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Abstract. The framework of dependency pairs allows automated ter-

mination and innermost termination proofs for many TRSs where such

proofs were not possible before. In this paper we present a re�nement of

this framework in order to prove termination in a modular way. Our mod-

ularity results signi�cantly increase the class of term rewriting systems

where termination resp. innermost termination can be proved automat-

ically. Moreover, the modular approach to dependency pairs yields new

modularity criteria which extend previous results in this area consider-

ably. In particular, existing results for modularity of innermost termina-

tion can easily be obtained as direct consequences of our new criteria.

1 Introduction

Termination is one of the most important properties of a term rewriting system

(TRS). While in general this problem is undecidable [HL78], several methods for

proving termination have been developed (for surveys see e.g. [Der87, Ste95b,

DH95]). However, most methods that are amenable to automation are restricted

to the generation of simpli�cation orderings and there exist numerous important

TRSs whose termination cannot be proved by orderings of this restricted class.

For that reason we developed the framework of dependency pairs [AG96,

AG97a, AG97b] which allows to apply the standard methods for termination

proofs to such TRSs where they failed up to now. In this way, termination of

many (also non-simply terminating) systems could be proved automatically.

When proving termination, one bene�ts from modularity results that ensure

termination of the whole TRS as soon as it is proved for parts of the TRS. The

aim of this paper is to re�ne the dependency pair approach in order to allow

modular termination proofs using dependency pairs.

Toyama [Toy87] showed that termination is not modular for the direct sum,

i.e. the partition of a TRS into subsystems with disjoint signatures. Barendregt

and Klop (adapted by Toyama [Toy87]) and Drosten [Dro89] even gave coun-

terexamples where the subsystems are both complete (con
uent and terminat-

ing). But for TRSs of a special form termination is in fact a modular property

?
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for direct sums [Rus87, Mid89, Gra94, TKB95, SMP95]. For a survey see e.g.

[Mid90, Ohl94, Gra96a].

However, a TRS often cannot be split into subsystems with disjoint signa-

tures. Therefore, other partitions have also been considered. In many cases it is

desirable to have at least constructors in common in both parts. For the sub-

class of constructor systems, termination is modular provided that both parts

are complete and have disjoint sets of de�ned symbols [MT93]. This result can

also be generalized to overlay systems [Gra95]. Simple termination is modular

for TRSs with shared constructors and disjoint de�ned symbols [KO92] and this

result can be extended to composable TRSs [MZ97].

Nevertheless, in practice these results often cannot be applied for automated

termination proofs. For example, many systems are hierarchical combinations

of TRSs that have not only constructors in common, but where one subsystem

contains de�ned symbols of the other subsystem. Termination is only proved

modular for hierarchical combinations of several restricted forms [Der94, FJ95].

The modularity results for innermost termination are less restrictive than

those for termination. Innermost termination is modular for direct sums and

for TRSs with shared constructors [Gra95], for composable constructor systems

[MT93], for composable TRSs [Ohl95], and for proper extensions [KR95], which

are a special class of hierarchical combinations. As innermost termination implies

termination for several classes of TRSs [Gra95, Gra96b], these results can also be

used for termination proofs of such systems. In particular, this holds for locally

con
uent overlay systems (and in particular for non-overlapping TRSs).

In this paper we show that the modular approach using dependency pairs

extends previous modularity results and we demonstrate that in our framework

the existing modularity results for innermost termination of TRSs with shared

constructors, for composable TRSs, and for proper extensions are obtained as

easy consequences.

In Sect. 2 we present the dependency pair approach and introduce a new

termination criterion which allows to use this framework in a modular way. Sim-

ilarly, in Sect. 3 we present a modular approach for innermost termination proofs

using dependency pairs. As shown in Sect. 4, these results imply new modularity

criteria (which can also be used independent from the dependency pair tech-

nique). In Sect. 5 we give a comparison with related work and demonstrate that

our results extend existing criteria for modularity of innermost termination. We

conclude in Sect. 6 and give a collection of examples to demonstrate the power

of our results in Sect. 7.

2 Modular Termination with Dependency Pairs

In [AG97a] we introduced the dependency pair technique to prove termina-

tion automatically. In this section we brie
y recapitulate its basic concepts and

present a new modular approach for automated termination proofs.

In the following, the root of a term f(: : :) is the leading function symbol f . For

a TRS R with the rules R over a signature F , D = froot(l)jl ! r 2 Rg is the set

of the de�ned symbols and C = FnD is the set of constructors of R. To stress the
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splitting of the signature we denote a TRS by R(D;C;R). For example consider

the following TRS with the constructors s and c and the de�ned symbol f.

f(x; c(y)) ! f(x; s(f(y; y)))

f(s(x); y) ! f(x; s(c(y)))

Most methods for automated termination proofs are restricted to simpli�-

cation orderings [Der87, Ste95b]. Hence, these methods cannot prove termina-

tion of TRSs like the one above, as f(x; c(s(x))) can be reduced to the term

f(x; s(f(x; s(c(s(x)))))) where it is embedded in.

In contrast to previous approaches we do not compare left- and right-hand

sides of rules, but we only compare left-hand sides with those subterms that

may possibly start a new reduction. Hence, we only focus on those subterms of

right-hand sides which have a de�ned root symbol.

More precisely, if f(s

1

; : : : ; s

n

) rewrites to C[g(t

1

; : : : ; t

m

)] (where g is a de-

�ned symbol and C is some context), then we only compare the argument tuples

s

1

; : : : ; s

n

and t

1

; : : : ; t

m

. To avoid the handling of tuples, a new tuple symbol

F 62 F is introduced for every de�ned symbol f in D. Instead of comparing

tuples, now the terms F (s

1

; : : : ; s

n

) and G(t

1

; : : : ; t

m

) are compared. To ease

readability we assume that the signature F consists of lower case function sym-

bols only and denote the tuple symbols by the corresponding upper case symbols.

De�nition 1 (Dependency Pair). Let R(D;C;R) be a term rewriting sys-

tem. If f(s

1

; : : : ; s

n

) ! C[g(t

1

; : : : ; t

m

)] is a rewrite rule of R with g 2 D, then

hF (s

1

; : : : ; s

n

); G(t

1

; : : : ; t

m

)i is a dependency pair of R.

In the above example we obtain the following dependency pairs:

hF(x; c(y));F(x; s(f(y; y)))i (1)

hF(x; c(y));F(y; y)i (2)

hF(s(x); y);F(x; s(c(y)))i: (3)

To trace newly introduced redeces in a reduction, we consider special se-

quences of dependency pairs. Here, the right-hand side of every dependency pair

corresponds to the redex traced. The reductions from instantiations of the right-

hand sides to instantiations of left-hand sides of consecutive dependency pairs

are used to contract the arguments of redeces.

De�nition 2 (Chain). LetR be a TRS. A sequence of dependency pairs hs

1

; t

1

i

hs

2

; t

2

i : : : is an R-chain if there exists a substitution �, such that t

j

�!

�

R

s

j+1

�

holds for every two consecutive pairs hs

j

; t

j

i and hs

j+1

; t

j+1

i in the sequence.

We always assume that di�erent (occurrences of) dependency pairs have

disjoint sets of variables and we always regard substitutions whose domains may

be in�nite. Hence, in our example we have the chain

hF(x

1

; c(y

1

));F(y

1

; y

1

)i hF(x

2

; c(y

2

));F(y

2

; y

2

)i hF(x

3

; c(y

3

));F(y

3

; y

3

)i;

as F(y

1

; y

1

)�!

�

R

F(x

2

; c(y

2

))� and F(y

2

; y

2

)�!

�

R

F(x

3

; c(y

3

))� hold for the sub-

stitution � replacing y

1

and x

2

by c(c(y

3

)) and both y

2

and x

3

by c(y

3

). In fact
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hF(x; c(y));F(y; y)i hF(s(x); y);F(x; s(c(y)))i

hF(x; c(y));F(x; s(f(y; y)))i

Fig. 1. The estimated dependency graph in our example.

any �nite sequence of the dependency pair (2) is a chain. As proved in [AG97a],

absence of in�nite chains is a su�cient and necessary criterion for termination.

Theorem3 (Termination Criterion). A TRS R is terminating if and only

if there exists no in�nite R-chain.

Some dependency pairs can never occur twice in any chain and hence, they

need not be considered when proving that no in�nite chain exists. Recall that

a dependency pair hv; wi may only follow hs; ti in a chain if t� reduces to v�

for some substitution �. For a term t with a constructor root symbol c, t� can

only be reduced to terms which have the same root symbol c. If the root symbol

of t is de�ned, then this does not give us any direct information about those

terms t� can be reduced to. Let cap(t) result from replacing all subterms of t

that have a de�ned root symbol by di�erent new variables and let ren(t) result

from replacing all variables in t by di�erent fresh variables. Then, to determine

whether hv; wi can follow hs; ti in a chain, we check whether ren(cap(t)) uni�es

with v. Here, the function ren is needed to rename multiple occurrences of the

same variable x in t, because when instantiated with �, two occurrences of x�

could reduce to di�erent terms.

So for instance we have ren(cap(F(y; y))) = ren(F(y; y)) = F(y

1

; y

2

) and

ren(cap(F(x; s(f(y; y))))) = ren(F(x; s(z))) = F(x

1

; s(z

1

)). Hence, (1) can never

follow itself in a chain, because F(x

1

; s(z

1

)) does not unify with F(x; c(y)). To es-

timate which dependency pairs may occur consecutive, the estimated dependency

graph has been introduced, cf. [AG97a].

De�nition 4 (Estimated Dependency Graph). The estimated dependency

graph of a TRS R is the directed graph whose nodes are the dependency pairs

and there is an arc from hs; ti to hv; wi if ren(cap(t)) and v are uni�able.

In our example, we obtain the estimated dependency graph in Fig. 1. As

usual, a subset P of dependency pairs is called a cycle if for any two dependency

pairs hs; ti; hv; wi 2 P there is a path from hs; ti to hv; wi and from hv; wi to hs; ti

in the estimated dependency graph. (In particular, there must also be a path

from hs; ti to itself for every hs; ti 2 P). In our example we have two non-empty

cycles, viz. f(2)g and f(3)g.

Using the estimated dependency graph, we develop a newmodular re�nement

of Thm. 3. In the following we always restrict ourselves to �nite TRSs. Then

any in�nite chain corresponds to a cycle. Dependency pairs that do not occur

on cycles (such as (1)) can be ignored. Hence, it su�ces to prove that there is

no in�nite chain from any cycle.
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Theorem5 (Modular Termination Criterion). A TRS R is terminating if

and only if for each cycle P in the estimated dependency graph there exists no

in�nite R-chain of dependency pairs from P.

Proof. The `only if' direction is a direct consequence of Thm. 3. For the other

direction, suppose that R is not terminating. Then by Thm. 3 there exists an

in�nite R-chain. As R is �nite, there are only �nitely many dependency pairs

and hence, one dependency pair occurs in�nitely many times in the chain (up to

renaming of the variables). Thus the in�nite chain has the form : : : hs�

1

; t�

1

i : : :

hs�

2

; t�

2

i : : : hs�

3

; t�

3

i : : : ; where �

1

; �

2

; �

3

; : : : are renamings. Hence, the tail

hs�

1

; t�

1

i : : : hs�

2

; t�

2

i : : : is an in�nite R-chain which consists of dependency

pairs from one cycle in the estimated dependency graph only. ut

By the above theorem we can prove termination of a TRS in a modular way,

because the absence of in�nite chains can be proved separately for every cycle.

For each cycle P , we generate a set of inequalities such that the existence of

well-founded quasi-orderings

1

�

P

satisfying these inequalities is su�cient for the

absence of in�nite chains. For that purpose we have to ensure that the depen-

dency pairs from P are decreasing w.r.t. �

P

. More precisely, for any sequence

of dependency pairs hs

1

; t

1

ihs

2

; t

2

ihs

3

; t

3

i : : : from P and for any substitution �

with t

j

�!

�

R

s

j+1

� (for all j) we demand

s

1

� �

P

t

1

� �

P

s

2

� �

P

t

2

� �

P

s

3

� �

P

t

3

� �

P

: : : ;

and for at least one hs; ti 2 P we demand the strict inequality s� >

P

t�. Then

there exists no chain of dependency pairs from P which traverses all dependency

pairs in P in�nitely many times.

In the following we restrict ourselves to weakly monotonic quasi-orderings�

P

where both �

P

and its strict part >

P

are closed under substitution. (A quasi-

ordering �

P

is weakly monotonic if s �

P

t implies f(: : : s : : :) �

P

f(: : : t : : :).)

Then, to guarantee t

j

� �

P

s

j+1

� whenever t

j

�!

�

R

s

j+1

� holds, it is su�cient

to demand l � r for all rewrite rules l! r of the TRS. Moreover, s

j

�

P

t

j

resp.

s

j

>

P

t

j

ensures s

j

� �

P

t

j

� resp. s

j

� >

P

t

j

� for all substitutions �.

Theorem6 (Modular Termination Proofs). A TRS R(D;C;R) is termi-

nating if for each cycle P in the estimated dependency graph there exists a well-

founded weakly monotonic quasi-ordering �

P

where both �

P

and >

P

are closed

under substitution, such that

� l �

P

r for all rules l! r in R,

� s �

P

t for all dependency pairs from P, and

� s >

P

t for at least one dependency pair from P.

Proof. Suppose there exists an in�nite R-chain of dependency pairs from a cycle

P . Without loss of generality let P be minimal, i.e. if P contains a cycle P

0

as

proper subset, then there is no in�nite chain of dependency pairs from P

0

.

1

A quasi-ordering �

P

is a re
exive and transitive relation and �

P

is called well-

founded if its strict part >

P

is well founded.
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For one dependency pair hs; ti 2 P we have the strict inequality s >

P

t. Due

to the minimality of P , hs; ti occurs in�nitely many times in the chain (up to

variable renaming), i.e. the chain has the form

hv

1;1

w

1;1

i : : : hv

1;n

1

w

1;n

1

i hs�

1

; t�

1

i hv

2;1

w

2;1

i : : : hv

2;n

2

w

2;n

2

i hs�

2

; t�

2

i : : : ;

where �

1

; �

2

; : : : are renamings. Hence, there exists a substitution � such that

w

i;j

�!

�

R

v

i;j+1

�, w

i;n

i

�!

�

R

s�

i

�, and t�

i

�!

�

R

v

i+1;1

�. As l �

P

r holds for all

rules of R and as �

P

is weakly monotonic, we have !

�

R

��

P

. Moreover, all

dependency pairs from P are weakly decreasing. Thus, we obtain

v

1;1

� �

P

w

1;1

� �

P

: : : v

1;n

1

� �

P

w

1;n

1

� �

P

s�

1

� >

P

t�

1

� �

P

v

2;1

� �

P

w

2;1

� �

P

: : : v

2;n

2

� �

P

w

2;n

2

� �

P

s�

2

� >

P

t�

2

� �

P

: : :

But this is a contradiction to the well-foundedness of >

P

. Hence, no in�nite

chain of dependency pairs from P exists and by Thm. 5, R is terminating. ut

With this theorem, termination of our example can easily be proved au-

tomatically. After computing the estimated dependency graph in Fig. 1, two

quasi-orderings �

1

;�

2

have to be generated which satisfy

f(x; c(y)) �

1

f(x; s(f(y; y))) (4)

f(s(x); y) �

1

f(x; s(c(y))) (5)

F(x; c(y)) >

1

F(y; y) (6)

f(x; c(y)) �

2

f(x; s(f(y; y))) (7)

f(s(x); y) �

2

f(x; s(c(y))) (8)

F(s(x); y) >

2

F(x; s(c(y))): (9)

Note that in contrast to direct termination proofs, here we only need weakly

monotonic quasi-orderings�

1

;�

2

. Hence, before synthesizing a suitable ordering

some of the arguments of function symbols may be eliminated. For instance, in

the inequalities (4) - (6) one may eliminate the second argument of the function

symbol f. Then every term f(s; t) in the inequalities is replaced by f

0

(s) (where

f

0

is a new unary function symbol). So instead of (4) we obtain the inequality

f

0

(x) �

1

f

0

(x). By comparing the terms resulting from this replacement (instead

of the original terms) we can take advantage of the fact that f does not have to be

strongly monotonic in its second argument. Now the inequalities resulting from

(4) - (6) are satis�ed by the lexicographic path ordering (lpo) where subterms are

compared right-to-left [KL80]. For the inequalities (7) - (9) we again delete the

second argument of f. Then these inequalities are also satis�ed by the lpo (with

the precedence F . s;F . c), but this time subterms are compared left-to-right.

Note that there exist only �nitely many (and only few) possibilities to eliminate

arguments of function symbols. Therefore all these possibilities can be checked

automatically. As path orderings like the lpo can also be generated automatically,

this enables a fully automatic termination proof of our TRS, whereas a direct

termination proof with simpli�cation orderings was not possible.

So Thm. 6 allows us to use di�erent quasi-orderings to prove the absence

of chains for di�erent cycles. In our example, this is essential for the termina-

tion proof, because there exists no quasi-simpli�cation ordering satisfying all

inequalities (4) - (9) (not even after elimination of arguments). Hence, without

our modularity result, an automated termination proof for this example fails.
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3 Modular Innermost Termination with Dependency Pairs

In [AG97b] we showed that the dependency pair approach can also be modi�ed in

order to verify innermost termination automatically. Unlike previous methods,

this technique can also prove innermost termination of non-terminating systems

automatically. Similar to the preceding section, our technique for innermost ter-

mination proofs can also be used in a modular way. As an example consider the

following TRS (inspired by [Toy87]):

f(x; c(x); c(y)) ! f(y; y; f(y; x; y))

f(s(x); y; z) ! f(x; s(c(y)); c(z))

f(c(x); x; y) ! c(y)

g(x; y) ! x

g(x; y) ! y

By applying the �rst f-rule to f(x; c(x); c(g(x; c(x)))), we obtain an in�nite (cy-

cling) reduction. However, it is not an innermost reduction, because this term

contains a redex g(: : :) as a proper subterm. It turns out that the TRS is not

terminating, but it is innermost terminating.

To develop a criterion for innermost termination similar to the termination

criterion of Sect. 2, we have to restrict the notion of chains. Since we now consider

innermost reductions, arguments of a redex must be in normal form before the

redex is contracted. Therefore we demand that all instantiated left-hand sides

s

j

� of dependency pairs have to be normal. Moreover, the reductions of the

arguments to normal forms must be innermost reductions (denoted by `

i

!').

De�nition 7 (Innermost Chain). Let R be a TRS. A sequence of depen-

dency pairs hs

1

; t

1

i hs

2

; t

2

i : : : is an innermost R-chain if there exists a substitu-

tion �, such that all s

j

� are in normal form and t

j

�

i

!

�

R

s

j+1

� holds for every

two consecutive pairs hs

j

; t

j

i and hs

j+1

; t

j+1

i in the sequence.

Of course, every innermost chain is also a chain, but not vice versa. In our

example, we have the following dependency pairs.

hF(x; c(x); c(y));F(y; y; f(y; x; y))i (10)

hF(x; c(x); c(y));F(y; x; y)i (11)

hF(s(x); y; z);F(x; s(c(y)); c(z))i (12)

The in�nite sequence consisting of the dependency pair (10) is an in�nite

chain, but no innermost chain, because F(y

1

; y

1

; f(y

1

; x

1

; y

1

))� can only reduce

to F(x

2

; c(x

2

); c(y

2

))� for substitutions � where y

1

� is not a normal form. In

[AG97b], we proved that absence of in�nite innermost chains is a su�cient and

necessary criterion for innermost termination.

Theorem8 (Innermost Termination Criterion). A TRS R is innermost

terminating if and only if there exists no in�nite innermost R-chain.

Analogous to Sect. 2, we introduce the estimated innermost dependency

graph to approximate whether a dependency pair hv; wi can follow hs; ti in an

innermost chain. Again we replace subterms in t with de�ned root symbols by

new variables and check whether this modi�cation of t uni�es with v, but in

7



contrast to Sect. 2 we do not have to rename multiple occurrences of the same

variable. The reason is that we restrict ourselves to normal substitutions �, i.e.

all variables x are instantiated with normal forms and therefore, occurrences

of x� cannot be reduced. Hence, there is no arc from (10) to itself, because

cap(F(y

1

; y

1

; f(y

1

; x

1

; y

1

))) = F(y

1

; y

1

; z) does not unify with F(x

2

; c(x

2

); c(y

2

)).

Furthermore, we also demand that the most general uni�er of cap(t) and v

instantiates the left-hand sides s and v to normal forms.

De�nition 9 (Estimated Innermost Dependency Graph). The estimated

innermost dependency graph of a TRS R is the directed graph whose nodes are

the dependency pairs and there is an arc from hs; ti to hv; wi if cap(t) and v are

uni�able by a most general uni�er � such that s� and v� are normal forms.

In the estimated innermost dependency graph of our example, there are arcs

from (11) to each dependency pair and there are arcs from (10) to (12) and from

(12) to itself. Hence, the only non-empty cycles are f(11)g and f(12)g. Analogous

to Thm. 5 one can show that it su�ces to prove the absence of in�nite innermost

chains separately for every cycle.

Theorem10 (Modular Innermost Termination Criterion). A TRS R is

innermost terminating i� for each cycle P in the estimated innermost dependency

graph there exists no in�nite innermost R-chain of dependency pairs from P.

To prove innermost termination in a modular way, we again generate a set of

inequalities for every cycle P and search for a well-founded quasi-ordering �

P

satisfying them. However, to ensure t� �

P

v� whenever t� reduces to v�, we

do not have to demand l �

P

r for all rules of the TRS any more. As we restrict

ourselves to normal substitutions �, not all rules are usable in a reduction of t�.

For example, no rule can be used to reduce a normal instantiation of F(y; x; y),

because F is no de�ned symbol. In general, if t contains a de�ned symbol f , then

all f -rules are usable and moreover, all rules that are usable for right-hand sides

of f -rules are also usable for t.

De�nition 11 (Usable Rules). Let R(D;C;R) be a TRS. For any symbol f

let Rls

R

(f) = fl! r 2 R j root(l) = fg. For any term we de�ne the usable rules:

� U

R

(x) = ;,

� U

R

(f(t

1

; : : : ; t

n

)) = Rls

R

(f) [

S

l!r2Rls

R

(f)

U

R

0

(r) [

S

n

j=1

U

R

0

(t

j

),

where R

0

= R nRls

R

(f). Moreover, for any set of dependency pairs P we de�ne

U

R

(P) =

S

hs;ti2P

U

R

(t).

So we have U

R

(F(y; y; f(y; x; y))) = Rls

R

(f) and U

R

(f(11)g) = U

R

(f(12)g) =

;, i.e. there are no usable rules for the cycles. Note that Rls

R

(f) = ; for any

constructor f . Now our theorem for automatic

2

modular veri�cation of innermost

termination can be proved analogous to Thm. 6.

2

Additional re�nements for the automated checking of our innermost termination

criterion can be found in [AG97b].
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Theorem12 (Modular Innermost Termination Proofs). A TRS R(D;C;

R) is innermost terminating if for each cycle P in the estimated innermost

dependency graph there exists a well-founded weakly monotonic quasi-ordering

�

P

where both �

P

and >

P

are closed under substitution, such that

� l �

P

r for all rules l! r in U

R

(P),

� s �

P

t for all dependency pairs from P, and

� s >

P

t for at least one dependency pair from P.

In this way, we obtain the following constraints for our example:

F(x; c(x); c(y)) >

1

F(y; x; y) F(s(x); y; z) >

2

F(x; s(c(y)); c(z)):

For >

1

we may use the lpo comparing subterms right-to-left and for >

2

we may

use the lpo comparing subterms left-to-right. Hence, innermost termination of

this example can easily be proved automatically. Without our modularity result,

this proof would not be possible, because there exists no simpli�cation ordering

satisfying both inequalities (not even after elimination of arguments).

4 Modularity Criteria

In this section we present two corollaries of our results from the preceding sec-

tions which are particularly useful in practice. Moreover, these corollaries also

allow a comparison with existing modularity results, as will be shown in Sect. 5.

4.1 Hierarchical Combinations

A straightforward corollary of Thm. 10 and 12 can be obtained for hierarchical

combinations. Two term rewriting systems R

0

(D

0

; C

0

; R

0

) and R

1

(D

1

; C

1

; R

1

)

form a hierarchical combination if D

0

\D

1

= C

0

\D

1

= ;, i.e. de�ned symbols

of R

0

may occur as constructors in R

1

, but not vice versa. As an example

consider the following TRS. Here, nil denotes the empty list and n�x represents

the insertion of a number n into a list x, where `n�m�x' abbreviates `n�(m�x)'.

The function sum(x; y) adds all elements of x to the �rst element of y, i.e.

sum(n

0

�n

1

� : : : �n

k

�nil;m�y) = (m +

P

k

i=0

n

i

)�y. The function weight computes

the weighted sum, i.e. weight(n

0

�n

1

� : : : �n

k

�nil) = n

0

+

P

k

i=1

i n

i

.

sum(s(n)�x;m�y) ! sum(n�x; s(m)�y)

sum(0�x; y) ! sum(x; y)

sum(nil; y) ! y

weight(n�m�x) ! weight(sum(n�m�x; 0�x))

weight(n�nil) ! n

Let R

0

consist of the three sum-rules and let R

1

be the system consisting of

the two weight-rules. Then these two systems form a hierarchical combination,

where sum is a de�ned symbol of R

0

and a constructor of R

1

.

Note that tuple symbols in dependency pairs of R

0

do not occur in left-

hand sides of R

1

-dependency pairs. Hence, a cycle in the estimated innermost

9



dependency graph either consists of R

0

-dependency pairs or of R

1

-dependency

pairs only. So in our example, every cycle either contains just SUM- or just

WEIGHT-dependency pairs. Thus, we obtain the following corollary.

Corollary 13 (Innermost Termination for Hierarchical Combinations).

Let R be the hierarchical combination of R

0

(D

0

; C

0

; R

0

) and R

1

(D

1

; C

1

; R

1

).

(a) R is innermost terminating i� R

0

is innermost terminating and there exists

no in�nite innermost R-chain of R

1

-dependency pairs.

(b) R is innermost terminating if R

0

is innermost terminating and if there exists

a well-founded weakly monotonic quasi-ordering � where both � and > are

closed under substitution, such that for all dependency pairs hs; ti of R

1

� l � r for all rules l! r in U

R

0

[R

1

(t) and

� s > t.

Proof. The corollary is a direct consequence of Thm. 10 and 12, since for any

dependency pair hs; ti of R

0

the only rules that can be used to reduce a normal

instantiation of t are the rules from R

0

(i.e. U

R

0

[R

1

(t) � R

0

). ut

(Innermost) termination of the sum-system (R

0

) is easily proved (e.g. by the

lpo with the precedence sum . � and sum . s). For the weight-subsystem (R

1

)

we obtain the following constraints. (Note that hWEIGHT(: : :); SUM(: : :)i is no

dependency pair of R

1

, since sum 62 D

1

.)

sum(s(n)�x;m�y) � sum(n�x; s(m)�y)

sum(0�x; y) � sum(x; y)

sum(nil; y) � y

WEIGHT(n�m�x) >WEIGHT(sum(n�m�x; 0�x))

After eliminating the �rst arguments of sum and `�', the inequalities are also

satis�ed by the lpo, but now we have to use the precedence � . sum.

In this way, innermost termination of this example can be proved automat-

ically. Moreover, as the system is non-overlapping, this also proves its termina-

tion. Note that this system is not simply terminating and without modularity, no

quasi-simpli�cation ordering would have satis�ed the constraints resulting from

the dependency pair approach (even when using elimination of arguments).

A corollary like Cor. 13 can also be formulated for termination instead of

innermost termination, because in the termination case there cannot be a cycle

consisting of dependency pairs from both R

0

and R

1

either. But in contrast

to the innermost termination case, rules of R

1

can be used to reduce instanti-

ated right-hand sides of R

0

-dependency pairs (as we cannot restrict ourselves

to normal substitutions then). Hence, to prove the absence of in�nite R

0

-chains

we have to use a quasi-ordering where the rules of R

1

are also weakly decreas-

ing. Therefore, the constraints for the termination proof of the sum and weight-

example (according to Sect. 2) are not satis�ed by any quasi-simpli�cation order-

ing amenable to automation, whereas the constraints for innermost termination

are ful�lled by such an ordering. Hence, for non-overlapping systems, it is always

advantageous to verify termination by proving innermost termination only.

10



4.2 Splitting into Subsystems

The modularity results presented so far were all used in the context of depen-

dency pairs. However, the classical approach to modularity is to split the TRS

under consideration into subsystems and to prove (innermost) termination of

these subsystems separately. The following corollary of Thm. 10 shows that the

consideration of cycles in the estimated innermost dependency graph can also be

used to decompose the original TRS into modular subsystems. In the following,

letO(P) denote the origin of the dependency pairs in P , i.e.O(P) is a set of those

rules where the dependency pairs of P stem from

3

. So for the innermost terminat-

ing example of Sect. 3 we have O(f(11)g) = ff(x; c(x); c(y))! f(y; y; f(y; x; y))g

and O(f(12)g) = ff(s(x); y; z)! f(x; s(c(y)); c(z))g.

Corollary 14 (Modularity for Subsystems). Let R(D;C;R) be a TRS, let

P

1

; : : : ;P

n

be the cycles in its estimated innermost dependency graph, and let

R

j

(D

j

; C

j

; R

j

) be subsystems of R such that U

R

(P

j

) [ O(P

j

) � R

j

(for all j 2

f1; : : :; ng). If R

1

; : : : ;R

n

are innermost terminating, then R is also innermost

terminating.

Proof. As P

j

is a cycle, every dependency pair from P

j

is an R

j

-dependency

pair. (The reason is that for every

4

hF (s); G(t)i 2 P

j

there is also a dependency

pair hG(v); H(w)i 2 P

j

. Hence, g must be a de�ned symbol of R

j

.) Now the

corollary is a direct consequence of Thm. 10, because every innermost R-chain

of dependency pairs from P

j

is also an innermost R

j

-chain. ut

For instance, in the example of Sect. 3 we only have two non-empty cycles,

viz. f(11)g and f(12)g. As these dependency pairs have no de�ned symbols on

their right-hand sides, their sets of usable rules are empty. Hence, to prove inner-

most termination of the whole system, by Cor. 14 it su�ces to prove innermost

termination of the two one-rule subsystems f(x; c(x); c(y))! f(y; y; f(y; x; y)) and

f(s(x); y; z)! f(x; s(c(y)); c(z)).

In fact, both subsystems are even terminating as can easily be proved auto-

matically. For the �rst system one can use a polynomial interpretation mapping

f(x; y; z) to x+y+z and c(x) to 5x+1 [Lan79]. Methods for the automated gener-

ation of polynomial orderings have for instance been developed in [Ste94, Gie95].

For the second system one can use the lpo.

Hence, the modularity criterion of Cor. 14 allows the use of well-known simpli-

�cation orderings for innermost termination proofs of non-terminating systems,

because it guarantees that innermost termination of the two simply terminating

subsystems is su�cient for innermost termination of the original TRS.

A similar splitting is also possible for the example in Sect. 2. In particular,

if we modify the TRS into a non-overlapping one

f(x; c(y)) ! f(x; s(f(y; y)))

f(s(x); s(y)) ! f(x; s(c(s(y))));

3

If a dependency pair of P may stem from several rules, then it is su�cient if O(P)

just contains one of them.

4

Here, s and t denote tuples of terms s

1

; : : : ; s

n

and t

1

; : : : ; t

m

respectively.

11



then Cor. 14 allows to conclude termination of the whole system from termi-

nation of the two one-rule subsystems. Their termination can be proved by the

lpo, but for the �rst rule one needs the precedence c . s and c . f, whereas for

the second rule the precedence f . s and f . c is required. Hence, termination of

this non-simply terminating example is implied by termination of its two simply

terminating subsystems.

5 Comparison with Related Work

In this section we show that existing modularity results for innermost termina-

tion can be obtained as easy consequences of our criteria and that our criteria

extend these previously developed results. Sect. 5.1 focuses on composable TRSs

and Sect. 5.2 gives a comparison with results on hierarchical combinations.

5.1 Shared Constructors and Composable TRSs

By the framework of the previous sections we can easily prove that innermost

termination is modular for composable TRSs [Ohl95] and hence also for TRSs

with disjoint sets of de�ned symbols and shared constructors [Gra95]. Two TRSs

R

0

(D

0

; C

0

; R

0

) andR

1

(D

1

; C

1

; R

1

) are composable if C

0

\D

1

= C

1

\D

0

= ; and

if both systems contain all rewrite rules that de�ne a de�ned symbol whenever

that symbol is shared, i.e. fl ! r j root(l) 2 D

0

\D

1

g � R

0

\ R

1

: Now Cor. 14

implies the following result of Ohlebusch [Ohl95].

Theorem15 (Modularity for Composable TRSs). Let R

0

(D

0

; C

0

; R

0

) and

R

1

(D

1

; C

1

; R

1

) be composable TRSs. If R

0

and R

1

are innermost terminating,

then R

0

[ R

1

is also innermost terminating.

Proof. Let hF (s); G(t)i be a dependency pair of R

0

[R

1

. If f 2 D

0

, then there

exists a rule f(t)!C[g(t)] in R

0

. (This rule cannot be from R

1

n R

0

, because

R

0

and R

1

are composable.) Hence, g 2 D

0

, because constructors of R

0

are no

de�ned symbols of R

1

. Similarly, f 2 D

1

implies g 2 D

1

. So any dependency

pair of R

0

[ R

1

is an R

0

-dependency pair or an R

1

-dependency pair.

Moreover, there can only be an arc from hF (s); G(t)i to a dependency pair of

the form hG(v); H(w)i. Hence, if hF (s); G(t)i is anR

j

-dependency pair, then g 2

D

j

and therefore, hG(v); H(w)i is also an R

j

-dependency pair (for j 2 f0; 1g).

So every cycle P in the estimated innermost dependency graph of R

0

[R

1

either

consists of R

0

-dependency pairs or of R

1

-dependency pairs only.

If P only containsR

0

-dependency pairs, then R

0

is a superset of U

R

0

[R

1

(P)[

O(P), as the de�ned symbols of R

1

n R

0

do not occur as constructors in R

0

.

Similarly, for a set P of R

1

-dependency pairs, we have U

R

0

[R

1

(P)[O(P) � R

1

.

Hence by Cor. 14, R

0

[R

1

is innermost terminating if R

0

and R

1

are innermost

terminating. ut

So this modularity criterion for composable TRSs is a direct consequence

of Cor. 14. However, our results extend modularity to a much larger class of

TRSs, e.g. they also allow a splitting into non-composable subsystems which

share de�ned symbols as demonstrated in Sect. 4.2.

12



5.2 Proper Extensions

Krishna Rao [KR95] proved that innermost termination is modular for a certain

form of hierarchical combinations, viz. so-called proper extensions. In this section

we show that this is also a direct consequence of our results.

For a TRS R(D;C;R), the dependency relation �

d

is the smallest quasi-

ordering satisfying the condition f �

d

g whenever there is a rewrite rule f(: : :)!

C[g(: : :)] 2 R. So f �

d

g holds if the function f depends on the de�nition of g.

Now the de�ned symbols D

1

of R

1

are split in two sets D

0

1

and D

1

1

, where

D

0

1

contains all de�ned symbols which depend on a de�ned symbol of R

0

.

De�nition 16 (Proper Extension, [KR95]). LetR

0

(D

0

; C

0

; R

0

) andR

1

(D

1

;

C

1

; R

1

) form a hierarchical combination. The set D

1

is split into two sets

� D

0

1

= ff jf 2 D

1

; f �

d

g for some g 2 D

0

g and

� D

1

1

= D

1

nD

0

1

.

Then R

1

is a proper extension of R

0

if each rewrite rule l ! r 2 R

1

satis�es

the following condition: For every subterm t of r, if root(t) 2 D

0

1

and root(t) �

d

root(l), then t contains no symbols from D

0

[D

0

1

below its root position.

For instance, in the sum and weight-example from Sect. 4.1 we have D

0

=

fsumg, D

0

1

= fweightg (because weight depends on the de�nition of sum), and

D

1

1

= ;. Note that this example is no proper extension, because there is a weight-

rule where the D

0

-symbol sum occurs below the D

0

1

-symbol weight. Thus, in a

proper extension functions depending on R

0

are never called within a recursive

call of R

1

-functions. Cor. 13 and 14 imply the following result of [KR95].

Theorem17 (Modularity for Proper Extensions). Let R

1

(D

1

; C

1

; R

1

) be

a proper extension of R

0

(D

0

; C

0

; R

0

). The TRS R

0

[R

1

is innermost terminat-

ing if R

0

and R

1

are innermost terminating.

Proof. Similar to Cor. 13, as R

0

and R

1

form a hierarchical combination, every

cycle in the innermost dependency graph of R

0

[ R

1

consists solely of R

0

-

dependency pairs or of R

1

-dependency pairs. If a cycle P consists of dependency

pairs of R

0

, we have U

R

0

[R

1

(P) [ O(P) � R

0

, because dependency pairs of R

0

do not contain any de�ned symbols of R

1

.

Otherwise, the cycle P consists of R

1

-dependency pairs. If hF (s); G(t)i is an

R

1

-dependency pair, then there exists a rule f(s)!C[g(t)] in R

1

and f; g 2 D

1

.

In addition, we have f �

d

g and g �

d

f (as P is a cycle).

If g 2 D

1

1

, then f also belongs to D

1

1

, hence no de�ned symbol of D

0

[ D

0

1

occurs in t. Otherwise, if g 2 D

0

1

, then by de�nition of a proper extension again

all de�ned symbols in t are from D

1

1

. Thus, in both cases, all de�ned symbols of

U

R

0

[R

1

(G(t)) belong to D

1

1

. Hence, U

R

0

[R

1

(G(t)) is a subsystem of R

1

.

So for any cycle P of R

1

-dependency pairs, we have U

R

0

[R

1

(P) [ O(P) �

R

1

. Hence, by Cor. 14 innermost termination of R

0

and R

1

implies innermost

termination of R

0

[ R

1

. ut
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Thus, modularity of innermost termination for proper extensions is a conse-

quence of Cor. 13 and 14. On the other hand, as demonstrated by the sum and

weight-example, our results signi�cantly extend the class of TRSs where inner-

most termination can be proved in a modular way. In particular, we can also

handle hierarchical combinations where R

1

contains de�ned symbols of R

0

in

the arguments of its recursive calls. Such systems occur frequently in practice.

Another modularity criterion for hierarchical combinations is due to Der-

showitz [Der94]. Here, occurrences ofD

0

-symbols in recursive calls ofD

1

-symbols

are allowed, but only if R

1

is oblivious of the R

0

-rules, i.e. termination of R

1

must not depend on theR

0

-rules. However, this criterion is not applicable for the

sum and weight-example, because termination of the weight-rules in fact depends

on the result of sum(n�m�x; 0�x).

An alternative modularity result for hierarchical combinations was presented

by Fernandez and Jouannaud [FJ95]. However, their result is restricted to sys-

tems where the arguments of recursive calls in R

1

decrease w.r.t. the subterm

relation (compared as multisets or lexicographically). Hence, their result is not

applicable to the sum and weight-example either.

6 Conclusion

In this paper we introduced a re�nement of the dependency pair approach in

order to perform termination and innermost termination proofs in a modular

way. This re�nement allows automated termination and innermost termination

proofs for many TRSs where such proofs were not possible before, cf. Sect. 7. We

showed that our new modularity results extend previous results for modularity

of innermost termination. Due to the framework of dependency pairs, we also

obtain easy proofs for existing non-straightforward modularity theorems.

7 Examples

This section contains a collection of examples to illustrate the power of our

modularity results. The following examples are TRSs, where an (innermost) ter-

mination proof without modularity is provably impossible with quasi-simpli�ca-

tion orderings (or, in some examples, at least with the standard path orderings

amenable to automation), whereas with our modularity results (innermost) ter-

mination can easily be veri�ed automatically.

But in addition, there exist numerous examples where the (innermost) ter-

mination proof with the dependency pair approach may also succeed without

modularity, but where our modularity results can be used to ease the search

for a quasi-ordering satisfying the resulting constraints. For example, to prove

termination of the non-simply terminating TRS

minus(x; 0) ! x

minus(s(x); s(y)) ! minus(x; y)
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quot(0; s(y)) ! 0

quot(s(x); s(y)) ! s(quot(minus(x; y); s(y)));

instead of using the dependency pair approach directly, one could apply Cor. 13.

The subsystem consisting of the two minus-rules is simply terminating (this can

for instance be proved by the recursive path ordering (rpo)). For the quot-system

we only obtain the constraints

minus(x; 0) � x

minus(s(x); s(y)) � minus(x; y)

QUOT(s(x); s(y)) > QUOT(minus(x; y); s(y)):

After eliminating the second argument of minus they are satis�ed by the rpo

again. A collection of more than 75 such examples where (innermost) termi-

nation can be proved automatically by the dependency pair approach can be

found in [AG97c]. Most of these examples are hierarchical combinations that

are no proper extensions, i.e. our modularity results can be used to ease their

(innermost) termination proofs, whereas previous modularity results cannot be

applied. This collection includes TRSs from di�erent areas of computer science

(e.g. arithmetical operations such as mod, gcd, logarithm, average, sorting algo-

rithms such as minimum sort and quicksort, algorithms on graphs and trees, etc.)

and several other well-known non-simply terminating TRSs from the literature

(e.g. from [Der87, DH95, Ste95a]).

7.1 An Overlapping System

The following TRS is the leading example of Sect. 2.

f(x; c(y)) ! f(x; s(f(y; y)))

f(s(x); y) ! f(x; s(c(y)))

The system is not simply terminating, as we have the following reduction:

f(x; c(s(x)))!

R

f(x; s(f(s(x); s(x))))!

R

f(x; s(f(x; s(c(s(x)))))):

However, f(x; c(s(x))) is embedded in f(x; s(f(x; s(c(s(x)))))). So termination can-

not be proved directly by any simpli�cation ordering. Hence, in order to use a

quasi-simpli�cation ordering for the (automated) termination proof, one has to

apply the dependency pair approach.

However, the constraints obtained without using our modularity results in-

clude F(x; c(y)) > F(y; y) and F(s(x); y) > F(x; s(c(y))). Before applying tech-

niques for the synthesis of quasi-simpli�cation orderings, we may �rst eliminate

arguments of function symbols. This is due to the fact that we only need a weakly

monotonic ordering satisfying the constraints generated. However, in this exam-

ple we cannot eliminate the arguments of s or c. Then no simpli�cation ordering

satis�es the above constraints, as they imply

F(x; c(s(x))) > F(s(x); s(x)) > F(x; s(c(s(x)))):
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But by using our modularity result of Thm. 6 we can search for two di�erent

orderings satisfying the constraints resulting from the two di�erent (non-empty)

cycles of the estimated dependency graph, cf. Fig. 1.

f(x; c(y)) �

1

f(x; s(f(y; y)))

f(s(x); y) �

1

f(x; s(c(y)))

F(x; c(y)) >

1

F(y; y)

f(x; c(y)) �

2

f(x; s(f(y; y)))

f(s(x); y) �

2

f(x; s(c(y)))

F(s(x); y) >

2

F(x; s(c(y))):

After deleting the second argument of f, for �

1

we can use the lpo comparing

subterms right-to-left and for �

2

we can use the lpo comparing subterms left-

to-right.

Note that the system is overlapping (and not locally con
uent). Hence, we

cannot prove termination by verifying innermost termination, but we really have

to use Thm. 6 for the termination proof instead.

7.2 A Non-Overlapping System

The following system is a non-overlapping variant of the preceding one, which

can be obtained by replacing y in the second rule by s(y) (cf. Sect. 4.2).

f(x; c(y)) ! f(x; s(f(y; y)))

f(s(x); s(y)) ! f(x; s(c(s(y))))

Again the system is not simply terminating (we have the same reduction as in Ex.

7.1). Similar to the preceding example, an automatic termination or innermost

termination proof without modularity fails, because the resulting constraints

imply F(x; c(s(x))) > F(x; s(c(s(x)))), which is not satis�ed by any simpli�cation

ordering.

In this example, we obtain the estimated dependency graph in Fig. 2 (which

is identical to the estimated innermost dependency graph).

This example is non-overlapping and hence, we can prove termination by

verifying innermost termination. For that purpose we may use Cor. 14. As the

sets of usable rules are empty for both dependency pairs hF(x; c(y));F(y; y)i

and hF(s(x); s(y));F(x; s(c(s(y))))i, we can split the original TRS into the two

subsystems consisting of one of the rules respectively. Now termination of

f(x; c(y))! f(x; s(f(y; y)))

is proved using the lexicographic or the recursive path ordering with precedence

c . s and c . f. Termination of

f(s(x); s(y))! f(x; s(c(s(y))))

is proved using the lexicographic path ordering with precedence f . s and f . c. In

this way, the two simply terminating subsystems imply termination of the whole

(non-simply terminating) TRS.
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hF(s(x); s(y));F(x; s(c(s(y))))i

hF(x; c(y));F(x; s(f(y; y)))i hF(x; c(y));F(y; y)i

Fig. 2. The estimated (innermost) dependency graph in Ex. 7.2.

7.3 An Innermost Terminating System

The following system combines the preceding examples with the well-known

example of Toyama [Toy87], cf. Sect. 3.

f(x; c(x); c(y)) ! f(y; y; f(y; x; y))

f(s(x); y; z) ! f(x; s(c(y)); c(z))

f(c(x); x; y) ! c(y)

g(x; y) ! x

g(x; y) ! y

The system is not terminating as can be seen from the following in�nite

(cycling) reduction.

f(x; c(x); c(g(x; c(x)))) !

R

f(g(x; c(x)); g(x; c(x)); f(g(x; c(x)); x; g(x; c(x)))) !

�

R

f(x; c(x); f(c(x); x; g(x; c(x)))) !

R

f(x; c(x); c(g(x; c(x)))) !

R

: : :

However, this is not an innermost reduction, because the �rst term contains the

redex g(: : :) as a proper subterm.

Similar to the preceding example, we can use Cor. 14 for the innermost ter-

mination proof. The estimated innermost dependency graph only contains two

non-empty cycles consisting of hF(x; c(x); c(y));F(y; x; y)i and hF(s(x); y; z);

F(x; s(c(y)); c(z))i respectively. (In this example, the estimated innermost de-

pendency graph is not identical to the estimated dependency graph, because in

the latter there would also be an arc from hF(x; c(x); c(y));F(y; y; f(y; x; y))i to

itself.)

As both cycles consist of dependency pairs without usable rules, it su�ces

to prove innermost termination of the two one-rules systems consisting of the
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�rst and the second rule respectively. In fact, these subsystems are even simply

terminating. For

f(x; c(x); c(y))! f(y; y; f(y; x; y))

one can use a polynomial interpretation mapping f(x; y; z) to x+ y+ z and c(x)

to 5x+ 1 and for

f(s(x); y; z)! f(x; s(c(y)); c(z))

one can use the lpo with the precedence f . s and f . c. Hence, Cor. 14 allows us

to split a non-terminating, but innermost terminating system into two simply

terminating subsystems.

Note that without our modularity result, no simpli�cation ordering would

satisfy the resulting constraints F(x; c(x); c(y)) > F(y; x; y) and F(s(x); y; z) >

F(x; s(c(y)); c(z)). The reason is that one cannot eliminate the arguments of c

or s, and hence, these constraints imply

F(x; c(x); c(s(x))) > F(s(x); x; s(x)) > F(x; s(c(x)); c(s(x))):

7.4 Sum and Weight

The following TRS computes the weighted sum of a list (see Sect. 4.1 for a

detailed description).

sum(s(n)�x;m�y) ! sum(n�x; s(m)�y)

sum(0�x; y) ! sum(x; y)

sum(nil; y) ! y

weight(n�m�x) ! weight(sum(n�m�x; 0�x))

weight(n�nil) ! n

The system is a hierarchical combination of the sum-rules (R

0

) and the

weight-rules (R

1

). Note that it is not a proper extension and R

1

is not oblivious

of R

0

. Moreover, the TRS is obviously not simply terminating. Its estimated

dependency graph (which is identical to the estimated innermost dependency

graph) is sketched in Fig. 3.
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hWEIGHT(n�m�x);WEIGHT(sum(n�m�x; 0�x))i

hWEIGHT(n�m�x); SUM(n�m�x; 0�x)i

hSUM(s(n)�x;m�y); SUM(n�x; s(m)�y)i hSUM(0�x; y); SUM(x; y)i

Fig. 3. The estimated (innermost) dependency graph in Ex. 7.4.
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As the TRS is non-overlapping, it su�ces to prove innermost termination.

However, without modularity, the resulting constraints would not be satis�ed

by any quasi-simpli�cation ordering: Due to the constraint SUM(s(n)�x;m�y) >

SUM(n�x; s(m)�y), neither the argument of s nor the �rst argument of `�' can be

eliminated. As we cannot eliminate all arguments of sum (due to the constraint

sum(nil; y) � y), the constraints sum(s(n)�x;m�y) � sum(n�x; s(m)�y) enforces

that the �rst argument of summay not be deleted either. ButWEIGHT(n�m�x) >

WEIGHT(sum(n�m�x; : : :)) does not hold for any quasi-simpli�cation ordering.

Termination of the sum and weight-example can be proved by Cor. 13. The

sum-subsystem (R

0

) is terminating (this can be proved by the lpo with the

precedence sum . � and sum . s). For the weight-subsystem (R

1

) we obtain the

constraints

sum(s(n)�x;m�y) � sum(n�x; s(m)�y)

sum(0�x; y) � sum(x; y)

sum(nil; y) � y

WEIGHT(n�m�x) >WEIGHT(sum(n�m�x; 0�x));

which are also satis�ed by the lpo after deleting the �rst arguments of sum and

`�'. This time we have to use the precedence � . sum.

Note that the constraints for termination (according to Sect. 2) are not satis-

�ed by any quasi-simpli�cation ordering amenable to automation, i.e. this exam-

ple shows that proving innermost termination is essentially easier than proving

termination. The reason is that for the cycle consisting of hSUM(s(n)�x;m�y);

SUM(n�x; s(m)�y)i, we would obtain constraints which also demand that the

weight-rules are weakly decreasing. Similar to the above argumentation (when

we showed why modularity was necessary in this example), sum's �rst argument

cannot be deleted. Due to weight(n�nil) � n, the argument of weight cannot

be deleted either. But then weight(n�m�x) � weight(sum(n�m�x; 0�x)) is not

satis�ed by any quasi-simpli�cation ordering amenable to automation. (It is ob-

viously not satis�ed by any path ordering amenable to automation and it is not

satis�ed by any polynomial ordering with natural coe�cients either. The reason

for the latter is that sum depends on both arguments. Hence, the polynomial

corresponding to sum(x; y) has monomials where x and y occur and therefore

(for x; y � 1), sum(x; y) is mapped to a number which is at least as large as the

sum of the numbers corresponding to x and to y. In particular, then the number

corresponding to sum(x; y) is strictly greater than the number corresponding to

x.)

7.5 Renaming in the Lambda Calculus (Simpli�ed Variant)

The following TRS is a shortened and simpli�ed variant of a system for renaming

in the lambda calculus. The full system is presented in Ex. 7.6.
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f(0) ! true

f(1) ! false

f(s(x)) ! f(x)

if(true; x; y) ! x

if(false; x; y) ! y

g(s(x); s(y)) ! if(f(x); s(x); s(y))

g(x; c(y)) ! g(x; g(s(c(y)); y))

The system is not simply terminating, as the left-hand side of the last rule

is embedded in its right-hand side. As it is non-overlapping, it is su�cient to

prove innermost termination only. For that purpose we need modularity results,

because otherwise we would have

G(x; c(s(x))) > G(x; g(s(c(s(x))); s(x))) � G(x; if(: : : ; s(c(s(x))); : : :))

and neither the argument of s nor the second argument of if can be eliminated.

The system is a hierarchical combination (but not a proper extension). Hence,

we can prove innermost termination by Cor. 13. Termination of R

0

(the f- and

if-rules) can for instance be veri�ed by the rpo. For R

1

(the g-rules) we obtain

the following constraints after eliminating the arguments of s and f:

f

0

� true

f

0

� false

f

0

� f

0

if(true; x; y) � x

if(false; x; y) � y

g(s

0

; s

0

) � if(f

0

; s

0

; s

0

)

g(x; c(y)) � g(x; g(s

0

; y))

G(x; c(y)) > G(x; g(s

0

; y))

G(x; c(y)) > G(s

0

; y):

These inequalities are satis�ed by the rpo using the precedence f

0

. true,

f

0

. false, g . if, g . f

0

, c . g, c . s

0

.

7.6 Renaming in the Lambda Calculus

The following system is a variant of an algorithm from [MA96]. The purpose

of the function ren(x; y; t) is to replace every free occurrence of the variable x

in the term t by the variable y. If the substitution of x by y should be applied

to a lambda term lambda(z; t) (which represents �z:t), then we �rst apply an

�-conversion step to lambda(z; t), i.e. we rename z to a new variable (which is

di�erent from x or y and which does not occur in lambda(z; t)). Subsequently,

the renaming of x to y is applied to the resulting term. For that reason in this

TRS there is a nested recursive call of the function ren.
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Variables are represented by var(l) where l is a list of terms. Therefore, the

variable var(x�y�lambda(z; t)�nil) is distinct from x and y and from all variables

occurring in lambda(z; t).

and(true; y)! y

and(false; y)! false

eq(nil; nil)! true

eq(t�l; nil)! false

eq(nil; t�l)! false

eq(t�l; t

0

�l

0

)! and(eq(t; t

0

); eq(l; l

0

))

eq(var(l); var(l

0

))! eq(l; l

0

)

eq(var(l); apply(t; s))! false

eq(var(l); lambda(x; t)) ! false

eq(apply(t; s); var(l))! false

eq(apply(t; s); apply(t

0

; s

0

))! and(eq(t; t

0

); eq(s; s

0

))

eq(apply(t; s); lambda(x; t)) ! false

eq(lambda(x; t); var(l))! false

eq(lambda(x; t); apply(t; s))! false

eq(lambda(x; t); lambda(x

0

; t

0

))! and(eq(x; x

0

); eq(t; t

0

))

if(true; var(k); var(l

0

))! var(k)

if(false; var(k); var(l

0

))! var(l

0

)

ren(var(l); var(k); var(l

0

))! if(eq(l; l

0

); var(k); var(l

0

))

ren(x; y; apply(t; s))! apply(ren(x; y; t); ren(x; y; s))

ren(x; y; lambda(z; t))! lambda(var(x�y�lambda(z; t)�nil);

ren(x; y; ren(z; var(x�y�lambda(z; t)�nil); t)))

Let R

0

consist of all rules but the last three ren-rules, and let R

1

be the

ren-subsystem. Then this TRS is a hierarchical combination of R

0

and R

1

. The

TRS is not simply terminating as the left-hand side of the last rule is embedded

in its right-hand side, but it is non-overlapping. Hence, Cor. 13 can be used for

the termination proof.

Termination of R

0

can for instance be proved by the rpo. To complete the

termination proof, we have to �nd a quasi-ordering such that all rules are weakly

decreasing and such that the following strict inequalities are satis�ed:

REN(x; y; apply(t; s)) > REN(x; y; t)

REN(x; y; apply(t; s)) > REN(x; y; s)

REN(x; y; lambda(z; t)) > REN(x; y; ren(z; var(x�y�lambda(z; t)�nil); t))

REN(x; y; lambda(z; t)) > REN(z; var(x�y�lambda(z; t)�nil); t):

A well-founded ordering satisfying these constraints can easily be synthesized

automatically. For instance, one can use the following polynomial interpretation
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where REN(x; y; t) is mapped to t, ren(x; y; t) is also mapped to t, lambda(x; t)

is mapped to t + 1, apply(t; s) is mapped to t + s + 1, and(x; y) is mapped to

y, and where nil, var(l), true, false, eq(t; s), and if(x; y; z) are all mapped to the

constant 0.

Note that the modularity result of Cor. 13 is essential for this termination

proof. If termination of the whole system would have to be proved at once,

then the resulting inequalities would not be satis�ed by any quasi-simpli�cation

ordering. The reason is that due to EQ(var(l); var(l

0

)) > EQ(l; l

0

) the argument

of var cannot be deleted. Hence, (as if's second argument cannot be deleted

either), ren(var(l); var(k); var(l

0

)) � if(eq(l; l

0

); var(k); var(l

0

)) enforces that ren

must depend on its second argument. Moreover, due to EQ(t�l; t

0

�l

0

) > EQ(t; t

0

),

the �rst argument of `�' cannot be eliminated. But the inequality

REN(x; y; lambda(z; t)) > REN(x; y; ren(z; var(x�y�lambda(z; t)�nil); t))

is not satis�ed by any quasi-simpli�cation ordering.

The simpli�ed system of Ex. 7.5 is obtained from the subsystem

eq(nil; nil)! true

eq(nil; t�l)! false

eq(var(l); var(l

0

))! eq(l; l

0

)

if(true; var(k); var(l

0

))! var(k)

if(false; var(k); var(l

0

))! var(l

0

)

ren(var(l); var(k); var(l

0

))! if(eq(l; l

0

); var(k); var(l

0

))

ren(x; y; lambda(z; t))! lambda(var(x�y�lambda(z; t)�nil);

ren(x; y; ren(z; var(x�y�lambda(z; t)�nil); t)))

by removing the �rst arguments of eq, ren, and lambda, by eliminating the ar-

guments of `�' in the second eq-rule, by replacing var by its arguments in the

if-rules, by deleting a lambda and `unnecessary' arguments of var in the last ren-

rule, and by renaming the variables and function symbols (eq corresponds to f,

nil corresponds to 0, `�' corresponds to 1, var corresponds to s, ren corresponds

to g, and lambda corresponds to c).

7.7 Overlapping Variant

The following system is an overlapping TRS which is also inspired by the pre-

ceding example.

f(0) ! true

f(1) ! false

f(s(x)) ! f(x)

if(true; s(x); s(y)) ! s(x)

if(false; s(x); s(y)) ! s(y)

g(x; c(y)) ! c(g(x; y))

g(x; c(y)) ! g(x; if(f(x); c(g(s(x); y)); c(y)))
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The system is not simply terminating as the last rule is self-embedding. As

it is overlapping (and not locally con
uent), here it is not su�cient to prove

innermost termination only. Without modularity, the automated termination

proof would fail, because the third argument of if and the argument of c can-

not be eliminated. But no quasi-simpli�cation ordering satis�es G(x; c(y)) >

G(x; if(: : : ; : : : ; c(y))).

There is just one cycle in the estimated dependency graph which contains

an F-dependency pair, viz. fhF(s(x));F(x)ig. Absence of in�nite chains of this

dependency pair can be proved by the rpo, if the arguments of c and g are deleted.

Then all rules are weakly decreasing (using the precedence f.true, f.false, g

0

.c

0

).

For all other cycles one can eliminate the arguments of s, f, and if before using

the rpo.

7.8 Selection Sort

This TRS from [Wal94] is obviously not simply terminating. The TRS can be

used to sort a list by repeatedly replacing the minimum of the list by the head

of the list. It uses replace(n;m; x) to replace the leftmost occurrence of n in the

list x by m. Functions like if

min

are used to encode conditions. They ensure that

conditions are evaluated �rst (to true or to false) and that the corresponding

result is evaluated afterwards. Hence, the �rst argument of if

min

is the condition

that has to be tested and the other argument is the original argument of min.

Further evaluation is only possible after the condition has been reduced to true

or to false.

eq(0; 0) ! true

eq(0; s(m)) ! false

eq(s(n); 0) ! false

eq(s(n); s(m)) ! eq(n;m)

le(0;m) ! true

le(s(n); 0) ! false

le(s(n); s(m)) ! le(n;m)

min(0�nil) ! 0

min(s(n)�nil) ! s(n)

min(n�m�x) ! if

min

(le(n;m); n�m�x)

if

min

(true; n�m�x) ! min(n�x)

if

min

(false; n�m�x) ! min(m�x)

replace(n;m; nil) ! nil

replace(n;m; k�x) ! if

replace

(eq(n; k); n;m; k�x)

if

replace

(true; n;m; k�x) ! m�x

if

replace

(false; n;m; k�x) ! k�replace(n;m; x)
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sort(nil) ! nil

sort(n�x) ! min(n�x)�sort(replace(min(n�x); n; x))

The TRS is non-overlapping and hence, veri�cation of innermost termination

is su�cient. As this is a hierarchical combination (but no proper extension and

not oblivious), we can use Cor. 13.

The TRS R

0

(consisting of all rules but the the last two ones) is innermost

terminating (resp. terminating) as can be proved by the dependency pair ap-

proach. To complete the innermost termination proof we obtain the following

inequality for R

1

:

SORT(n�x) > SORT(replace(min(n�x); n; x)):

Moreover, we have to demand l � r for all rules of R

0

, as all these rules are

usable.

As we only need weakly monotonic orderings, before synthesizing a suitable

ordering, we may �rst eliminate arguments of function symbols. But apart from

eliminating arguments of function symbols, another possibility is to replace func-

tions by one of their arguments. For example, instead of deleting arguments of

replace, one could substitute all terms replace(t

1

; t

2

; t

3

) by the third argument

t

3

. In our example, a suitable elimination is given by

n�x 7! �

0

(x)

s(n) 7! s

0

eq(x; y) 7! eq

0

le(x; y) 7! le

0

replace(x; y; z) 7! z

if

replace

(b; x; y; z) 7! z:

Then the resulting inequalities are satis�ed by the recursive path ordering (where

`�

0

' must be greater than min in the precedence).

Note that without using modularity, no path ordering like the lpo or the

rpo which is amenable to automation would satisfy the resulting constraints.

The reason is that due to EQ(s(n); s(m)) > EQ(n;m), the argument of s can-

not be eliminated and hence, min(s(n)�nil) � s(n) implies that the �rst argu-

ment of `�' cannot be deleted either. Now due to if

replace

(true; n;m; k�x) � m�x,

the third argument of if

replace

cannot be removed. Then replace(n;m; k�x) �

if

replace

(: : : ; n;m; k�x) implies that replace must depend on its second argument

and that replace must be greater than or equal to if

replace

in the precedence, i.e.

replace � if

replace

. As replace depends on its second argument, if

replace

(false; n;m;

k�x) � k�replace(n;m; x) implies if

replace

� �. Hence, we have replace � �. But

then SORT(n�x) > SORT(replace(: : : ; n; x)) does not hold.

24



7.9 Di�erent Termination Arguments, Version 1

The following TRS is one of the shortest systems to demonstrate the use of

modularity.

f(c(s(x); y)) ! f(c(x; s(y)))

g(c(x; s(y))) ! g(c(s(x); y))

Without modularity results, termination of this system cannot be proved

by path orderings like the lpo or the rpo that are amenable to automation

and a termination proof with polynomial orderings fails, too. (The reason for

the latter is that if [f ] is the polynomial corresponding to a function f , then

lim

x!1

[c](x; [s](x)) � [c]([s](x); x) is 1 or �1. But then (for large enough ar-

guments) the inequalities corresponding to either the �rst or the second rule

are not satis�ed.) By Cor. 14 however, it su�ces to prove termination of the

two one-rule subsystems. Their termination can easily be veri�ed (e.g. by using

the lpo and comparing subterms left-to-right for the �rst rule, whereas for the

second rule they are compared right-to-left).

7.10 Di�erent Termination Arguments, Version 2

While termination of the TRS in the preceding example could also be proved by

existing modularity criteria (as it was split into subsystems with disjoint de�ned

symbols), adding a third rule turns it into a hierarchical combination which is

no proper extension and not oblivious.

f(c(s(x); y)) ! f(c(x; s(y)))

g(c(x; s(y))) ! g(c(s(x); y))

g(s(f(x))) ! g(f(x))

Using Cor. 13 for the termination proof, termination of R

0

(the f-rule) is

proved with the lpo (comparing subterms left-to-right). For the R

1

-constraints

we eliminate the arguments of f and use the lpo comparing subterms right-to-left.

7.11 Maximal Cycles

One could think of formulating Thm. 5 (and also the other modularity theorems)

in an alternative way by just considering maximal cycles for modularity. Here,

a cycle P is called maximal if there is no proper superset of P which is also a

cycle. As an example consider the following modi�cation of Ex. 7.9:

f(c(s(x); y)) ! f(c(x; s(y)))

f(c(s(x); s(y))) ! g(c(x; y))

g(c(x; s(y))) ! g(c(s(x); y))

g(c(s(x); s(y))) ! f(c(x; y))
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We obtain the following dependency pairs:

hF(c(s(x); y);F(c(x; s(y)))i (13)

hF(c(s(x); s(y)));G(c(x; y))i (14)

hG(c(x; s(y)));G(c(s(x); y))i (15)

hG(c(s(x); s(y)));F(c(x; y))i (16)

The cycles of the estimated dependency graph are ;; f(13)g; f(15)g; f(14); (16)g;

f(13); (14); (16)g; f(14); (15); (16)g; and f(13); (14); (15); (16)g. So the only max-

imal cycle in this example is f(13); (14); (15); (16)g. A simple way to compute

the set of all maximal cycles is to eliminate all edges and all dependency pairs

in the estimated dependency graph which are not part of any cycle. Then the

remaining unconnected graphs correspond to the maximal cycles.

Now a modi�cation of Thm. 5 would be that a TRS is terminating i� for each

maximal cycle P there exists no in�nite R-chain of dependency pairs from P .

Then, for each subcycle P

0

of P one would have to use the same quasi-ordering

�

P

to prove the absence of in�nite chains from P

0

.

However, to use the same quasi-ordering for all subcycles of the maximal

cycle can be too weak. In our example, all dependency pairs are on the maximal

cycle. However, if one would have to use the same quasi-ordering for all subcycles

of this maximal cycle, then the resulting constraints would not be satis�ed by

any path ordering amenable to automation or by any polynomial ordering.

Due to our modularity result we can prove absence of in�nite chains sepa-

rately for every cycle. We use polynomial orderings where both f(x; y) and g(x; y)

are mapped to 0 and s(x) is mapped to x + 1. For the cycle f(13)g, c(x; y) is

mapped to x, whereas for the cycle f(15)g we map c(x; y) to y. For the other

cycles, c(x; y) is mapped to x+ y. Then these polynomial orderings can be used

to prove absence of in�nite chains for all cycles.

7.12 Di�erent Eliminations, Version 1

The following TRS is also a short example for a system where modularity is

necessary.

f(f(x)) ! f(x)

g(0) ! g(f(0))

The system is not simply terminating and an automated termination proof

using dependency pairs requires the use of our modularity results. The reason is

that due to F(f(x)) > F(x), the argument of f cannot be eliminated and hence,

no quasi-simpli�cation ordering satis�es the constraint G(0) > G(f(0)).

But termination can easily be proved using Cor. 13. The R

0

-system (con-

sisting of the f-rule) is obviously terminating and for the R

1

-constraints the

argument of f is eliminated. Then these constraints are satis�ed by the rpo (us-

ing the precedence 0 . f).
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A similar termination proof is also possible for the TRS

f(f(x)) ! f(x)

f(s(x)) ! f(x)

g(s(0)) ! g(f(s(0))):

7.13 Di�erent Eliminations, Version 2

By adding two symmetrical rules, the TRS of Ex. 7.12 is turned into a system

which is no hierarchical combination any more.

f(1) ! f(g(1))

f(f(x)) ! f(x)

g(0) ! g(f(0))

g(g(x)) ! g(x):

The dependency pairs in this example are

hF(1);F(g(1))i (17)

hF(1);G(1)i (18)

hF(f(x));F(x)i (19)

hG(0);G(f(0))i (20)

hG(0);F(0)i (21)

hG(g(x));G(x)i: (22)

The non-empty cycles are f(17)g; f(19)g; f(17); (19)g; f(20)g; f(22)g; f(20);

(22)g. For the constraints resulting from the �rst three cycles (according to

Thm. 6 or 12) we eliminate the arguments of g, whereas for the last three cycles

we eliminate the arguments of f. Then the constraints are satis�ed by the rpo.
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