RWTH Aachen

Department of Computer Science
Technical Report

A collection of examples for termina-
tion of term rewriting using dependency
pairs

Thomas Arts and Jurgen Giesl

ISSN 0935-3232 . Aachener Informatik Berichte . AlB-2001-09

RWTH Aachen . Department of Computer Science . September 2001

The publications of the Department of Computer Science of RWTH Aachen
(Aachen University of Technology) are in general accessible through the World
Wide Web.

http://aib.informatik.rwth-aachen.de/

A collection of examples for termination of term
rewriting using dependency pairs

Thomas Arts! and Jiirgen Giesl?

! Ericsson, Computer Science Laboratory, Box 1505, 125 25 Alvsjd, Sweden
Email: thomas@cslab.ericsson.se
2 LuFG Informatik II, RWTH Aachen, Ahornstr. 55, 52074 Aachen, Germany

Email: giesl@informatik.rwth-aachen.de

Abstract. This report contains a collection of examples to demonstrate the use
and the power of the dependency pair technique developed by Arts and Giesl.
This technique allows automated termination and innermost termination proofs
for many term rewrite systems for which such proofs were not possible before.

1 Introduction

In many applications of term rewrite systems (TRSs), termination is an im-
portant property. A TRS is said to be terminating if it does not allow infinite
reductions. Since termination is in general undecidable [HL78], several methods
for proving this property have been developed; for surveys see e.g. [Der87,Ste95b).
Practically all known methods that are amenable to automation use simplifica-
tion orderings [Der79,Der87,Ste95b,MZ97].

However, there exist numerous term rewrite systems for which termination
cannot be proved by this kind of orderings. For that reason, Arts and Giesl
[AG97a,AG97b,AG98,AG00,GA01,GAOO01] developed the so-called dependency
pair approach. Given a TRS, the dependency pair technique automatically gen-
erates a set of constraints and the existence of a well-founded (quasi-)ordering
satisfying these constraints is sufficient for termination. The advantage is that
standard (automatic) techniques can often synthesize such a well-founded or-
dering even if a direct termination proof with the same techniques fails. In this
way, simplification orderings can now be used to prove termination of non-simply
terminating TRSs.

This report contains a collection of several such systems from different areas
of computer science (including many challenging problems from the literature).
Moreover, applications of dependency pairs for realistic industrial problems in
the area of distributed telecommunication processes are discussed in [GAOL].
For an implementation of the dependency pair approach see [Art00] or [CiM99].
Dependency pairs have also been successfully applied in automatic termination
proofs of logic programs, see [Ohl01,0CMO00].

In Section 2 we briefly recapitulate the basic results of the dependency pair
approach. Section 3 contains a collection of examples to demonstrate the use
of dependency pairs for termination proofs of TRSs and Section 4 contains a
corresponding collection for innermost termination proofs.

2 The dependency pair method

In the following we describe the notions relevant to the dependency pair method
(where we assume the reader to be familiar with the basic notions of term rewrit-
ing [DJ90,K1092,BN98]). In Section 2.1 we illustrate how dependency pairs are
used for automatic termination proofs and in Section 2.2 we explain their use
for innermost termination proofs. For motivations and further refinements see
[AG00,GA01,GAOO01]. We adopt the notation of [GMO00] and [KNT99]. The root
of a term f(...) is the leading function symbol f. For a TRS R over a signature
F, D = {root(l)|l — r € R} is the set of the defined symbols and C = F \ D
is the set of constructors of R. Let F* denote the union of the signature F
and {f* | f is a defined symbol of R}, where f# has the same arity as f. The
functions f* are called tuple symbols, where we often write F for f¥, etc. Given
aterm t = f(ti,...,t,) € T(F,V) with f defined, we write t# for the term
t=fite, ... tn).

Definition 1 (Dependency pair). Ifl — r € R and t is a subterm of r with
defined root symbol, then the rewrite rule I' — t* is called a dependency pair of
R. The set of all dependency pairs of R is denoted by DP(R).

2.1 Termination

In this section we explain how dependency pairs can be used to prove termination
of TRSs.

Definition 2 (Chain). A sequence of dependency pairs s; — t1, so — ta, ... is
an R-chain if there exists a substitution o such that tjo —% sj 10 holds for every
two consecutive pairs s; — t; and sjy1 — tj11 in the sequence.

We always assume that different (occurrences of) dependency pairs have dis-
joint sets of variables and we always consider substitutions whose domains may
be infinite. In case R is clear from the context we often write chain instead of
R-chain. As proved in [AG97a,AG00], the absence of infinite chains is a sufficient
and necessary criterion for termination.

Theorem 1 (Termination criterion). A TRS R is terminating if and only if
there exists no infinite R-chain.

Some dependency pairs can never occur twice in any chain and hence they
need not be considered when proving that no infinite chain exists. For identifying
these insignificant dependency pairs, the notion of dependency graph has been

introduced [AG97a,AG00].

Definition 3 (Dependency graph). The dependency graph of a TRS R is
the directed graph whose nodes are the dependency pairs and there is an arc from
s—=ttov—wiffs—>t, v— wis a chain.

A non-empty set P of dependency pairs is called a cycle if for any two pairs
s =t and v — w in P there is a non-empty path from s — ¢ to v — w which
only traverses pairs from P. Since we only regard finite TRSs, any infinite chain
of dependency pairs corresponds to a cycle in the dependency graph. Hence, the
dependency pairs that are not on a cycle in the dependency graph are insignificant
for the termination proof. One can prove termination of a TRS in a modular way,
by proving absence of infinite chains separately for every cycle [AG98,GAO01].

Theorem 2 (Modular termination criterion). A TRS R is terminating if
and only if for each cycle P in the dependency graph there exists mo infinite
R-chain of dependency pairs from P.

This theorem can be refined by narrowing certain dependency pairs [AG00].

Definition 4 (Narrowing). Let R be a TRS. A term t narrows to a term t'
via the substitution u if there exists a non-variable position p in t, u is the most
general unifier of t|, and l for some rewrite rule I — r of R, and t' = turulp.
(Here, the variables of | — r must have been renamed to fresh variables.)

Definition 5 (Narrowing pairs). Let R be a TRS. If a term t narrows to a
term t' via the substitution p, then we say that the pair of terms s — t narrows
to the pair sp — t'.

Theorem 3 (Narrowing refinement for termination). Let R be a TRS and
let P be a set of pairs of terms. Let s — t in P such that t is linear and for all
v — w in P the terms t and v are not unifiable (after renaming the variables).
Let

P =P\{s—t} U {s—=t]|s —tisanarrowing of s — t}.

There exists an infinite R-chain of pairs from P if and only if there exists an
infinite R-chain of pairs from P'.

Strictly spoken, if in a set P a dependency pair is replaced by its narrowings,
the resulting set is not a set of dependency pairs, but rather a set of pairs. The
above theorem, however, states that we may use these sets of pairs instead of the
original sets of dependency pairs in the other theorems stated here.

In order to check that no infinite chain of dependency pairs exists, sets of
inequalities are generated. These inequalities should be satisfied by some pair
(7Z,>) consisting of a quasi-rewrite ordering 7~ (i.e., 7 must be a reflexive and
transitive relation that is (weakly) monotonic and closed under substitutions)
and an ordering > with the properties

e > is closed under substitutions and well founded
e mo>=Cxor>=orC.

(Note that > need not be monotonic.) Such a pair is called a reduction pair
[KNT99]. A termination proof for a certain TRS is transformed into the problem
of finding several reduction pairs [AG98,GAOO01].

Theorem 4 (Modular termination proofs I). A TRS R is terminating if
and only if for each cycle P in the dependency graph there is a reduction pair
(ZZp,>p) such that

(a) L Z2p 7 for all rules | — T in R,
(b) s Zp t for all dependency pairs s — t from P, and
(c) s =p t for at least one dependency pair s — t from P.

Of course, our aim is to use standard techniques to generate suitable re-
duction pairs satisfying the constraints of Theorem 4. However, most existing
methods generate orderings which are strongly monotonic, whereas for the de-
pendency pair approach we only need a weakly monotonic quasi-ordering. For
that reason, before synthesizing a suitable ordering, some of the arguments of the
function symbols can be eliminated. To perform this elimination of arguments
resp. of function symbols the concept of argument filtering was introduced in
[AG97a,AGO00] (here we use the notation of [KNT99)).

Definition 6 (Argument filtering). An argument filtering for a signature
F is a mapping ™ that associates with every n-ary function symbol an argument

position i € {1,...,n} or a (possibly empty) list [i1,...,im] of argument positions
with 1 <41 < ... <ip < n. The signature Fr consists of all function symbols f
such that ©(f) = [i1,...,im]|, where in Fr the arity of f is m. Every argument

filtering induces a mapping from T (F,V) to T (Fr, V), also denoted by 7, which
is defined as:

t if t is a variable,
m(t) = < 7(t;) ift= f(t1,...,tn) and w(f) =1,
flm(tsy), .. m(t,,)) if t = f(t1,...,tn) and w(f) = [i1,. .., im].

Theorem 5 (Modular termination proofs II). A TRS R over a signature
F is terminating if and only if for each cycle P in the dependency graph there is
an argument filtering wp for F* and a reduction pair (zZp,=p) such that

~

(a) mp(l) Zop wp(r) for all Tulesl — 1 in R,
(b) mp(s) p p(t) for all dependency pairs s — t from P, and
(c) mp(s) =p mp(t) for at least one dependency pair s — t from P.

For the automation of the technique, we need to compute the dependency
graph, find argument filterings, and synthesize a reduction pair for each set of
inequalities. Since it is in general undecidable whether two dependency pairs form
a chain, we need to estimate the dependency graph in such a way that all cycles
in the real graph are also cycles in the estimated graph. Our estimation depends
on two transformations that are applied to the right-hand side of a dependency
pair [AG97a,AGO00].

Let CcAP(t) result from replacing all subterms of ¢ that have a defined root
symbol by different fresh variables and let REN(t) result from replacing all vari-
ables in t by different fresh variables. Then, to determine whether v — w can
follow s — t in a chain, we check whether REN(CAP(¢)) unifies with v.

Definition 7 (Estimated dependency graph). The estimated dependency
graph of a TRS R is the directed graph whose nodes are the dependency pairs
and there is an arc from s — t to v — w if and only if REN(CAP(t)) and v are
unifiable.

With this definition Theorems 2, 4, and 5 also hold if we replace dependency
graph by estimated dependency graph [GAOO1].

The estimated dependency graph is computable, hence all the cycles in the
graph are computable. The argument filtering can be found automatically by
an exhaustive search. For every possible argument filtering one can try quasi-
simplification orderings (QSOs) like RPO, LPO, KBO, polynomial interpreta-
tions, etc., to find a reduction pair that satisfies the inequalities [Art00]. Ter-
mination proved in this way is called DP quasi-simple termination. Because
of the techniques we use to find a reduction pair, we restrict ourselves in the
following to argument filterings such that for every pair/rule s — ¢ we have
Var(m(t)) C Var(w(s)) and w(s) ¢ V. Only for those argument filterings the
techniques are potentially successful in practice.

Definition 8 (DP quasi-simple termination). A TRS R over a signature
F is called DP quasi-simply terminating if and only if for each cycle P in the
estimated dependency graph there exists an argument filtering ©p for F* and a
reduction pair (Zp,>p) with a QSO Z~p such that

~

(a) mp(l) ZZp wp(r) for all Tules | — 1 in R,
(b) mp(s) p p(t) for all dependency pairs s — t from P, and
(c) mp(s) =p mp(t) for at least one dependency pair s — t from P.

If a quasi-simplification ordering exists such that either s > ¢ or s is syntac-
tically equal to ¢ for all inequalities s 2~ t, one obtains the notion of DP simple
termination.

Definition 9 (DP simple termination). A TRS R over a signature F is
called DP simply terminating if and only if for each cycle P in the estimated
dependency graph there is an argument filtering © for F* and a simplification
ordering >=p such that

(a) mp(l) =p wp(r) for all rulesl — 1 in R,
(b) mp(s) =p mp(t) for all dependency pairs s — t from P, and
(c) mp(s) =p mp(t) for at least one dependency pair s — t from P.

The information that systems are DP quasi-simple terminating can be used
when combining these systems and proving termination of the resulting TRS
[GO00,GAOO01].

Theorem 6 (Modularity of DP quasi-simple termination). Let R; and
Ra be two TRSs over disjoint signatures Fi and Fa, respectively. Then their
union R = R1 U Rq is DP quasi-simply terminating if and only if both R, and
Ro are DP quasi-simply terminating.

For DP simple termination the modularity result for disjoint unions does not
hold. The problem is that one of the two systems might have no cycle at all in
the graph and is therefore, trivially, DP simply terminating. Combined with a
system with a cycle, however, the inequalities corresponding to the rules should
be satisfied, which is not always possible by a QSO in which the equivalence
part is syntactic equivalence. Thus, Constraint (a) of Definition 9 must even be
satisfied if the TRS only has the empty cycle P. Furthermore, by restricting the
argument filterings used in a suitable way, one can even extend the modularity
result to constructor-sharing and composable combinations of TRSs [GAOO1].
For that purpose, we introduce the notion of G-restricted DP simple termination.

Definition 10 (G-restricted DP simple termination). A TRS R over a
signature F is called G-restricted DP simply terminating for a signature G if and
only if for each cycle P in the estimated dependency graph (including the empty
one) there is an argument filtering wp for Ft and a simplification ordering =p
such that

(a) mp(l) =p wp(r) for all rulesl — r in R,

(b) mp(s) =p mp(t) for all dependency pairs s — t from P,

(c) mp(s) =p wp(t) for at least one dependency pair s — t from P if P # 0,
(d) mp(f) =1[1,...,n] for every f € F NG, where n is the arity of f, and
(e) for every rule Il - reR:ifroot(l) € G, then root(mp(l)) € G.

From the definition it is clear that G-restricted DP simple termination implies
DP simple termination. With this restricted notion of DP simple termination we
obtain modularity for composable systems (and therefore also for systems with
shared constructors and disjoint unions).

Theorem 7 (Modularity of G-restricted DP simple termination). Let
R1 and Ro be composable TRSs over the signatures F1 and Fa, respectively.
If 71 N Fy C G, then their combined system R = R1 U Ry is G-restricted DP
simply terminating if and only if both R1 and Ry are G-restricted DP simply
terminating.

2.2 Innermost termination

In [AG97b,AG00], we showed that the dependency pair approach can be modified
in order to verify innermost termination.

Definition 11 (Innermost chain). A sequence of dependency pairs s1 — ti,
s — to, ... is an innermost R-chain if there exists a substitution o such that

. i .
all sjo are in normal form and tjoc —5 s;jy10 holds for every two consecutive

pairs s; — tj and sji 1 — tj1 in the sequence. Here, ‘57 denotes innermost
reductions.

The absence of infinite innermost chains is a sufficient and necessary criterion
for innermost termination.

Theorem 8 (Innermost termination criterion). A TRS R is innermost
terminating if and only if there exists no infinite innermost R-chain.

Analogous to Section 2.1, the notion of a graph is defined for innermost
chains.

Definition 12 (Innermost dependency graph). The innermost dependency
graph of a TRS R is the directed graph whose nodes are the dependency pairs
and there is an arc from s — t tov — w iff s = t, v = w is an innermost chain.

Similar to termination, one can also prove innermost termination of TRSs in

a modular way [AG98,GAOO01].

Theorem 9 (Modular innermost termination criterion). A TRS R is in-
nermost terminating if and only if for each cycle P in the innermost dependency
graph there is no infinite innermost R-chain of dependency pairs from P.

This theorem can also be refined by narrowing certain dependency pairs
[AG00,GAO01].

Theorem 10 (Narrowing refinement for innermost termination). Let
R be a TRS and let P be a set of pairs of terms. Let s —t in P such that
Var(t) C Var(s) and such that for all v — w in P the terms t and v are not
unifiable (after renaming the variables). Let

P =P\{s—t} U {s —=t]|s —t isanarrowing of s — t}.

If there exists no infinite innermost chain of pairs from P', then there exists no
infinite innermost chain of pairs from P either.

Moreover, if R is innermost terminating and non-overlapping, then the con-
verse holds as well (i.e., if there exists no infinite innermost chain of pairs from
P, then there exists no infinite innermost chain of pairs from P’ either).

Further refinements of this theorem as well as additional techniques for modifying
dependency pairs by rewriting and by instantiation can be found in [GAO01].

To prove innermost termination automatically, we again generate a set of
inequalities for every cycle P and search for a reduction pair (-p, >p) satisfying
them. However, to ensure to 2-p vo whenever to reduces to vo, now it is sufficient
to require [Zp r only for those rules that are usable in a reduction of to (for
normal substitutions o).

Definition 13 (Usable rules). Let R be a term rewrite system. For any symbol
f let Rulesg(f) ={l — r € R|root(l) = f}. For any term we define the usable
rules:

o Ur(z) =10,

o UR(f(t1,... tn)) = Rulesg(f) U Uirerutesp(r)Ur (1) U Uj—1 Uri(t5),

9

where R' = R\ Rulesg (f). Moreover, for any set P of dependency pairs we define
UR(P) = Uy s1ep Ur(?)-

Now we can state the theorem for innermost termination proofs.

Theorem 11 (Modular innermost termination proofs). A TRS R over
a signature F is innermost terminating if for each cycle P in the innermost
dependency graph there is an argument filtering © for F' and a reduction pair
(Zp,>p) such that

(a) w(l) =p w(r) for all rules | — r in Ur(P),
(b) m(s) zZp w(t) for all dependency pairs s — t from P, and

~

)
(c) m(s) =p w(t) for at least one dependency pair s — t from P.

For the purpose of automation we again need an estimation of the innermost
dependency graph, since in general it is undecidable whether two dependency
pairs s — t and v — w form an innermost chain. To this end, we again replace
subterms in ¢ with defined root symbols by new variables and check whether this
modification of ¢ unifies with v, but in contrast to Section 2.1 we do not rename
multiple occurrences of the same variable.

Moreover, to eliminate defined symbols we use a modified transformation
CAP; where CAP,(t) only replaces those subterms of ¢ by different fresh variables
which have a defined root symbol and which are no subterms of s. Then to refine
the approximation of innermost dependency graphs instead of CAP(t) we check
whether CAP4(t) unifies with v. Finally, if x4 is the most general unifier (mgu)
of CAP4(t) and v, then there can only be an arc from s — ¢ to v — w in the
innermost dependency graph, if both sy and vy are in normal form.

Definition 14 (Estimated innermost dependency graph). The estimated
innermost dependency graph of a TRS R is the directed graph whose nodes are
the dependency pairs and there is an arc from s =t to v — w if and only if
CAPs(t) and v are unifiable by a most general unifier y such that sy and vu are
normal forms.

With this definition Theorems 9 and 11 also hold if we replace innermost depen-
dency graph by estimated innermost dependency graph.

In [AG98,GAOO01], two corollaries of the above results were presented which
are particularly useful in practice.

Corollary 15 (Innermost termination for hierarchical combinations)
Let R be the hierarchical combination of R1 and Ro.

(a) R is innermost terminating if and only if R1 is innermost terminating and
there exists no infinite innermost R-chain of Ro-dependency pairs.

(b) R is innermost terminating if Ry is innermost terminating and if there exists
a reduction pair (72, =) such that for all dependency pairs s — t of Ra

10

o | = r for all rules I — r in Ur(t) and
e st

The following corollary of Theorem 9 shows that the consideration of cycles
in the (estimated) innermost dependency graph can also be used to decompose
a TRS into modular subsystems. In the following, let O(P) denote the origin of
the dependency pairs in P, i.e., O(P) is a set of those rules where the dependency
pairs of P stem from. If a dependency pair of P may stem from several rules,
then it is sufficient if O(P) just contains one of them.

Corollary 16 (Modularity for subsystems) Let R be a TRS, let P1,...,Pn
be the cycles in its (estimated) innermost dependency graph, and let R; be subsys-
tems of R such that Ur(P;) UO(P;) CR; (for all j € {1,...,n}). If R1,..., Ry

are innermost terminating, then R is also innermost terminating.

For further corollaries and results on the relation of our modularity results
to previous modularity results the reader is referred to [GAOO1].

3 Examples for termination

This section contains a collection of TRSs where termination can be proved
by the technique described above. The majority of them occurred as challenge
problems in the literature, whereas the other examples are added to point out
specific failures of existing techniques. Several of these examples are not simply
terminating. Thus, all methods based on simplification orderings fail in proving
termination of these systems. For those examples which are overlay systems with
joinable critical pairs, termination can also be verified by proving innermost
termination using the technique of Section 2.2.

In the examples, we refer to the sets of inequalities that result from a cycle in
the estimated dependency graph and the rules of the system as “the inequalities”
(cf. Theorem 4 and 5). However, in most of the examples, only the inequalities
resulting from dependency pairs on cycles are mentioned. But of course, the
inequalities [77 r are also synthesized for each rewrite rule I — r in the term
rewrite system. The argument filterings that we use are only described for those
function symbols f with arity n for which n(f) # [1,...,n], i.e., only those
function symbols where some arguments are really filtered.

In this collection of examples, three different techniques are used to find a
reduction pair, viz. the recursive path ordering, the lexicographic path ordering,
and polynomial interpretations. For Examples 3.39 — 3.46 we need the refinement
of narrowing dependency pairs and Examples 3.47 — 3.57 illustrate the use of our
modularity results.

3.1 Division, version 1

The TRS

11

minus(z,0
5(y)
quot(0,5(y)
quot(s(z),s(y)

minus(s(z), — mlnus(w Y)

) =
)
) =
) = S(quot(mmUS(w y),s(y)))

is not simply terminating. In this example, we have two cycles, viz.

{MINUS(s(z),s(y)) — MINUS(z,y)}
{QUOT(s(z),s(y)) — QUOT (minus(x,y),s(y))}.

Apart from the four inequalities corresponding to the rewrite rules, one strict
inequality is obtained per cycle. Both sets of inequalities are solved by the argu-
ment filtering m(minus) = [1] and RPO. Hence DP simple termination is proved.

3.2 Division, version 2

This TRS for division uses different minus-rules. Again, it is not simply termi-
nating.

pred(s(x)
minus(zx, 0
minus(z,s(y)
quot(0,(y)
()

) =
) —
) — pred(mmus(a: y))
) —
quot(s(x),s(y))

—>s(quot(m|nus(:v v),s(y)))
The cycles in the estimated dependency graph are given by:

{MINUS(z,s(y)) — MINUS(z,y)}
{QUOT(s(z),s(y)) — QUOT (minus(z,y),s(y))}

Finding a suitable ordering is as easy as it was for the previous example, by
choosing the argument filtering m(minus) = 1 and 7(pred) = 1. Then DP simple
termination can be shown by RPO.

3.3 Division, version 3

This TRS for division uses again different minus-rules. Similar to the preceding
examples it is not simply terminating. In the examples of this collection, we often
use functions like if ninus to encode conditions. This ensures that conditions are
evaluated first (to true or to false) and that the corresponding result is evaluated
afterwards. Hence, the first argument of if hinus is the condition that has to be
tested and the other arguments are the original arguments of minus. Further

12

evaluation is only possible after the condition has been reduced to true or to
false.

le(0,y) — true
0

— false

le(s(«
le(s(x),

minus(0,

)

y) = |e(w 0)

mlnus((fmlnus(le(() y),S(iE),y)

bl

)

),0)

s(y))

y) =
),y) =i

if minus (true, s(z),y) —

if minus(false, s(z),y) — s(mlnus(:v Y))

quot(0,s(y)) —

quot(s(z),s(y)) —

s(quot(mlnus(:v Y),s(y)))

The cycles are

{LE(s(z),s(y)) = LE(z,y)}
{MINUS(s(z), y) — IFminus(le(s(z),y),s(z),y),
IF minus (false, s(z),y) — MINUS(z,y)}

{QUOT(s(x),s(y)) — QUOT (minus(z,y),s(y))}

Note that only one of the dependency pairs on a cycle in the dependency graph
should result in a strict inequality, therefore the inequality

m(MINUS(s(z),y)) 2= 7 (IFminus(le(s(z), y),s(x),y))

need not be strict. By normalizing the inequalities with respect to the argument
filtering 7(minus) = m(MINUS) = 1 and 7(ifminus) = 7™ (IFminus) = 2 the inequali-
ties for DP simple termination are satisfied by the recursive path ordering.

3.4 Plus and minus

The following example demonstrates the use of the dependency graph. For that
purpose we extend the TRS of Ex. 3.1 by three additional rules and write infix
operators for the defined symbols minus and plus to ease readability.

r—0—>zx
s(z) —s(y) >z —y
quot(0,s(y)) — 0
quot(s(z),s(y)) — s(quot(z — y,s(y)))
O+y—uy
s(z) +y — sz +y)
(z—y)—z—2z—(y+2)

13

In this example, termination cannot be proved with our method using a sim-
plification ordering, unless we use the dependency graph to determine that the
dependency pair MINUS(...) — PLUS(...) does not occur on any cycle. There
are five cycles in the estimated dependency graph.

{MINUS(s(z),s(y)) — MINUS(z,y)}
{MINUS(z — y,2) — MINUS(z,y + 2)}
{MINUS(s(z),s(y)) — MINUS(z, y),
MINUS(z — 5, 2) — MINUS(z,y + 2)}
{QUOT(s(z),s(y)) = QUOT(z —y,s(y))}
{PLUS(s(z),y) — PLUS(z,y)}

After applying the argument filtering =(—) = [1], 7(MINUS) = [1], the inequal-
ities are satisfied by the recursive path ordering and DP simple termination is
proved. Note that in such examples, we need not consider all subcycles of a cycle
if the inequalities in the larger cycle are all chosen to be strict.

3.5 Remainder, version 1 — 3

Similar to the TRSs for division, three versions of the following TRS are obtained,
which again are not simply terminating. Only one of them is presented.

le(0,
le(s(x),
le(s(x),s(y)) — Ie(:p Y)
minus(z, 0

)
)
)
) =
y)) — mmus(a: Y)
) —
) —
)
)
) =

Yy) — true
0) — false

minus(s(z),

s(
mod(0, y
0

mod(s(z),
mOd((),S(y) _>|fmod(|e(ya)’ (I),S(y))
if mod (true, s(z), s(y)) — mod(minus(z,y),s(y))
(v)

s(z)

if mod (false, s(z), s(y

The cycles are

{LE(s(z),s(y)) = LE(z,y)}
{MINUS(s(z),s(y)) — MINUS(z,y)}

(
{MOD(s(z),5(y)) = IFmod(le(y, z), s(z),5(¥)),
IFmod (true, s(z),s(y)) — MOD(minus(z,), s(y))}.

By applying the argument filtering, 7(minus) = 7(mod) = 7(MOD) = 1 and

7 (ifmod) = T(IFmod) = 2, the inequalities obtained for DP simple termination are
satisfied by the recursive path ordering.

14

3.6 Greatest common divisor, version 1 — 3

There are also three versions of the following TRS for the computation of the
greatest common divisor, which are not simply terminating. Again, only one of
them is presented.

le(0,
le(s(),
s(

(

y) — true

0) — false
le(s(z), s(y) —>|E(93 y)
pred(s(x)

minus(z, 0

ged(0,y
ged(s(z), 0 ()
ifgea(le(y, z),s(x),s(y))
— ged(minus(z,y),s(y))
)

— ged(minus(y, x), s(x)

)
)
)
) =
)=
minus(z,s(y)) — pred(mmus(w Y))
) —
),0) =
ged(s(z),s(y)) —
ifgea(true, s(z),s(y))
ifgca(false, s(z),s(y))
(Of course the ordering of the arguments in the right-hand side of the last rule
could have been switched. But this version here is even more difficult: Termina-
tion of the corresponding algorithm cannot be proved by the method of Walther
[Wal94|, because this method cannot deal with permutations of arguments.)
The cycles in the estimated dependency graph of this TRS are

(1) {LE(s(z),s(y)) = LE(z,y)}
(2) {MINUS(z,s(y)) — MINUS(z,y)}
) =

)
(3) {GCD(s(z),s(y)) — IFgca(le(y, z),s(z),s(y)),
IFgcq(true,s(z),s(y)) — GCD(minus(z,y),s(y)),
IFgcd(false,s(z),s(y)) — GCD(minus(y, z),s(z))},

where (3) has two subcycles. Note that by the argument filtering m(pred) =
m(minus) = 1, m(ifgeq) = m(IFgea) = [2,3] the inequalities are solved by RPO,
also those that are related to the subcycles. In this construction, however, GCD
and |Fg4 have to be chosen equal in the precedence and therefore we only show
DP quasi-simple termination.

This example was taken from Boyer and Moore [BM79] and Walther [Wal91].
A variant of this example could be proved terminating using Steinbach’s method
for the automated generation of transformation orderings [Ste95al, but there the
rules for le and minus were missing.

3.7 Logarithm, version 1

The following TRS computes the dual logarithm.

15

half(0) —

half(s(s(x))) —>s(ha|f()
log(s(0)) —

log(s(s(2))) — s(log((half(z))))

The cycles are
{HALF(s(s(x))) — HALF(z)}
{LOG(s(s(z))) — LOG(s(half(z)))}.
Without filtering arguments the inequalities are satisfied by the recursive path

ordering. (Termination of the original system can also be proved using the re-
cursive path ordering with precedence log > s > half.)

3.8 Logarithm, version 2 — 4

The following TRS again computes the dual logarithm, but instead of half now
the function quot is used. Depending on which version of quot one chooses, three
different versions of the TRS are obtained (all of which are not simply terminat-
ing, since the quot TRS already was not simply terminating).

minus(x,0) —
minus(s(z),s(y)) — mmus(:v Y)
quot(0,s(y)) —
quot(s(z),s(y)) %S(quot(m'nUS(w y),s(v))
log(s(0)) —
log(s(s(z))) —>S(|0g((quot(z,5(s(0))))))

There are three cycles in the estimated dependency graph:

{MINUS(s(z),s(y)) — MINUS(z,y)}
{QUOT(s(x),s(y)) — QUOT (minus(z,y),s(y))}
{LOG(s(s(z))) — LOG(s(quot(z,s(s(0)))))}-

After applying the argument filtering 7(quot) = m(minus) = 1, the inequalities
for DP simple termination are satisfied by the recursive path ordering.
3.9 Eliminating duplicates

The following TRS eliminates duplicates from a list. To represent lists the con-
structors nil and add are used, where nil represents the empty list and add(n, z)
represents the insertion of n into the list x.

eq(0,0) — true
eq(0,s(x)) — false

16

()

~— — — — — — ~— —

— false

— eq(z,y)
— nil

eq(s(z),
eq(s(z),s(y)
rm(n, nil
m,)
|f,m(true n, add m,)
ifrm (false, n, add(m, z)
purge(nil
purge(add(n, z)

— ifrm(eq(n, m), n,add(m, z))
— rm(n, x)
— add(m, rm(n, x))
— nil
— add(n, purge(rm(n, x)))

The cycles are

{EQ(s(z),s(y)) — EQ(z,y)}
{RM(n,add(m, z)) — IFym(eq(n,m),n,add(m, z)),
IFrm(true,n,add(m, z)) — RM(n,z)}
{RM(n,add(m, z)) — IFym(eq(n,m),n,add(m, z)),
IFym(false, n,add(m, z)) - RM(n,z)}
{RM(n,add(m, z)) — IFym(eq(n,m),n,add(m,z)),
IF\m (true,n,add(m, z)) — RM(n, z),
IFym(false, n,add(m, z)) — RM(n,z)}
{PURGE(add(n,z)) - PURGE(rm(n,z))}.

By applying the argument filtering 7(rm) = 7(RM) = 2, 7 (ifrm) = 7(IFim) = 3,
the obtained inequalities are satisfied by the recursive path ordering and DP
simple termination is proved.

This example comes from Walther [Wal91] and a similar example was men-
tioned by Steinbach [Ste95al, but in Steinbach’s version the rules for eq and ifm
were missing.

If in the right-hand side of the last rule, add(n, purge(rm(n,z))), the n is
replaced by a term containing add(n,z) then a non-simply terminating TRS is
obtained, but termination can still be proved in the same way.

3.10 Minimum sort

This TRS can be used to sort a list by repeatedly removing its minimum. For
that purpose elements of z are shifted into the second argument of minsort, until
the minimum of the list is reached. Then the function rm is used to eliminate
all occurrences of the minimum and finally minsort is called recursively on the
remaining list. Hence, minsort does not only sort a list but it also eliminates dupli-
cates. (The corresponding version of minsort where duplicates are not eliminated
could also be proved terminating with our technique.)

eq(0,0) — true
eq(0,s(z)) — false
eq(s(z)

,0) — false

17

eq(s(z) s(y)) — eq(z,y)
le(0,y) — true
0) — false

)

)
)
le(s(z),0)
le(s(x),s(y)) —>|e(93 y)
app(nil,y) —
app(add(n, z),y) — add(n app(z,y))
min(add(n, nil)) —
min(add(n,add(m,z))) — |fmm(|e(n m), add(n,add(m, x)))
if min (true, add(n,add(m, x))) — min(add(n, z))
if min (false, add(n, add(m, x))) — min(add(m, z))
)
)
)
)
)
y)
y)
y)

rm(n, nil) — nil

rm(n, add(
if rm (true, n, add(
ifrm (false, n, add(

minsort(nil, nil) — nil

m,z)) — ifim(eq(n, m),n,add(m, x))
m,z)) — rm(n,x)
m,z)) — add(m, rm(n,z))

minsort(add

);

(n,2),y) = ifminsort(€q(n, min(add(n, z))), add(n, z), y)
if minsort (true, add(n, x),
(n,x

— add(n, minsort(app(rm(n, x),y), nil))

if minsort (false, add

);

The cycles in the estimated dependency graph and an argument filtering that
does not filter any argument result in the following set of inequalities.

— minsort(z, add(n, y))

EQ(s(x),s(y)) » EQ(z,y)
LE(s(z),s(y)) - LE(z,y)
APP(add(n, z),y) = APP(z, 1)
MIN(add(n,add(m, z))) 7 IFmin(le(n,m),add(n, add(m, x)))
IF min(true, add(n, add(m, x))) = MIN(add(n, x))
IF min(false, add(n, add(m, z))) > MIN(add(m, z))
RM(n,add(m, z)) = IFim(eq(n,) n,add(m, x))
IFrm(true, n,add(m, z)) = RM(n, x)
IFim(false, n,add(m, z)) = RM(n, x)
MINSORT (add(n, x), y) > |Fminsort (€q(n, min(add(n, z))),add(n,), y)
IFminsort (true, add(n, z),y) = MINSORT (app(rm(n, z),y), nil)
IF minsort (false, add(n, z),y) 7 MINSORT (z, add(n, y)).

These constraints together with the constraints on the rules are satisfied by a
polynomial ordering where false, true, 0, nil, eq and le are mapped to 0, s(x) is
mapped to z + 1, min(x), ifmin(b, z), EQ(z,y), LE(z,y), MIN(z), and IFuyin(b, z)
are mapped to z, add(n,x) is mapped to n+ x + 1, app(z,y) and APP(z,y) are

18

mapped to z + y, rm(n, x), ifym(b,n,x), RM(n,z), and IF,m(b,n,z) are mapped
to x, minsort(x,y) and ifminsort(b, z,y) are mapped to z + y, MINSORT (z,y) is
mapped to (z+y)?+22+y+1, and IFminsort (b, 2, y) is mapped to (z+y)?+22+y.

This example is inspired by an algorithm from Boyer and Moore [BM79] and
Walther [Wal94]. In the corresponding example from Steinbach [Ste95a] the rules
for eq, le, ifym, and if nj, were missing.

Note that we have only shown DP quasi-simple termination by using this
polynomial interpretation in which syntactically unequal terms are identified by
the equivalence relation. (The given polynomial ordering is not a QSO, since the
polynomials for symbols like eq or le do not contain all variables corresponding to
their arguments. However, by using a suitable argument filtering before (where
m(eq) = m(le) =[], etc.), one can easily replace the current polynomial ordering
by a polynomial ordering which is indeed a QSO. Similar observations also hold
for the other examples where polynomial interpretations are used.)

3.11 Quicksort

The following TRS is used to sort a list by the well-known quicksort algorithm.
It uses the functions low(n,x) (resp. high(n,z)) which return the sublist of x
containing only the elements smaller than or equal to (resp. greater than) n

le(0,
le(s(z),
s(

il

y) — true
0) — false
le(s(x), y))—>|6(év y)
app(nil,y) —
app(add(n, z),y) — add(n app(z,y))
low(n, nil) — nil
low(n,add(m, z)) — ifiow(le(m,n),n,add(m, z))
if jow (true, n, add(m, x)) — add(m, low(n, z))
iflow (false, n, add(m, z)) — low(n, x)
high(n, nil) — nil
high(n,add(m,z)) —
)
)
)
)

ifhigh (true, n, add(m, z

ifhigh (le(m, n),n,add(m, x))
)) — high(n, z)
)) — add(m, high(n,))

quicksort(nil) — nil

ifhigh (false, n, add (m, x

quicksort(add(n, x)) — app(quicksort(low(n, z)),
add(n, quicksort(high(n, z))))

Every set of inequalities associated with a cycle in the estimated dependency

graph of this TRS is satisfied when we solve the inequalities resulting from the
rules together with the following inequalities

19

*(LE(s(2),5(9)) = 7(LE(z,1))
m(APP(add(n, x),y)) = 7(APP(z,y))
m(LOW(n,add(m, x))) - 7(IFiow(le(m,n),n,add(m, z)))
7 (IFow (true, n,add(m, z))) > 7(LOW(n, z))
7 (IFiow (false, n, add(m, z))) > 7(LOW(n, z))
7(HIGH(n,add(m, x))) ZZ 7(IFhigh(le(m, n),n, add(m, z)))
7(IFhigh(true,n,add(m, x))) > 7 (HIGH(n, z))
7 (IFhigh(false, n, add(m, x))) > 7 (HIGH(n, z))
m(QUICKSORT (add(n, z))) > m(QUICKSORT (low(n, x)))
7(QUICKSORT (add(n, z))) = m(QUICKSORT (high(n, z))).

by applying the argument filtering 7 (low) = 7 (high) = 2, m(ifiow) = 7(ifhigh) = 3
T(IFilow) = m(IFhigh) = [2,3] and RPO. Since in the inequalities 7(LOW(...)) =
T(IFiow(. . .)) and w(HIGH(...)) Z 7(IFhigh(...)) syntactically different terms are
equivalent, this only proves DP-quasi simple termination (see the remarks in Ex.
3.10 on how to turn such a polynomial ordering into a QSO).

Steinbach could prove termination of a corresponding example with transfor-
mation orderings [Ste95al, but in his example the rules for le, ifjow, ifhigh, and
app were omitted.

If in the right-hand side of the last rule,

app(quicksort(low(n, z)), add(n, quicksort(high(n, z)))),

one of the n’s is replaced by a term containing add(n,z) then a non-simply
terminating TRS is obtained. With our technique, termination can still be proved
in the same way.

3.12 Permutation of lists

This example is a TRS from Walther [Wal94] to compute a permutation of a list.
For instance, shuffle([1,2, 3,4, 5]) reduces to [1,5,2,4, 3].

app(nil,y) —
app(add(n, =), y)
)

reverse(add(n, x)) — app(reverse(x), add(n, nil))
shuffle(nil)
shuffle(add(n, z))

— add(n app(z,y))

reverse(nil) — nil

— nil
— add(n, shuffle(reverse(z)))
The cycles in the estimated dependency graph are

{APP(add(n,z),y) — APP(z,y)}
{REVERSE(add(n,z)) — REVERSE(z)}
{SHUFFLE(add(n, z)) — SHUFFLE(reverse(x))}.

20

A suitable polynomial interpretation of the function symbols is: nil is mapped
to 0, add(n,z) is mapped to z + 1, shuffle(z), SHUFFLE(z), reverse(z), and
REVERSE(z) are mapped to z, and app(z,y) and APP(z,y) are mapped to z+y.
This proves DP-quasi simple termination.

3.13 Reachability on directed graphs

To check whether there is a path from the node = to the node y in a directed
graph g, the term reach(z,y, g, €) must be reducible to true with the rules of the
following TRS from Giesl [Gie95]. The fourth argument of reach is used to store
edges that have already been examined but that are not included in the actual
solution path. If an edge from w to v (with = # u) is found, then it is rejected
at first. If an edge from z to v (with v # y) is found then one either searches
for further edges beginning in x (then one will never need the edge from z to v
again) or one tries to find a path from v to y and now all edges that were rejected
before have to be considered again.

The function union is used to unite two graphs. The constructor ¢ denotes
the empty graph and edge(z,y, g) represents the graph g extended by an edge
from x to y. Nodes are labelled with natural numbers.

) — true
(0,s(z)) — false
eq(s(x),0) — false
eq(s(z), s(y))
or(true,y)
or(false,y) — y

union(e, h) — h
union(edge(z,y,1), h) — edge(z,y, union(i, h))
) — false
) = ifreach_1(ed(z, u), z,y, edge(u, v, i), h)
) = ifreach_2(ed(y, v), x,y, edge(u, v,), h)
) — true
)

reach(z,y, edge(u, v, 1),

if reach_1(true, z,y, edge(u, v,

Yy
Yy
h
h
reach(z,y, €, h
h
(u,v,7), h
if reach_2(true, z, y, edge(u,v,1), h
ifreach_2(false, z, y, edge(u, v, i), h) — or(reach(z,y, 1, h),
reach(v,y, union(i, h), €))
ifreach_1 (false, z, y, edge(u, v, i), h) — reach(z,y, i, edge(u, v, h))

The inequalities obtained from dependency pairs on cycles in the estimated de-
pendency graph are given by

EQ(s(z),s(y)) = EQ(z,y)
UNION (edge(z, y, i), h) = UNION(i, h)
REACH(z,y, edge(u, v,7), h) Z IFreach_1(eq(z, u), =, y, edge(u, v,7), h)

21

) 7 IFreach_2(eq(y, v), z,y, edge(u, v, i), h)
) = REACH(z, y,1i,h)

) > REACH(v, y, union(i, h), €)

) = REACH(z, y, i, edge(u, v, h)).

IFreach_l (truea x,y, Edge u, v, {)

IF reach_2(false, z, y, edge(u, v, 1),

> S S S

()
(u, v, 1)
IF reach_2(false, z, y, edge(u, v, 1),
(u, v, 1)

IF reach_1(false, z, y, edge(u, v, 1),

A mapping to polynomials results in a suitable ordering. The interpretation
is: eq(z,y), true, false, ¢, and 0 are mapped to 0, or(z,y) is mapped to = +
y, s(z) is mapped to =z + 1, EQ(z,y) is mapped to z, edge(z,y, g) is mapped
to g + 2, union(g,h) and UNION(g,h) are mapped to g + h, reach(z,y,g,h),
ifreach_1(b, 2, vy, 9, h), and ifreach_2(b, z,y, g, h) are mapped to 0, REACH(z,y, g, h)
is mapped to (g + k)% +2g +h + 2, IFreach_1(b, 2,7, g, h) is mapped to (g + h)? +
29 + h + 1, and IFreach_2(b, 7,9, g, k) is mapped to (g + k)% + 2g + h.

Note that we showed DP quasi-simple termination of this TRS, since syntac-
tically different terms in the 2~-inequalities are mapped to the same number by
this polynomial interpretation.

3.14 Comparison of binary trees

This TRS is used to find out if one binary tree has less leaves than another
one. It uses a function concat(z,y) to replace the rightmost leaf of = by y. Here,
cons(u, v) is used to built a tree with the two direct subtrees u and v.

concat(leaf,y

concat(cons(u,v),y) — cons(u concat(v, y))

— true

) =
0)

less_leaves(z, leaf) — false
less_leaves(leaf, cons(w, z))
)

~— ~—

less_leaves(cons(u, v), cons(w, z)) — less_leaves(concat(u, v), concat(w, z))

The cycles in the dependency graph are:

{CONCAT(cons(u,v),y) — CONCAT (v,y)}
{LESS_LEAVES(cons(u, v), cons(w, z)) — LESS_LEAVES (concat(u, v), concat(w, z)) }.

A suitable (polynomial) interpretation for DP-quasi simple termination is: leaf,
false, and true are mapped to 0, cons(u, v) is mapped to 14+u+v, concat(u, v) and
CONCAT (u,v) are mapped to u+wv, and less_leaves(x,y) and LESS_LEAVES(z, y)
are mapped to .

If concat(w, z) in the second argument of less_leaves (in the right-hand side
of the last rule) would be replaced by an appropriate argument, we would obtain
a non-simply terminating TRS whose termination could be proved in the same
way.

22

3.15 Average of naturals

The following locally confluent overlay system computes the average of two num-
bers [DH95].

average(z,s(y))
S(average((x),y))

average(s(z), y

average(z,s(s(s(y)))
average(0,0) —

) —
) —

average(0,s(0)) —
) = ()

The inequalities resulting from the cycles are

average(0,s(s(0)

AVERAGE(s(z),y) = AVERAGE(z,s(y))
AVERAGE(z,s(s(s(y)))) = AVERAGE(s(z),)).

By the following polynomial interpretation, DP-quasi simple termination of this
TRS is easily proved: 0 is mapped to 0, s(z) is mapped to x + 1, average(z,y) is
mapped to z + y, and AVERAGE(z,y) is mapped to 2z + y.

3.16 Plus and times

The following TRS [DHO95] is a locally confluent overlay system. To ease read-
ability we use an infix notation for + and Xx.

zx0—=0
zxs(y) = (xxXy)+z

z+0—x

O+z—=x
z+s(y) = s(z+y)
s(z) +y —s(z+y)

Applying the technique results in a set of inequalities which is satisfied by the
polynomial interpretation where 0 is mapped to 0, s(x) is mapped to z+1, z +y
is mapped to the sum of x and y, x X y is mapped to the product of z and y,
TIMES(z,y) is mapped to y, and PLUS(z,y) is mapped to the sum of z and y
(where PLUS denotes ‘+%").

3.17 Summing elements of lists

This TRS, which has overlapping rules, can be used to compute the sum of all
elements of a list [AG97a]. Here, x«l represents the insertion of a number x into
a list [(where zeyel abbreviates (ze(yel))), app computes the concatenation of

23

lists, and sum(l) is used to compute the sum of all numbers in [(e.g., sum applied
to the list [1,2, 3] returns [1 + 2 + 3]).

app(nil, k) — k
app(l,nil) — 1
app(zel, k) — zeapp(l, k)

sum(zenil) — zenil

sum(zeyel) — sum((x + y)el)
sum(app(l, zeyek)) — sum(app(l, sum(zeyek)))

O+y—y
s(z) +y — s(z +y)

While this system is not simply terminating, the inequalities generated by the
technique are satisfied by the polynomial ordering where nil is mapped to the
constant 0, xel is mapped to [+ 1, z 4+ y is mapped to the sum of x and y,
app(l, k) is mapped to [+ k + 1, sum(l) is mapped to the constant 1, APP(l, k)
and SUM(]) are both mapped to [, and PLUS(z, y) is mapped to z. In this way we
have shown DP quasi-simple termination. The polynomial interpretation is such
that the syntactically unequal terms sum(z+y.l) and sum((z + y)./) are mapped
to the same value.

DP simple termination of this system can also be shown by first applying
the argument filtering 7(s) = [2], m(sum) =[], 7(SUM) = 7(APP) = 1. Now the
inequalities

m(sum(zeyel))
m(sum(app(l, zeysk)))

Z m(sum((z +y)sl))
= m(sum(app(l, sum(zeyek))))
have syntactically identical left- and right-hand sides. For all other inequalities
we need to give an ordering that satisfies them in a strict way. We provide again
a polynomial interpretation, viz. 0 and nil are mapped to 0, s(z) is mapped to
x + 1, o is mapped to [+ 2, PLUS(z,y) is mapped to x + y, sum is mapped to
3, and both app(z,y) and = + y are mapped to 2z + y + 1.

If the above TRS is extended by the rules

sum(0ez + yol) — pred(sum(s(z)eyel))
pred(s(z)enil) — zenil,

then DP quasi-simple termination can still be proved by the first polynomial
ordering (where the polynomial interpretation should map pred(l) to the constant
1).

3.18 Addition and subtraction

The following system is again overlapping and not simply terminating.

24

minus(z,0) —
minus(s(x),s(y)) — mlnus(:I: Y)
double(0) —
double(s(z)) — ((double(z)))
plus(0,y) —
plus(s(z),y) — S(plu5($ Y))
plus(s(z),y) — plus(z,s(y))

plus(s(z),y) — s(plus(minus(x,y), double(y)))

After applying the argument filtering m(minus) = 1, the inequalities generated
for DP simple termination by our technique are satisfied by the lexicographic
path ordering.

3.19 Addition with nested recursion, version 1

If the following additional rule is added to the above system, then it is turned into
a TRS that is not an overlay system any more and which furthermore introduces
nested recursion.

plus(s(plus(z,v)),z) — s(plus(plus(z,y), z))

Still, the resulting inequalities are satisfied using the same argument filtering and
the lexicographic path ordering.

3.20 Addition with nested recursion, version 2
The following alternative TRS for addition from Steinbach [Ste95a] has nested
recursion, too.
O+y—y
s(z) +0 — s(x)

s(z) +s(y) — s(s(z) + (y +0))
The ‘natural’ polynomial interpretation (where + is mapped to the addition)
maps left and right-hand sides of the rules to the same numbers. Therefore this
polynomial ordering cannot be used for a direct termination proof, but it never-

theless satisfies the inequalities generated by the dependency pair technique. In
this way, DP-quasi simple termination can easily be proved.

3.21 Multiplication and addition
The following example is taken from Dershowitz [Der87].
Px (y+1) = (2 x g+ (1x0) +
rx1l—=z
z+0—x
zx0—0

25

The only inequality resulting from a dependency pair on a cycle in the estimated
dependency graph is TIMES(z,y + 1) > TIMES(z,y + (1 x 0)).

This system is not simply terminating (and Dershowitz illustrates the use of
the semantic path ordering with it). However, termination of this example can
be proved automatically. The inequalities obtained are satisfied by the natural
polynomial ordering, where TIMES(z,y) is mapped to y.

By choosing the natural interpretation on numbers, the terms x 0 in the
inequality corresponding to the last rule are equivalent to 0, even though syntac-
tically they are not equal. Therefore, we have shown DP quasi-simple termination
of this TRS.

3.22 Extended multiplication and addition

Similarly, termination of the following ‘extended’ version of the above system
can be proved. In this system, the full rules for + and x are added. Again, this
system is not an overlay system.
z x (y+5(2)) = (z x (y+ (s(2) x 0))) + (z x s(2))
zx0—0
rxs(y) = (rxy)+z
z+0—>=z
z +s(y) = s(z+y)

The generated inequalities for this extended example, i.e., the inequalities corre-
sponding to the rewrite rules and

TIMES(z,y + s(z)) = TIMES(z,s(z))
TIMES(z,y + s(z)) = TIMES(z,y + (s(z) x 0))
TIMES(z,s(y)) > TIMES(z,y)
PLUS(z,s(y)) = PLUS(z,y)

are satisfied by the same polynomial ordering that has been used above (where
PLUS(z,y) and TIMES(z,y) are both mapped to y).

3.23 Nested recursion, version 1

The following system was introduced by Giesl [Gie97, ‘nest2’] as an example for
a small TRS with nested recursion where all simplification orderings fail.

f(0,y) =0
f(s(2),y) = f(f(z,y),v)
For this example, a polynomial ordering can be used where 0 and s are interpreted
as usual and both f(z,y) and F(z,y) are mapped to z.
Alternatively, one can use the argument filtering 7(f) = 1 and RPO to prove

termination. In that way, one easily sees that the system is DP simply terminat-
ing.

26

3.24 Nested recursion, version 2
This system by Walther, which is similar to the preceding one, has been examined
in [Ste95al.
f(0) — s(0)
f(s(0)) — s(0)
f(s(s(x))) — f(f(s(x)))

The inequalities resulting from our transformation are satisfied by the polynomial
ordering, where f(z) is mapped to the constant 1, F(x) is mapped to x, and where

0 and s are interpreted as usual. In this way, we have shown DP quasi-simple
termination of this TRS.

3.25 Nested recursion, version 3

The following TRS by Ferreira and Zantema [FZ93| is a string rewrite system
with minimal ordinal w* associated to it.

f(g(z)) — &(f(f(z)))
f(h(z)) — h(g(x))
The cycles in the estimated dependency graph are
{F(g(x)) = F(z)}
{F(g(z)) = F(f(x))}
{F(g(z)) — F(z),F(g(z)) — F(f(z))}.
After applying the argument filtering w(h) = [], n(f) = 1, all inequalities are
satisfied by the recursive path ordering. This shows that the system is DP simply
terminating.

3.26 Nested recursion, version 4

The following TRS is again an example of a TRS for which all kind of path
orderings cannot show termination directly, but these path orderings can be
used for solving the inequalities resulting from our technique.

f(x) = s(x)
f(s(s(z))) — s(f(f(z)))

The inequalities to satisfy are

f(z) Z s(x)
f(s(s(2))) Z s(f(f(z)))
F(s(s(2))) > F(z)

F(
F(s(s(z))) > F(f()).
An appropriate path ordering is found by choosing f and s to be equal in the
precedence. Note that therefore we proved DP quasi-simple termination of the
system.

27

3.27 Nested symbols on left-hand sides

The following example is from Dershowitz [Der93]. It has been proved terminat-
ing by a lexicographic combination of two orderings.

The inequalities corresponding to dependency pairs on cycles in the estimated
dependency graph are

By choosing f and g as well as F and G equal in the precedence, the inequalities
are satisfied by the recursive path ordering. Again, this shows DP quasi-simple
termination of the TRS.

3.28 Nested symbols on both sides of rules

Termination of the following TRS cannot be proved by the lexicographic path
ordering and therefore this is one of the systems for which the semantic path
ordering has been used in literature [Der93|. However, the system can be shown
to terminate using the lexicographic path ordering after applying our technique,
since the demanded ordering may now be a weakly monotonic ordering instead
of a monotonic ordering. Therefore, after mapping some function symbols to
some of their arguments or to a constant the lexicographic path ordering can
nevertheless be used to prove termination of the TRS.

(xXy)xz—xX(yx2)
(z4+y)xz—(xx2z)+(yx=2)
zx (z +f(y)) = g(z,y) x (¢ +a)

Apart from the three inequalities corresponding to the rewrite rules, four other
inequalities are obtained from the cycles in the dependency graph.

TIMES
TIMES
TIMES
TIMES

> TIMES
> TIMES
> TIMES
> TIMES

Y, %)
T,y X 2)

T XY,z
T XY,z
x+y,2 z,z)

Y, 2)

~—~~ Y~
~— ' e
—~ o~ o~ —~

r+vy,z

After applying the argument filtering 7 (g) = 1, the seven inequalities are satisfied
by the lexicographic path ordering, which proves DP simple termination.

28

3.29 A TRS that is not left-linear, version 1

The following TRS, originally from Geerling [Gee91], cannot be proved terminat-
ing by the recursive path ordering (but one needs a generalization of the recursive
path ordering as defined by Ferreira [Fer95]). It is also very easily proved termi-
nating by the automatic technique described in this paper.

f(s(z),y,y) = f(y, z,s(z))

The only two generated inequalities are

f(s(z),y,y) Z f(y, z,s(x))
F(s(z),y,y) = F(y, z,s(z))

which are satisfied by mapping f(x, y, z) to 0, mapping s(z) to z+1, and mapping
F(z,y,2) to + y. For showing DP simple termination of this TRS, one can use
the argument filtering = (f) =[], #(F) = [1,2] and RPO.

3.30 Advantage of the dependency graph, version 1
The following system is from [Ste95a).

f(a,b) — f(a,c)
f(c,d) — f(b, d)

With our method, the termination proof for this system is trivial, because its
estimated dependency graph does not contain any cycles. Similar, termination
of the one rule TRS f(g(z)) — f(h(g(z))) from Bellegarde and Lescanne [BL88|
and of the one rule system f(g(z,y),y) — f(h(g(z,v)), a) from Steinbach [Ste95a]
can also be proved by absence of cycles.

3.31 Advantage of the dependency graph, version 2

Another example where the dependency graph plays an important role is a TRS
introduced by Ferreira and Zantema [FZ95] to demonstrate the technique of
‘dummy elimination’.

f(g(z)) — f(a(e(g(f(x))), g(f(2))))

Since F(a(y, z)) does not unify with F(g(z)), the only two inequalities to satisfy
are

m(f(g(x))) = 7(f(a(g(g(f(z))), &(f(z)))))

m(F(g(x))) ==
For 7(a) = [] these inequalities are trivially satisfied by the recursive path order-
ing and DP simple termination of the TRS is shown. For a thorough comparison
of dependency pairs and dummy elimination see [GMO00].

29

3.32 A TRS that is not totally terminating, version 1

The most famous example of a TRS that is terminating, but not totally termi-
nating is the following [Der87].

f(a) — f(b)

g(b) — g(a)
With our approach, termination of this system is obvious, because the estimated
dependency graph does not contain any cycles.
3.33 A TRS that is not totally terminating, version 2

A TRS introduced by Ferreira [Fer95] as an example of a TRS that is not totally
terminating and in particular for which the recursive path ordering and the
Knuth-Bendix ordering cannot be used to prove termination, is given by:

p(f(f(z))) — a(f(g(x)))
p(g(g(z))) — alg(f(x)))
q(f(f(x))) — p(f(g(x)))
q(g(g())) — p(g(f(z)))-

Termination is trivially concluded from the fact that there are no cycles in the
estimated dependency graph.
3.34 Systems with ‘undefined’ function symbols

The following well-known system from Dershowitz [Der87] is one of the smallest
non-simply terminating TRSs.

f(f(z)) — f(e(f(2)))

The only dependency pair on a cycle of the estimated dependency graph is
F(f(z)) — F(x). By the argument filtering 7(g) = 1 and RPO the system is shown
DP simply terminating.

3.35 Mutual recursion, version 1

The following system is from Steinbach [Ste95a] again.

) — f(=z)

f(0) — s(0)
) = s(s(g()))
)—0

The inequalities resulting from cycles are

m(G(s(x))) Z 7 (F(z))
—

After applying the argument filtering 7(g) = 1, the constraints are satisfied by
the recursive path ordering. Since s and f have to be equal in the precedence in
order to satisfy the resulting inequalities s(z) - f(z) and f(0) 2Z s(0), this proves
DP-quasi simple termination.

3.36 Mutual recursion, version 2

The following system was given to us by Kiihler.

minus(z,0) —
minus(s(z), s(y))
f(0) —s(0)
) m'nUS((), 8(f(x)))
) =
)

— mlnus(x Y)
_)

f(s(z)
g(0
g(s(z)) — mmUS((2),f(g(2)))

The inequalities resulting from dependency pairs on cycles of the estimated de-
pendency graph are

m(MINUS(s(x),s(y))) &= m(MINUS(z,y))
m(F(s(z))) = m(F(z))
m(F(s(z))) Z m(G(f()))
m(G(s(z))) - 7(G())
m(G(s(z))) > m(F(g(x)))

After applying the argument filtering m(minus) = 1, the resulting inequalities are
satisfied by the recursive path ordering (using a precedence where f and s are
equal and greater than g). Thus, the system is DP quasi-simply terminating.

3.37 Even and odd

The following (non-simply terminating) TRS can be used to find out whether a
natural number is even resp. odd. More precisely, evenodd(¢, 0) reduces to true if ¢
is even and evenodd(t,s(0)) reduces to true if ¢ is odd. (In other words, the second
argument of evenodd determines whether evenodd computes the ‘even’ or the ‘odd’
function. Such rewrite systems are often obtained when transforming mutually
recursive functions into one function without mutual recursion, cf. [Gie97].)

31

not(true) — false
not(false) — true
evenodd(z,0) — not(evenodd(z,s(0)))
evenodd(0,s(0))
evenodd(s(x),s(0))

— false
— evenodd(z, 0)

We obtain one cycle in the estimated dependency graph.

{EVENODD(z,0) — EVENODD(z,s(0)),
EVENODD(s(z),s(0)) — EVENODD(z, 0)}

With the argument filtering 7(not) = [|, 7(EVENODD) = 1 and the recursive
path ordering, DP simple termination is shown.

3.38 Reversing lists

The following system is a slight variant of a TRS proposed by Huet and Hullot
[HH82, ‘brev’]. Given a list z.l, the function rev calls two other functions revl
and rev2, where revl(z,l) returns the last element of ze and rev2(z,l) returns
the reversed list rev(zel) without its first element. Hence, rev(rev2(y,l)) returns
the list yel without its last element. Note that this system is mutually recursive
and that mutually recursive functions also occur nested.

rev(nil) — nil
rev(ze) — revl(;v [)erev2(z,1)
revl(0, nil) —
revL(s(a), nil) — ()
revl(z,ysl) — revl(y,l)
rev2(z, nil) — nil
)

rev2(x, yel) — rev(zerev(rev2(y,l)))

The inequalities resulting from the cycles of the estimated dependency graph are

By using the argument filtering m(s) = [2], 7(s) = [], 7(rev) = 7(REV) =1
m(revl) = m(rev2) = m(REV1) = w(REV2) = 2, the resulting constraints are
satisfied by the recursive path ordering. This proves DP simple termination of
the TRS.

32

3.39 Narrowing of dependency pairs

The following example [AG00] demonstrates the need for narrowing dependency
pairs. We replace the last rule of the TRS in Ex. 3.4 by a ‘commutativity’ rule:

r—0—zx
s(z) —s(y)—*w—y
quot(0,s(y)) —
quot(s(z),s(y)) —>S(quot(:v—y,5(y)))
O+y—y
s(z) +y — s(z +y)
(z —s(0)) + (y — s(s(2))) = (y —s(s(2))) + (z — s(0)).

Without the use of narrowing, we would obtain the constraint

m(PLUS(z —5(0),y — s(s(2)))) > m(PLUS(y — s(s(2)), z — 5(0))),

because the dependency pair PLUS(x —s(0),y —s(s(z))) — PLUS(y —s(s(z)), z —
s(0)) forms a cycle of the estimated dependency graph. In order to use a simpli-
fication ordering we have to chose an argument filtering 7 such that 7(—) = [1]
or m(—) = 1. However, then this constraint is not satisfied by any well-founded
ordering closed under substitution. Therefore we replace this dependency pair
by its narrowings

PLUS(z —s(0),sy —s(s(z))) — PLUS(y — s(z),z — s(0))
PLUS(s(z) — s(0),y — s(s(z))) — PLUS(y —s(s(z)),z — 0).

Now the resulting constraints are again satisfied by the recursive path ordering
if we use the argument filtering 7 (—) = 7(—*) = 1.
3.40 Narrowing to approximate the dependency graph

Narrowing of dependency pairs may also be helpful in examples where the fail-
ure of the automation is due to our approximation of dependency graphs. For
example, let us add the following second ‘commutation’ rule to the TRS from
Ex. 3.39

(z +5(0)) + (y+5(s(2))) = (y +5(s(2))) + (= +5(0)).

Now we obtain three additional dependency pairs.

PLUS(z 4 s(0),y +s(s(z))) — PLUS(y,s(s(z))) (1)
PLUS(z +s(0),y + s(s(z))) — PLUS(z,s(0)) (2)
PLUS(z +s(0),y + s(s(z))) — PLUS(y + s(s(2)), z + s(0)) (3)

33

We have to compute a graph containing the dependency graph. For that purpose,
we draw an arc from a dependency pair s — ¢ to v — w whenever REN(CAP(t))
and v are unifiable. However, for some examples this approximation is too rough.

Note that in our approximation of the dependency graph there would be an
arc from (3) to itself, because after replacing y + s(s(z)) and z + s(0) by new
variables, the right- and the left-hand side of (3) obviously unify. Hence, we have
to demand that the dependency pair (3) is strictly decreasing, i.e.,

m(PLUS(z +s(0),y +s(s(2)))) = m(PLUS(y + s(s(2)),z + s(0))).

But this constraint is not satisfied by any polynomial or any path ordering
amenable to automation®.

However, in the real dependency graph, there is no arc from (3) to itself,
because there is no substitution o such that y + s(s(z))o reduces to z + s(0)o.
Hence, there is no cycle consisting of (3) only and therefore it is sufficient if
(3) is just weakly decreasing. In this way, the constraints resulting from this
example would again be satisfied by the recursive path ordering (after applying
the argument filtering mentioned in Ex. 3.39).

Note that the narrowing refinement [AG00] also serves to compute a better
approximation of the dependency graph. The right-hand side of (3) is linear and
it does not unify with the left-hand side of any dependency pair. Hence, we may
replace (3) by its narrowings:

PLUS(z +s(0),0 + s(s(z))) — PLUS(s(s(2)), z + s(0)) (4)
PLUS(z + s(0),s(y) + s(s(z))) — PLUS(s(y + s(z)), = + s(0)) (5)
PLUS(0 +s(0),y + s(s(2))) — PLUS(y + s(s(2)),s(0)) (6)
PLUS(s(z) + s(0),y + s(s(2))) — PLUS(y + s(s(2)),s(z + 0)). (7)

Now it is immediately clear that (4) - (7) are not on a cycle of the estimated
dependency graph, because application of REN and CAP to their right-hand sides
yields terms of the form PLUS(s(...),...) or PLUS(...,s(...)) which do not unify
with PLUS(...+...,...+...).

3.41 Factorial

The following non-simply terminating TRS for computing the factorial of a nat-
ural number (cf. [Ste95a,Zan95])

! This inequality is not satisfied by any path ordering (that can be generated automati-
cally), because neither a lexicographic comparison nor a comparison as multisets makes
(z +s(0),y +s(s(z))) greater than (y + s(s(z)), z +s(0)). When using polynomial orderings,
PLUS is mapped to some polynomial p. Then we either have limy—o (p(y, z) —p(z,y)) = 00
or limy_, o0 (p(y, z) —p(z,y)) = —oo. In the first case, PLUS(y+s(s(z)), z+s(0)) = PLUS(z+
s(0), y+s(s(z))) holds for large enough y and in the second case PLUS(y +s(s(z)), z+s(0)) >
PLUS(z + s(0),y + s(s(z))) holds for large enough z.

34

p(s(z)) = =
fac(0) — s(0)
fac(s(x)) — s(z) x fac(p(s(x)))
cannot be proved terminating by the technique described in [AG97a], since there
narrowing dependency pairs was not considered. By using narrowing, the depen-

dency pair
FAC(s(z)) — FAC(p(s(z)))
is replaced by the pair
FAC(s(z)) — FAC(x)

resulting in inequalities which can easily be satisfied.

3.42 Binary numbers

The following non-simply terminating example is due to Geser [BL90,Ste95a].

half(0
half(s(0)
half(s(s(x)) —>s(ha|f()
lastbit (0
lastbit(s(0
lastbit(s(s(x

conv

)
)) — lastbit(z)
0) — nil.0
conv(s(x)) — conv(half(s(z)))lastbit(s(z))
Narrowing the dependency pair CONV(s(z)) — CONV(half(s(x))) results in
CONV(s(0)) — CONV(0) and CONV(s(s(z))) — CONV(s(half(z))). After this re-
placement, the pairs on a cycle in the estimated dependency graph are
{HALF(s(s(2))) — HALF(z))
{LASTBIT(s(s(x))) — LASTBIT(z)}
{CONV(s(s(x))) — CONV(s(half(x)))}.

/_/

) =
) =
)
) =
)()
)
)
)

After applying the argument filtering 7 (half) = m(s) = 1, the constraints are
satisfied by the recursive path ordering.

3.43 Termination by narrowing, version 1

The following TRS by Plaisted [Pla86,Ste95a]
f(c) — g(h(c))

h(g(z)) — g(h(f(2)))
k(z, h(z),c) — h(z)
k(f(2), y,2) = f(z)

35

can automatically be proved terminating by only replacing the dependency pair
H(g(z)) — H(f(z)) by its narrowing H(g(c)) — H(g(h(c))) and computing the
estimated dependency graph. As there is no cycle consisting of the resulting
pairs, the TRS is terminating.

3.44 Termination by narrowing, version 2
To prove termination of the following TRS from Bachmair [Bac87,Ste95a]
f(h(z)) — f(i(z))
g(i(z)) — g(h(z))
h(a) — b
i(a) — b

the dependency pairs

are replaced by their narrowings
F(h(a)) — F(b)
G(i(a)) — G(b).

Then termination is automatically proved by the fact that the estimated depen-
dency graph has no cycles.

3.45 Termination by narrowing, version 3

For the following TRS we also need narrowing in order to prove its termination
using a quasi-simplification ordering.

h(zey) — h(g(z-y))
Narrowing the dependency pair H(z«y) — H(g(z.y)) results in

H(0.y) — H(g(y))
H(s(z)sy) — H(s(z)).

Now the cycles are

{F(s(z)) — F(z)}
{G(0.y) — G(y)}
{H(0ey) — H(g(y))}

After applying the argument filtering 7(h) = [], the resulting constraints are
satisfied by the recursive path ordering.

36

3.46 A non-totally terminating TRS
The following example is from Steinbach [Ste95a].
f(x,z) — f(a,b)

b—c
This TRS is not totally terminating and without using narrowing, the inequal-
ities generated by our technique are not satisfied by any total well-founded
weakly monotonic quasi-ordering. However, after applying one narrowing step
to F(z,z) — F(a,b), the pair F(z,x) — F(a,c) is obtained, whose right-hand side
is not unifiable with F(xz,z). Hence, there is no cycle in the dependency graph.
Thus, the TRS is terminating.

3.47 An overlapping system
The following TRS is a leading example of [AG98] and [GAOO1] which is not
simply terminating.

f(z, c(y)) — f(z,s(f(y, y)))

f(s(z),y) — f(z,s(c(y)))

The cycles in the estimated dependency graph are:

{F(z,c(y)) = F(y,9)}
{F(s(2),y) = F(=z,s(c(y)))}

and the two sets of generated inequalities are:

mi(f(z, ¢(y))) Z1 m(f(z, s(f(y,))))
mi(f(s(z),y)) Z1 m(f(z,5(c(y))))
m1(F(z,c(y))) =1 m(F(y,v))

ma(f(z, c(y))) Z2 m2(f(z,s(f(y,))))

ma(f(s(z),y)) Z2 ma(f(z,s(c(y))))

ma(F(s(2),y)) =2 ma(F(z,s(c(y))))-
By choosing the argument filterings 71 (f) = 1, m1(F) = 2 and ma(f) = ma(F) = 1
the inequalities are solved by RPO and the TRS is proved to be DP simply
terminating.

Note that the constraints obtained without using our modularity results

would include 7(F(z,c(y))) = n(F(y,y)) and w(F(s(z),y)) = 7(F(z,s(c(y)))). In
this example 7 cannot eliminate the arguments of s or c. Then no simplification
ordering satisfies the above constraints, as they imply

7(F(z,c(s(2)))) = m(F(s(z),s(x))) = m(F(z,s(c(s(2)))))-
Note also that the system is overlapping (and not locally confluent). Hence,

we cannot prove termination by verifying innermost termination, but we really
have to use Thm. 5 for the termination proof instead.

37

3.48 Another overlapping system

The following system is an overlapping TRS which is inspired by Ex. 4.35 for
renaming in the Lambda Calculus.

f(0) — true
f(1) — false
f(s(z)) — f(z)
if(true,s(z),s(y)) — s(x)
if(false,s(z),s(y)) — s(y)
g(z,c(y)) = c(g(z,y))
g(z,c(y)) — gz, if(f(z), c(eg(s(2),), c(v)))

The system is not simply terminating as the last rule is self-embedding. As
it is overlapping (and not locally confluent), here it is not sufficient to prove
innermost termination only. Without modularity, the automated termination
proof would fail, because the third argument of if and the argument of ¢ can-
not be eliminated. But no quasi-simplification ordering satisfies G(z,c(y)) >
G(z,if(...,...,c(y)))-

There is just one cycle in the estimated dependency graph which contains
an F-dependency pair, viz. {F(s(z)) — F(x)}. Absence of infinite chains of this
dependency pair can be proved by RPO, if we use the argument filtering 7 (c) =
7(g) = []. Then all rules are weakly decreasing (using the precedence f > true,
f > false, g > c). For all other cycles one can eliminate the arguments of s, f, and
if before using RPO.

3.49 Maximal cycles

One could think of formulating Thm. 5 (and also the other modularity theorems)
in an alternative way by just considering mazimal cycles for modularity. Here,
a cycle P is called maximal if there is no proper superset of P which is also a
cycle. As an example consider the following system:

flc(s(z),y)) — f(c(=,s(y)))
f(c(s(z),s(y))) — glc(z,y))

g(c(z,s(y))) — glc(s(2),y))
glc(s(2),s(y))) = flc(z,y))

We obtain the following dependency pairs:

F(c(s(2),y) = F(c(z,s(y))) (8)
F(c(s(2),5(y))) = G(e(=,y)) (9)
G(c(z,s(y))) = G(c(s(z),v)) (10)

)

The cycles of the estimated dependency graph are {(8)}, {(10)}, {(9), (11)},{(8),
(9),(11)},{(9), (10),(11)}, and {(8),(9),(10),(11)}. So the only maximal cycle
in this example is {(8),(9),(10),(11)}. A simple way to compute the set of all
maximal cycles is to eliminate all edges and all dependency pairs in the esti-
mated dependency graph which are not part of any cycle. Then the remaining
unconnected graphs correspond to the maximal cycles.

Now a modification of Thm. 2 would be that a TRS is terminating iff for each
mazimal cycle P there exists no infinite R-chain of dependency pairs from P.
Then, for each subcycle P’ of P one would have to use the same quasi-ordering
~p to prove the absence of infinite chains from P’.

However, to use the same quasi-ordering for all subcycles of the maximal
cycle can be too weak. In our example, all dependency pairs are on the maximal
cycle. However, if one would have to use the same quasi-ordering for all subcycles
of this maximal cycle, then the resulting constraints would not be satisfied by
any path ordering amenable to automation or by any polynomial ordering.

Due to our modularity result we can prove absence of infinite chains sep-
arately for every cycle. We use polynomial orderings where both f(z,y) and
g(z,y) are mapped to 0 and s(x) is mapped to x + 1. For the cycle {(8)}, c(z,y)
is mapped to x, whereas for the cycle {(10)} we map c(z,y) to y. For the other
cycles, c(z,y) is mapped to x + y. Then these polynomial orderings can be used
to prove absence of infinite chains for all cycles.

3.50 DP quasi-simple, but not DP simple, version 1

The following is an example of a TRS that is DP quasi-simply terminating, but
not DP simply terminating (cf. [GAOO1]).

f(f(2)) — f(c(f(2)))
f(f(z)) — f(d(f(=)))
g(c(z)) — @
g(d(z)) = =

g(c(0)) — g(d(1))
g(c(1)) — g(d(0))

The only cycle in the estimated dependency graph is

{F(f(z)) = F(z)}.

In order to show DP quasi-simple termination, we choose the argument filtering
m(c) = w(d) = 1 and use RPO with 0 and 1 equal in the precedence. However,
the TRS is not DP simply terminating, because due to the first four rules, the
argument filtering must reduce c(z) and d(z) to their arguments. But then g(0) =
g(1) and g(1) > g(0) lead to a contradiction.

39

3.51 DP quasi-simple, but not DP simple, version 2

The definition of argument filtering could be modified by not only eliminating
arguments but by also identifying different function symbols. This would change
the notion of DP simple termination, but DP simple termination and DP quasi-
simple termination would still not coincide. This is demonstrated by the following
example [GAOO1].

The dependency graph of this TRS has two cycles:

{F(f(z)) = F(z)}
{G(h(z)) = G(z)}.

For the first cycle we use the argument filtering n(c) = n(d) = w(h) = 1 and
RPO with 0 and 1 equal in the precedence. For the second cycle we cannot
choose w(h) = 1. Without any filtering on arguments, but with a polynomial
interpretation that maps 0 to 0, 1 to 1, h(z) to = 4+ 1, and all other symbols to
the identity, the inequalities are solved.

However, even with the new definition of argument filtering, the system is
still not DP simply terminating. The reason is that again, the argument filter-
ing m must map ¢ and d to their arguments. Then the third and fourth g-rule
imply 7(g(h(0))) = m(g(1)). Since 7(g) # [] due to the first g-rule, this implies
m(h(0)) = 7(1). Due to the dependency pair G(h(z)) — G(z), m may neither map
h to its argument nor to any constant like 1. Hence, even with this alternative
definition of argument filtering, these constraints are not satisfiable.

3.52 A TRS that is not left-linear, version 2
The following TRS occurs in [GAOO01].

f(0,1,z) — f(s(x), z, x)

f(z,5,5(2)) = s(F(0,1,2)).

The cycles in the estimated dependency graph are

{F(0,1,z) — F(s(z),z,z), (12)
F(z,y,s(z)) — F(0,1,2)} (13)
{F(z,y,s(z)) = F(0,1,z2)}. (14)

40

Therefore, it suffices to find an argument filtering such that the following in-
equalities are satisfied:

7(f(0,1,z)) Z n(f(s(z), =, z))
7(f(z,y,5(2))) Z 7(s(f(0,1,2)))

m(F(0,1,z)) == m(F(s(x), z,z))
m(F(z,y,s(2))) = m(F(0,1, 2)).

A suitable argument filtering is 7(f) = w(F) = 3. By using RPO, DP simple
termination of the TRS is proved.

3.53 Disjoint systems, DP quasi-simple termination

By Theorem 6 we may conclude DP quasi-simple termination of several combi-
nations of the above TRSs. To mention only a few:

— the combination of the TRSs in Ex. 3.1, 3.12, and 3.14 is DP quasi-simply
terminating,

— the TRS g(z,y) — z, g(x,y) — y in combination with either Ex. 3.29 or Ex.
3.52 is DP quasi-simply terminating.

3.54 Disjoint systems, G-restricted DP simple termination

If G is chosen to be the empty set, (-restricted DP simple termination of the
TRS consisting of Ex. 3.25 and Ex. 3.29 follows immediately from Theorem 7
(where unary f and ternary f are different symbols).

3.55 Shared constructors, G-restricted DP simple termination 1

By Theorem 7 we may conclude G-restricted DP simple termination of the com-
bination of the division example (Ex. 3.1) and the quicksort example (Ex. 3.11)
where G = {0,s}.

3.56 Shared constructors, G-restricted DP simple termination 2
The TRS

g(c(z,s(y))) = glc(s(z),v))

is simply terminating, as can for example be shown by LPO comparing subterms
right-to-left. The TRS

also has c and s as constructors. DP simple termination of the TRS can be
shown by an argument filtering n(d) = [] and LPO comparing subterms left-
to-right. A simple check confirms that both systems are {s,c}-restricted DP
simply terminating. Hence, the combination is also {s, c}-restricted DP simply
terminating.

DP simple termination of both R; and Ry can be proved with a standard
technique like LPO, whereas such standard orderings fail if one wants to prove
DP simple termination of their union directly. The reason is that the constraints
for the cycle {G(c(z,s(y))) — G(c(s(z),y))} are not satisfied by LPO (nor by
RPO nor by any polynomial ordering). Thus, there are indeed TRSs where ter-
mination of the subsystems can be shown with dependency pairs and LPO, but
(without our modularity result) termination of their union cannot be proved with
dependency pairs and LPO.

3.57 Composable systems, G-restricted DP simple termination

The TRSs of Ex. 3.4 and of Ex. 3.17 are both {0,s,+}-restricted DP simply
terminating. Note that the resulting TRSs are composable, since they both con-
tain the same constructors 0 and s and they also share the defined symbol +,
but both TRSs contain the same +-rules. As both TRSs are {0,s, + }-restricted
DP simply terminating, Theorem 7 allows us to conclude {0, s, + }-restricted DP
simple termination of the combined system.

4 Examples for innermost termination

This section contains a collection of examples to demonstrate the use of the
innermost termination technique presented in Sect. 2.2. The examples 4.1 — 4.21
are term rewrite systems that are innermost terminating, but not terminating.
The remainder of the examples (4.22 — 4.37) are non-overlapping term rewrite
systems for which innermost termination suffices to guarantee termination. Note
that for the examples 4.6 — 4.9, 4.14 — 4.21, and 4.25 — 4.37 we used refinements
which were not included in the method of [AG97b]. In particular, the examples
4.19 — 4.21 and 4.32 — 4.37 are TRSs, where an innermost termination proof
without modularity is impossible with quasi-simplification orderings (or, in some
examples, at least with the standard path orderings amenable to automation),
whereas with our modularity results innermost termination can easily be verified
automatically.

4.1 Toyama example

A famous example of a TRS that is innermost terminating, but not terminating,
is the following system by Toyama [Toy87].

f(0,1,z) — f(x,z,z)
g(z,y) >
g(z,y) =y

42

This TRS has only one dependency pair, viz. F(0,1,2) — F(z,z,z). This depen-
dency pair does not occur on a cycle in the innermost dependency graph, since
F(x1,21,21) does not unify with F(0,1,z2). Thus, no inequalities are generated
and therefore the TRS is innermost terminating.

4.2 Variations on the Toyama example, version 1

The following example is a non-terminating TRS

f(g(x),s(0),y) — f(y,y,g(x))
g(s(z)) — s(g(x))
g(0) =0
with only one dependency pair on a cycle in the innermost dependency graph,

viz. G(s(x)) — G(x). Since no defined symbols occur in G(z), there are no usable
rules. Therefore, the only constraint on the ordering is given by

G(s(z)) = G(x)

which is easily satisfied by the recursive path ordering. Hence, the TRS is inner-
most terminating.

4.3 Variations on the Toyama example, version 2
Similar to the preceding example, the following modification of the Toyama ex-
ample
f(g(z,y),z,2) = f(z,2,2)

glz,y) > =

g(z,y) =y
is not a constructor system, since the subterm g(x, y) occurs in the left-hand side
of the first rule. Again the innermost dependency graph does not contain any

cycles and hence, this TRS is innermost terminating. This TRS is, however, not
terminating.

4.4 Variations on the Toyama example, version 3

The non-terminating TRS

flg(z), z,y) = f(y,y,8(y))
g(g(z)) — g(z)
is no constructor system either. The pair F(g(z),z,y) — F(y,v,g(y)) cannot oc-
cur in an infinite innermost chain, since CAPg(g(q,), 21,4:)(F(y1,91,8(y1))) does
not unify with F(g(z2), z2,y2). The dependency pair G(g(z)) — G(z) cannot oc-
cur in an infinite innermost chain either, since by unifying the right projection
of this dependency pair with a renaming of it, the left projection is instantiated
in such a way that it is not a normal form. Hence, there are no cycles in the
innermost dependency graph and therefore the TRS is innermost terminating.

43

4.5 Redex in left-hand side
The following system

f(0) — f(0)
0—1

is innermost terminating, because there is no cycle in the innermost dependency
graph. The reason is that the left-hand side F(0) of the (only) dependency pair
is not a normal form.

4.6 Narrowing required, version 1
In the following, again non-terminating, variant of the Toyama example
f(0,1,z) — f(g(x, z), z, x)

g(z,y) — =
g(z,y) =y

one narrowing step is needed to determine that there are no cycles in the inner-
most dependency graph (because F(0,1,z) — F(g(z,x), z, x) narrows to F(0,1, x)
— F(z,z,z)). Thus, this TRS is also innermost terminating.

4.7 Narrowing required, version 2
The following example can be solved in a similar way:
f(s(z)) — f(g(z, z))

g(0,1) — s(0)
0—1.

The dependency pair F(s(z)) — F(g(z,z)) may be deleted as it cannot be nar-
rowed. Hence, there is no dependency pair left and therefore, innermost termi-
nation is proved.

4.8 Narrowing required, version 3

Consider the following TRS

r+0—2x
z+s(y) = s(z+y)

f(0,s(0),z) — f(z,z + x,)
glz,y) =
glz,y) =y

44

which is not terminating as can be seen by the infinite reduction

f(0,5(0),8(0,s(0))) — f(g(0,5(0)),(0,5(0)) + &(0,5(0)), g(0,5(0)))
— f(0,8(0,5(0)) + &(0,5(0)),8(0,5(0)))
— 1(0,5(0) +&(0,5(0)),8(0,5(0)))
— f(0,s(0) 4+ 0,g(0,5(0)))
— f(0,5(0),8(0,5(0)))

Innermost termination of this TRS can be proved if the dependency pair F(0,s(0),
z) — F(x,x 4+ z,z) is replaced by its narrowings

F(0,s(0),0) — F(0,0,0)
F(0,5(0),s(y)) — F(s(y),s(s(y) + v),s(y))-
Now our approximation determines that these dependency pairs are not on cycles

in the innermost dependency graph. Therefore, the only inequality generated for
this TRS is

PLUS(z,s(y)) = PLUS(z,)

which is satisfied by the recursive path ordering. Hence, this TRS is proved
innermost terminating.

4.9 Narrowing required, version 4

The following modification of the above TRS

z+0—=2
7+ s(y) = s+ 1)
double(z) —» z + x
f(0, (),a:)—)f(a: double(z),)
g(w,y) >
y) =

g(z,

is also non-terminating. Similar to the example above, we now need two narrow-
ing steps to derive that the narrowings of the dependency pair

F(0,s(0),z) — F(x,double(z), z)
do not occur on cycles in the innermost dependency graph. The generated in-

equality is therefore the same as for the above example, which is satisfied by the
recursive path ordering. Hence, this TRS is proved innermost terminating.

45

4.10 Non-normal most general unifier

The following TRS

f(z, g(z)) — (1, g(x))
g(1) — g(0)

is obviously not terminating as f(1,g(1)) can be reduced to itself. The dependency
pair
Fz,g(x)) = F(1,g(x))

does not occur on a cycle in the innermost dependency graph, because

CAPF(z,,g(z1)) (F(1,8(z1))) = F(1,g(71))

and the most general unifier of F(1,g(z1)) and F(x2, g(x2)) replaces z1 and z2 by
1. Hence, the instantiation of the left projection is not a normal form. Obviously,
the other dependency pairs F(z,g(z)) — G(z) and G(1) — G(0) cannot occur
on cycles either. Thus, there are no cycles in the innermost dependency graph.
Hence, the TRS is innermost terminating.

4.11 Innermost chains of arbitrary finite length

The following non-terminating TRS has an innermost chain of any finite length,
but it has no infinite innermost chain, hence it is innermost terminating.

h(z,z) — f(z,s(2), 2)
f(z,y,g(z,y)) — (g(z,y))
g(0,y) —
g(=, ())—>g(x)

An infinite reduction is given by
h(0,(0,5(0)) — f(0,5(0),g(0,5(0))) — h(0,g(0,5(0)) — ...

So the TRS is not terminating.
The inequality resulting from the dependency pair on the only cycle in the
innermost dependency graph is

G(z,s(y)) > G(z,y).

(The reason is that the most general unifier of CAPY(,, .,)(F(%1,s(1),21)) and
F(z2,y2,g(z2,y2)) does not instantiate the latter term to a normal form.)

There are no usable rules. Thus, innermost termination is easily proved by
the recursive path ordering.

46

4.12 Negative coefficients

The following non-terminating TRS has two dependency pairs on a cycle in the
innermost dependency graph, but it has no infinite innermost chain. Hence, it is
innermost terminating.

h(0,z) — f(0,z, z)
f(0,1,z —>h(:v x)

)
g(z,y) =
g(z,y) =

An infinite reduction is given by

f(0,1,g(0,1)) — h(g(0,1),g(0,1))
—h(0,g(0,1))
— 1(0,g(0,1),g(0,1))
5 £(0,1,g(0,1)) — ...

The inequalities resulting from the dependency pairs on a cycle in the innermost
dependency graph are

H(0,z) = F(0, z, x)
F(0,1,z) > H(z,z)

and there are no usable rules. These inequalities are satisfied by the polynomial
interpretation where 0 and 1 are interpreted as usual and where H(z,y) and
F(x,y,2) are both mapped to (z — y)2.

Note that the inequalities obtained in this example are not satisfied by any
weakly monotonic total well-founded quasi-ordering. For that reason a polyno-
mial ordering with negative coefficients has been used. In innermost termination
proofs this is possible if the quasi-ordering is weakly monotonic on all symbols

apart from the tuple symbols and if it satisfies the condition
ISP AN ANTy Ty = Clze,. .., 20] 72 Clyt, - - -5 Ynl,
for all dependency pairs s — C[f1(u1), ..., fn(un)], where C is a context without

defined symbols and fi,..., f, are defined symbols.

In a similar way one can also prove innermost termination of the system
where the first rule has been changed to

h(z,y) — f(z,y, z).

47

4.13 Drosten example

A confluent and innermost terminating TRS that is not terminating was given
by Drosten [Dro89].

f(0,1,z) — f(z,z,z)
flz,y,z) =2

0—2

1—=2

gz, z,y) =y
g(z,y,y) >«

As there exists no cycle in the innermost dependency graph, the TRS is innermost
terminating.

4.14 Better approximations of the innermost dependency graph,
version 1

For the approximation of innermost dependency graphs we use the function CAP,
(instead of just the function CAP). An example where this refinement is needed
can be obtained from Ex. 4.2 by modification of the first rule.

If we would approximate the innermost dependency graph by just using CAP
then in our approximation we would draw an arc from the dependency pair

F(g(x),s(0)) — F(g(z),g())

to itself, because CAP(F(g(z),g(z))) = F(z1,z2) unifies with its left-hand side.
But then we would have to demand that this dependency pair is strictly decreas-
ing, i.e., F(g(z),s(0)) > F(g(x),g(x)). However, then the resulting constraints
would imply

F(g(s(0)),s(0)) > F(g(s(0)),&(s(0))) = F(e(s(0)),s(g(0))) = F(g(s(0)),s(0))-

Hence, they would not be satisfied by any well-founded ordering closed under
substitution. Therefore the approach of [AG97b] would fail with this example.
However, by the refined approximation of using CAP; we can immediately
determine that this dependency pair is not on a cycle of the innermost depen-
dency graph. The reason is that CAPF(g(4,), s(0)) (F(g(71),8(1)) = F(g(z1),g(z1))
does not unify with F(g(x2),s(0)). (This example could also be solved by nar-
rowing the dependency pair. But there are also examples where the innermost

48

termination proof using CAP, succeeds whereas it would not succeed when using
narrowing and CAP, cf. the next example, Ex. 4.15.) Now the only remaining
constraint is

G(s(z)) > G(=x)
from the second rule of the TRS. For example, this constraint is satisfied by the

recursive path ordering.
In a similar way we can also handle the following modification of Ex. 4.4:

fg(z),z) — f(g(z), g(z))
g(g(z)) — g(z).

4.15 Better approximations of the innermost dependency graph,
version 2

This is a variation of the Toyama example where the approximation using CAP; is
necessary to perform the innermost termination proof. In contrast to the preced-
ing example, here narrowing the dependency pairs (and just using CAP instead
of cAP;) would not help.

—
—
o
=
o]
—
&
<
~
N
~—
=
09
—
&
<
~
09
—~
&
<
~
o
—
&
<
~
>
—
8
~—
~

The dependency pair

F(0,1,g(z,y),2) — F(g(z,), 8(z,y),&(z,y), h(z))

is not on a cycle of the innermost dependency graph. This can also be determined
by our approximation, because CAPE (g, 1 ¢(z,y), 2) (F(8(%,¥),8(2,), 8(x, y), h(z)))
= F(g(z,y),g(x,y),g(x,y), h(x)) does not unify with F(0,1,...).

However, if we use just the approximation with CAP, then we would have
an arc from this dependency pair to itself. Now the resulting constraints would
imply

F(0,1,g(0,1),h(0)) > F(g(0,1),8(0,1),8(0,1),h(0)) = F(0,1,g(0,1), h(0)).

Hence, they would not be satisfied by any well-founded ordering closed under
substitution.

Note that in this example narrowing the dependency pair would not help,
because the narrowings would include the pair

F(0,1,g(g(z",y"),), 2) — F(g(g(=',¥'),y), (=", v'),y), 8((=',v'),y), h(z'))

which would lead to the same problem. (The same statement holds for repeated
applications of narrowing.) Hence, this example demonstrates that we really need
the refinement of CAP; to approximate innermost dependency graphs.

49

4.16 Instantiation with normal form

The following TRS

f(s(0), g(z)) — f(x, g(2))
g(s(z)) — g(z)

is obviously not terminating as can be seen by the following infinite reduction

f(s(0),&(s(0))) — £(s(0),&(s(0))) — ...

The dependency pair
F(s(0),g(z)) — F(z,g(z))

is not on a cycle of the innermost dependency graph, as CAPg(s(0), g(z1))(F(Z1,
g(x1))) and F(s(0),g(x2)) unify using a most general unifier that instantiates
F(s(0),g(x2)) in such a way that it is not a normal form. (However, this would
not have been determined by the approximation of innermost dependency graphs
as presented in [AG97b].) The only dependency pair that occurs on a cycle in
the innermost dependency graph is G(s(z)) — G(z), resulting in the inequality

G(s(z)) = G(x)

which is easily satisfied by the recursive path ordering.

4.17 Narrowing of pairs where right-hand sides unify with left-hand
sides

In the following example we have to narrow a pair whose right-hand side unifies
with a left-hand side of a dependency pair. When proving innermost termination,
we may indeed perform this narrowing as long as the mgu does not instantiate
the left-hand sides of the dependency pairs under consideration to normal forms.

f(g(z),s(0),y) — f(g(s(0)), v, &(x))
g(s(z)) — s(g())
g(0) —» 0

The dependency pair

F(g(x),s(0),y) — F(g(s(0)),y,8(x))

does not form a cycle in the innermost dependency graph, because an instantia-
tion of its right-hand side can only reduce to an instantiation of its left-hand side
where z is instantiated by s(0). But then this instantiated left-hand side would
contain the redex g(s(0)).

However, in our approrimation there would be an arc from this dependency

pair to itself, because CAPF(g(2,),s(0),y:)(F(8(5(0)),y1,8(71))) = F(2,91,8(z1))

50

unifies with F(g(z2),s(0),y2) (and the mgu instantiates the left-hand sides to
normal forms). So one would have to demand that this dependency pair should
be strictly decreasing, i.e., one would obtain the constraint F(g(z),s(0),y) >
F(g(s(0)),y,g(x)). However, together with the remaining constraints, this in-
equality is not satisfied by any well-founded ordering closed under substitution,
because we would have

(s(0)))
(€(0)))
(0))-

So we have to narrow this dependency pair. Note that the right-hand side
unifies with the left-hand side of this dependency pair. However, the mgu instan-
tiates the left-hand side to a term containing the redex g(s(0)). Hence, by Thm.
10 we may indeed replace this dependency pair by its narrowings.

F(g(z),s(0),y) — F(s(g(0)),y,8(x))
F(g(s(z)),s(0),y) — F(g(s(0)),y,s(g(=)))
F(g(0),5(0),y) — F(g(s(0)),y,0))

None of these new pairs is on a cycle of the estimated innermost dependency
graph. Hence, the only constraint in this example is

G(s(z)) > G(=x)

from the second rule of the TRS. A well-founded ordering satisfying this con-
straint can of course be synthesized easily (e.g., the recursive path ordering).

4.18 Smallest normalizing non-terminating one-rule string rewrite
system

The following example from Geser [Ges00] is the smallest normalizing non-
terminating one-rule string rewrite system.

a(b(a(b(x)))) — b(a(b(a(a(b(z))))))
The dependency pairs in this example are
A(b(a(b(z)))) — A(b(x))

A(b(a(b(2)))) = A(a(b(z)))
A(b(a(b(2)))) = A(b(a(a(b(z)))))-

The second and the third dependency pair can be narrowed to

A(b(a(b(a(b(z)))))) = A(b(a(b(a(a(b(2)))))))
A(b(a(b(a(b(z)))))) = A(b(a(b(a(b(a(a(b(2)))))))))-

51

These dependency pairs are not on cycles of the innermost dependency graph,
because their left-hand sides contain redexes. Hence, the only constraint in this
example is

A(b(a(b(z)))) = A(b(z))

which is satisfied by the recursive path ordering.

4.19 An innermost terminating system which requires modularity

The following system is a variant of the well-known example of Toyama [Toy87]
which requires modularity results for its innermost termination proof.

f(z,c(z),c(y)) = f(y, v, f(y, 2, y))
f(s(z),y,2) = f(z,s(c(y)), c(2))
f(c(z), =,y (y)
g(z,y) =
g(z,y) =

The system is not terminating as can be seen from the following infinite
(cycling) reduction.

f(z, c(x), c(g(z,c(2)))) =

f(g(z, c(2)), g(x, c(2)), f(g(, c(x)), z, g(x, c(2)))) =
f(z, c(z), f(c(z), z, g(x, c(x)))) —

f(z, c(x), c(g(z,c(2)))) =

However, this is not an innermost reduction, because the first term contains the
redex g(...) as a proper subterm.

Here, we can use Cor. 16 for the innermost termination proof. The esti-
mated innermost dependency graph only contains two non-empty cycles con-
sisting of F(z,c(z),c(y)) = F(y,z,y) and F(s(z),y,z) = F(z,s(c(y)),c(z)), re-
spectively. (In this example, the estimated innermost dependency graph is not
identical to the estimated dependency graph, because in the latter there would
also be an arc from F(z,c(x),c(y)) — F(y,y,f(y,z,y)) to itself.)

As both cycles consist of dependency pairs without usable rules, it suffices
to prove innermost termination of the two one-rules systems consisting of the
first and the second rule respectively. In fact, these subsystems are even simply
terminating. For

f(z,c(x),c(y)) = f(y,y,f(y,z,9))

one can use a polynomial interpretation mapping f(x,y, z) to z + y + z and c(x)

to 5x + 1 and for
f(s(z),y, 2) = f(z,s(c(y)), c(2))

one can use LPO with the precedence f > s and f > c. Hence, Cor. 16 allows
us to split a non-terminating, but innermost terminating system into two simply
terminating subsystems.

52

Alternatively, with Thm. 11 we would obtain the following constraints for
our example:

F(z,c(2),c(y)) »1 Fy,2,9) F(s(z),y,2) =2 F(z,s(c(y)),c(2)).

For >; we may use LPO comparing subterms right-to-left and for >2 we may
use LPO comparing subterms left-to-right. Hence, innermost termination of this
example can easily be proved automatically.

Note that without our modularity result, no simplification ordering would
satisfy the resulting constraints F(z,c(z),c(y)) = F(y,z,y) and F(s(x),y,z) >
F(x,s(c(y)),c(2)). The reason is that one cannot use an argument filtering which
eliminates the arguments of ¢ or s, and hence, these constraints imply

F(z,c(x),c(s(x))) = F(s(z),z,s(x)) = F(z,s(c(z)), c(s(x))).

4.20 Different eliminations, version 1

The following TRS is also a short example for a system where modularity is
necessary.

f(f(z)) = f(=)
g(0) — g(f(0))

The system is not simply terminating and an automated innermost termina-
tion proof using dependency pairs requires the use of our modularity results. The
reason is that due to F(f(z)) > F(z), the argument of f cannot be eliminated and
hence, no quasi-simplification ordering satisfies the constraint G(0) = G(f(0)).

But innermost termination can easily be proved using Cor. 15. The Ry-system
(consisting of the f-rule) is obviously terminating and for the R;-constraints the
argument of f is eliminated. Then these constraints are satisfied by RPO (using
the precedence 0 > f).

A similar innermost termination proof is also possible for the TRS

f(f(z)) — f(x)
f(s(z)) — f(x)
g(s(0)) — &(f(s(0)))-

4.21 Different eliminations, version 2

By adding two symmetrical rules, the TRS of Ex. 4.20 is turned into a system
which is no hierarchical combination any more.

The dependency pairs in this example are

F(1) — F(g(1)) (15)
F(1) — G(1) (16)
F(f(z)) — F(z) (17)
G(0) — G((0)) (18)
G(0) — F(0) (19)
G(g(z)) = G(z) (20)

The cycles are {(15)}, {(17)}, {(15), (17)}, {(18)}, {(20)},{(18), (20)}. For the
constraints resulting from the first three cycles we eliminate the arguments of

g, whereas for the last three cycles we eliminate the arguments of f. Then the
constraints are satisfied by RPO.

4.22 Another division example, version 1

The TRS

quot(0,s(y),s(z)) — 0
quot(s(z),s(y), z) — quot(z,y,)
quot(z,0,s(z)) — s(quot(z,s(z),s(z)))

is a non-simply terminating system. This TRS cannot be proved terminating
automatically by the technique of Sect. 2.1. The only two generated inequalities
are

QUOT(s(z),s(y), z) = QUOT(z,y, z)
QUOT(z,0,s(2)) = QUOT(z,s(z),s(2)),

since there are no usable rules. By using the argument filtering 7(QUOT) = 1,
the obtained inequalities are satisfied by the recursive path ordering. Thus, the
TRS is innermost terminating. Termination of the TRS can now be concluded
from the fact that it is non-overlapping.

4.23 Narrowing to approximate the innermost dependency graph

Similar to Ex. 3.40, narrowing of pairs also helps to obtain a better approximation
of the innermost dependency graph. To illustrate this, let us replace the last rule
of the TRS in Ex. 4.22 by the following three rules.

O+y—y
s(z) +y = s(z +y)
quot(z,0,s(z)) — s(quot(z, z + s(0),s(z)))

54

Now instead of dependency pair
QUOT(x,0,s(z)) — QUOT(z,s(z),s(z)) (21)
we obtain the dependency pair
QUOT(z,0,s(z)) — QUOT(z, 2z +5(0),s(2))- (22)

Note that in the estimated innermost dependency graph there would be an arc
from (22) to itself, because after replacing z + s(0) by a new variable, the right-
and the left-hand side of (22) obviously unify (and an instantiation with the mgu
is a normal form). Hence, due to Thm. 11 we would have to find an ordering
such that (22) is strictly decreasing. But then no linear or weakly monotonic
polynomial ordering satisfies all resulting inequalities in this example (and the
recursive path ordering does not succeed either).

However, in the real innermost dependency graph, there is no arc from (22)
to itself, because, similar to the original dependency pair (21), there is no sub-
stitution o such that (z +s(0))o reduces to 0. Hence, there is no cycle consisting
of (22) only and therefore it is sufficient if (22) is just weakly decreasing. For this
reason we replace the dependency pair (22) by its narrowings, viz.

QUOT(z,0,s(0)) - QUOT(z,s(0),s(0)) (23)
QUOT(z,0,s(s(z))) = QUOT(z,s(z + s(0)),s(0)) (24)
and compute the innermost dependency graph afterwards. Now neither (23) nor
(24) are on a cycle in the estimated innermost dependency graph. Hence, if in our
example we perform at least one narrowing step, then we can determine that the

dependency pair (22) does not form a cycle in the innermost dependency graph
and then termination can again be verified using the recursive path ordering.

4.24 Intervals of natural numbers

The following TRS from Steinbach [Ste95a]

intlist(nil) — nil

s(x)sintlist(y)
int(0,0) — Oenil

)
) =
)
int(0,s(y)) — Osint(s(0),s(y))
0)
) =

intlist(zey

int(s(z),0) — nil
int(s(z),s(y)

is non-overlapping, too. The set of usable rules is empty and the generated in-
equalities are

intlist(int(z, y))

INTLIST (zey) > INTLIST (y)
INT(0,s(y)) &= INT(s(0), s(v))
INT(s(z),s(y)) = INT(z,y).

95

By using the argument filtering 7(INT) = 2 these inequalities are satisfied by
the recursive path ordering. Thus, the TRS is terminating. Again, termination
of this system cannot be proved automatically using the method of Sect. 2.1.

4.25 Another non-totally terminating TRS
To prove termination of the system
f(z,) — f(g(x), z)
g(z) = s(),

we apply narrowing on the dependency pair F(z,z) — F(g(z),z). In this way we
can directly determine that the innermost dependency graph does not contain
any cycles.

4.26 Narrowing of dependency pairs for innermost termination

In the following example we also have to apply narrowing of dependency pairs.

p(0) —
p(s(x)) —
le(0,y) — true
le(s(x),0) — false
le(s(z),s(y)) — le(z,y)
minus(z,y) — lf(le(x Y),,Y)
if(true, z,y) —
)

if(false, z,y) — s(manS(P()>Y))

Note that without narrowing, the resulting constraints would imply MINUS(s(z),
0) > MINUS(p(s(z)),0). Therefore an automatic innermost termination proof
using quasi-simplification orderings would fail.

However, if we replace the dependency pair MINUS(z,y) — IF(le(z,y), z,y)
by its narrowings

MINUS(0,y) — IF(true,0,y),
MINUS(s(z),0) — IF(false,s(x),0),
MINUS(s(z),s(y)) — IF(le(z,y),s(z),s(y))

then this also enables a narrowing of the dependency pair IF(false,z,y) —
MINUS(p(z),y) (whose right-hand side unified with a left-hand side before).
Hence, now this dependency pair can be replaced by

IF(false, 0,y) — MINUS(0, y),
IF(false, s(x),y) — MINUS(z,y).

56

Note that the first narrowing step would not have been possible with the method
of Sect. 2.1, because the right-hand side is not linear. The inequalities correspond-
ing to cycles are

LE(s(2),5(y)) = LE(z,)
MINUS(s(z),0) = IF(false,s(x), 0)
) Z |
)

)

)

MINUS(s(2),s(y)) Z IF(le(z,y),s(2),s(y))
IF(false,s(z),y) = MINUS(z,y).

Using the argument filtering 7(IF) = [2, 3], the resulting constraints are satisfied
by the recursive path ordering. As the TRS is non-overlapping, in this way we
have also proved its termination.

4.27 Subtraction and predecessor

The following system is an alternative way to define subtraction using the pre-
decessor function. Again this TRS is terminating, but not simply terminating.

p(0) —
p(s(z)) —
le(0
le(s(z),0) — false
le(s(x),s(y)) — |e(iv y)

minus(z, 0

,Y) — true
0)

)

) —
minus(z,s(y)) — |f(|e(:c s(y)),0, p(minus(z, p(s(y)))))
if(true, z,y) —

y) =

if(false, z
If we narrow the dependency pair MINUS(z,s(y)) — MINUS(z, p(s(y))), then we

obtain the new pair MINUS(z,s(y)) — MINUS(z,y). Now (as there are no usable
rules any more) the only constraints are

LE(s(z),s(y)) > LE(z,y)
MINUS(z,s(y)) > MINUS(z, y),

which are satisfied by the recursive path ordering. Hence, innermost termination
(and thereby, termination) has been proved, as the TRS is non-overlapping.

A similar example was mentioned by Steinbach [Ste95a], but there the rules
for le and if were missing.

4.28 Length of bit representation

The following non-simply terminating TRS corresponds to the logarithm exam-
ple (Ex. 3.7). Here, bits(x) computes the number of bits that are necessary to

57

represent all numbers smaller than or equal to z.

half(0) —
half(s(0)) —
half(s(s(z))) —>s(ha|f()
bits(0)) —
bits(s(z)) — s(blts(half(s(m))))
After narrowing BITS(s(z)) — BITS(half(s(x))) to BITS(s(0)) — BITS(0) and
BITS(s(s(z))) — BITS(s(half(z)) we obtain the inequalities
HALF(s(s(x))) = HALF(z)
BITS(s(s(z))) = BITS(s(half()).

The resulting constraints are satisfied by the recursive path ordering.

4.29 Multiplication for even and odd numbers

The following non-simply terminating example is inspired by Walther [Wal91].

even(0) — true
even(s(0)) — false
even(s(s(z)) —>even()
half(0
half(s(s(z))
plus(0,

plus(s(z

—>s(ha|f()
0,y
),Y) =
times(0, y
),y
),y
),y

S(p|u5(:v y))

b

times(s(z — Ift.mes(even(s()),s(x),y)
— plus(times(half(s(z)), y), times(half(s(z)),y))

,y) — plus(y, times(z, y))

)

)
)
) =
)
) =
)
) =
)
)

if times (true, s(z

)

iftimes(false, s(z

To prove termination using a quasi-simplification ordering, we have to narrow
the dependency pair |Fimes(true,s(z),y) — TIMES(half(s(z)),y) to

IFiimes(true,s(s(z)),y) — TIMES(s(half(x)),y).
Now the inequalities corresponding to cycles are the following.

EVEN(s(s(z))) = EVEN(z)
HALF(s(s(z))) = HALF(z)
PLUS(s(z),y) = PLUS(z, y)
TIMES(s(z),y) 7 IFtimes(even(s(z)),s(z), y)
)
)

)

S\x
IFtimes(true, s(s(z)),y) = TIMES(s(half(z)), y)
IFtimes(false, s(z),y) = TIMES(z,y)

)

),y
),y
),y
),y

58

If an argument filtering 7(IFiimes) = [2, 3] is used, then the resulting constraints
are satisfied by the recursive path ordering.

4.30 Narrowing for division, remainder, and gcd

The TRSs for division (Ex. 3.1-3.3) can also be transformed into systems where
we need narrowing for the (innermost) termination proof. We only present one
of them.

minus(z,0
y)) — mmus(x Y)

minus(s(z) s(
le(0,y
0

— true
le(s(z — false

) =
)
)

);:0)
le(s(),s(y)) — le(z,y)
(v)) =
)

) =

’

quot(z,s(y) if quot (le(s(y),), z,s(y))

if quot (true, =, y —>s(quot(m|nus(:v Y),Y))
if quot (false, z, y

Again this system is not simply terminating. After narrowing the dependency

pair QUOT(z,5(y)) — IFquot(le(s(y),), z,s(y)) to

QUOT(0,s(y)) — IFquot(false,0,s(y))
QUOT(s(z),s(y)) — IFquot(le(y, z),s(z),s(y))

we can narrow |Fgyoet(true, z,y) — QUOT (minus(z,y),y) to

IF quot (true, z,0) — QUOT(z, y)
IFquot (true, s(x),s(y)) — QUOT (minus(z,y),s(y)).

Now the inequalities corresponding to cycles are

MINUS((x = MINUS(z, y)

= LE(z,y)

2 IFauot (le(y,), 5(2),s(y))

)
LE(s(z)
)
) = QUOT (minus(z,y),s(y)).

(
QUOT(s(x),s(y
(

IF quot (true, s(x),s(y

Using the argument filtering 7w(minus) = 1, w(IF) = [2, 3] the constraints are sat-
isfied by the recursive path ordering. Hence, in this way (innermost) termination
of this TRS is proved.

A simpler modification of the quotient TRS where one should also use nar-
rowing is obtained if instead of the last three rules the following rules are used.

quot(0,s(y)) — 0
quot(s(),s(y)) — s(quot(minus(s(z),s(y)),s(y)))

59

A similar modification is also possible for the remainder TRSs (Ex. 3.5), i.e
the rule if oq(true,s(z),s(y)) — mod(minus(z,y),s(y)) may be replaced by
if mod (true, z,y) — mod(minus(z,y),y).
In an analogous way, in the greatest common divisor TRSs (Ex. 3.6) one
could also replace the last two rules by
ifged(true, z,y) — ged(minus(z, y),y)
ifged(false, 2, y) — ged(minus(y, z),).

All these modified TRSs could again be proved (innermost) terminating by using
narrowing first.

4.31 Braid problem

The following string rewrite system (which encodes a braid problem from topol-
ogy) was given by Zantema as a challenge during the 3rd International Termi-
nation Workshop. As shown by Geser, it is not simply terminating.

a(d(z)) — d(c(b(a(2))))
b(c(z)) — ((a(b(2))))
a(c(z)) =
b(d(z)) —

The dependency pairs in this example are

A(d(z)) = A(z) (25)
A(d(z)) — B(a()) (26)
B(c(z)) = B(z) (27)
B(c(z)) = A(b(2))- (28)

Dependency pair (26) can be replaced by its narrowings

A(d(d(z))) — B(d(c(b(a(2)))))
A(d(c(2))) = B(z)

and dependency pair (28) can be narrowed to

B(c(c(x))) = A(c(d(a(b(x)))))
B(c(d(x))) — A(x).
As there are no usable rules, the resulting constraints are
A(d(z)) > A(x)
A(d(c(z))) Z B(z)
B(c(z)) > B(z)
B(c(d())) Z Alz),
which are satisfied by the recursive path ordering. Hence, as the TRS is non-
overlapping, its termination is proved.

60

4.32 A non-overlapping system which requires modularity

The following system is a non-overlapping variant of Ex. 3.47, which can be
obtained by replacing y in the second rule by s(y).

f(z,c(y)) — f(z,s(f(y,y)))
f(s(z),s(y)) — f(z,s(c(s(v))))

Again the system is not simply terminating (we have the same reduction as
in Ex. 3.47). Similar to that example, an automatic termination or innermost
termination proof without modularity fails, because the resulting constraints
imply F(z,c(s(x))) = F(z,s(c(s(x)))), which is not satisfied by any simplification
ordering.

In this example, we obtain the estimated dependency graph in Fig. 1 (which
is identical to the estimated innermost dependency graph).

QoD

F(z,c(y)) — F(z,s(f(y,))) F(z,c(y)) — F(y,9)

X

F(s) = F(z,s(c(s(y))))

S

Fig. 1. The estimated (innermost) dependency graph in Ex. 4.32.

This example is non-overlapping and hence, we can prove termination by
verifying innermost termination. For that purpose we may use Cor. 16. As the
sets of usable rules are empty for both dependency pairs F(z,c(y)) — F(y,y)
and F(s(z),s(y)) — F(x,s(c(s(y)))), we can split the original TRS into the two
subsystems consisting of one of the rules respectively. Now termination of

f(z,c(y)) — f(z,s(f(y, v)))

is proved using the lexicographic or the recursive path ordering with precedence
¢ > s and c > f. Termination of

f(s(z),s(y)) — f(z,s(c(s())))

is proved using the lexicographic path ordering with precedence f > s and f > c.
In this way, the two simply terminating subsystems imply termination of the
whole (non-simply terminating) TRS.

61

4.33 Sum and weight

The following TRS computes the weighted sum of a list.

sum(s(n)ez, mey) — sum(nex,s(m)ey)
sum(Oez,y —)sum(a: Y)

weight(nemez) — welght(sum(n.m.m 0.z))

)
)
sum(nil,y) —
)
) —

weight(nenil

The system is a hierarchical combination of the sum-rules (Rg) and the
weight-rules (R1). Note that it is not a proper extension and R; is not oblivious
of Rg. Moreover, the TRS is obviously not simply terminating. Its estimated
dependency graph (which is identical to the estimated innermost dependency
graph) is sketched in Fig. 2.

r Y
WEIGHT (nemex) — WEIGHT (sum(nemez, 0sz))

WEIGHT (nemex) — SUM(nemez, Oez)

/\

SUM(s(n)ez, mey) — SUM(nez,s(m)et—— SUM(0sz,y) — SUM(z, y)

Y/ -/

Fig. 2. The estimated (innermost) dependency graph in Ex. 4.33.

As the TRS is non-overlapping, it suffices to prove innermost termination.
However, without modularity, the resulting constraints would not be satisfied
by any quasi-simplification ordering: Due to the constraint SUM(s(n)ez, mey) >~
SUM(nez,s(m)ey), neither the argument of s nor the first argument of ‘s’ can be
eliminated. As we cannot eliminate all arguments of sum (due to the constraint
sum(nil,y) = y), the constraint sum(s(n)ex, mey) = sum(nez,s(m)e«y) enforces
that the first argument of sum may not be deleted either. But WEIGHT (nemex) >~
WEIGHT (sum(nemez, . ..)) does not hold for any quasi-simplification ordering.

Termination of the sum and weight-example can be proved by Cor. 15. The
sum-subsystem (Rg) is terminating (this can be proved by LPO with the prece-
dence sum > « and sum > s). For the weight-subsystem (Ri) we obtain the
constraints

sum(s(n)ex, mey
sum(Qez, y
sum(nil, y

) %
) %
)2y
WEIGHT (nemez) =

WEIGHT (sum(nemez, 0ex)),

62

which are also satisfied by LPO after deleting the first arguments of sum and ‘..
This time we have to use the precedence « > sum.

Note that the constraints for termination (according to Sect. 2.1) are not
satisfied by any quasi-simplification ordering amenable to automation, i.e., this
example again shows that proving innermost termination is essentially easier
than proving termination.

To see this, regard the constraints for the cycle consisting of the first SUM-
dependency pair. We show that they are not satisfied by any argument filter-
ing 7 and any reduction pair (Z,>) where - is a path or a polynomial quasi-
simplification ordering. The constraint 7(SUM(s(n)ez,mey)) = 7(SUM(nez,
s(m)ey)) implies 7(s(0)enil) =° 7(0enil) where >* is the strict part of the quasi-
ordering 7-. (For polynomial orderings this holds because then 7- is total.) More-
over, one can show that the constraints entail that 7(weight(sum(0.0.s(0)enil,
0.z))) contains z and if one uses polynomial orderings, this term is mapped to
a polynomial which is strongly monotonic in x w.r.t. the ordering >=°. Then we
obtain the following contradiction to the well-foundedness of >*:

7 (weight(sum(0e04s(0)enil, 0es(0).nil)))
% m(weight(sum(0e0es(0)enil, 0.0.nil))) by monotonicity
and 7(s(0)enil) >=* 7 (0enil)
7 (weight(0+0es(0)enil)) by the subterm property
m(weight(sum(0s0es(0)enil, 0es(0)enil))) by the constraint
from the first weight-rule

z
z

(To show the strong monotonicity of m(weight(sum(0«0es(0)enil, 0ez))) note
that the second weight-rule implies that m(weight(x)) must depend on z. More-
over, the constraint for the last sum-rule implies that (sum(0e0es(0).nil, z)) must
depend on z. It remains to show that 7(0«x) depends on x. To this end, note that
the constraint from the first sum-rule implies that 7(sum(z, O.nil)) depends on z.
Therefore, the constraint from the second sum-rule implies that 7(sum(0sz, Osnil))
also depends on z. But then m(0ex) must also depend on z.)

4.34 Renaming in the Lambda Calculus (simplified variant)

The following TRS is a shortened and simplified variant of a system for renaming
in the lambda calculus. The full system is presented in Ex. 4.35.

The system is not simply terminating, as the left-hand side of the last rule
is embedded in its right-hand side. As it is non-overlapping, it is sufficient to
prove innermost termination only. For that purpose we need modularity results,
because otherwise we would have

G(z,c(s(2))) ~ G(z, g(s(c(s(2))),s(2))) T G(a,if(....,s(c(s(z))), -)

and neither the argument of s nor the second argument of if can be eliminated.

The system is a hierarchical combination (but not a proper extension). Hence,
we can prove innermost termination by Cor. 15. Termination of Ry (the f- and
if-rules) can for instance be verified by RPO. For R; (the g-rules) we obtain the
following constraints after filtering the arguments of s and f:

f >~ true

f >~ false

f-f
if(true, z,y) -

if(false, z,y) ZZ y
g(s,s) = if(f,s,s)
g(z,c(y)) Z g(z,8(s,y))
G(z,c(y)) - G(=,g(s,y))
G(z,c(y)) = G(s,y).

These inequalities are satisfied by RPO using the precedence f > true, f >
false, g > if, g>f, c>g,c>s.

4.35 Renaming in the Lambda Calculus

The following system is a variant of an algorithm from [MA96]. The purpose
of the function ren(z,y,t) is to replace every free occurrence of the variable
in the term ¢ by the variable y. If the substitution of z by y should be applied
to a lambda term lambda(z,t) (which represents Az.t), then we first apply an
a-conversion step to lambda(z,t), i.e., we rename z to a new variable (which is
different from x or y and which does not occur in lambda(z,t)). Subsequently,
the renaming of x to y is applied to the resulting term. For that reason in this
TRS there is a nested recursive call of the function ren.

Variables are represented by var(l) where [is a list of terms. Therefore, the
variable var(zey.lambda(z,%)enil) is distinct from = and y and from all variables
occurring in lambda(z, t).

and(true,y) — y
and(false, y) — false

eq(nil, nil) — true

64

eq(tel, nil) — false
eq(nil, tel) — false
eq(tel,t'sl') — and(eq(t,t'),eq(l,1'))
eq(var(l),var(l")
eq(var(l),apply(t, s)
eq(var(l),lambda(z, t)
eq(apply(t, s), var(l)
eq(apply(t, s),apply(t', s')) — and(eq(t,t'), eq(s, s))

)
)
)
) — eq(l, 1)
)
)
)
)
eq(apply(t, s),lambda(z,t)) — false
)
)
)
)
)
)
)
)

— false
— false
— false

eq(lambda(z,t),var(l)) — false

)
)
eq(lambda(x,t), apply(t, s)) — false
eq(lambda(z,t),lambda(z’,t')) — and(eq(z,z'),eq(t,t'))
)
r)
r)
)
)

if(true, var(k), var — var(k)

")) — var(l")

— if(eq(l,1'), var(k), var(l'))

— apply(ren(z,y, t), ren(z,y, s))
— lambda(var(zeyslambda(z, t).nil),

!

(
if(false, var(k), var(
(

ren(var(l),var(k), var

ren(x,y, apply(t, s
ren(z,y, lambda(z,¢

ren(z, y, ren(z, var(zeyslambda(z, t).nil), t)))

Let Rg consist of all rules but the last three ren-rules, and let Rq be the
ren-subsystem. Then this TRS is a hierarchical combination of Ry and R1. The
TRS is not simply terminating as the left-hand side of the last rule is embedded
in its right-hand side, but it is non-overlapping. Hence, Cor. 15 can be used for
the termination proof.

Termination of Rg can for instance be proved by RPO. To complete the
termination proof, we have to find a quasi-ordering such that all rules are weakly
decreasing and such that the following strict inequalities are satisfied:

REN(z,y, apply(t, s)) = REN(z,y, t)

REN(z, y, apply(t, s)) = REN(z,y, s)
REN(z,y,lambda(z,t)) = REN(x, y, ren(z, var(zeyelambda(z, t).nil), t))
REN(z,y,lambda(z,t)) = REN(z, var(zey.lambda(z, t).nil),).

A well-founded ordering satisfying these constraints can be synthesized au-
tomatically. For instance, one can use the following polynomial interpretation
where REN(z, y, t) is mapped to t, ren(z,y,t) is also mapped to ¢, lambda(z, t) is
mapped to t+ 1, apply(¢, s) is mapped to t + s+ 1, and(z, y) is mapped to y, and
where nil, var(l), true, false, eq(t, s), and if(x,y, z) are all mapped to the constant
0.

Note that the modularity result of Cor. 15 is essential for this termination
proof. If termination of the whole system would have to be proved at once, then

65

the resulting inequalities would not be satisfied by any quasi-simplification or-
dering. The reason is that due to EQ(var(l),var(l')) = EQ(l,!") the argument of
var cannot be deleted. Hence, (as if’s second argument cannot be deleted either),
ren(var(l),var(k),var(l")) = if(eq(l,l"),var(k),var(l')) enforces that ren must de-
pend on its second argument. Moreover, due to EQ(tsl,t'sl') = EQ(¢,t'), the first
argument of ‘s’ cannot be eliminated. But the inequality

REN(z,y,lambda(z,t)) = REN(z,y, ren(z, var(z.yslambda(z, t).nil), t))

is not satisfied by any quasi-simplification ordering.
The simplified system of Ex. 4.34 is obtained from the subsystem

eq(nil, nil) — true
(

eq(nil, tel) — false

), var(l
if(true, var(k), var(
if(false, var(k), var(

(

ren(var(l),var(k),var

eq(var(l), var —eq(l,1)

)
)
) — var(l")

)) — if(eq(l, '), var(k),var(l'))
)

lambda(var(zeye.lambda(z, t).nil),

!

o~ e~ e~ e

)
)
)
) — var(k)
)
)
) =

ren(z,y,lambda(z, ¢
ren(z, y, ren(z, var(zeyslambda(z, t)enil), t)))

by removing the first arguments of eq, ren, and lambda, by eliminating the ar-
guments of ‘¢’ in the second eqg-rule, by replacing var by its arguments in the
if-rules, by deleting a lambda and ‘unnecessary’ arguments of var in the last ren-
rule, and by renaming the variables and function symbols (eq corresponds to f,
nil corresponds to 0, ‘s’ corresponds to 1, var corresponds to s, ren corresponds
to g, and lambda corresponds to c).

4.36 Selection sort

This TRS from [Wal94]| is obviously not simply terminating. The TRS can be
used to sort a list by repeatedly replacing the minimum of the list by the head
of the list. It uses replace(n, m,x) to replace the leftmost occurrence of n in the
list x by m.

66

min(s(n)enil

5(n)

min(nemex) — ifmin(le(n, m), nemez)

if min(true, nemez) — min(nez)

if min(false, nemez) — min(m.z)

replace(n, m, kex if replace (€q(1, k), 1, m, ko)

Ifreplace(true N, M, kel) — Mel
if replace (false, n,m, kex) — kereplace(n,m, x)

) —
) =
)
)
replace(n, m, nil) — nil
) =
)
)
sort(nil) — nil
)

sort(nex) — min(nex)esort(replace(min(nez), n, z))

The TRS is non-overlapping and hence, verification of innermost termination
is sufficient. As this is a hierarchical combination (but no proper extension and
not oblivious), we can use Cor. 15.

The TRS R (consisting of all rules but the the last two ones) is innermost
terminating (resp. terminating) as can be proved by the dependency pair ap-
proach. To complete the innermost termination proof we obtain the following
inequality for Ri:

SORT(nex) > SORT (replace(min(nex),n,z)).

Moreover, we have to demand [- r for all rules of Ry, as all these rules are
usable.

We use the argument filtering m(s) = 2, m(s) = w(eq) = =w(le) = [], and
m(replace) = 7(ifreplace) = 3. Then the resulting inequalities are satisfied by the
recursive path ordering (where ‘s’ must be greater than min in the precedence).

Note that without using modularity, no path ordering like LPO or RPO which
is amenable to automation would satisfy the resulting constraints. The reason is
that due to EQ(s(n),s(m)) = EQ(n,m), the argument of s cannot be eliminated
and hence, min(s(n)enil) 7 s(n) implies that the first argument of ‘s’ cannot be
deleted either. Now due to ifieplace(true, n,m, kex) 2 mez, the third argument
of ifreplace cannot be removed. Then replace(n,m, kex) 27 ifreplace(- - -, 7, M, ko)
implies that replace must depend on its second argument and that replace must
be greater than or equal to ifepiace in the precedence, i.e., replace > if eplace. As
replace depends on its second argument, ifyeplace(false, n, m, kex) 7 kereplace(n, m,
x) implies ifieplace > o. Hence, we have replace > +. But then SORT(n.z) >
SORT (replace(. .., n,z)) does not hold.

However, a (non-modular) termination proof with dependency pairs would
be possible by the polynomial ordering where eq(zx,y), 0, true, false, le(z,y), and
nil are mapped to 0, s(z) is mapped to x + 1, sum(n,z) is mapped to n + z + 1,
min(z) and if min(b, ©) are mapped to z, replace(n,m, z) and ifreplace (b, 7, ™, x) are
mapped to m+z, EQ(z,y), LE(z,y), MIN(z), IFmin(b, z), SORT (x), and IFsor (b,)
are mapped to x, and REPLACE(n, m,) and IF eplace(b, 7, m, x) are mapped to

67

m + x. Hence, as the TRS is non-overlapping, in this way its termination is also
proved. (If the first min rule would be replaced by min(sum(n, nil)) — element(n),
then termination could also be proved by the termination technique of Sect. 2.1
using an appropriate argument filtering and the recursive path ordering to satisfy
the constraints obtained.)

4.37 Different termination arguments

The following TRS is one of the shortest systems to demonstrate the use of
modularity.

flc(s(z),y)) — flc(z,s(y)))
g(c(z,s(y))) — glc(s(z),y))

Without modularity results, termination of this system cannot be proved by
path orderings like LPO or RPO that are amenable to automation and a termina-
tion proof with polynomial orderings fails, too. (The reason for the latter is that
if [f] is the polynomial corresponding to a function f, then lim,_,[c|(z, [s](z)) —
[c]([s](x), z) is co or —oo. But then (for large enough arguments) the inequalities
corresponding to either the first or the second rule are not satisfied.) By Cor. 16
however, it suffices to prove termination of the two one-rule subsystems. Their
termination can easily be verified (e.g., by using LPO and comparing subterms
left-to-right for the first rule, whereas for the second rule they are compared
right-to-left).

While termination of the above TRS could also be proved by existing mod-
ularity criteria (as it was split into subsystems with disjoint defined symbols),
adding a third rule turns it into a hierarchical combination which is no proper
extension and not oblivious.

f(c(s(x), y)) = f(c(z,5(y)))
g(c(z,s(y))) = glc(s(z),v))
g(s(f(2))) — g(f(z))

Using Cor. 15 for the innermost termination proof, termination of R¢ (the
f-rule) is proved with LPO (comparing subterms left-to-right). For the R;-con-
straints we eliminate the arguments of f and use LPO comparing subterms right-
to-left.

References

[AG97a] T. Arts and J. Giesl. Automatically proving termination where simplification order-
ings fail. In Proceedings of the 7th International Joint Conference on the Theory and
Practice of Software Development, TAPSOFT-97, volume 1214 of Lecture Notes in
Computer Science, pages 261-272, Lille, France, 1997. Springer Verlag, Berlin.

68

[AGI97b] T. Arts and J. Giesl. Proving innermost normalisation automatically. In Proceedings

[AG98]

[AG00]

[Art00]

[Bac87]
[BLSS]
[BL90]

[BM79]
[BNOS]

of the 8th International Conference on Rewriting Techniques and Applications, RTA-
97, volume 1232 of Lecture Notes in Computer Science, pages 157-171, Sitges, Spain,
1997. Springer Verlag, Berlin.

T. Arts and J. Giesl. Modularity of termination using dependency pairs. In Proceedings
of the 9th International Conference on Rewriting Techniques and Applications, RTA-98,
volume 1379 of Lecture Notes in Computer Science, pages 226-240, Tsukuba, Japan,
1998. Springer Verlag, Berlin.

T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. Theoretical
Computer Science, 236:133-178, 2000.

T. Arts. System description: The dependency pair method. In Proceedings of the 11th
International Conference on Rewriting Techniques and Applications, RTA-00, volume
1833 of Lecture Notes in Computer Science, pages 261-264, Norwich, England, 2000.
Springer Verlag, Berlin.

L. Bachmair. Proof methods for equational theories. PhD thesis, University of Illinois,
Urbana-Champaign (Illinois), 1987.

F. Bellegarde and P. Lescanne. Termination proofs based on transformation techniques.
Technical report, Centre de Recherche en Informatique de Nancy, Nancy, France, 1988.
F. Bellegarde and P. Lescanne. Termination by completion. Applicable Algebra in
Engineering, Communication and Computing, 1:79-96, 1990.

R. S. Boyer and J S. Moore. A Computational Logic. Academic Press, 1979.

F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,
1998.

[CIM99] CiME 2, 1999. Pre-release available at http://www.lri.fr/"demons/cime-2.0.html.

[Der79]
[Der87]

[Der93]

[DHY5]

[DJYO]

[Dro89)

[Fer95]

[FZ93]

[FZ95]

[GAO1]

N. Dershowitz. A note on simplification orderings. Information Processing Letters,
9(5):212-215, 1979.

N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation, 3(1-2):69—
116, 1987.

N. Dershowitz. 33 examples of termination. In Term Rewriting, Proceedings Spring
School of Theoretical Computer Science, volume 909 of Lecture Notes in Computer
Science, pages 16-27, Font Romeux, France, 1993. Springer Verlag, Berlin.

N. Dershowitz and C. Hoot. Natural termination. Theoretical Computer Science,
142(2):179-207, 1995.

N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In Formal Models and Seman-
tics, volume B of Handbook of Theoretical Computer Science, pages 243-320. North-
Holland, 1990.

K. Drosten. Termersetzungssysteme: Grundlagen der Prototyp-Generierung algebrai-
scher Spezifikationen. Springer Verlag, Berlin, Berlin, 1989.

M. Ferreira. Termination of Term Rewriting, Well-foundedness, Totality and Trans-
formations. PhD thesis, Utrecht University, PO Box 80.089, 3508 TB Utrecht, The
Netherlands, 1995.

M. Ferreira and H. Zantema. Total termination of term rewriting. In Proceedings of
the 5th Conference on Rewrite Techniques and Applications, RTA-93, volume 690 of
Lecture Notes in Computer Science, pages 213—227, Montreal, Canada, 1993. Springer
Verlag, Berlin.

M. Ferreira and H. Zantema. Dummy elimination: Making termination easier. In
Proceedings of the 10th International Conference on Fundamentals of Computation
Theory, FCT-95, volume 965 of Lecture Notes in Computer Science, pages 243—-252,
Dresden, Germany, 1995. Springer Verlag, Berlin.

J. Giesl and T. Arts. Verification of Erlang processes by dependency pairs. Applicable
Algebra in Engineering, Communication, and Computing, 12(1-2):39-72, 2001.

[GAOO1] J. Giesl, T. Arts, and E. Ohlebusch. Modular termination proofs for rewriting using

[Gee91]

dependency pairs. Submitted to the Journal of Symbolic Computation, 2001.
M. Geerling. Termination of term rewriting systems. Master’s thesis, Utrecht Univer-
sity, PO Box 80.089, 3508 TB Utrecht, The Netherlands, 1991.

69

[Ges00] A. Geser. Note on normalizing, non-terminating one-rule string rewriting systems.
Theoretical Computer Science, 243:489-498, 2000.

[Gie95] J. Giesl. Automatisierung von Terminierungsbeweisen fir rekursiv definierte Algorith-
men. DISKI 96. Infix Verlag, 1995. Doctoral Dissertation, TH Darmstadt, Germany.

[Gie97] J. Giesl. Termination of nested and mutually recursive algorithms. Journal of Auto-
mated Reasoning, 19:1-29, 1997.

[GMO00] J. Giesl and A. Middeldorp. Eliminating dummy elimination. In Proceedings of the
17th International Conference on Automated Deduction, CADE-17, volume 1831 of
Lecture Notes in Artificial Intelligence, pages 309-323, Pittsburgh, PA, USA, 2000.
Springer Verlag, Berlin.

[GOO00] J. Giesl and E. Ohlebusch. Pushing the frontiers of combining rewrite systems far-
ther outwards. In Proceedings of the Second International Workshop on Frontiers of
Combining Systems, FroCoS-98, volume 7 of Studies in Logic and Computation, pages
141-160, Amsterdam, The Netherlands, 2000. Research Studies Press, John Wiley &
Sons.

[HH82] G. Huet and J.-M. Hullot. Proofs by induction in equational theories with constructors.
Journal of Computer and System Sciences, 25:239-299, 1982.

[HL78] G. Huet and D. Lankford. On the uniform halting problem for term rewriting systems.
Technical Report 283, INRIA, Le Chesnay, France, 1978.

[Klo92] J. W. Klop. Term rewriting systems. In Background: Computational Structures, vol-
ume 2 of Handbook of Logic in Computer Science, pages 1-116. Oxford University
Press, New York, 1992.

[KNT99] K. Kusakari, M. Nakamura, and Y. Toyama. Argument filtering transformation. In
Proceedings of the First International Conference on Principles and Practice of Declar-
ative Programming, PPDP-99, volume 1702 of Lecture Notes in Computer Science,
pages 48-62, Paris, France, 1999. Springer Verlag, Berlin.

[MA96] D. McAllester and K. Arkoudas. Walther recursion. In Proceedings of the 13th In-
ternational Conference on Automated Deduction, CADE-138, volume 1104 of Lecture
Notes in Computer Science, pages 643—657, New Brunswick, NJ, USA, 1996. Springer
Verlag, Berlin.

[MZ97] A. Middeldorp and H. Zantema. Simple termination of rewrite systems. Theoretical
Computer Science, 175:127—-158, 1997.

[OCMO00] E. Ohlebusch, C. Claves, and C. Marché. TALP: A tool for the termination analysis
of logic programs. In Proceedings of the 11th International Conference on Rewrit-
ing Techniques and Applications, RTA-00, volume 1833 of Lecture Notes in Computer
Science, pages 270-273, Norwich, England, 2000. Springer Verlag, Berlin.

[Ohl01] E. Ohlebusch. Termination of logic programs: transformational methods revisited.
Applicable Algebra in Engineering, Communication, and Computing, 12(1-2):73-1186,
2001.

[Pla86] D. A. Plaisted. A simple non-termination test for the Knuth-Bendix method. In
Proceedings of the 8th International Conference on Automated Deduction, volume 230
of Lecture Notes in Computer Science, pages 79-88, Oxford, England, 1986. Springer
Verlag, Berlin.

[Ste95a] J. Steinbach. Automatic termination proofs with transformation orderings. In Pro-
ceedings of the 6th International Conference on Rewriting Techniques and Applica-
tions, RTA-95, volume 914 of Lecture Notes in Computer Science, pages 11-25, Kaiser-
slautern, Germany, 1995. Springer Verlag, Berlin. Full Version appeared as Technical
Report SR-92-23, Universitat Kaiserslautern, Germany, 1992.

[Ste95b] J. Steinbach. Simplification orderings: History of results. Fundamenta Informaticae,
24:47-87, 1995.

[Toy87] Y. Toyama. Counterexamples to the termination for the direct sum of term rewriting
systems. Information Processing Letters, 25:141-143, 1987.

[Wal91] C. Walther. Automatisierung von Terminierungsbeweisen. Vieweg Verlag, Braun-
schweig, 1991.

70

[Wal94] C. Walther. On proving the termination of algorithms by machine. Artificial Intelli-

gence, 71(1):101-157, 1994.
[Zan95] H. Zantema. Termination of term rewriting by semantic labelling. Fundamenta Infor-

maticae, 24:89-105, 1995.

71

72

Aachener Informatik-Berichte

This is a list of recent technical reports. To obtain copies of technical reports
please consult http://aib.informatik.rwth-aachen.de/ or send your request
to: Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen,
Email: biblioQinformatik.rwth-aachen.de

95-11 * M. Staudt / K. von Thadden: Subsumption Checking in Knowledge
Bases

95-12 * G.V. Zemanek / H.W. Nissen / H. Hubert / M. Jarke: Requirements
Analysis from Multiple Perspectives: Experiences with Conceptual Mod-
eling Technology

95-13 * M. Staudt / M. Jarke: Incremental Maintenance of Externally Material-
ized Views

95-14 * P. Peters / P. Szczurko / M. Jeusfeld: Business Process Oriented Infor-
mation Management: Conceptual Models at Work

95-15* S. Rams / M. Jarke: Proceedings of the Fifth Annual Workshop on
Information Technologies & Systems

95-16 * W. Hans / St. Winkler / F. Sdenz: Distributed Execution in Functional
Logic Programming

96-1 * Jahresbericht 1995

96-2 M. Hanus / Chr. Prehofer: Higher-Order Narrowing with Definitional
Trees

96-3 * W. Scheufele / G. Moerkotte: Optimal Ordering of Selections and Joins
in Acyclic Queries with Expensive Predicates

96-4 K. Pohl: PRO-ART: Enabling Requirements Pre-Traceability

96-5 K. Pohl: Requirements Engineering: An Overview

96-6 * M. Jarke / W. Marquardt: Design and Evaluation of Computer—Aided
Process Modelling Tools

96-7 O. Chitil: The ¢-Semantics: A Comprehensive Semantics for Functional
Programs

96-8 * S. Sripada: On Entropy and the Limitations of the Second Law of Ther-
modynamics

96-9 M. Hanus (Ed.): Proceedings of the Poster Session of ALP’96 — Fifth
International Conference on Algebraic and Logic Programming

96-10 R. Conradi / B. Westfechtel: Version Models for Software Configuration
Management

96-11 * C. Weise / D. Lenzkes: A Fast Decision Algorithm for Timed Refinement

96-12 * R. Domges / K. Pohl / M. Jarke / B. Lohmann / W. Marquardt: PRO-
ART/CE* — An Environment for Managing the Evolution of Chemical
Process Simulation Models

96-13 * K. Pohl / R. Klamma / K. Weidenhaupt / R. Démges / P. Haumer /
M. Jarke: A Framework for Process-Integrated Tools

73

96-14 *

96-15 *

96-16 *

96-17
96-18

96-19 *

96-20

96-21 *

96-22 *
96-23 *
97-01
97-02
97-03
97-04
97-05 *
97-06
97-07
97-08
97-09
97-10
97-13
97-14

97-15

98-01 *

R. Gallersdorfer / K. Klabunde / A. Stolz / M. Efmajor: INDIA — Intel-
ligent Networks as a Data Intensive Application, Final Project Report,
June 1996

H. Schimpe / M. Staudt: VAREX: An Environment for Validating and
Refining Rule Bases

M. Jarke / M. Gebhardt, S. Jacobs, H. Nissen: Conflict Analysis Across
Heterogeneous Viewpoints: Formalization and Visualization

M. Jeusfeld / T. X. Bui: Decision Support Components on the Internet
M. Jeusfeld / M. Papazoglou: Information Brokering: Design, Search and
Transformation

P. Peters / M. Jarke: Simulating the impact of information flows in
networked organizations

M. Jarke / P. Peters / M. Jeusfeld: Model-driven planning and design
of cooperative information systems

G. de Michelis / E. Dubois / M. Jarke / F. Matthes / J. Mylopoulos
/ K. Pohl / J. Schmidt / C. Woo / E. Yu: Cooperative information
systems: a manifesto

S. Jacobs / M. Gebhardt, S. Kethers, W. Rzasa: Filling HTML forms
simultaneously: CoWeb architecture and functionality

M. Gebhardt / S. Jacobs: Conflict Management in Design
Jahresbericht 1996

J. Faassen: Using full parallel Boltzmann Machines for Optimization
A. Winter / A. Schiirr: Modules and Updatable Graph Views for PRO-
grammed Graph REwriting Systems

M. Mohnen / S. Tobies: Implementing Context Patterns in the Glasgow
Haskell Compiler

S. Gruner: Schemakorrespondenzaxiome unterstiitzen die paargramma-
tische Spezifikation inkrementeller Integrationswerkzeuge

M. Nicola / M. Jarke: Design and Evaluation of Wireless Health Care
Information Systems in Developing Countries

P. Hofstedt: Taskparallele Skelette fir irregular strukturierte Probleme
in deklarativen Sprachen

D. Blostein / A. Schiirr: Computing with Graphs and Graph Rewriting
C.-A. Krapp / B. Westfechtel: Feedback Handling in Dynamic Task Nets
M. Nicola / M. Jarke: Integrating Replication and Communication in
Performance Models of Distributed Databases

M. Mohnen: Optimising the Memory Management of Higher-Order
Functional Programs

R. Baumann: Client/Server Distribution in a Structure-Oriented Data-
base Management System

G. H. Botorog: High-Level Parallel Programming and the Efficient Im-
plementation of Numerical Algorithms

Jahresbericht 1997

74

98-02

98-03

98-04 *

98-05

98-07

98-08 *

98-09 *

98-10 *

98-11 *

98-12 *

98-13

99-01 *
99-02 *

99-03 *
99-04

99-07
99-08
2000-01 *
2000-02
2000-04

2000-05 *
2000-06 *

2000-07 *

S. Gruner/ M. Nagel / A. Schiirr: Fine-grained and Structure-oriented
Integration Tools are Needed for Product Development Processes

S. Gruner: Einige Anmerkungen zur graphgrammatischen Spezifikation
von Integrationswerkzeugen nach Westfechtel, Janning, Lefering und
Schiirr

O. Kubitz: Mobile Robots in Dynamic Environments

M. Leucker / St. Tobies: Truth — A Verification Platform for Distributed
Systems

M. Arnold / M. Erdmann / M. Glinz / P. Haumer / R. Knoll / B.
Paech / K. Pohl / J. Ryser / R. Studer / K. Weidenhaupt: Survey on
the Scenario Use in Twelve Selected Industrial Projects

H. Aust: Sprachverstehen und Dialogmodellierung in natiirlichsprach-
lichen Informationssystemen

Th. Lehmann: Geometrische Ausrichtung medizinischer Bilder am
Beispiel intraoraler Radiographien

M. Nicola / M. Jarke: Performance Modeling of Distributed and Repli-
cated Databases

A. Schleicher / B. Westfechtel / D. Jager: Modeling Dynamic Software
Processes in UML

W. Appelt / M. Jarke: Interoperable Tools for Cooperation Support
using the World Wide Web

K. Indermark: Semantik rekursiver Funktionsdefinitionen mit Strikt-
heitsinformation

Jahresbericht 1998

F. Huch: Verifcation of Erlang Programs using Abstract Interpretation
and Model Checking — Extended Version

R. Gallersdorfer / M. Jarke / M. Nicola: The ADR Replication Manager
M. Alpuente / M. Hanus / S. Lucas / G. Vidal: Specialization of Func-
tional Logic Programs Based on Needed Narrowing

Th. Wilke: CTL+ is exponentially more succinct than CTL

0. Matz: Dot-Depth and Monadic Quantifier Alternation over Pictures
Jahresbericht 1999

Jens Voge / Marcin Jurdziriski: A Discrete Strategy Improvement Algo-
rithm for Solving Parity Games

Andreas Becks, Stefan Sklorz, Matthias Jarke: Exploring the Semantic
Structure of Technical Document Collections: A Cooperative Systems
Approach

Mareike Schoop: Cooperative Document Management

Mareike Schoop, Christoph Quix (Ed.): Proceedings of the Fifth Interna-
tional Workshop on the Language-Action Perspective on Communication
Modelling

Markus Mohnen / Pieter Koopman (Eds.): Proceedings of the 12th In-
ternational Workshop of Functional Languages

75

2000-08 Thomas Arts / Thomas Noll: Verifying Generic Erlang Client-Server
Implementations

2001-01 * Jahresbericht 2000

2001-02 Benedikt Bollig / Martin Leucker: Deciding LTL over Mazurkiewicz
Traces

2001-03 Thierry Cachat: The power of one-letter rational languages

2001-04 Benedikt Bollig / Martin Leucker / Michael Weber: Local Parallel Model
Checking for the Alternation free p-calculus

2001-05 Benedikt Bollig / Martin Leucker / Thomas Noll: Regular MSC lan-
guages

2001-06 Achim Blumensath: Prefix-Recognisable Graphs and Monadic Second-
Order Logic

2001-07 Martin Grohe / Stefan Wohrle: An Existential Locality Theorem

* These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

76

