

F(g(s(0)); s(0); s(0)) � F(g(s(0)); s(0); g(s(0)))

% F(g(s(0)); s(0); s(g(0)))

% F(g(s(0)); s(0); s(0)):

So we have to narrow this dependen
y pair. Note that the right-hand side

uni�es with the left-hand side of this dependen
y pair. However, the mgu instan-

tiates the left-hand side to a term
ontaining the redex g(s(0)). Hen
e, by Thm.

10 we may indeed repla
e this dependen
y pair by its narrowings.

F(g(x); s(0); y)! F(s(g(0)); y; g(x))

F(g(s(x)); s(0); y)! F(g(s(0)); y; s(g(x)))

F(g(0); s(0); y)! F(g(s(0)); y; 0)i

None of these new pairs is on a
y
le of the estimated innermost dependen
y

graph. Hen
e, the only
onstraint in this example is

G(s(x)) � G(x)

from the se
ond rule of the TRS. A well-founded ordering satisfying this
on-

straint
an of
ourse be synthesized easily (e.g., the re
ursive path ordering).

4.18 Smallest normalizing non-terminating one-rule string rewrite

system

The following example from Geser [Ges00℄ is the smallest normalizing non-

terminating one-rule string rewrite system.

a(b(a(b(x))))! b(a(b(a(a(b(x))))))

The dependen
y pairs in this example are

A(b(a(b(x))))! A(b(x))

A(b(a(b(x))))! A(a(b(x)))

A(b(a(b(x))))! A(b(a(a(b(x))))):

The se
ond and the third dependen
y pair
an be narrowed to

A(b(a(b(a(b(x))))))! A(b(a(b(a(a(b(x)))))))

A(b(a(b(a(b(x))))))! A(b(a(b(a(b(a(a(b(x))))))))):

51

These dependen
y pairs are not on
y
les of the innermost dependen
y graph,

be
ause their left-hand sides
ontain redexes. Hen
e, the only
onstraint in this

example is

A(b(a(b(x)))) � A(b(x))

whi
h is satis�ed by the re
ursive path ordering.

4.19 An innermost terminating system whi
h requires modularity

The following system is a variant of the well-known example of Toyama [Toy87℄

whi
h requires modularity results for its innermost termination proof.

f(x;
(x);
(y))! f(y; y; f(y; x; y))

f(s(x); y; z)! f(x; s(
(y));
(z))

f(
(x); x; y)!
(y)

g(x; y)! x

g(x; y)! y

The system is not terminating as
an be seen from the following in�nite

(
y
ling) redu
tion.

f(x;
(x);
(g(x;
(x)))) !

f(g(x;
(x)); g(x;
(x)); f(g(x;
(x)); x; g(x;
(x))))!

�

f(x;
(x); f(
(x); x; g(x;
(x)))) !

f(x;
(x);
(g(x;
(x)))) ! : : :

However, this is not an innermost redu
tion, be
ause the �rst term
ontains the

redex g(: : :) as a proper subterm.

Here, we
an use Cor. 16 for the innermost termination proof. The esti-

mated innermost dependen
y graph only
ontains two non-empty
y
les
on-

sisting of F(x;
(x);
(y))! F(y; x; y) and F(s(x); y; z)! F(x; s(
(y));
(z)), re-

spe
tively. (In this example, the estimated innermost dependen
y graph is not

identi
al to the estimated dependen
y graph, be
ause in the latter there would

also be an ar
 from F(x;
(x);
(y))! F(y; y; f(y; x; y)) to itself.)

As both
y
les
onsist of dependen
y pairs without usable rules, it suÆ
es

to prove innermost termination of the two one-rules systems
onsisting of the

�rst and the se
ond rule respe
tively. In fa
t, these subsystems are even simply

terminating. For

f(x;
(x);
(y))! f(y; y; f(y; x; y))

one
an use a polynomial interpretation mapping f(x; y; z) to x+ y+ z and
(x)

to 5x+ 1 and for

f(s(x); y; z)! f(x; s(
(y));
(z))

one
an use LPO with the pre
eden
e f > s and f >
. Hen
e, Cor. 16 allows

us to split a non-terminating, but innermost terminating system into two simply

terminating subsystems.

52

Alternatively, with Thm. 11 we would obtain the following
onstraints for

our example:

F(x;
(x);
(y)) �

1

F(y; x; y) F(s(x); y; z) �

2

F(x; s(
(y));
(z)):

For �

1

we may use LPO
omparing subterms right-to-left and for �

2

we may

use LPO
omparing subterms left-to-right. Hen
e, innermost termination of this

example
an easily be proved automati
ally.

Note that without our modularity result, no simpli�
ation ordering would

satisfy the resulting
onstraints F(x;
(x);
(y)) � F(y; x; y) and F(s(x); y; z) �

F(x; s(
(y));
(z)). The reason is that one
annot use an argument �ltering whi
h

eliminates the arguments of
 or s, and hen
e, these
onstraints imply

F(x;
(x);
(s(x))) � F(s(x); x; s(x)) � F(x; s(
(x));
(s(x))):

4.20 Di�erent eliminations, version 1

The following TRS is also a short example for a system where modularity is

ne
essary.

f(f(x))! f(x)

g(0)! g(f(0))

The system is not simply terminating and an automated innermost termina-

tion proof using dependen
y pairs requires the use of our modularity results. The

reason is that due to F(f(x)) � F(x), the argument of f
annot be eliminated and

hen
e, no quasi-simpli�
ation ordering satis�es the
onstraint G(0) � G(f(0)).

But innermost termination
an easily be proved using Cor. 15. TheR

0

-system

(
onsisting of the f-rule) is obviously terminating and for the R

1

-
onstraints the

argument of f is eliminated. Then these
onstraints are satis�ed by RPO (using

the pre
eden
e 0 > f).

A similar innermost termination proof is also possible for the TRS

f(f(x))! f(x)

f(s(x))! f(x)

g(s(0))! g(f(s(0))):

4.21 Di�erent eliminations, version 2

By adding two symmetri
al rules, the TRS of Ex. 4.20 is turned into a system

whi
h is no hierar
hi
al
ombination any more.

f(1)! f(g(1))

f(f(x))! f(x)

g(0)! g(f(0))

g(g(x))! g(x):

53

The dependen
y pairs in this example are

F(1)! F(g(1)) (15)

F(1)! G(1) (16)

F(f(x))! F(x) (17)

G(0)! G(f(0)) (18)

G(0)! F(0) (19)

G(g(x))! G(x): (20)

The
y
les are f(15)g; f(17)g; f(15); (17)g; f(18)g; f(20)g; f(18); (20)g. For the

onstraints resulting from the �rst three
y
les we eliminate the arguments of

g, whereas for the last three
y
les we eliminate the arguments of f. Then the

onstraints are satis�ed by RPO.

4.22 Another division example, version 1

The TRS

quot(0; s(y); s(z))! 0

quot(s(x); s(y); z)! quot(x; y; z)

quot(x; 0; s(z))! s(quot(x; s(z); s(z)))

is a non-simply terminating system. This TRS
annot be proved terminating

automati
ally by the te
hnique of Se
t. 2.1. The only two generated inequalities

are

QUOT(s(x); s(y); z) � QUOT(x; y; z)

QUOT(x; 0; s(z)) % QUOT(x; s(z); s(z));

sin
e there are no usable rules. By using the argument �ltering �(QUOT) = 1,

the obtained inequalities are satis�ed by the re
ursive path ordering. Thus, the

TRS is innermost terminating. Termination of the TRS
an now be
on
luded

from the fa
t that it is non-overlapping.

4.23 Narrowing to approximate the innermost dependen
y graph

Similar to Ex. 3.40, narrowing of pairs also helps to obtain a better approximation

of the innermost dependen
y graph. To illustrate this, let us repla
e the last rule

of the TRS in Ex. 4.22 by the following three rules.

0+ y ! y

s(x) + y ! s(x+ y)

quot(x; 0; s(z))! s(quot(x; z + s(0); s(z)))

54

Now instead of dependen
y pair

QUOT(x; 0; s(z))! QUOT(x; s(z); s(z)) (21)

we obtain the dependen
y pair

QUOT(x; 0; s(z))! QUOT(x; z + s(0); s(z)): (22)

Note that in the estimated innermost dependen
y graph there would be an ar

from (22) to itself, be
ause after repla
ing z + s(0) by a new variable, the right-

and the left-hand side of (22) obviously unify (and an instantiation with the mgu

is a normal form). Hen
e, due to Thm. 11 we would have to �nd an ordering

su
h that (22) is stri
tly de
reasing. But then no linear or weakly monotoni

polynomial ordering satis�es all resulting inequalities in this example (and the

re
ursive path ordering does not su

eed either).

However, in the real innermost dependen
y graph, there is no ar
 from (22)

to itself, be
ause, similar to the original dependen
y pair (21), there is no sub-

stitution � su
h that (z+ s(0))� redu
es to 0. Hen
e, there is no
y
le
onsisting

of (22) only and therefore it is suÆ
ient if (22) is just weakly de
reasing. For this

reason we repla
e the dependen
y pair (22) by its narrowings, viz.

QUOT(x; 0; s(0))! QUOT(x; s(0); s(0)) (23)

QUOT(x; 0; s(s(z)))! QUOT(x; s(z + s(0)); s(0)) (24)

and
ompute the innermost dependen
y graph afterwards. Now neither (23) nor

(24) are on a
y
le in the estimated innermost dependen
y graph. Hen
e, if in our

example we perform at least one narrowing step, then we
an determine that the

dependen
y pair (22) does not form a
y
le in the innermost dependen
y graph

and then termination
an again be veri�ed using the re
ursive path ordering.

4.24 Intervals of natural numbers

The following TRS from Steinba
h [Ste95a℄

intlist(nil)! nil

intlist(x�y)! s(x)�intlist(y)

int(0; 0)! 0�nil

int(0; s(y))! 0�int(s(0); s(y))

int(s(x); 0)! nil

int(s(x); s(y))! intlist(int(x; y))

is non-overlapping, too. The set of usable rules is empty and the generated in-

equalities are

INTLIST(x�y) � INTLIST(y)

INT(0; s(y)) % INT(s(0); s(y))

INT(s(x); s(y)) � INT(x; y):

55

By using the argument �ltering �(INT) = 2 these inequalities are satis�ed by

the re
ursive path ordering. Thus, the TRS is terminating. Again, termination

of this system
annot be proved automati
ally using the method of Se
t. 2.1.

4.25 Another non-totally terminating TRS

To prove termination of the system

f(x; x)! f(g(x); x)

g(x)! s(x);

we apply narrowing on the dependen
y pair F(x; x)! F(g(x); x). In this way we

an dire
tly determine that the innermost dependen
y graph does not
ontain

any
y
les.

4.26 Narrowing of dependen
y pairs for innermost termination

In the following example we also have to apply narrowing of dependen
y pairs.

p(0)! 0

p(s(x))! x

le(0; y)! true

le(s(x); 0)! false

le(s(x); s(y))! le(x; y)

minus(x; y)! if(le(x; y); x; y)

if(true; x; y)! 0

if(false; x; y)! s(minus(p(x); y))

Note that without narrowing, the resulting
onstraints would imply MINUS(s(x);

0) � MINUS(p(s(x)); 0). Therefore an automati
 innermost termination proof

using quasi-simpli�
ation orderings would fail.

However, if we repla
e the dependen
y pair MINUS(x; y)! IF(le(x; y); x; y)

by its narrowings

MINUS(0; y)! IF(true; 0; y);

MINUS(s(x); 0)! IF(false; s(x); 0);

MINUS(s(x); s(y))! IF(le(x; y); s(x); s(y))

then this also enables a narrowing of the dependen
y pair IF(false; x; y) !

MINUS(p(x); y) (whose right-hand side uni�ed with a left-hand side before).

Hen
e, now this dependen
y pair
an be repla
ed by

IF(false; 0; y)! MINUS(0; y);

IF(false; s(x); y)! MINUS(x; y):

56

Note that the �rst narrowing step would not have been possible with the method

of Se
t. 2.1, be
ause the right-hand side is not linear. The inequalities
orrespond-

ing to
y
les are

LE(s(x); s(y)) � LE(x; y)

MINUS(s(x); 0) % IF(false; s(x); 0)

MINUS(s(x); s(y)) % IF(le(x; y); s(x); s(y))

IF(false; s(x); y) �MINUS(x; y):

Using the argument �ltering �(IF) = [2; 3℄, the resulting
onstraints are satis�ed

by the re
ursive path ordering. As the TRS is non-overlapping, in this way we

have also proved its termination.

4.27 Subtra
tion and prede
essor

The following system is an alternative way to de�ne subtra
tion using the pre-

de
essor fun
tion. Again this TRS is terminating, but not simply terminating.

p(0)! 0

p(s(x))! x

le(0; y)! true

le(s(x); 0)! false

le(s(x); s(y))! le(x; y)

minus(x; 0)! x

minus(x; s(y))! if(le(x; s(y)); 0; p(minus(x; p(s(y)))))

if(true; x; y)! x

if(false; x; y)! y

If we narrow the dependen
y pair MINUS(x; s(y))! MINUS(x; p(s(y))), then we

obtain the new pair MINUS(x; s(y))! MINUS(x; y). Now (as there are no usable

rules any more) the only
onstraints are

LE(s(x); s(y)) � LE(x; y)

MINUS(x; s(y)) �MINUS(x; y);

whi
h are satis�ed by the re
ursive path ordering. Hen
e, innermost termination

(and thereby, termination) has been proved, as the TRS is non-overlapping.

A similar example was mentioned by Steinba
h [Ste95a℄, but there the rules

for le and if were missing.

4.28 Length of bit representation

The following non-simply terminating TRS
orresponds to the logarithm exam-

ple (Ex. 3.7). Here, bits(x)
omputes the number of bits that are ne
essary to

57

represent all numbers smaller than or equal to x.

half(0)! 0

half(s(0))! 0

half(s(s(x)))! s(half(x))

bits(0))! 0

bits(s(x))! s(bits(half(s(x))))

After narrowing BITS(s(x))! BITS(half(s(x))) to BITS(s(0)) ! BITS(0) and

BITS(s(s(x)))! BITS(s(half(x)) we obtain the inequalities

HALF(s(s(x))) � HALF(x)

BITS(s(s(x))) � BITS(s(half(x)):

The resulting
onstraints are satis�ed by the re
ursive path ordering.

4.29 Multipli
ation for even and odd numbers

The following non-simply terminating example is inspired by Walther [Wal91℄.

even(0)! true

even(s(0))! false

even(s(s(x)))! even(x)

half(0)! 0

half(s(s(x)))! s(half(x))

plus(0; y)! y

plus(s(x); y)! s(plus(x; y))

times(0; y)! 0

times(s(x); y)! if

times

(even(s(x)); s(x); y)

if

times

(true; s(x); y)! plus(times(half(s(x)); y); times(half(s(x)); y))

if

times

(false; s(x); y)! plus(y; times(x; y))

To prove termination using a quasi-simpli�
ation ordering, we have to narrow

the dependen
y pair IF

times

(true; s(x); y)! TIMES(half(s(x)); y) to

IF

times

(true; s(s(x)); y)! TIMES(s(half(x)); y):

Now the inequalities
orresponding to
y
les are the following.

EVEN(s(s(x))) � EVEN(x)

HALF(s(s(x))) � HALF(x)

PLUS(s(x); y) � PLUS(x; y)

TIMES(s(x); y) % IF

times

(even(s(x)); s(x); y)

IF

times

(true; s(s(x)); y) � TIMES(s(half(x)); y)

IF

times

(false; s(x); y) � TIMES(x; y)

58

If an argument �ltering �(IF

times

) = [2; 3℄ is used, then the resulting
onstraints

are satis�ed by the re
ursive path ordering.

4.30 Narrowing for division, remainder, and g
d

The TRSs for division (Ex. 3.1{3.3)
an also be transformed into systems where

we need narrowing for the (innermost) termination proof. We only present one

of them.

minus(x; 0)! x

minus(s(x); s(y))! minus(x; y)

le(0; y)! true

le(s(x); 0)! false

le(s(x); s(y))! le(x; y)

quot(x; s(y))! if

quot

(le(s(y); x); x; s(y))

if

quot

(true; x; y)! s(quot(minus(x; y); y))

if

quot

(false; x; y)! 0

Again this system is not simply terminating. After narrowing the dependen
y

pair QUOT(x; s(y))! IF

quot

(le(s(y); x); x; s(y)) to

QUOT(0; s(y))! IF

quot

(false; 0; s(y))

QUOT(s(x); s(y))! IF

quot

(le(y; x); s(x); s(y))

we
an narrow IF

quot

(true; x; y)! QUOT(minus(x; y); y) to

IF

quot

(true; x; 0)! QUOT(x; y)

IF

quot

(true; s(x); s(y))! QUOT(minus(x; y); s(y)):

Now the inequalities
orresponding to
y
les are

MINUS(s(x); s(y)) �MINUS(x; y)

LE(s(x); s(y)) � LE(x; y)

QUOT(s(x); s(y)) % IF

quot

(le(y; x); s(x); s(y))

IF

quot

(true; s(x); s(y)) � QUOT(minus(x; y); s(y)):

Using the argument �ltering �(minus) = 1, �(IF) = [2; 3℄ the
onstraints are sat-

is�ed by the re
ursive path ordering. Hen
e, in this way (innermost) termination

of this TRS is proved.

A simpler modi�
ation of the quotient TRS where one should also use nar-

rowing is obtained if instead of the last three rules the following rules are used.

quot(0; s(y))! 0

quot(s(x); s(y))! s(quot(minus(s(x); s(y)); s(y)))

59

A similar modi�
ation is also possible for the remainder TRSs (Ex. 3.5), i.e.,

the rule if

mod

(true; s(x); s(y))! mod(minus(x; y); s(y)) may be repla
ed by

if

mod

(true; x; y)! mod(minus(x; y); y):

In an analogous way, in the greatest
ommon divisor TRSs (Ex. 3.6) one

ould also repla
e the last two rules by

if

g
d

(true; x; y)! g
d(minus(x; y); y)

if

g
d

(false; x; y)! g
d(minus(y; x); x):

All these modi�ed TRSs
ould again be proved (innermost) terminating by using

narrowing �rst.

4.31 Braid problem

The following string rewrite system (whi
h en
odes a braid problem from topol-

ogy) was given by Zantema as a
hallenge during the 3rd International Termi-

nation Workshop. As shown by Geser, it is not simply terminating.

a(d(x))! d(
(b(a(x))))

b(
(x))!
(d(a(b(x))))

a(
(x))! x

b(d(x))! x

The dependen
y pairs in this example are

A(d(x))! A(x) (25)

A(d(x))! B(a(x)) (26)

B(
(x))! B(x) (27)

B(
(x))! A(b(x)): (28)

Dependen
y pair (26)
an be repla
ed by its narrowings

A(d(d(x)))! B(d(
(b(a(x)))))

A(d(
(x)))! B(x)

and dependen
y pair (28)
an be narrowed to

B(
(
(x)))! A(
(d(a(b(x)))))

B(
(d(x)))! A(x):

As there are no usable rules, the resulting
onstraints are

A(d(x)) � A(x)

A(d(
(x))) % B(x)

B(
(x)) � B(x)

B(
(d(x))) % A(x);

whi
h are satis�ed by the re
ursive path ordering. Hen
e, as the TRS is non-

overlapping, its termination is proved.

60

4.32 A non-overlapping system whi
h requires modularity

The following system is a non-overlapping variant of Ex. 3.47, whi
h
an be

obtained by repla
ing y in the se
ond rule by s(y).

f(x;
(y))! f(x; s(f(y; y)))

f(s(x); s(y))! f(x; s(
(s(y))))

Again the system is not simply terminating (we have the same redu
tion as

in Ex. 3.47). Similar to that example, an automati
 termination or innermost

termination proof without modularity fails, be
ause the resulting
onstraints

imply F(x;
(s(x))) � F(x; s(
(s(x)))), whi
h is not satis�ed by any simpli�
ation

ordering.

In this example, we obtain the estimated dependen
y graph in Fig. 1 (whi
h

is identi
al to the estimated innermost dependen
y graph).

F(s(x); s(y))! F(x; s(
(s(y))))

F(x;
(y))! F(x; s(f(y; y))) F(x;
(y))! F(y; y)

Fig. 1. The estimated (innermost) dependen
y graph in Ex. 4.32.

This example is non-overlapping and hen
e, we
an prove termination by

verifying innermost termination. For that purpose we may use Cor. 16. As the

sets of usable rules are empty for both dependen
y pairs F(x;
(y))! F(y; y)

and F(s(x); s(y))! F(x; s(
(s(y)))), we
an split the original TRS into the two

subsystems
onsisting of one of the rules respe
tively. Now termination of

f(x;
(y))! f(x; s(f(y; y)))

is proved using the lexi
ographi
 or the re
ursive path ordering with pre
eden
e

 > s and
 > f. Termination of

f(s(x); s(y))! f(x; s(
(s(y))))

is proved using the lexi
ographi
 path ordering with pre
eden
e f > s and f >
.

In this way, the two simply terminating subsystems imply termination of the

whole (non-simply terminating) TRS.

61

4.33 Sum and weight

The following TRS
omputes the weighted sum of a list.

sum(s(n)�x;m�y)! sum(n�x; s(m)�y)

sum(0�x; y)! sum(x; y)

sum(nil; y)! y

weight(n�m�x)! weight(sum(n�m�x; 0�x))

weight(n�nil)! n

The system is a hierar
hi
al
ombination of the sum-rules (R

0

) and the

weight-rules (R

1

). Note that it is not a proper extension and R

1

is not oblivious

of R

0

. Moreover, the TRS is obviously not simply terminating. Its estimated

dependen
y graph (whi
h is identi
al to the estimated innermost dependen
y

graph) is sket
hed in Fig. 2.

6

Æ
 Æ

6

?

��

?

�

�

�

�

�

�

�)

P

P

P

P

P

P

Pq

�

-

WEIGHT(n�m�x)!WEIGHT(sum(n�m�x; 0�x))

WEIGHT(n�m�x)! SUM(n�m�x; 0�x)

SUM(s(n)�x;m�y)! SUM(n�x; s(m)�y SUM(0�x; y)! SUM(x; y)

Fig. 2. The estimated (innermost) dependen
y graph in Ex. 4.33.

As the TRS is non-overlapping, it suÆ
es to prove innermost termination.

However, without modularity, the resulting
onstraints would not be satis�ed

by any quasi-simpli�
ation ordering: Due to the
onstraint SUM(s(n)�x;m�y) �

SUM(n�x; s(m)�y), neither the argument of s nor the �rst argument of `�'
an be

eliminated. As we
annot eliminate all arguments of sum (due to the
onstraint

sum(nil; y) % y), the
onstraint sum(s(n)�x;m�y) % sum(n�x; s(m)�y) enfor
es

that the �rst argument of summay not be deleted either. ButWEIGHT(n�m�x) �

WEIGHT(sum(n�m�x; : : :)) does not hold for any quasi-simpli�
ation ordering.

Termination of the sum and weight-example
an be proved by Cor. 15. The

sum-subsystem (R

0

) is terminating (this
an be proved by LPO with the pre
e-

den
e sum > � and sum > s). For the weight-subsystem (R

1

) we obtain the

onstraints

sum(s(n)�x;m�y) % sum(n�x; s(m)�y)

sum(0�x; y) % sum(x; y)

sum(nil; y) % y

WEIGHT(n�m�x) �WEIGHT(sum(n�m�x; 0�x));

62

whi
h are also satis�ed by LPO after deleting the �rst arguments of sum and `�'.

This time we have to use the pre
eden
e � > sum.

Note that the
onstraints for termination (a

ording to Se
t. 2.1) are not

satis�ed by any quasi-simpli�
ation ordering amenable to automation, i.e., this

example again shows that proving innermost termination is essentially easier

than proving termination.

To see this, regard the
onstraints for the
y
le
onsisting of the �rst SUM-

dependen
y pair. We show that they are not satis�ed by any argument �lter-

ing � and any redu
tion pair (%;�) where % is a path or a polynomial quasi-

simpli�
ation ordering. The
onstraint �(SUM(s(n)�x;m�y)) � �(SUM(n�x;

s(m)�y)) implies �(s(0)�nil) �

s

�(0�nil) where �

s

is the stri
t part of the quasi-

ordering %. (For polynomial orderings this holds be
ause then % is total.) More-

over, one
an show that the
onstraints entail that �(weight(sum(0�0�s(0)�nil;

0�x)))
ontains x and if one uses polynomial orderings, this term is mapped to

a polynomial whi
h is strongly monotoni
 in x w.r.t. the ordering �

s

. Then we

obtain the following
ontradi
tion to the well-foundedness of �

s

:

�(weight(sum(0�0�s(0)�nil; 0�s(0)�nil)))

�

s

�(weight(sum(0�0�s(0)�nil; 0�0�nil))) by monotoni
ity

and �(s(0)�nil) �

s

�(0�nil)

% �(weight(0�0�s(0)�nil)) by the subterm property

% �(weight(sum(0�0�s(0)�nil; 0�s(0)�nil))) by the
onstraint

from the �rst weight-rule

(To show the strong monotoni
ity of �(weight(sum(0�0�s(0)�nil; 0�x))) note

that the se
ond weight-rule implies that �(weight(x)) must depend on x. More-

over, the
onstraint for the last sum-rule implies that �(sum(0�0�s(0)�nil; x)) must

depend on x. It remains to show that �(0�x) depends on x. To this end, note that

the
onstraint from the �rst sum-rule implies that �(sum(x; 0�nil)) depends on x.

Therefore, the
onstraint from the se
ond sum-rule implies that �(sum(0�x; 0�nil))

also depends on x. But then �(0�x) must also depend on x.)

4.34 Renaming in the Lambda Cal
ulus (simpli�ed variant)

The following TRS is a shortened and simpli�ed variant of a system for renaming

in the lambda
al
ulus. The full system is presented in Ex. 4.35.

f(0)! true

f(1)! false

f(s(x))! f(x)

if(true; x; y)! x

if(false; x; y)! y

g(s(x); s(y))! if(f(x); s(x); s(y))

g(x;
(y))! g(x; g(s(
(y)); y))

63

The system is not simply terminating, as the left-hand side of the last rule

is embedded in its right-hand side. As it is non-overlapping, it is suÆ
ient to

prove innermost termination only. For that purpose we need modularity results,

be
ause otherwise we would have

G(x;
(s(x))) � G(x; g(s(
(s(x))); s(x))) % G(x; if(: : : ; s(
(s(x))); : : :))

and neither the argument of s nor the se
ond argument of if
an be eliminated.

The system is a hierar
hi
al
ombination (but not a proper extension). Hen
e,

we
an prove innermost termination by Cor. 15. Termination of R

0

(the f- and

if-rules)
an for instan
e be veri�ed by RPO. For R

1

(the g-rules) we obtain the

following
onstraints after �ltering the arguments of s and f:

f % true

f % false

f % f

if(true; x; y) % x

if(false; x; y) % y

g(s; s) % if(f; s; s)

g(x;
(y)) % g(x; g(s; y))

G(x;
(y)) � G(x; g(s; y))

G(x;
(y)) � G(s; y):

These inequalities are satis�ed by RPO using the pre
eden
e f > true, f >

false, g > if, g > f,
 > g,
 > s.

4.35 Renaming in the Lambda Cal
ulus

The following system is a variant of an algorithm from [MA96℄. The purpose

of the fun
tion ren(x; y; t) is to repla
e every free o

urren
e of the variable x

in the term t by the variable y. If the substitution of x by y should be applied

to a lambda term lambda(z; t) (whi
h represents �z:t), then we �rst apply an

�-
onversion step to lambda(z; t), i.e., we rename z to a new variable (whi
h is

di�erent from x or y and whi
h does not o

ur in lambda(z; t)). Subsequently,

the renaming of x to y is applied to the resulting term. For that reason in this

TRS there is a nested re
ursive
all of the fun
tion ren.

Variables are represented by var(l) where l is a list of terms. Therefore, the

variable var(x�y�lambda(z; t)�nil) is distin
t from x and y and from all variables

o

urring in lambda(z; t).

and(true; y)! y

and(false; y)! false

eq(nil; nil)! true

64

eq(t�l; nil)! false

eq(nil; t�l)! false

eq(t�l; t

0

�l

0

)! and(eq(t; t

0

); eq(l; l

0

))

eq(var(l); var(l

0

))! eq(l; l

0

)

eq(var(l); apply(t; s))! false

eq(var(l); lambda(x; t))! false

eq(apply(t; s); var(l))! false

eq(apply(t; s); apply(t

0

; s

0

))! and(eq(t; t

0

); eq(s; s

0

))

eq(apply(t; s); lambda(x; t))! false

eq(lambda(x; t); var(l))! false

eq(lambda(x; t); apply(t; s))! false

eq(lambda(x; t); lambda(x

0

; t

0

))! and(eq(x; x

0

); eq(t; t

0

))

if(true; var(k); var(l

0

))! var(k)

if(false; var(k); var(l

0

))! var(l

0

)

ren(var(l); var(k); var(l

0

))! if(eq(l; l

0

); var(k); var(l

0

))

ren(x; y; apply(t; s))! apply(ren(x; y; t); ren(x; y; s))

ren(x; y; lambda(z; t))! lambda(var(x�y�lambda(z; t)�nil);

ren(x; y; ren(z; var(x�y�lambda(z; t)�nil); t)))

Let R

0

onsist of all rules but the last three ren-rules, and let R

1

be the

ren-subsystem. Then this TRS is a hierar
hi
al
ombination of R

0

and R

1

. The

TRS is not simply terminating as the left-hand side of the last rule is embedded

in its right-hand side, but it is non-overlapping. Hen
e, Cor. 15
an be used for

the termination proof.

Termination of R

0

an for instan
e be proved by RPO. To
omplete the

termination proof, we have to �nd a quasi-ordering su
h that all rules are weakly

de
reasing and su
h that the following stri
t inequalities are satis�ed:

REN(x; y; apply(t; s)) � REN(x; y; t)

REN(x; y; apply(t; s)) � REN(x; y; s)

REN(x; y; lambda(z; t)) � REN(x; y; ren(z; var(x�y�lambda(z; t)�nil); t))

REN(x; y; lambda(z; t)) � REN(z; var(x�y�lambda(z; t)�nil); t):

A well-founded ordering satisfying these
onstraints
an be synthesized au-

tomati
ally. For instan
e, one
an use the following polynomial interpretation

where REN(x; y; t) is mapped to t, ren(x; y; t) is also mapped to t, lambda(x; t) is

mapped to t+1, apply(t; s) is mapped to t+ s+1, and(x; y) is mapped to y, and

where nil, var(l), true, false, eq(t; s), and if(x; y; z) are all mapped to the
onstant

0.

Note that the modularity result of Cor. 15 is essential for this termination

proof. If termination of the whole system would have to be proved at on
e, then

65

the resulting inequalities would not be satis�ed by any quasi-simpli�
ation or-

dering. The reason is that due to EQ(var(l); var(l

0

)) � EQ(l; l

0

) the argument of

var
annot be deleted. Hen
e, (as if's se
ond argument
annot be deleted either),

ren(var(l); var(k); var(l

0

)) % if(eq(l; l

0

); var(k); var(l

0

)) enfor
es that ren must de-

pend on its se
ond argument. Moreover, due to EQ(t�l; t

0

�l

0

) � EQ(t; t

0

), the �rst

argument of `�'
annot be eliminated. But the inequality

REN(x; y; lambda(z; t)) � REN(x; y; ren(z; var(x�y�lambda(z; t)�nil); t))

is not satis�ed by any quasi-simpli�
ation ordering.

The simpli�ed system of Ex. 4.34 is obtained from the subsystem

eq(nil; nil)! true

eq(nil; t�l)! false

eq(var(l); var(l

0

))! eq(l; l

0

)

if(true; var(k); var(l

0

))! var(k)

if(false; var(k); var(l

0

))! var(l

0

)

ren(var(l); var(k); var(l

0

))! if(eq(l; l

0

); var(k); var(l

0

))

ren(x; y; lambda(z; t))! lambda(var(x�y�lambda(z; t)�nil);

ren(x; y; ren(z; var(x�y�lambda(z; t)�nil); t)))

by removing the �rst arguments of eq, ren, and lambda, by eliminating the ar-

guments of `�' in the se
ond eq-rule, by repla
ing var by its arguments in the

if-rules, by deleting a lambda and `unne
essary' arguments of var in the last ren-

rule, and by renaming the variables and fun
tion symbols (eq
orresponds to f,

nil
orresponds to 0, `�'
orresponds to 1, var
orresponds to s, ren
orresponds

to g, and lambda
orresponds to
).

4.36 Sele
tion sort

This TRS from [Wal94℄ is obviously not simply terminating. The TRS
an be

used to sort a list by repeatedly repla
ing the minimum of the list by the head

of the list. It uses repla
e(n;m; x) to repla
e the leftmost o

urren
e of n in the

list x by m.

eq(0; 0)! true

eq(0; s(m))! false

eq(s(n); 0)! false

eq(s(n); s(m))! eq(n;m)

le(0;m)! true

le(s(n); 0)! false

le(s(n); s(m))! le(n;m)

min(0�nil)! 0

66

min(s(n)�nil)! s(n)

min(n�m�x)! if

min

(le(n;m); n�m�x)

if

min

(true; n�m�x)! min(n�x)

if

min

(false; n�m�x)! min(m�x)

repla
e(n;m; nil)! nil

repla
e(n;m; k�x)! if

repla
e

(eq(n; k); n;m; k�x)

if

repla
e

(true; n;m; k�x)!m�x

if

repla
e

(false; n;m; k�x)! k�repla
e(n;m; x)

sort(nil)! nil

sort(n�x)! min(n�x)�sort(repla
e(min(n�x); n; x))

The TRS is non-overlapping and hen
e, veri�
ation of innermost termination

is suÆ
ient. As this is a hierar
hi
al
ombination (but no proper extension and

not oblivious), we
an use Cor. 15.

The TRS R

0

(
onsisting of all rules but the the last two ones) is innermost

terminating (resp. terminating) as
an be proved by the dependen
y pair ap-

proa
h. To
omplete the innermost termination proof we obtain the following

inequality for R

1

:

SORT(n�x) � SORT(repla
e(min(n�x); n; x)):

Moreover, we have to demand l % r for all rules of R

0

, as all these rules are

usable.

We use the argument �ltering �(�) = 2, �(s) = �(eq) = �(le) = [℄, and

�(repla
e) = �(if

repla
e

) = 3. Then the resulting inequalities are satis�ed by the

re
ursive path ordering (where `�' must be greater than min in the pre
eden
e).

Note that without using modularity, no path ordering like LPO or RPO whi
h

is amenable to automation would satisfy the resulting
onstraints. The reason is

that due to EQ(s(n); s(m)) � EQ(n;m), the argument of s
annot be eliminated

and hen
e, min(s(n)�nil) % s(n) implies that the �rst argument of `�'
annot be

deleted either. Now due to if

repla
e

(true; n;m; k�x) % m�x, the third argument

of if

repla
e

annot be removed. Then repla
e(n;m; k�x) % if

repla
e

(: : : ; n;m; k�x)

implies that repla
e must depend on its se
ond argument and that repla
e must

be greater than or equal to if

repla
e

in the pre
eden
e, i.e., repla
e � if

repla
e

. As

repla
e depends on its se
ond argument, if

repla
e

(false; n;m; k�x) % k�repla
e(n;m;

x) implies if

repla
e

� �. Hen
e, we have repla
e � �. But then SORT(n�x) �

SORT(repla
e(: : : ; n; x)) does not hold.

However, a (non-modular) termination proof with dependen
y pairs would

be possible by the polynomial ordering where eq(x; y), 0, true, false, le(x; y), and

nil are mapped to 0, s(x) is mapped to x+ 1, sum(n; x) is mapped to n+ x+ 1,

min(x) and if

min

(b; x) are mapped to x, repla
e(n;m; x) and if

repla
e

(b; n;m; x) are

mapped tom+x, EQ(x; y), LE(x; y),MIN(x), IF

min

(b; x), SORT(x), and IF

sort

(b; x)

are mapped to x, and REPLACE(n;m; x) and IF

repla
e

(b; n;m; x) are mapped to

67

m+ x. Hen
e, as the TRS is non-overlapping, in this way its termination is also

proved. (If the �rst min rule would be repla
ed by min(sum(n; nil))! element(n),

then termination
ould also be proved by the termination te
hnique of Se
t. 2.1

using an appropriate argument �ltering and the re
ursive path ordering to satisfy

the
onstraints obtained.)

4.37 Di�erent termination arguments

The following TRS is one of the shortest systems to demonstrate the use of

modularity.

f(
(s(x); y))! f(
(x; s(y)))

g(
(x; s(y)))! g(
(s(x); y))

Without modularity results, termination of this system
annot be proved by

path orderings like LPO or RPO that are amenable to automation and a termina-

tion proof with polynomial orderings fails, too. (The reason for the latter is that

if [f ℄ is the polynomial
orresponding to a fun
tion f , then lim

x!1

[
℄(x; [s℄(x))�

[
℄([s℄(x); x) is1 or �1. But then (for large enough arguments) the inequalities

orresponding to either the �rst or the se
ond rule are not satis�ed.) By Cor. 16

however, it suÆ
es to prove termination of the two one-rule subsystems. Their

termination
an easily be veri�ed (e.g., by using LPO and
omparing subterms

left-to-right for the �rst rule, whereas for the se
ond rule they are
ompared

right-to-left).

While termination of the above TRS
ould also be proved by existing mod-

ularity
riteria (as it was split into subsystems with disjoint de�ned symbols),

adding a third rule turns it into a hierar
hi
al
ombination whi
h is no proper

extension and not oblivious.

f(
(s(x); y))! f(
(x; s(y)))

g(
(x; s(y)))! g(
(s(x); y))

g(s(f(x)))! g(f(x))

Using Cor. 15 for the innermost termination proof, termination of R

0

(the

f-rule) is proved with LPO (
omparing subterms left-to-right). For the R

1

-
on-

straints we eliminate the arguments of f and use LPO
omparing subterms right-

to-left.

Referen
es

[AG97a℄ T. Arts and J. Giesl. Automati
ally proving termination where simpli�
ation order-

ings fail. In Pro
eedings of the 7th International Joint Conferen
e on the Theory and

Pra
ti
e of Software Development, TAPSOFT-97, volume 1214 of Le
ture Notes in

Computer S
ien
e, pages 261{272, Lille, Fran
e, 1997. Springer Verlag, Berlin.

68

[AG97b℄ T. Arts and J. Giesl. Proving innermost normalisation automati
ally. In Pro
eedings

of the 8th International Conferen
e on Rewriting Te
hniques and Appli
ations, RTA-

97, volume 1232 of Le
ture Notes in Computer S
ien
e, pages 157{171, Sitges, Spain,

1997. Springer Verlag, Berlin.

[AG98℄ T. Arts and J. Giesl. Modularity of termination using dependen
y pairs. In Pro
eedings

of the 9th International Conferen
e on Rewriting Te
hniques and Appli
ations, RTA-98,

volume 1379 of Le
ture Notes in Computer S
ien
e, pages 226{240, Tsukuba, Japan,

1998. Springer Verlag, Berlin.

[AG00℄ T. Arts and J. Giesl. Termination of term rewriting using dependen
y pairs. Theoreti
al

Computer S
ien
e, 236:133{178, 2000.

[Art00℄ T. Arts. System des
ription: The dependen
y pair method. In Pro
eedings of the 11th

International Conferen
e on Rewriting Te
hniques and Appli
ations, RTA-00, volume

1833 of Le
ture Notes in Computer S
ien
e, pages 261{264, Norwi
h, England, 2000.

Springer Verlag, Berlin.

[Ba
87℄ L. Ba
hmair. Proof methods for equational theories. PhD thesis, University of Illinois,

Urbana-Champaign (Illinois), 1987.

[BL88℄ F. Bellegarde and P. Les
anne. Termination proofs based on transformation te
hniques.

Te
hni
al report, Centre de Re
her
he en Informatique de Nan
y, Nan
y, Fran
e, 1988.

[BL90℄ F. Bellegarde and P. Les
anne. Termination by
ompletion. Appli
able Algebra in

Engineering, Communi
ation and Computing, 1:79{96, 1990.

[BM79℄ R. S. Boyer and J S. Moore. A Computational Logi
. A
ademi
 Press, 1979.

[BN98℄ F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,

1998.

[CiM99℄ CiME 2, 1999. Pre-release available at http://www.lri.fr/~demons/
ime-2.0.html.

[Der79℄ N. Dershowitz. A note on simpli�
ation orderings. Information Pro
essing Letters,

9(5):212{215, 1979.

[Der87℄ N. Dershowitz. Termination of rewriting. Journal of Symboli
 Computation, 3(1-2):69{

116, 1987.

[Der93℄ N. Dershowitz. 33 examples of termination. In Term Rewriting, Pro
eedings Spring

S
hool of Theoreti
al Computer S
ien
e, volume 909 of Le
ture Notes in Computer

S
ien
e, pages 16{27, Font Romeux, Fran
e, 1993. Springer Verlag, Berlin.

[DH95℄ N. Dershowitz and C. Hoot. Natural termination. Theoreti
al Computer S
ien
e,

142(2):179{207, 1995.

[DJ90℄ N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In Formal Models and Seman-

ti
s, volume B of Handbook of Theoreti
al Computer S
ien
e, pages 243{320. North-

Holland, 1990.

[Dro89℄ K. Drosten. Termersetzungssysteme: Grundlagen der Prototyp-Generierung algebrai-

s
her Spezi�kationen. Springer Verlag, Berlin, Berlin, 1989.

[Fer95℄ M. Ferreira. Termination of Term Rewriting,Well-foundedness, Totality and Trans-

formations. PhD thesis, Utre
ht University, PO Box 80.089, 3508 TB Utre
ht, The

Netherlands, 1995.

[FZ93℄ M. Ferreira and H. Zantema. Total termination of term rewriting. In Pro
eedings of

the 5th Conferen
e on Rewrite Te
hniques and Appli
ations, RTA-93, volume 690 of

Le
ture Notes in Computer S
ien
e, pages 213{227, Montreal, Canada, 1993. Springer

Verlag, Berlin.

[FZ95℄ M. Ferreira and H. Zantema. Dummy elimination: Making termination easier. In

Pro
eedings of the 10th International Conferen
e on Fundamentals of Computation

Theory, FCT-95, volume 965 of Le
ture Notes in Computer S
ien
e, pages 243{252,

Dresden, Germany, 1995. Springer Verlag, Berlin.

[GA01℄ J. Giesl and T. Arts. Veri�
ation of Erlang pro
esses by dependen
y pairs. Appli
able

Algebra in Engineering, Communi
ation, and Computing, 12(1-2):39{72, 2001.

[GAO01℄ J. Giesl, T. Arts, and E. Ohlebus
h. Modular termination proofs for rewriting using

dependen
y pairs. Submitted to the Journal of Symboli
 Computation, 2001.

[Gee91℄ M. Geerling. Termination of term rewriting systems. Master's thesis, Utre
ht Univer-

sity, PO Box 80.089, 3508 TB Utre
ht, The Netherlands, 1991.

69

[Ges00℄ A. Geser. Note on normalizing, non-terminating one-rule string rewriting systems.

Theoreti
al Computer S
ien
e, 243:489{498, 2000.

[Gie95℄ J. Giesl. Automatisierung von Terminierungsbeweisen f�ur rekursiv de�nierte Algorith-

men. DISKI 96. In�x Verlag, 1995. Do
toral Dissertation, TH Darmstadt, Germany.

[Gie97℄ J. Giesl. Termination of nested and mutually re
ursive algorithms. Journal of Auto-

mated Reasoning, 19:1{29, 1997.

[GM00℄ J. Giesl and A. Middeldorp. Eliminating dummy elimination. In Pro
eedings of the

17th International Conferen
e on Automated Dedu
tion, CADE-17, volume 1831 of

Le
ture Notes in Arti�
ial Intelligen
e, pages 309{323, Pittsburgh, PA, USA, 2000.

Springer Verlag, Berlin.

[GO00℄ J. Giesl and E. Ohlebus
h. Pushing the frontiers of
ombining rewrite systems far-

ther outwards. In Pro
eedings of the Se
ond International Workshop on Frontiers of

Combining Systems, FroCoS-98, volume 7 of Studies in Logi
 and Computation, pages

141{160, Amsterdam, The Netherlands, 2000. Resear
h Studies Press, John Wiley &

Sons.

[HH82℄ G. Huet and J.-M. Hullot. Proofs by indu
tion in equational theories with
onstru
tors.

Journal of Computer and System S
ien
es, 25:239{299, 1982.

[HL78℄ G. Huet and D. Lankford. On the uniform halting problem for term rewriting systems.

Te
hni
al Report 283, INRIA, Le Chesnay, Fran
e, 1978.

[Klo92℄ J. W. Klop. Term rewriting systems. In Ba
kground: Computational Stru
tures, vol-

ume 2 of Handbook of Logi
 in Computer S
ien
e, pages 1{116. Oxford University

Press, New York, 1992.

[KNT99℄ K. Kusakari, M. Nakamura, and Y. Toyama. Argument �ltering transformation. In

Pro
eedings of the First International Conferen
e on Prin
iples and Pra
ti
e of De
lar-

ative Programming, PPDP-99, volume 1702 of Le
ture Notes in Computer S
ien
e,

pages 48{62, Paris, Fran
e, 1999. Springer Verlag, Berlin.

[MA96℄ D. M
Allester and K. Arkoudas. Walther re
ursion. In Pro
eedings of the 13th In-

ternational Conferen
e on Automated Dedu
tion, CADE-13, volume 1104 of Le
ture

Notes in Computer S
ien
e, pages 643{657, New Brunswi
k, NJ, USA, 1996. Springer

Verlag, Berlin.

[MZ97℄ A. Middeldorp and H. Zantema. Simple termination of rewrite systems. Theoreti
al

Computer S
ien
e, 175:127{158, 1997.

[OCM00℄ E. Ohlebus
h, C. Claves, and C. Mar
h�e. TALP: A tool for the termination analysis

of logi
 programs. In Pro
eedings of the 11th International Conferen
e on Rewrit-

ing Te
hniques and Appli
ations, RTA-00, volume 1833 of Le
ture Notes in Computer

S
ien
e, pages 270{273, Norwi
h, England, 2000. Springer Verlag, Berlin.

[Ohl01℄ E. Ohlebus
h. Termination of logi
 programs: transformational methods revisited.

Appli
able Algebra in Engineering, Communi
ation, and Computing, 12(1-2):73{116,

2001.

[Pla86℄ D. A. Plaisted. A simple non-termination test for the Knuth-Bendix method. In

Pro
eedings of the 8th International Conferen
e on Automated Dedu
tion, volume 230

of Le
ture Notes in Computer S
ien
e, pages 79{88, Oxford, England, 1986. Springer

Verlag, Berlin.

[Ste95a℄ J. Steinba
h. Automati
 termination proofs with transformation orderings. In Pro-

eedings of the 6th International Conferen
e on Rewriting Te
hniques and Appli
a-

tions, RTA-95, volume 914 of Le
ture Notes in Computer S
ien
e, pages 11{25, Kaiser-

slautern, Germany, 1995. Springer Verlag, Berlin. Full Version appeared as Te
hni
al

Report SR-92-23, Universit�at Kaiserslautern, Germany, 1992.

[Ste95b℄ J. Steinba
h. Simpli�
ation orderings: History of results. Fundamenta Informati
ae,

24:47{87, 1995.

[Toy87℄ Y. Toyama. Counterexamples to the termination for the dire
t sum of term rewriting

systems. Information Pro
essing Letters, 25:141{143, 1987.

[Wal91℄ C. Walther. Automatisierung von Terminierungsbeweisen. Vieweg Verlag, Braun-

s
hweig, 1991.

70

[Wal94℄ C. Walther. On proving the termination of algorithms by ma
hine. Arti�
ial Intelli-

gen
e, 71(1):101{157, 1994.

[Zan95℄ H. Zantema. Termination of term rewriting by semanti
 labelling. Fundamenta Infor-

mati
ae, 24:89{105, 1995.

71

72

Aa
hener Informatik-Beri
hte

This is a list of re
ent te
hni
al reports. To obtain
opies of te
hni
al reports

please
onsult http://aib.informatik.rwth-aa
hen.de/ or send your request

to: Informatik-Bibliothek, RWTH Aa
hen, Ahornstr. 55, 52056 Aa
hen,

Email: biblio�informatik.rwth-aa
hen.de

95-11

�

M. Staudt / K. von Thadden: Subsumption Che
king in Knowledge

Bases

95-12

�

G.V. Zemanek / H.W. Nissen / H. Hubert / M. Jarke: Requirements

Analysis from Multiple Perspe
tives: Experien
es with Con
eptual Mod-

eling Te
hnology

95-13

�

M. Staudt / M. Jarke: In
remental Maintenan
e of Externally Material-

ized Views

95-14

�

P. Peters / P. Sz
zurko / M. Jeusfeld: Business Pro
ess Oriented Infor-

mation Management: Con
eptual Models at Work

95-15

�

S. Rams / M. Jarke: Pro
eedings of the Fifth Annual Workshop on

Information Te
hnologies & Systems

95-16

�

W. Hans / St. Winkler / F. S�aenz: Distributed Exe
ution in Fun
tional

Logi
 Programming

96-1

�

Jahresberi
ht 1995

96-2 M. Hanus / Chr. Prehofer: Higher-Order Narrowing with De�nitional

Trees

96-3

�

W. S
heufele / G. Moerkotte: Optimal Ordering of Sele
tions and Joins

in A
y
li
 Queries with Expensive Predi
ates

96-4 K. Pohl: PRO-ART: Enabling Requirements Pre-Tra
eability

96-5 K. Pohl: Requirements Engineering: An Overview

96-6

�

M. Jarke / W. Marquardt: Design and Evaluation of Computer{Aided

Pro
ess Modelling Tools

96-7 O. Chitil: The &-Semanti
s: A Comprehensive Semanti
s for Fun
tional

Programs

96-8

�

S. Sripada: On Entropy and the Limitations of the Se
ond Law of Ther-

modynami
s

96-9 M. Hanus (Ed.): Pro
eedings of the Poster Session of ALP'96 | Fifth

International Conferen
e on Algebrai
 and Logi
 Programming

96-10 R. Conradi / B. Westfe
htel: Version Models for Software Con�guration

Management

96-11

�

C. Weise / D. Lenzkes: A Fast De
ision Algorithm for Timed Re�nement

96-12

�

R. D�omges / K. Pohl / M. Jarke / B. Lohmann / W. Marquardt: PRO-

ART/CE

�

| An Environment for Managing the Evolution of Chemi
al

Pro
ess Simulation Models

96-13

�

K. Pohl / R. Klamma / K. Weidenhaupt / R. D�omges / P. Haumer /

M. Jarke: A Framework for Pro
ess-Integrated Tools

73

96-14

�

R. Gallersd�orfer / K. Klabunde / A. Stolz / M. E�major: INDIA| Intel-

ligent Networks as a Data Intensive Appli
ation, Final Proje
t Report,

June 1996

96-15

�

H. S
himpe / M. Staudt: VAREX: An Environment for Validating and

Re�ning Rule Bases

96-16

�

M. Jarke / M. Gebhardt, S. Ja
obs, H. Nissen: Con
i
t Analysis A
ross

Heterogeneous Viewpoints: Formalization and Visualization

96-17 M. Jeusfeld / T. X. Bui: De
ision Support Components on the Internet

96-18 M. Jeusfeld / M. Papazoglou: Information Brokering: Design, Sear
h and

Transformation

96-19

�

P. Peters / M. Jarke: Simulating the impa
t of information
ows in

networked organizations

96-20 M. Jarke / P. Peters / M. Jeusfeld: Model-driven planning and design

of
ooperative information systems

96-21

�

G. de Mi
helis / E. Dubois / M. Jarke / F. Matthes / J. Mylopoulos

/ K. Pohl / J. S
hmidt / C. Woo / E. Yu: Cooperative information

systems: a manifesto

96-22

�

S. Ja
obs / M. Gebhardt, S. Kethers, W. Rzasa: Filling HTML forms

simultaneously: CoWeb ar
hite
ture and fun
tionality

96-23

�

M. Gebhardt / S. Ja
obs: Con
i
t Management in Design

97-01 Jahresberi
ht 1996

97-02 J. Faassen: Using full parallel Boltzmann Ma
hines for Optimization

97-03 A. Winter / A. S
h�urr: Modules and Updatable Graph Views for PRO-

grammed Graph REwriting Systems

97-04 M. Mohnen / S. Tobies: Implementing Context Patterns in the Glasgow

Haskell Compiler

97-05

�

S. Gruner: S
hemakorrespondenzaxiome unterst�utzen die paargramma-

tis
he Spezi�kation inkrementeller Integrationswerkzeuge

97-06 M. Ni
ola / M. Jarke: Design and Evaluation of Wireless Health Care

Information Systems in Developing Countries

97-07 P. Hofstedt: Taskparallele Skelette f�ur irregul�ar strukturierte Probleme

in deklarativen Spra
hen

97-08 D. Blostein / A. S
h�urr: Computing with Graphs and Graph Rewriting

97-09 C.-A. Krapp / B. Westfe
htel: Feedba
k Handling in Dynami
 Task Nets

97-10 M. Ni
ola / M. Jarke: Integrating Repli
ation and Communi
ation in

Performan
e Models of Distributed Databases

97-13 M. Mohnen: Optimising the Memory Management of Higher-Order

Fun
tional Programs

97-14 R. Baumann: Client/Server Distribution in a Stru
ture-Oriented Data-

base Management System

97-15 G. H. Botorog: High-Level Parallel Programming and the EÆ
ient Im-

plementation of Numeri
al Algorithms

98-01

�

Jahresberi
ht 1997

74

98-02 S. Gruner/ M. Nagel / A. S
h�urr: Fine-grained and Stru
ture-oriented

Integration Tools are Needed for Produ
t Development Pro
esses

98-03 S. Gruner: Einige Anmerkungen zur graphgrammatis
hen Spezi�kation

von Integrationswerkzeugen na
h Westfe
htel, Janning, Lefering und

S
h�urr

98-04

�

O. Kubitz: Mobile Robots in Dynami
 Environments

98-05 M. Leu
ker / St. Tobies: Truth | A Veri�
ation Platform for Distributed

Systems

98-07 M. Arnold / M. Erdmann / M. Glinz / P. Haumer / R. Knoll / B.

Pae
h / K. Pohl / J. Ryser / R. Studer / K. Weidenhaupt: Survey on

the S
enario Use in Twelve Sele
ted Industrial Proje
ts

98-08

�

H. Aust: Spra
hverstehen und Dialogmodellierung in nat�urli
hspra
h-

li
hen Informationssystemen

98-09

�

Th. Lehmann: Geometris
he Ausri
htung medizinis
her Bilder am

Beispiel intraoraler Radiographien

98-10

�

M. Ni
ola / M. Jarke: Performan
e Modeling of Distributed and Repli-

ated Databases

98-11

�

A. S
hlei
her / B. Westfe
htel / D. J�ager: Modeling Dynami
 Software

Pro
esses in UML

98-12

�

W. Appelt / M. Jarke: Interoperable Tools for Cooperation Support

using the World Wide Web

98-13 K. Indermark: Semantik rekursiver Funktionsde�nitionen mit Strikt-

heitsinformation

99-01

�

Jahresberi
ht 1998

99-02

�

F. Hu
h: Verif
ation of Erlang Programs using Abstra
t Interpretation

and Model Che
king | Extended Version

99-03

�

R. Gallersd�orfer / M. Jarke / M. Ni
ola: The ADR Repli
ation Manager

99-04 M. Alpuente / M. Hanus / S. Lu
as / G. Vidal: Spe
ialization of Fun
-

tional Logi
 Programs Based on Needed Narrowing

99-07 Th. Wilke: CTL+ is exponentially more su

in
t than CTL

99-08 O. Matz: Dot-Depth and Monadi
 Quanti�er Alternation over Pi
tures

2000-01

�

Jahresberi
ht 1999

2000-02 Jens V�oge / Mar
in Jurdzi�nski: A Dis
rete Strategy Improvement Algo-

rithm for Solving Parity Games

2000-04 Andreas Be
ks, Stefan Sklorz, Matthias Jarke: Exploring the Semanti

Stru
ture of Te
hni
al Do
ument Colle
tions: A Cooperative Systems

Approa
h

2000-05

�

Mareike S
hoop: Cooperative Do
ument Management

2000-06

�

Mareike S
hoop, Christoph Quix (Ed.): Pro
eedings of the Fifth Interna-

tional Workshop on the Language-A
tion Perspe
tive on Communi
ation

Modelling

2000-07

�

Markus Mohnen / Pieter Koopman (Eds.): Pro
eedings of the 12th In-

ternational Workshop of Fun
tional Languages

75

2000-08 Thomas Arts / Thomas Noll: Verifying Generi
 Erlang Client-Server

Implementations

2001-01

�

Jahresberi
ht 2000

2001-02 Benedikt Bollig / Martin Leu
ker: De
iding LTL over Mazurkiewi
z

Tra
es

2001-03 Thierry Ca
hat: The power of one-letter rational languages

2001-04 Benedikt Bollig / Martin Leu
ker / Mi
hael Weber: Lo
al Parallel Model

Che
king for the Alternation free �-
al
ulus

2001-05 Benedikt Bollig / Martin Leu
ker / Thomas Noll: Regular MSC lan-

guages

2001-06 A
him Blumensath: Pre�x-Re
ognisable Graphs and Monadi
 Se
ond-

Order Logi

2001-07 Martin Grohe / Stefan W�ohrle: An Existential Lo
ality Theorem

�

These reports are only available as a printed version.

Please
onta
t biblio�informatik.rwth-aa
hen.de to obtain
opies.

76

