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Abstra
t. Context-sensitive rewriting is a restri
tion of term rewriting used to

model evaluation strategies in fun
tional programming and in programming lan-

guages like OBJ. For example, under 
ertain 
onditions termination of an OBJ

program is equivalent to innermost termination of the 
orresponding 
ontext-

sensitive rewrite system [25℄. To prove termination of 
ontext-sensitive rewriting,

several methods have been proposed in the literature whi
h transform 
ontext-

sensitive rewrite systems into ordinary rewrite systems su
h that termination

of the transformed ordinary system implies termination of the original 
ontext-

sensitive system. Most of these transformations are not very satisfa
tory when

it 
omes to proving innermost termination. We investigate the relationship be-

tween termination and innermost termination of 
ontext-sensitive rewriting and

we examine the appli
ability of the di�erent transformations for innermost ter-

mination proofs. Finally, we present a simple transformation whi
h is both sound

and 
omplete for innermost termination.

1 Introdu
tion

Evaluation in fun
tional languages is often guided by spe
i�
 evaluation strate-

gies. For example, in the program 
onsisting of the rules

from(x)! x : from(s(x)) nth(0; x : y)! x nth(s(n); x : y)! nth(n; y)

a term like nth(s(0); from(0)) admits a �nite redu
tion to s(0) as well as in-

�nite redu
tions. The in�nite redu
tions 
an for instan
e be avoided by always


ontra
ting the outermost redex. Context-sensitive rewriting (Lu
as [23, 24℄) pro-

vides an alternative way of solving the non-termination problem and of dealing

with in�nite data obje
ts. Rather than spe
ifying whi
h redexes may be 
on-

tra
ted, in 
ontext-sensitive rewriting every n-ary fun
tion symbol f is equipped

with a repla
ement map �(f) � f1; : : : ; ng whi
h indi
ates whi
h arguments of f

may be evaluated and a 
ontra
tion of a redex is allowed only if it does not take

pla
e in a forbidden argument of a fun
tion symbol somewhere above it. So by
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de�ning �(:) = f1g, 
ontra
tions in the argument t of a term s : t are forbidden.

Now in the example in�nite redu
tions are no longer possible while normal forms


an still be 
omputed. (See [27℄ for the relationship between normalization under

ordinary and under 
ontext-sensitive rewriting.) Context-sensitive rewriting 
an

also model the usual evaluation strategy for 
onditionals.

Example 1. 0 6 y! true p(0)! 0

s(x) 6 0! false p(s(x))! x

s(x) 6 s(y)! x 6 y if(true; x; y)! x

x� y! if(x 6 y; 0; s(p(x)� y)) if(false; x; y)! y

Be
ause of the rule for \�", this system is not terminating. However, in fun
tional

languages typi
ally if's �rst argument is evaluated �rst and depending on the

result either the se
ond or third argument is evaluated afterwards. Again, this


an easily be modeled with 
ontext-sensitive rewriting by the repla
ement map

�(if) = f1g whi
h forbids all redu
tions in the arguments t

2

and t

3

of if(t

1

; t

2

; t

3

).

In programming languages like OBJ [6, 8, 16, 17℄, the user 
an supply strategy

annotations to 
ontrol the evaluation [9, 28, 29℄. For every n-ary symbol f , a (pos-

itive) strategy annotation is a list '(f) of numbers (i

1

; : : : ; i

k

) from f0; 1; : : : ; ng.

When redu
ing a term f(t

1

; : : : ; t

n

) one �rst has to evaluate the i

1

-th argument

of f (if i

1

> 0), then one evaluates the i

2

-th argument (if i

2

> 0), and so on, until

a 0 is en
ountered. At this point one tries to evaluate the whole term f(: : : ) at

its root position. So in order to enfor
e the desired evaluation strategy for if in

Example 1, it has to be equipped with the strategy annotation (1; 0).

Context-sensitive rewriting 
an simulate the evaluation strategy of OBJ. A

strategy is 
alled elementary if for every de�ned

1

symbol f , '(f) 
ontains a single

o

urren
e of 0, at the end. Lu
as [25℄ showed that for elementary strategies, the

OBJ program is terminating if and only if the 
orresponding 
ontext-sensitive

rewrite system is innermost terminating.

2

Here �(f) is de�ned to 
onsist of all

numbers greater than 0 in '(f). For example, the program with the rules

f(a)! f(a) a! b

is terminating if '(f) = (1; 0) and '(a) = (0). The 
orresponding 
ontext-

sensitive system with �(f) = f1g is not terminating, but it is innermost ter-

minating. Thus, to simulate OBJ evaluations with 
ontext-sensitive rewriting,

we have to restri
t ourselves to innermost redu
tions where (allowed) arguments

to a fun
tion are evaluated before evaluating the fun
tion.

Be
ause of this 
onne
tion to OBJ programs and also be
ause for rewrite

systems innermost termination is easier to prove automati
ally than termination

[1℄, it is worthwhile to investigate innermost termination of 
ontext-sensitive

1

Every symbol on the root position of a left-hand side of a rule is 
alled de�ned. In Example 1

the de�ned symbols are \6", \�", p, and if. All remaining fun
tion symbols are 
alled


onstru
tors.

2

The \if" dire
tion even holds without the restri
tion to elementary strategies [25℄.

4



rewriting. (As an alternative approa
h, in [11℄ a method to prove termination

of OBJ-like programs by dire
t indu
tion proofs is proposed.) Termination of


ontext-sensitive rewriting has been studied in a number of papers (e.g., [5,

10, 14, 15, 20, 23, 24, 27, 32℄). Apart from a dire
t semanti
 
hara
terization [32℄

and some re
ent extensions of standard termination methods for term rewrit-

ing to 
ontext-sensitive rewriting [5, 20℄, all other proposed methods transform


ontext-sensitive rewrite systems (CSRSs) into ordinary term rewrite systems

(TRSs) su
h that termination of the transformed TRS implies termination of

the original CSRS (i.e., all these transformations are sound). Dire
t approa
hes

to termination analysis of CSRSs and transformational approa
hes both have

their advantages. Te
hniques for proving termination of ordinary term rewrit-

ing have been studied extensively (e.g., [21, 22, 7, 3, 30, 31, 1, 4℄) and the main

advantage of the transformational approa
h is that in this way, all termination

te
hniques for ordinary TRSs in
luding future developments 
an be used to infer

termination of CSRSs. For instan
e, the methods of [5, 20℄ are unable to handle

systems like Example 1. Of the �ve transformations des
ribed in [10, 14, 23, 32℄

only the se
ond one of [14℄ is also 
omplete: Termination of the original CSRS

implies termination of the transformed TRS.

After introdu
ing the termination problem of 
ontext-sensitive rewriting in

Se
tion 2, in Se
tion 3 we review the results of Lu
as [25℄ on innermost termina-

tion of 
ontext-sensitive rewriting and we show that the two transformations �

1

and �

2

of [14℄ are sound for innermost termination as well. Despite its soundness

�

2

is not very useful for proving innermost termination, be
ause termination and

innermost termination 
oin
ide for the TRSs it produ
es. In Se
tion 4 we show

that for the 
lass of orthogonal CSRSs, innermost termination already implies

termination. This result is independent from the transformation framework and

is of general interest when investigating the termination behavior of CSRSs. A


onsequen
e of this result is that for this parti
ular 
lass, �

1

is 
omplete for in-

nermost termination. In Se
tion 5 we present a new transformation �

3

whi
h is

both sound and 
omplete for innermost termination, for arbitrary CSRSs. Sur-

prisingly, su
h a transformation 
an be obtained by just a small modi�
ation

of �

1

. In spite of the similarity between the two transformations, the new 
om-

pleteness proof is non-trivial. We make some remarks on a possible simpli�
ation

of �

3

and on ground innermost termination in Se
tion 6. In Se
tion 7 we show

that �

3

is equally powerful as �

1

when it 
omes to (non-innermost) termina-

tion. Finally, Appendix A demonstrates how innermost termination of the TRSs

resulting from our new transformation is proved with dependen
y pairs [1℄.

2 Termination of Context-Sensitive Rewriting

Familiarity with the basi
s of term rewriting [2℄ is assumed. We require that every

signature F 
ontains a 
onstant. A fun
tion � : F ! P(N ) is a repla
ement map

if �(f) is a subset of f1; : : : ; arity(f)g for all f 2 F . A CSRS (R; �) is a TRS R

over a signature F equipped with a repla
ement map �. The 
ontext-sensitive

5



rewrite relation !

R;�

is de�ned as the restri
tion of the usual rewrite relation

!

R

to 
ontra
tions of redexes at a
tive positions. A position � in a term t is

a
tive if � = � (the root position), or t = f(t

1

; : : : ; t

n

), � = i�

0

, i 2 �(f), and �

0

is a
tive in t

i

. So s!

R;�

t if and only if there is a rule l! r in R, a substitution

�, and an a
tive position � in s su
h that sj

�

= l� and t = s[r�℄

�

. If all a
tive

arguments of l� are in �-normal form, then the redu
tion step is innermost and

we write s

i

!

R;�

t. Here a �-normal form is a normal form with respe
t to!

R;�

.

We abbreviate !

R;�

to !

�

and

i

!

R;�

to

i

!

�

if R is 
lear from the 
ontext. A

CSRS (R; �) is left-linear if the left-hand sides of the rewrite rules in R are linear

terms (i.e., they do not 
ontain multiple o

urren
es of the same variable). Let

l! r and l

0

! r

0

be renamed versions of rewrite rules ofR su
h that they have no

variables in 
ommon and suppose lj

�

and l

0

are uni�able with most general uni�er

� for some non-variable a
tive position � in l. The pair of terms hl[r

0

℄

�

�; r�i is

a 
riti
al pair of (R; �), ex
ept when l ! r and l

0

! r

0

are renamed versions of

the same rewrite rule and � = �. A non-overlapping CSRS has no 
riti
al pairs

and an overlay CSRS has no 
riti
al pairs with � 6= �. A CSRS is orthogonal

if it is left-linear and non-overlapping. Notions like \termination" for a CSRS

(R; �) always 
on
ern the relation !

�

(i.e., they 
orrespond to \�-termination"

in [24℄).

To prove termination of CSRSs, several transformations from CSRSs to or-

dinary TRSs were suggested. We re
all the transformations �

1

and �

2

of Giesl

& Middeldorp and refer to [14, 15℄ for motivations. The main idea of �

1

is to

use new unary symbols a
tive and mark to indi
ate a
tive positions in a term

on the obje
t level. If l ! r is a rule in the CSRS then the transformed TRS


ontains the rule a
tive(l)! mark(r). The symbol mark is used to traverse a term

top-down in order to pla
e the symbol a
tive at all a
tive positions.

De�nition 2 (�

1

). Let (R; �) be a CSRS over a signature F . The TRS R

1

�

over the signature F

1

= F [fa
tive;markg 
onsists of the following rewrite rules:

a
tive(l)! mark(r) for all l! r 2 R

mark(f(x

1

; : : : ; x

n

))! a
tive(f([x

1

℄

f

1

; : : : ; [x

n

℄

f

n

)) for all f 2 F

a
tive(x)! x

Here [t℄

f

i

= mark(t) if i 2 �(f) and [t℄

f

i

= t otherwise. We denote the subset of

R

1

�


onsisting of all rules of the form

mark(f(x

1

; : : : ; x

n

))! a
tive(f([x

1

℄

f

1

; : : : ; [x

n

℄

f

n

))

by M. The transformation (R; �) 7! R

1

�

is denoted by �

1

and we shorten !

R

1

�

to !

1

.

Be
ause every in�nite redu
tion of a term t in the original CSRS would


orrespond to an in�nite redu
tion of mark(t) in the transformed TRS, �

1

is

sound for termination: Termination of the transformed TRS implies termination

of the original CSRS.
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In �

2

, a
tive 
an be shifted downwards to any a
tive position. Here, the root

of a term is marked with the symbol top and the symbol proper is used to 
he
k

that terms only 
ontain fun
tion symbols from the original signature.

De�nition 3 (�

2

). Let (R; �) be a CSRS over a signature F . The TRS R

2

�

over

the signature F

2

= F[fa
tive;mark; top; proper; okg 
onsists of the following rules

(for all l! r 2 R, f 2 F of arity n > 0, i 2 �(f), and 
onstants 
 2 F):

a
tive(l)! mark(r)

a
tive(f(x

1

; : : : ; x

i

; : : : ; x

n

))! f(x

1

; : : : ; a
tive(x

i

); : : : ; x

n

)

f(x

1

; : : : ;mark(x

i

); : : : ; x

n

)! mark(f(x

1

; : : : ; x

i

; : : : ; x

n

))

proper(
)! ok(
)

proper(f(x

1

; : : : ; x

n

))! f(proper(x

1

); : : : ; proper(x

n

))

f(ok(x

1

); : : : ; ok(x

n

))! ok(f(x

1

; : : : ; x

n

))

top(mark(x))! top(proper(x))

top(ok(x))! top(a
tive(x))

The transformation (R; �) 7! R

2

�

is denoted by �

2

and we shorten !

R

2

�

to !

2

.

Transformation �

2

as well as the transformations

3

�

L

of Lu
as [23℄, �

Z

of

Zantema [32℄, and �

FR

of Ferreira & Ribeiro [10℄ are sound for termination.

However, only �

2

is 
omplete, i.e., the other four transformations do not trans-

form every terminating CSRS into a terminating TRS. The following example

demonstrates the reason for the in
ompleteness of �

1

.

Example 4 ([14℄). Consider the non-terminating TRS R 
onsisting of the rules

f(b; 
; x)! f(x; x; x) d! b d! 


If �(f) = f3g then the CSRS is terminating be
ause the 
y
li
 redu
tion of

f(b; 
; d) to f(d; d; d) and further to f(b; 
; d) 
annot be done, as one would have

to redu
e the �rst and se
ond argument of f. However, the transformed TRS R

1

�

a
tive(f(b; 
; x))! mark(f(x; x; x)) mark(f(x; y; z))! a
tive(f(x; y;mark(z)))

a
tive(d)! mark(b) mark(b)! a
tive(b)

a
tive(d)! mark(
) mark(
)! a
tive(
)

a
tive(x)! x mark(d)! a
tive(d)

is not terminating:

mark(f(b; 
; d))!

1

a
tive(f(b; 
;mark(d)))!

1

a
tive(f(b; 
; a
tive(d)))

!

1

mark(f(a
tive(d); a
tive(d); a
tive(d)))!

+

1

mark(f(mark(b);mark(
); d))

!

+

1

mark(f(a
tive(b); a
tive(
); d))!

+

1

mark(f(b; 
; d))

3

Details of the transformations �

L

, �

Z

, and �

FR

are not needed for a proper understanding

of the present paper. The interested reader is referred to [15℄.
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Note that in the third step the `a
tive' subterm a
tive(d) is 
opied to the �rst

and se
ond argument positions of f, whi
h are ina
tive a

ording to �(f). This


an only happen if the redu
tion step is non-innermost.

One should remark that transformation �

2

does not render the other trans-

formations super
uous, sin
e in pra
ti
al examples, termination of �

2

(R; �) 
an

be harder to show than termination of the TRSs resulting from the other trans-

formations. In Figure 1 we 
ompare the power of the �ve transformations for

proving termination. Here, \Transformation 1 ! Transformation 2" means that

Transformation 2 is more powerful than Transformation 1, i.e., if Transforma-

tion 1 yields a terminating TRS, then so does Transformation 2, but not vi
e

versa. The proofs of the various impli
ations 
an be found in [15℄.

�

2

�

1

OO

�

FR

CC�����

�

Z

CC�����

�

L

[[77777777777777

Fig. 1. Comparison of existing transformations for proving termination.

3 Innermost Termination of Context-Sensitive Rewriting

Now we examine the usefulness of the �ve transformations for innermost termi-

nation of CSRSs. Lu
as [25℄ showed that �

L

and �

Z

are unsound

4

for innermost

termination, i.e., innermost termination of the transformed TRS does not imply

innermost termination of the original CSRS. The example showing the latter ([25,

Example 12℄) also demonstrates that �

FR

is unsound for innermost termination.

Moreover, none of these transformations is 
omplete for innermost termination.

The following new result shows that �

1

is sound for innermost termination.

5

Theorem 5. Let (R; �) be a CSRS. If R

1

�

is innermost terminating then (R; �)

is innermost terminating.

4

�

L

is sound for the sub
lass of left-linear CSRSs with the property that all fun
tion symbols

in the left-hand sides are on a
tive positions [25℄.

5

The same 
laim is made in [25, Theorem 11℄. However, Lu
as only proved the soundness of

�

1

and �

2

for ground innermost termination (
f. Se
tion 6) and later 
laimed that �

1

and

�

2

are unsound for innermost termination [26℄.

8



Proof. Let F be the signature of R and let 
 be an arbitrary 
onstant in F .

We show that every innermost redu
tion step s

i

!

�

t in (R; �) 
orresponds to

an innermost redu
tion sequen
e mark(s�)#

M

i

!

+

1

mark(t�)#

M

in R

1

�

. Here � is

the substitution that maps all variables to 
.

6

Note that sin
e M is 
on
uent

and terminating, every term u has a uniqueM-normal form u#

M

. First we show

by indu
tion on u 2 T (F ;V) that mark(u�)#

M

i

!

�

1

a
tive(u�). If u is a variable

then u� = 
 and thus mark(u�)#

M

= a
tive(u�). If u = f(u

1

; : : : ; u

n

) then

mark(u�)#

M

= a
tive(f(u

0

1

; : : : ; u

0

n

)) with u

0

i

= mark(u

i

�)#

M

if i 2 �(f) and u

0

i

=

u

i

� if i =2 �(f). Let i 2 �(f). The indu
tion hypothesis yields u

0

i

i

!

�

1

a
tive(u

i

�).

Sin
e u

i

� is anR

1

�

-normal form, a
tive(u

i

�)

i

!

1

u

i

� and thus u

0

i

i

!

�

1

u

i

�. It follows

that mark(u�)#

M

i

!

�

1

a
tive(f(u

1

�; : : : ; u

n

�)) = a
tive(u�).

Now let � be the position of the redex 
ontra
ted in the redu
tion step s

i

!

�

t.

We prove the lemma by indu
tion on �. If � = � then s! t and thus also s� ! t�

is an instan
e of a rule in R. We have mark(s�)#

M

i

!

�

1

a
tive(s�) by the above

observation. Moreover, a
tive(s�)

i

!

1

mark(t�) sin
e a
tive(s�)! mark(t�) is an

instan
e of a rule in R

1

�

. We also have mark(t�)

i

!

�

1

mark(t�)#

M

. Combining all

redu
tions yields mark(s�)#

M

i

!

+

1

mark(t�)#

M

.

If � = i�

0

then s = f(s

1

; : : : ; s

i

; : : : ; s

n

) and t = f(s

1

; : : : ; t

i

; : : : ; s

n

) with

s

i

i

!

�

t

i

. Note that we have i 2 �(f) due to the de�nition of 
ontext-sensitive

rewriting. For 1 6 j 6 n de�ne s

0

j

= mark(s

j

�)#

M

if j 2 �(f) and s

0

j

=

s

j

� if j =2 �(f). The indu
tion hypothesis yields s

0

i

i

!

+

1

mark(t

i

�)#

M

. The re-

sult follows sin
e mark(s�)#

M

= a
tive(f(s

0

1

; : : : ; s

0

i

; : : : ; s

0

n

)) and mark(t�)#

M

=

a
tive(f(s

0

1

; : : : ;mark(t

i

�)#

M

; : : : ; s

0

n

)). ut

Not surprisingly, �

1

is in
omplete for innermost termination.

Example 6 ([25℄). Consider the CSRS (R; �) with R 
onsisting of the rules

f(a)! f(a) a! b

and �(f) = f1g. The CSRS (R; �) is innermost terminating but R

1

�

a
tive(f(a))! mark(f(a)) mark(f(x))! a
tive(f(mark(x)))

a
tive(a)! mark(b) mark(a)! a
tive(a)

a
tive(x)! x mark(b)! a
tive(b)

is not:

a
tive(f(a))

i

!

1

mark(f(a))

i

!

1

a
tive(f(mark(a)))

i

!

1

a
tive(f(a
tive(a)))

i

!

1

a
tive(f(a))

Observe that applying the rule a
tive(a) ! mark(b) instead of a
tive(x) ! x

in the fourth step would break the 
y
le. So the rule a
tive(x) ! x 
an delete

innermost redexes, 
ausing non-innermost a
tive redexes of the underlying CSRS

to be
ome innermost. We 
ome ba
k to this in Se
tion 5.

6

It is interesting to note that the instantiated 
ontext-sensitive redu
tion step s� !

�

t� need

not be innermost.

9



Transformation �

2

is sound for innermost termination as well. However, it is

also in
omplete and (in 
ontrast to �

1

) rather useless for innermost termination.

These observations are 
onsequen
es of the following new result. In parti
ular,

�

2


annot prove innermost termination of non-terminating CSRSs.

Theorem 7. Let (R; �) be a CSRS. The TRS R

2

�

is innermost terminating if

and only if it is terminating.

Proof. Let F be the signature of R. The \if" dire
tion is trivial. For the \only if"

dire
tion suppose R

2

�

is non-terminating. Sin
e �

2

is 
omplete for termination,

(R; �) is non-terminating. So there exists an in�nite redu
tion t

1

!

�

t

2

!

�

� � �


onsisting of ground terms from T (F). The soundness proof in [14, Theorem 3℄

and [15, Theorem 27℄ transforms this in�nite redu
tion into the following in�nite

redu
tion in R

2

�

: top(a
tive(t

1

)) !

+

2

top(a
tive(t

2

)) !

+

2

� � � . It is easy to prove

that this latter redu
tion is a
tually innermost. Hen
e R

2

�

is not innermost ter-

minating. ut

The soundness of �

2

for innermost termination is an immediate 
onsequen
e

of Theorem 7 and the soundness of �

2

for termination.

So �

1

is the only sound and useful transformation for innermost termination

of CSRSs so far. In the remainder of this se
tion we show that it is 
omplete for

an important sub
lass of CSRSs. More pre
isely, while in general termination of a

CSRS (R; �) does not imply termination of the transformed TRS R

1

�

(as demon-

strated by Example 4), we show that it at least implies innermost termination

of R

1

�

. This implies that for sub
lasses of CSRSs where innermost termination

is equivalent to termination, �

1

is 
omplete for innermost termination. In Se
-

tion 4 we show that this sub
lass 
ontains all orthogonal systems (e.g., CSRSs

like Example 1 from the introdu
tion).

We �rst show the desired result on innermost termination of R

1

�

for those

terms 
ontaining the new symbols a
tive andmark on a
tive positions only, ex
ept

that subterms of the form mark

n

(x) with n > 1 and x a variable may o

ur at

ina
tive positions as well.

Lemma 8. Let (R; �) be a terminating CSRS over a signature F . Let t 2

T (F

1

;V) where a
tive and mark o

ur on a
tive positions in t only (here the

argument positions of a
tive and mark are also 
onsidered a
tive), ex
ept that t

may 
ontain subterms of the form mark

n

(x) with x 2 V at ina
tive positions.

Then t is R

1

�

-terminating.

Proof. Let M

1

= M [ fa
tive(x) ! xg. Note that M

1

is 
on
uent and ter-

minating. Hen
e, every in�nite R

1

�

-redu
tion 
ontains in�nitely many redu
tion

steps with rules from R

1

�

nM

1

. Let T

1

be the set of all terms t des
ribed above.

It is not diÆ
ult to see that t !

1

u and t 2 T

1

imply u 2 T

1

. Let M

0

be

the 
on
uent and terminating TRS 
onsisting of the rules a
tive(x) ! x and

mark(x) ! x. Clearly, t !

M

1

u implies t#

M

0

= u#

M

0

. We show that for all

10



t 2 T

1

, t!

R

1

�

nM

1

u implies t#

M

0

!

�

u#

M

0

. Sin
e M

1

is terminating, every in�-

nite R

1

�

-redu
tion starting from T

1


an be transformed into an in�nite redu
tion

in (R; �), whi
h proves the lemma. From t !

R

1

�

nM

1

u we infer the existen
e

of a position � in t, a rewrite rule l ! r 2 R, and a substitution � su
h that

tj

�

= a
tive(l�) and u = t[mark(r�)℄

�

. Sin
e t 2 T

1

, � is an a
tive position in t.

We have t#

M

0

= t#

M

0

[l�

0

℄

�

0

and u#

M

0

= t#

M

0

[r�

0

℄

�

0

for some a
tive position �

0

and the substitution �

0

with �

0

(x) = �(x)#

M

0

. Therefore, t#

M

0

!

�

u#

M

0

. ut

Now we 
an show that for a terminating CSRS, the transformed TRS is at

least innermost terminating.

Theorem 9. Let (R; �) be a CSRS. If (R; �) is terminating then R

1

�

is inner-

most terminating.

Proof. Let F be the signature of R. Let #(t) denote the number of a
tive and

mark-symbols o

urring in the term t 2 T (F

1

;V), ex
ept that we do not 
ount

the o

urren
es of mark in subterms of the form mark

n

(x). We prove that t is

innermost R

1

�

-terminating by indu
tion on #(t). If #(t) = 0 then t is an R

1

�

-

normal form. If #(t) > 0 then t must 
ontain an innermost R

1

�

-redex, say at

position �. We have tj

�

= a
tive(t

0

) or tj

�

= mark(t

0

) su
h that t

0

does not


ontain any a
tive-symbols and the only mark-symbols o

urring in t

0

are in

subterms of the form mark

n

(x) (hen
e, #(tj

�

) = 1). It follows that Lemma 8

is appli
able to tj

�

. So tj

�

does not admit in�nite R

1

�

-redu
tions. To 
on
lude

that t is innermostR

1

�

-terminating, it suÆ
es to show that t[u℄

�

is innermostR

1

�

-

terminating for every normal form u of tj

�

rea
hable by innermostR

1

�

-redu
tions.

Sin
e #(u) = 0, #(t) > #(t[u℄

�

) and thus the result follows from the indu
tion

hypothesis. ut

So for a terminating CSRS (R; �), non-termination of R

1

�


an only be due

to the rewriting strategy. This provides further eviden
e for the power of �

1

.

Note that this result does not hold for the transformations of Lu
as, Zantema,

and Ferreira & Ribeiro. The CSRS (R; �) with the rules R = fg(x)! h(x); 
!

d; h(d) ! g(
)g and �(g) = �(h) = ? from [32℄ is terminating, but none of the

TRSs �

L

(R; �), �

Z

(R; �), and �

FR

(R; �) is even innermost terminating. On the

other hand, �

1

(R; �) = R

1

�

is (innermost) terminating [14℄.

4 Termination versus Innermost Termination

There are two motivations for studying innermost termination of CSRSs. First,

innermost 
ontext-sensitive rewriting models evaluation in OBJ and related lan-

guages and thus, te
hniques for innermost termination analysis of CSRSs 
an

be used for termination analysis of OBJ-programs. But se
ond, te
hniques for

innermost termination analysis of CSRSs 
an also be helpful for (non-innermost)

termination proofs of CSRSs. This is similar to the situation with ordinary term

11



rewriting: Proving innermost termination is mu
h easier than proving termina-

tion, 
f. [1℄. There are 
lasses of TRSs where innermost termination already im-

plies termination and therefore for su
h systems, one should rather use innermost

termination te
hniques for investigating their termination behavior.

In order to use a 
orresponding approa
h for 
ontext-sensitive rewriting, in

this se
tion we examine the 
onne
tion between termination and innermost ter-

mination for CSRSs. In general, termination implies innermost termination, but

not vi
e versa as demonstrated by Example 6. For ordinary TRSs, Gramli
h [18,

Theorem 3.23℄ showed that termination and innermost termination 
oin
ide for

the 
lass of lo
ally 
on
uent overlay systems. Non-overlapping rewrite systems

are lo
ally 
on
uent overlay systems. Hen
e, this provides a simple synta
ti



riterion to identify 
lasses of TRSs where innermost termination suÆ
es for

termination. Unfortunately, as noted by Lu
as [26℄, this 
riterion 
annot be ex-

tended to 
ontext-sensitive systems.

Example 10 ([26℄). Consider the CSRS (R; �) with R 
onsisting of the rules

f(x; x)! b f(x; g(x))! f(x; x) 
! g(
)

and �(f) = f1; 2g, �(g) = ?. The CSRS (R; �) is non-overlapping and innermost

terminating, but not terminating sin
e f(
; 
)!

�

f(
; g(
))!

�

f(
; 
)!

�

� � � . On

the other hand, in an innermost redu
tion we would have f(
; 
)

i

!

�

f(
; g(
))

i

!

�

f(g(
); g(
))

i

!

�

b.

So non-overlappingness is not suÆ
ient for CSRSs in order to use innermost

termination te
hniques for termination analysis. Below we show the new result

that the desired equivalen
e between innermost and full termination at least

holds for orthogonal CSRSs. Thus, this in
ludes all CSRSs whi
h 
orrespond to

typi
al fun
tional programs like Example 1. Theorem 13 states that for su
h

systems we only have to prove innermost termination in order to verify their

termination.

In order to prove the theorem, we need some preliminaries. For non-overlap-

ping CSRSs (R; �) the relation

i

!

�

is 
on
uent. Hen
e, for every term s there is

at most one �-normal form rea
hable by innermost redu
tions. We 
all this term

the innermost �-normal form of s and denote it by s#

i

�

. Now for any term s, let

r(s) be the set of those terms whi
h result from repeatedly repla
ing subterms

of s by their innermost �-normal form (if it exists). Here, one may also 
onsider

subterms on ina
tive positions. However, the repla
ement must go \from the

inside to the outside" (i.e., after repla
ing at position � one 
annot repla
e at

positions below � any more). Moreover, one may only perform repla
ements on

su
h positions � where the original term sj

�

is terminating.

De�nition 11. Let (R; �) be a non-overlapping CSRS. For any term s we de�ne

non-empty sets r(s) and r

0

(s) as follows. If s is terminating, then r(s) =

r

0

(s) [ fu#

i

�

j u 2 r

0

(s) is innermost terminatingg. Otherwise, we have r(s) =

r

0

(s). Moreover, r

0

(s) = ff(u

1

; : : : ; u

n

) j u

i

2 r(s

i

)g if s = f(s

1

; : : : ; s

n

) and

r

0

(s) = fsg if s is a variable.

12



The following auxiliary lemma des
ribes how r operates on instantiated sub-

terms of left-hand sides.

Lemma 12. Let (R; �) be an orthogonal CSRS, let t be a proper subterm of

a left-hand side of a rule, and let u 2 r(t�) for a substitution �. Then we

have u = t�

0

for some substitution �

0

. Moreover, for all x 2 Var(t) we have

x�

0

2 r(x�) and if u 2 r

0

(t�) then we also have x�

0

2 r

0

(x�).

Proof. The lemma is proved by stru
tural indu
tion on t. If t = x 2 V then

the 
laim is obvious for the substitution �

0

that repla
es x by u. Now let t =

f(t

1

; : : : ; t

n

). We �rst regard the 
ase where u 2 r

0

(t�). So u = f(u

1

; : : : ; u

n

)

and u

i

2 r(t

i

�) for all i. The indu
tion hypothesis states that u

i

= t

i

�

0

for all

i. Note that we 
an use the same substitution �

0

for every i sin
e t is linear due

to the orthogonality of (R; �). The indu
tion hypothesis also implies that we

have x�

0

2 r

0

(x�) for all x 2 Var(t

1

) [ � � � [ Var(t

n

) = Var(t). In the remaining


ase t� is terminating and u = v#

i

�

for some v 2 r

0

(t�) whi
h is innermost

terminating. Similar as in the previous 
ase, the indu
tion hypothesis states that

v = t�

0

for some substitution �

0

and x�

0

2 r

0

(x�) for all x 2 Var(t). We de�ne

the substitution �

00

as

�

00

(x) =

(

x�

0

#

i

�

if x is at an a
tive position in t

x�

0

otherwise

The substitution �

00

is well de�ned, be
ause if x o

urs at an a
tive position in t,

then x�

0

o

urs at an a
tive position in t�

0

= v and hen
e, innermost termination

of v implies innermost termination of x�

0

. Sin
e non-variable subterms at a
tive

positions in t do not unify with left-hand sides due to the orthogonality of (R; �),

we have u = v#

i

�

= t�

0

#

i

�

= t�

00

. Let x 2 Var(t). If x o

urs at an a
tive

position in t then termination of x� follows from termination of t�. Thus, x�

00

=

x�

0

#

i

�

2 r(x�) sin
e x�

0

2 r

0

(x�). If x o

urs only at ina
tive positions in t

then x�

0

2 r

0

(x�) trivially implies x�

00

= x�

0

2 r

0

(x�) � r(x�). Thus, �

00

is a

substitution as required in the lemma. ut

Now we show the desired theorem on the equivalen
e of innermost and full

termination.

Theorem 13. An orthogonal CSRS (R; �) is terminating if and only if it is

innermost terminating.

Proof. The \only if" dire
tion is trivial. We prove the \if" dire
tion. Let s!

�

t

where the 
ontra
ted redex is either terminating or a minimal non-terminating

term (i.e., all proper subterms of the redex on a
tive positions are terminating).

We prove the following statements for all innermost terminating s

0

2 r(s):

(1) There exists a t

0

2 r(t) su
h that s

0

i

!

�

�

t

0

.

(2) If the 
ontra
ted redex in s!

�

t is not terminating, then there even exists a

t

0

2 r(t) su
h that s

0

i

!

+

�

t

0

.

13



With (1) and (2) one 
an prove the theorem: If (R; �) is not terminating,

then there is an in�nite redu
tion s

0

!

�

s

1

!

�

: : : in whi
h only terminat-

ing or minimal non-terminating redexes are 
ontra
ted. Assume that (R; �)

is innermost terminating. Then all r(s

i

) 
ontain only innermost terminating

terms and sin
e s

0

2 r(s

0

), we 
an 
onstru
t an in�nite innermost redu
tion

s

0

i

!

�

�

t

1

i

!

�

�

t

2

i

!

�

�

: : : with t

i

2 r(s

i

). However, sin
e the redu
tion 
ontains

in�nitely many steps of type (2), this gives rise to an in�nite innermost redu
tion,


ontradi
ting our assumption.

Now we prove (1) and (2) by stru
tural indu
tion on s. Sin
e s!

�

t, s must

have the form f(s

1

; : : : ; s

n

). We �rst regard the 
ase where s!

�

t is not a root

redu
tion step. Then we have t = f(s

1

; : : : ; t

i

; : : : ; s

n

) with s

i

!

�

t

i

for some

i 2 �(f). Let s

0

2 r(s) be innermost terminating. First, let s

0

= f(u

1

; : : : ; u

n

)

with u

j

2 r(s

j

) for all j. Be
ause i 2 �(f), u

i

is innermost terminating. Hen
e

by the indu
tion hypothesis, u

i

2 r(s

i

) implies that there exists a v

i

2 r(t

i

)

su
h that u

i

i

!

�

�

v

i

. Therefore, we also have s

0

= f(u

1

; : : : ; u

i

; : : : ; u

n

)

i

!

�

�

f(u

1

; : : : ; v

i

; : : : ; u

n

) 2 r(t). Moreover, if the 
ontra
ted redex in s !

�

t and

hen
e, in s

i

!

�

t

i

is not terminating, then by the indu
tion hypothesis we even

have u

i

i

!

+

�

v

i

and therefore s

0

i

!

+

�

f(u

1

; : : : ; v

i

; : : : ; u

n

) 2 r(t).

Now let s

0

= f(u

1

; : : : ; u

n

)#

i

�

with u

j

2 r(s

j

) for all j. Hen
e, s is terminating

and thus, we only have to prove (1). As before, there is a v

i

2 r(t

i

) su
h that

u

i

i

!

�

�

v

i

and f(u

1

; : : : ; v

i

; : : : ; u

n

) 2 r(t). Sin
e innermost redu
tion is 
on
uent,

we have s

0

= f(u

1

; : : : ; u

i

; : : : ; u

n

)#

i

�

= f(u

1

; : : : ; v

i

; : : : ; u

n

)#

i

�

2 r(t), sin
e t

inherits termination from s.

Finally, we regard the 
ase where s = f(s

1

; : : : ; s

n

) and s !

�

t is a root

redu
tion step. Hen
e, there must be a rule l ! r 2 R with l = f(l

1

; : : : ; l

n

)

and a substitution � su
h that s

i

= l

i

� and t = r�. First let s

0

= f(u

1

; : : : ; u

n

)

with u

i

2 r(s

i

) for all i. Sin
e (R; �) is orthogonal and sin
e s

i

= l

i

�, due to

Lemma 12 there must be a substitution �

0

su
h that u

i

= l

i

�

0

for all i. Be
ause s

0

is innermost terminating, x�

0

must also be innermost terminating for all variables

x whi
h o

ur on a
tive positions of l. Let �

00

be the substitution where x�

00

=

x�

0

#

i

�

for all x in a
tive positions of l and x�

00

= x�

0

for all other x. Then we have

the innermost redu
tion s

0

= f(l

1

�

0

; : : : ; l

n

�

0

)

i

!

�

�

f(l

1

�

00

; : : : ; l

n

�

00

)

i

!

�

r�

00

. We


laim that r�

00

2 r(t) = r(r�). To this end, it suÆ
es to show that x�

00

2 r(x�)

for all variables x in r, be
ause in the 
onstru
tion of r arbitrary subterms q 
an

be repla
ed by terms from r(q). Ea
h variable x o

urs in some l

i

and we have

l

i

�

0

2 r(l

i

�). From Lemma 12 we obtain x�

0

2 r(x�) for all variables x. If x is

on an ina
tive position of l, then x�

00

= x�

0

2 r(x�). If x is on an a
tive position

of l, then x�

00

= x�

0

#

i

�

2 r(x�), sin
e x�

0

is innermost terminating and be
ause

in this 
ase, x� is terminating due to the fa
t that s is either a terminating or a

minimal non-terminating term.

Now let s

0

= f(u

1

; : : : ; u

n

)#

i

�

with u

i

2 r(s

i

) for all i. Hen
e, s is terminating

and thus we only have to prove (1). As before, u

i

= l

i

�

0

and f(l

1

�

0

; : : : ; l

n

�

0

)

i

!

�

�

f(l

1

�

00

; : : : ; l

n

�

00

)

i

!

�

r�

00

with r�

00

2 r(t). Sin
e innermost redu
tion is 
on
uent

and t inherits termination from s, s

0

= f(u

1

; : : : ; u

n

)#

i

�

= r�

00

#

i

�

2 r(t). ut
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Very re
ently, Gramli
h and Lu
as [19℄ showed that termination and inner-

most termination 
oin
ide for lo
ally 
on
uent overlay CSRSs with the addition-

ally property that variables that o

ur at an a
tive position in a left-hand side

l of a rewrite rule l ! r do not o

ur at ina
tive positions in l or r. The latter


ondition is quite restri
tive, e.g., it is not satis�ed by the CSRS of Example 1,

sin
e in the rule for \�" the variables x and y o

ur on a
tive positions in the

left-hand side, but also on ina
tive positions in the right-hand side.

5 A Sound and Complete Transformation

In Se
tion 3 we have seen that none of the existing transformations is 
omplete for

innermost termination and that only �

1

and�

2

are sound. Be
ause of Theorem 7,

�

2


annot distinguish innermost termination from termination. So when trying

to develop a sound and 
omplete transformation for innermost termination, we

take �

1

as starting point. As observed in Example 6, we must make sure that in

innermost redu
tions, rules of the form a
tive(l) ! mark(r) get preferen
e over

the rule a
tive(x)! x, be
ause then this 
ounterexample no longer works. Hen
e,

we modify the rule a
tive(x) ! x in su
h a way that the innermost redu
tion

strategy ensures that a
tive(l) ! mark(r) is applied with higher preferen
e. In

the modi�
ation, a
tive(l) ! mark(r) no longer overlaps with the root position

of a
tive(x)! x, but with a non-root position of the new modi�ed rule(s).

De�nition 14 (�

3

). Let (R; �) be a CSRS over a signature F . The TRS R

3

�

over the signature F

1

= F [fa
tive;markg 
onsists of the following rewrite rules

(for all l! r 2 R, f 2 F , and 1 6 i 6 arity(f)):

a
tive(l)! mark(r)

mark(f(x

1

; : : : ; x

n

))! a
tive(f([x

1

℄

f

1

; : : : ; [x

n

℄

f

n

))

f(x

1

; : : : ; a
tive(x

i

); : : : ; x

n

)! f(x

1

; : : : ; x

i

; : : : ; x

n

)

f(x

1

; : : : ;mark(x

i

); : : : ; x

n

)! f(x

1

; : : : ; x

i

; : : : ; x

n

) ([)

Again, [t℄

f

i

= mark(t) if i 2 �(f) and [t℄

f

i

= t otherwise. We denote the transfor-

mation (R; �) 7! R

3

�

by �

3

and we abbreviate !

R

3

�

to !

3

and

i

!

R

3

�

to

i

!

3

.

For the CSRS (R; �) of Example 6, R

3

�

di�ers from R

1

�

in two respe
ts:

a
tive(x) ! x is repla
ed by f(a
tive(x)) ! f(x) and moreover, the rule

f(mark(x)) ! f(x) is added. As a 
onsequen
e, the 
y
le a
tive(f(a))

i

!

+

a
tive(f(a)) 
an no longer be obtained with R

3

�

, sin
e a
tive(f(a
tive(a))) !

a
tive(f(a)) is not an innermost rewrite step in R

3

�

. Indeed, R

3

�

is innermost

terminating and in general, �

3

is sound and 
omplete for innermost termination.

With the new rules f(x

1

; : : : ; a
tive(x

i

); : : : ; x

n

) ! f(x

1

; : : : ; x

n

) we 
an re-

move almost every a
tive-symbol, 
ompensating to a large extent the la
k of the

rule a
tive(x) ! x. The ([)-marked rules 
an never be used in an innermost re-

du
tion if x

i

is instantiated to a non-variable term from T (F ;V). However, they

15



are required if x

i

is instantiated by a variable or by terms 
ontaining the symbols

mark and a
tive. As a matter of fa
t, the transformation without these rules is

neither sound nor 
omplete for innermost termination.

Example 15. Consider the CSRS (R; �) with R 
onsisting of the four rules

g(f(x; x))! g(f(x; x)) f(b; x)! b

f(g(x); y)! b f(f(x; y); z)! b

and �(f) = �(g) = f1g. The CSRS (R; �) is not innermost terminating as

g(f(x; x))

i

!

�

g(f(x; x)). The transformed TRS R

3

�

a
tive(g(f(x; x)))! mark(g(f(x; x))) mark(b)! a
tive(b)

a
tive(f(b; x))! mark(b) mark(f(x; y))! a
tive(f(mark(x); y))

a
tive(f(g(x); y))! mark(b) mark(g(x))! a
tive(g(mark(x)))

a
tive(f(f(x; y); z))! mark(b)

f(a
tive(x); y)! f(x; y) f(mark(x); y)! f(x; y) (�)

f(x; a
tive(y))! f(x; y) f(x;mark(y))! f(x; y) (�)

g(a
tive(x))! g(x) g(mark(x))! g(x) (�)

also fails to be innermost terminating:

a
tive(g(f(x; x)))

i

!

3

mark(g(f(x; x)))

i

!

3

a
tive(g(mark(f(x; x))))

i

!

3

a
tive(g(a
tive(f(mark(x); x))))

i

!

3

a
tive(g(a
tive(f(x; x))))

i

!

3

a
tive(g(f(x; x)))

However, the TRS without the three rules marked with (�) is innermost termi-

nating. In other words, if the ([)-rules were missing, then the transformation �

3

would be unsound for innermost termination.

Termination of R

3

�

without the (�)-rules 
an be proved as follows. By a min-

imality argument, it is suÆ
ient to show that all terms t whose arguments are

in normal form are innermost terminating. Let #(t) denote the number of o
-


urren
es of the fun
tion symbols b, f, and g in t. Inspe
tion of the rewrite rules

reveals that this number does not in
rease along a redu
tion. We use indu
tion

on #(t). If #(t) = 0 then t is a normal form. Suppose #(t) > 0. We distinguish

the following �ve 
ases, depending on the root symbol of t.

1. If t = b then t is a normal form.

2. If t = f(t

1

; t

2

) is not in normal form then t 
an only be redu
ed by the

rule f(a
tive(x); y) ! f(x; y) or the rule f(x; a
tive(y)) ! f(x; y). After an

appli
ation of one of these rules, the arguments of the resulting term remain

in normal form. It follows that any (innermost) redu
tion starting from t


onsists entirely of root redu
tion steps. Sin
e the two rules de
rease the size

of terms, it follows that t is (innermost) terminating.
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3. If t = g(t

1

) then we obtain the innermost termination of t as in the previous


ase.

4. If t = a
tive(t

1

) is not a normal form then t

1

= f(b; u), t

1

= f(g(u

1

); u

2

),

t

1

= f(f(u

1

; u

2

); u

3

), or t

1

= g(f(u; u)). In the �rst three 
ases there are at

most two (innermost) redu
tion steps: t

i

! mark(b)

i

! a
tive(b). In the fourth


ase, any in�nite innermost redu
tion starting from t begins as follows:

t

i

!

1

mark(g(f(u; u)))

i

!

1

a
tive(g(mark(f(u; u))))

i

!

1

a
tive(g(a
tive(f(mark(u); u))))

If mark(u) is a normal form then a
tive(g(a
tive(f(mark(u); u)))) redu
es only

to the normal form a
tive(g(f(mark(u); u)))). So suppose that mark(u) is re-

du
ible, whi
h implies root(u) 2 fb; f; gg. We have #(t) > #(mark(u)) and

hen
e mark(u) is innermost terminating by the indu
tion hypothesis. Let

u

0

be an arbitrary normal form of mark(u). It suÆ
es to show that t

0

=

a
tive(g(a
tive(f(u

0

; u)))) is innermost terminating. We have u

0

= a
tive(b),

u

0

= a
tive(f(v

1

; v

2

)), or u

0

= a
tive(g(v)). Hen
e, by two innermost redu
tion

steps, we obtain a
tive(g(mark(b))). Sin
e #(t) > 2 = #(a
tive(g(mark(b)))),

the result follows from the indu
tion hypothesis.

5. If t = mark(t

1

) is not in normal form then by performing one (innermost)

redu
tion step we obtain a term of the form u = a
tive(u

1

) with #(t) = #(u).

Hen
e innermost termination of t redu
es to the previous 
ase.

Example 16. Consider the CSRS (R; �) with the rules

f(x; x)! b g(f(x; y))! g(f(y; y))

and �(f) = �(g) = f1g. The CSRS (R; �) is innermost terminating. The trans-

formed TRS R

3

�

a
tive(f(x; x))! mark(b) mark(b)! a
tive(b)

a
tive(g(f(x; y)))! mark(g(f(y; y))) mark(f(x; y))! a
tive(f(mark(x); y))

mark(g(x))! a
tive(g(mark(x)))

f(a
tive(x); y)! f(x; y) f(mark(x); y)! f(x; y) (�)

f(x; a
tive(y))! f(x; y) f(x;mark(y))! f(x; y) (�)

g(a
tive(x))! g(x) g(mark(x))! g(x) (�)

is also innermost terminating. However, the TRS without the three rules marked

with (�) is not innermost terminating as 
an be seen from the following 
y
le,

with t = mark(a
tive(b)):

mark(g(f(t; t)))

i

!

+

a
tive(g(a
tive(f(mark(t); t))))

i

! a
tive(g(f(mark(t); t)))

i

! mark(g(f(t; t)))

Thus, without the ([)-marked rules, the transformation �

3

would be in
omplete

for innermost termination.

17



Now we prove that �

3

is sound and 
omplete for innermost termination. For

soundness we show that every 
ontext-sensitive innermost redu
tion step s

i

!

�

t


orresponds to a redu
tionmark(s)#

M

i

!

+

3

mark(t)#

M

in the transformed system.

The next lemma is used when s is an innermost �-redex.

Lemma 17. If s 2 T (F ;V) n V su
h that all a
tive arguments of s are in �-

normal form then mark(s)#

M

i

!

�

3

a
tive(s).

Proof. We prove the lemma by stru
tural indu
tion on s. Let s = f(s

1

; : : : ; s

n

).

We have mark(s)#

M

= a
tive(f([s

1

℄

f

1

#

M

; : : : ; [s

n

℄

f

n

#

M

)). If i 2 �(f) and s

i

=2 V

then [s

i

℄

f

i

#

M

= mark(s

i

)#

M

i

!

�

3

a
tive(s

i

) a

ording to the indu
tion hypothesis,

whi
h is appli
able sin
e s

i

is an a
tive argument of s. Note that in this 
ase

a
tive(s

i

) is an R

3

�

-normal form be
ause s

i

is not a redex (with respe
t to R).

If i 2 �(f) and s

i

2 V then [s

i

℄

f

i

#

M

= mark(s

i

), whi
h is 
learly an R

3

�

-normal

form. If i =2 �(f) then [s

i

℄

f

i

#

M

= s

i

#

M

= s

i

. So we obtain mark(s)#

M

i

!

�

3

a
tive(f(t

1

; : : : ; t

n

)) where, for all 1 6 i 6 n, either t

i

= a
tive(s

i

), t

i

= mark(s

i

),

or t

i

= s

i

. Moreover, in the �rst two 
ases, t

i

is an R

3

�

-normal form. Hen
e, by

appli
ations of the rules

f(x

1

; : : : ; a
tive(x

i

); : : : ; x

n

)! f(x

1

; : : : ; x

i

; : : : ; x

n

)

f(x

1

; : : : ;mark(x

i

); : : : ; x

n

)! f(x

1

; : : : ; x

i

; : : : ; x

n

)

we obtain a
tive(f(t

1

; : : : ; t

n

))

i

!

�

3

a
tive(f(s

1

; : : : ; s

n

)), and hen
e mark(s)#

M

i

!

�

3

a
tive(s) as desired. ut

Now we 
an prove the soundness of �

3

for innermost termination.

Theorem 18. Let (R; �) be a CSRS. If R

3

�

is innermost terminating then (R; �)

is innermost terminating.

Proof. The proof is similar to the soundness proof of �

1

(Theorem 5), but there

are also some 
ru
ial di�eren
es. Let F be the signature ofR. To prove the sound-

ness of �

1

, we showed that for all s; t 2 T (F ;V), s

i

!

�

t implies mark(s�)#

M

i

!

+

1

mark(t�)#

M

. Here � substitutes all variables by an arbitrary 
onstant 
 from

F .

7

In 
ontrast, we now show that s

i

!

�

t implies mark(s)#

M

i

!

+

3

mark(t)#

M

.

In general, mark(s�)#

M

i

!

+

mark(t�)#

M

holds for R

1

�

, but not for R

3

�

and

mark(s)#

M

i

!

+

mark(t)#

M

holds for R

3

�

, but not for R

1

�

. So the soundness

proofs of the two transformations are really di�erent.

7

This proof relied on the fa
t that mark(u�)#

M

i

!

�

1

a
tive(u�) for all u 2 T (F ;V). However, in

order to redu
e mark(u�)#

M

to a
tive(u�), one has to redu
e subterms a
tive(u

i

�) in a term

f(: : : ; a
tive(u

i

�); : : :) to u

i

�. In R

1

�

this is an innermost step, but in R

3

�

this is not the 
ase

if u

i

� is an (R; �)-redex. For that reason we now use Lemma 17 instead. Thus, in the present

proof we have to transform the redu
tion step s

i

!

�

t into an R

3

�

-redu
tion step where a
tive

arguments below the redex are in (R; �)-normal form. Consequently, we may not apply a

substitution � to s any more, sin
e s

i

!

�

t does not imply that the 
ontext-sensitive redu
tion

s� !

�

t� is innermost.
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If s

i

!

�

t then there is a rule l ! r 2 R, a substitution �, and an a
tive

position � in s su
h that sj

�

= l� and t = s[r�℄

�

. We prove the lemma by

indu
tion on �. If � = � then s = l� and t = r�. Sin
e the step from s to

t is innermost, all a
tive arguments of s are in �-normal form. Hen
e we 
an

apply Lemma 17 to s, whi
h yields mark(s)#

M

i

!

�

3

a
tive(s). Sin
e a
tive(s) !

mark(t) is an instan
e of a rule in R

3

�

, we have a
tive(s)

i

!

3

mark(t). We also

have mark(t)

i

!

�

3

mark(t)#

M

. Combining all redu
tions yields mark(s)#

M

i

!

+

3

mark(t)#

M

.

If � = i�

0

then s = f(s

1

; : : : ; s

i

; : : : ; s

n

) and t = f(s

1

; : : : ; t

i

; : : : ; s

n

) with

s

i

i

!

�

t

i

. Note that we have i 2 �(f) due to the de�nition of 
ontext-sensitive

rewriting. For 1 6 j 6 n de�ne s

0

j

= mark(s

j

)#

M

if j 2 �(f) and s

0

j

=

s

j

if j =2 �(f). The indu
tion hypothesis yields s

0

i

i

!

+

3

mark(t

i

)#

M

. The re-

sult follows sin
e mark(s)#

M

= a
tive(f(s

0

1

; : : : ; s

0

i

; : : : ; s

0

n

)) and mark(t)#

M

=

a
tive(f(s

0

1

; : : : ;mark(t

i

)#

M

; : : : ; s

0

n

)). ut

The stru
ture of the 
ompleteness proof is similar to the proof that (full,

i.e. non-innermost) termination of a CSRS (R; �) implies innermost termination

of R

1

�

(Theorem 9). In Lemma 20 we �rst show the result for a spe
ial set of

terms T , whi
h in
ludes all terms that are rea
hable from terms of the form

mark(t) with t 2 T (F ;V) by innermost R

3

�

-rewrite steps. Afterwards we extend

this result to arbitrary terms in Theorem 21.

De�nition 19. A position � in a term t 2 T (F

1

;V) is a
tivated if either

root(t) 2 fa
tive;markg or root(t) 2 F and there is a mark-symbol at a posi-

tion above � or an a
tive-symbol at the position dire
tly above �. Let T be the set


onsisting of all terms t 2 T (F

1

;V) that satisfy the following properties:

(a) mark and a
tive only o

ur on a
tive positions,

(b) mark does not o

ur above a
tive or mark,

(
) if an a
tive position � in t is not a
tivated then tj

�

is not an R-redex,

(d) if � is an a
tivated position in t, then all positions above � are also a
tivated.

Here, the argument positions of a
tive and mark are also 
onsidered a
tive.

Lemma 20. Let (R; �) be an innermost terminating CSRS. All terms in T are

innermost R

3

�

-terminating.

Proof. Let F be the signature of R. We �rst show that t

i

!

3

u and t 2 T imply

u 2 T . For that purpose we 
onsider the di�erent forms of rules in R

3

�

that 
an

be used in the redu
tion step from t to u. Let � be the position of the redex


ontra
ted in t

i

!

3

u. Note that to prove 
onditions (
) and (d) for the term u,

it is suÆ
ient only to 
onsider positions below �. The reason is that the 
ontext

surrounding uj

�

is un
hanged in the redu
tion step from t to u and, due to


ondition (d), � and all positions above � are always a
tivated.

1. First we regard the 
ase where tj

�

= a
tive(l�) and u = t[mark(r�)℄

�

. Sin
e

the redu
tion step from t to u is innermost, l� 
annot 
ontain any R

3

�

-redex.

19



As root(l) 2 F , this implies that l� does not 
ontain any a
tive or mark-

symbols. Hen
e this is also true for r�. Consequently, u inherits properties

(a) and (b) from t. Sin
e all positions below � in u have a mark-symbol above

them (at position �), u satis�es also properties (
) and (d).

2. Now let tj

�

= mark(f(t

1

; : : : ; t

n

)) and u = t[a
tive(f([t

1

℄

f

1

; : : : ; [t

n

℄

f

n

))℄

�

. Sin
e

t satis�es properties (a) and (b), u satis�es these properties, too. Sin
e all

a
tive positions in the subterms t

1

; : : : ; t

n

of u have a mark-symbol above

them, u satis�es property (
). For property (d) we observe that in u, the

positions in t

i

for i =2 �(f) are not a
tivated (sin
e t

1

; : : : ; t

n

2 T (F ;V), as t

satis�es property (b)).

3. Next we regard the 
ase where tj

�

= f(t

1

; : : : ; a
tive(t

i

); : : : ; t

n

) and u =

t[f(t

1

; : : : ; t

i

; : : : ; t

n

)℄

�

. The term u 
learly satis�es properties (a) and (b).

In order to 
on
lude property (
), it suÆ
es to show that t

i

is not an R-

redex. Suppose to the 
ontrary that t

i

is an R-redex. This implies that

a
tive(t

i

) = a
tive(l�) !

3

mark(r�) for some l ! r 2 R and substitution

�, whi
h 
ontradi
ts the assumption that the redu
tion step from t to u is

innermost. We 
on
lude that u satis�es property (
). The term u satis�es

also property (d), be
ause if t

i


ontains a
tive or mark, then there 
annot

be a fun
tion symbol from F above it (otherwise the redu
tion step is not

innermost).

4. Finally, we 
onsider the 
ase where tj

�

= f(t

1

; : : : ;mark(t

i

); : : : ; t

n

) and u =

t[f(t

1

; : : : ; t

i

; : : : ; t

n

)℄

�

. Sin
e the step from t to u is innermost and t

i

does

not 
ontain a
tive or mark-symbols a

ording to property (b), t

i

must be a

variable. But then it trivially follows that u inherits the four properties of t.

Let erase: T (F

1

;V)! T (F ;V) remove all a
tive and mark-symbols, i.e.,

erase(x) = x for all variables x

erase(f(t

1

; : : : ; t

n

)) = f(erase(t

1

); : : : ; erase(t

n

)) for all f 2 F

erase(a
tive(t)) = erase(mark(t)) = erase(t)

We want to transform every in�nite innermost R

3

�

-redu
tion of a term t 2 T

into an in�nite innermost 
ontext-sensitive redu
tion of erase(t). Let M

0

be the

subset of R

3

�


onsisting of M together with all rules of the form

f(x

1

; : : : ; a
tive(x

i

); : : : ; x

n

)! f(x

1

; : : : ; x

i

; : : : ; x

n

)

f(x

1

; : : : ;mark(x

i

); : : : ; x

n

)! f(x

1

; : : : ; x

i

; : : : ; x

n

)

Clearly t !

M

0

u implies erase(t) = erase(u). Sin
e M

0

is terminating (whi
h is

shown by RPO using the pre
eden
e mark > a
tive), every in�nite R

3

�

-redu
tion


ontains in�nitely many redu
tion steps with rules from R

3

�

nM

0

. We now show

that for all t 2 T , if t

i

!

3

u by applying a rule from R

3

�

nM

0

then erase(t)

i

!

�

erase(u). Thus, every in�nite innermost R

3

�

-redu
tion starting from T 
an be

transformed into an in�nite redu
tion in (R; �), whi
h proves the lemma.
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There exist a position � in t, a rewrite rule l ! r 2 R, and a substitution

� su
h that tj

�

= a
tive(l�) and u = t[mark(r�)℄

�

. In 
ase 1 above we already

observed that l� and r� belong to T (F ;V). Hen
e erase(t) = erase(t)[l�℄

�

0

and

erase(u) = erase(u)[r�℄

�

0

for some position �

0

whi
h is a
tive (sin
e � is a
tive in

t due to property (a) in the de�nition of T ). Therefore, erase(t)!

�

erase(u). It

remains to show that this is really an innermost 
ontext-sensitive rewrite step.

Suppose that l� 
ontains an R-redex on an a
tive position �

00

> �. Then this

R-redex o

urs in t = t[a
tive(l�)℄

�

at the a
tive position �1�

00

. A

ording to

property (
), this position has to be a
tivated, whi
h means that there is a

mark-symbol above it or an a
tive-symbol dire
tly above it. Sin
e l� 2 T (F ;V)

the se
ond alternative is impossible and the �rst alternative would 
ontradi
t

property (b). Hen
e we indeed have erase(t)

i

!

�

erase(u). ut

Now we 
an show the desired 
ompleteness result.

Theorem 21. Let (R; �) be a CSRS. If (R; �) is innermost terminating then

R

3

�

is innermost terminating.

Proof. Let F be the signature of R. Suppose that R

3

�

is not innermost ter-

minating. Then there exists a minimal term s 2 T (F

1

;V) with an in�nite

innermost R

3

�

-redu
tion (i.e., all proper subterms of s only have �nite inner-

most R

3

�

-redu
tions). So every in�nite innermost R

3

�

-redu
tion from s 
ontains

a root redu
tion step. Let t

i

!

3

u be the �rst su
h root redu
tion step. So

all proper subterms of t admit only �nite innermost R

3

�

-redu
tions. Note that

we 
annot have t = f(t

1

; : : : ; a
tive(t

i

); : : : ; t

n

) or t = f(t

1

; : : : ;mark(t

i

); : : : ; t

n

)

and u = f(t

1

; : : : ; t

n

). The reason is that then u 
an only have an in�nite in-

nermost redu
tion if one of its subterms has an in�nite innermost redu
tion,

but this would 
ontradi
t the minimality of t. If t = mark(f(t

1

; : : : ; t

n

)) and

u = a
tive(f([t

1

℄

f

1

; : : : ; [t

n

℄

f

n

)) then t

1

; : : : ; t

n

2 T (F ;V) as the step from t to u is

innermost and f 2 F . Thus, t 2 T . But sin
e all terms in T are innermost R

3

�

-

terminating by Lemma 20 this is impossible. So t = a
tive(l�) and u = mark(r�)

for some rule l! r 2 R and substitution �. We again infer that l� and r� belong

to T (F ;V), and thus we obtain u 2 T whi
h 
ontradi
ts Lemma 20. Hen
e R

3

�

is innermost terminating. ut

To demonstrate the use of �

3

, in Appendix A we show for several CSRS

(R; �) in
luding Example 1 how innermost termination of R

3

�


an be proved

with dependen
y pairs.

6 Ground Innermost Termination

Unlike for termination, to 
on
lude innermost termination it is not suÆ
ient to

prove that all ground terms are innermost terminating.

Example 22. This is witnessed by the TRS ff(f(x)) ! f(f(x)); f(a) ! ag. This

TRS is not innermost terminating but ground innermost terminating over the

signature ff; ag, i.e., all ground terms only permit �nite innermost redu
tions.
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It is well known that innermost termination of a TRS R over a signature

F is equivalent to ground innermost termination of R over the signature F [

f
; hg where 
 is a fresh 
onstant and h is a fresh unary fun
tion symbol. The

reason is that a term t with the variables x

1

; : : : ; x

n

starts an in�nite innermost

redu
tion i� the ground term t� starts an in�nite innermost redu
tion where

�(x

i

) = h

i

(
). So the fresh symbols 
 and h are needed to 
reate arbitrarily many

di�erent ground terms (in order to handle non-linear rewrite rules). A similar


orresponden
e holds for innermost 
ontext-sensitive redu
tions with �(h) = ?

or �(h) = f1g.

The following results state that �

1

and �

2


annot distinguish ground inner-

most termination from innermost termination. This provides further explanation

for the in
ompleteness of these transformation for innermost termination. Be-


ause �

1

and �

2

are sound for innermost termination, it follows that they are

sound for ground innermost termination, too.

Theorem 23. Let (R; �) be a CSRS. The TRS R

1

�

is ground innermost termi-

nating if and only if it is innermost terminating.

Proof. The \if" dire
tion is trivial. For the \only if" dire
tion we reason as

follows. Let F be the signature of R, let 
 be any 
onstant in F , and let M be

the set 
onsisting of all terms mark

n

(x) with x 2 V and n > 0. For any term

t 2 T (F

1

;V) we let '(t) denote the result of repla
ing in t all maximal subterms

belonging to M by 
. Note that '(t) 2 T (F

1

). We show that if s

i

!

1

t with

s; t 2 T (F

1

;V) then '(s)

i

!

+

1

'(t). So any in�nite innermost redu
tion gives

rise to an in�nite ground innermost redu
tion, whi
h proves the theorem. We

distinguish three 
ases.

1. First suppose that sj

�

= �(a
tive(l)�) and t = s[�(mark(r)�)℄

�

for some

position �, substitution �, rule l ! r 2 R, and sequen
e � of mark-symbols

(where we ignore parentheses around fun
tion arguments) su
h that there is

no mark-symbol dire
tly above the position � in s. Let the substitution �

0

be

de�ned by �

0

(x) = '(�(x)) for all variables x. Then we have

'(s) = '(s)[�(a
tive(l)�

0

)℄

�

(l does not 
ontain mark-symbols)

i

!

1

'(s)[�(mark(r)�

0

)℄

�

(a
tive(l)�

0

is an innermost redex)

i

!

�

1

'(s)['(�(mark(r)�))℄

�

(see explanation below)

= '(t)

It remains to show that �(mark(r)�

0

)

i

!

�

1

'(�(mark(r)�)). We distinguish

two 
ases. If r� =2 M then �(mark(r)�

0

) = '(�(mark(r)�)). If r� 2 M then

�(mark(r)�) 2 M and r 2 V and thus r�

0

= 
 = '(�(mark(r)�)). An easy

indu
tion proof on the length of � reveals that �(mark(
))

i

!

+

1


 and hen
e

we are done.
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2. Let sj

�

= mark(f(u

1

; : : : ; u

n

)) and t = s[a
tive(f([u

1

℄

f

1

; : : : ; [u

n

℄

f

n

))℄

�

for some

position �, n-ary fun
tion symbol f 2 F , and terms u

1

; : : : ; u

n

. Then we have

'(s) = '(s)[mark(f('(u

1

); : : : ; '(u

n

)))℄

�

i

!

1

'(s)[a
tive(f(['(u

1

)℄

f

1

; : : : ; ['(u

n

)℄

f

n

))℄

�

i

!

�

1

'(s)[a
tive(f('([u

1

℄

f

1

); : : : ; '([u

n

℄

f

n

)))℄

�

(see explanation below)

= '(t)

We show that we always have ['(u

i

)℄

f

i

i

!

�

1

'([u

i

℄

f

i

). For i =2 �(f) this is 
lear,

sin
e ['(u

i

)℄

f

i

= '(u

i

) = '([u

i

℄

f

i

). If i 2 �(f) then ['(u

i

)℄

f

i

= mark('(u

i

)) and

'([u

i

℄

f

i

) = '(mark(u

i

)). We distinguish two 
ases. If u

i

=2M then mark(u

i

) =2

M and thus mark('(u

i

)) = '(mark(u

i

)). If u

i

2 M then mark(u

i

) 2 M

and thus mark('(u

i

)) = mark(
) and '(mark(u

i

)) = 
. Sin
e mark(
)

i

!

1

a
tive(
)

i

!

1


, the result follows.

3. Finally, let sj

�

= �(a
tive(u)) and t = s[�(u)℄

�

for some position �, term u,

and � as in 
ase 1 of this proof. Then we have

'(s) = '(s)[�(a
tive('(u)))℄

�

i

!

1

'(s)[�('(u))℄

�

('(u) is a normal form)

and '(t) = '(s)['(�(u))℄

�

. If u =2 M then �('(u)) = '(�(u)). If u 2 M

then �(u) 2 M and thus �('(u)) = �(
) and '(�(u)) = 
. It is easy to

show by indu
tion on the length of � that �(
)

i

!

�

1


.

ut

Theorem 24. Let (R; �) be a CSRS. The TRS R

2

�

is ground innermost termi-

nating if and only if it is innermost terminating.

Proof. The \if" dire
tion is trivial. For the \only if" dire
tion suppose R

2

�

is

ground innermost terminating. From the proof of Theorem 7 it follows that

(R; �) is terminating. Sin
e �

2

is 
omplete for termination, R

2

�

is terminating

and thus also innermost terminating. ut

Be
ause �

3

is sound and 
omplete for innermost termination, ground inner-

most termination of R

3

�

does not imply innermost termination of R

3

�

in general.

In fa
t, �

3

is also sound and 
omplete for ground innermost termination.

Theorem 25. A CSRS (R; �) is ground innermost terminating if and only if

R

3

�

is ground innermost terminating.

Proof. The proofs of Theorems 18 and 21 
an easily be adapted. It is worth

remarking that the restri
tion to ground terms does not simplify the proofs

signi�
antly. The main di�eren
e is that one 
an immediately 
on
lude that an

innermost R

3

�

-redex has no mark stri
tly below the root if one is restri
ted to

ground terms. ut
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ground innermost innermost

termination termination termination

sound 
omplete sound 
omplete sound 
omplete

�

L

X � � � � �

�

Z

X � � � � �

�

FR

X � � � � �

�

1

X � X � X �

�

2

X X X � X �

�

3

X � X X X X

Fig. 2. Summary.

One might think that the ([)-marked rules in De�nition 14 are not needed to

obtain a sound and 
omplete transformation for ground innermost termination.

While soundness is easily proved, 
ompleteness does not hold.

Example 26. Consider the (ground) innermost terminating CSRS (R; �) from

Example 16 again. Sin
e the innermost 
y
le only involves ground terms, the

transformed TRS without the ([)-marked rules is not ground innermost termi-

nating.

As explained above, a transformation that is sound for ground innermost

termination 
an also be used for innermost termination analysis by adding fresh

fun
tion symbols to the signature. However, for 
ompleteness the situation is

di�erent. Here, it is desirable that the transformation is not only 
omplete for

ground, but also for full innermost termination. The reason is that while there do

exist te
hniques to analyze ground innermost termination [11℄, the best-known

te
hnique for automated innermost termination analysis [1℄ really 
he
ks full

(non-ground) innermost termination of TRSs. A 
omplete transformation for

innermost termination transforms every innermost terminating CSRS into an

innermost terminating TRS and hen
e, innermost termination of this TRS 
an

potentially be 
he
ked by every te
hnique for innermost termination analysis of

ordinary TRSs. But if the transformed TRS is only ground innermost terminat-

ing, (full) innermost termination analysis te
hniques for TRSs 
annot be applied

su

essfully.

7 Comparison

Figure 2 
ontains a summary of the soundness and 
ompleteness results 
overed

in the pre
eding se
tions. The negative results for ground innermost termination

for �

L

, �

Z

, and �

FR

are shown by the same examples used to demonstrate

the 
orresponding results for innermost termination, 
f. the �rst paragraph of

Se
tion 3. The results on termination for �

3

follow from Theorem 34 below.

Moreover, in order to assess the relative power of our transformations, we

illustrate in Figure 3 the relationship between the following twelve properties:
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(2)

+3
KS

��

(1)

+3
KS

��

(6)

+3
KS

��

(5)

+3
KS

��

(9)

KS

��
(4) (3)

KS

��

(10) (8) (12)

(7)

KS

��
(11)

Fig. 3. Comparison.

(1) (R; �) is terminating

(2) R

1

�

is terminating

(3) R

2

�

is terminating

(4) R

3

�

is terminating

(5) (R; �) is innermost terminating

(6) R

1

�

is innermost terminating

(7) R

2

�

is innermost terminating

(8) R

3

�

is innermost terminating

(9) (R; �) is ground innermost terminating

(10) R

1

�

is ground innermost terminating

(11) R

2

�

is ground innermost terminating

(12) R

3

�

is ground innermost terminating

Impli
ation (2)) (1) is the soundness of transformation �

1

for termination [14℄,

impli
ation (1) ) (6) is Theorem 9, impli
ation (6) ) (5) is Theorem 5, and

impli
ation (5)) (9) is trivial.

Equivalen
e (1), (3) is the soundness and 
ompleteness of �

2

for termina-

tion [14℄, equivalen
e (3) , (7) is Theorem 7, equivalen
e (10) , (6) is The-

orem 23, equivalen
e (11) , (7) is Theorem 24, and equivalen
e (9) , (12) is

Theorem 25. The equivalen
e of (5) and (8) amounts to the soundness and 
om-

pleteness of transformation �

3

for innermost termination (Theorems 18 and 21).

The equivalen
e of (2) and (4) means that �

1

and �

3

are equally powerful when

it 
omes to proving termination. This may not 
ome as a surprise but the proof,

whi
h is given below, is surprisingly diÆ
ult.

None of the missing impli
ations in Figure 3 hold, ex
ept those that follow by

transitivity: (1) 6) (2) and (5) 6) (6) are the in
ompleteness of �

1

for termina-

tion (Example 4) and innermost termination (Example 6). Moreover, (6) 6) (1)

follows by using �(f) = f1; 2; 3g in Example 4 and (9) 6) (5) follows from Exam-

ple 22 with �(f) = f1g.

In the next few pages we prove that the transformations �

1

and �

3

are

equivalent when it 
omes to termination. First we show that termination of R

1

�

implies termination of R

3

�

. For termination it suÆ
es to regard ground terms (as

noted in Se
tion 6 this is di�erent from innermost termination). The problem

when simulating R

3

�

-steps with R

1

�

are the last rules of R

3

�

whi
h allow the
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elimination of mark-symbols below symbols from F . However, for ground terms

t without adja
ent a
tive or mark-symbols and without su
h symbols at the root,

one 
an show mark(t)!

+

1

t. So instead of regarding arbitrary ground terms, our

aim is to transform every redu
tion sequen
e into a redu
tion between terms t of

this spe
ial form. More pre
isely, we show that every ground redu
tion step s!

3

t in R

3

�


orresponds to a redu
tion s#

A

!

�

1

t#

A

where A removes adja
ent a
tive

and mark-symbols by repla
ing them by the rightmost su
h symbol. Moreover,

if s !

3

t by applying a rule of the form a
tive(l) ! mark(r) then s#

A

!

+

1

t#

A

.

Sin
e the remaining rules 
onstitute a terminating subset of R

3

�

, any in�nite

R

3

�

-redu
tion would then give rise to an in�nite R

1

�

-redu
tion.

De�nition 27. Let A be the rewrite system 
onsisting of the following rules:

a
tive(a
tive(x))! a
tive(x) a
tive(mark(x))! mark(x)

mark(a
tive(x))! a
tive(x) mark(mark(x))! mark(x)

It is easy to see that A is terminating and 
on
uent.

The following two preliminary results will 
ome in handy. Lemma 28 states

that if t 
ontains no adja
ent a
tive and mark-symbols and root(t) is from F ,

then mark(t) 
an always be redu
ed to a
tive(t) in R

1

�

.

Lemma 28. Let (R; �) be a CSRS over a signature F and let t 2 T (F

1

) with

root(t) 2 F . If t#

A

= t then mark(t)!

+

1

a
tive(t).

Proof. The lemma is proved by indu
tion on the term stru
ture of t. If t is a


onstant, then the rule mark(t)! a
tive(t) is 
ontained in R

1

�

. Otherwise, t has

the form f(t

1

; : : : ; t

n

) for some f 2 F . De�ne terms s

1

; : : : ; s

n

as follows:

s

i

=

(

u

i

if i 2 �(f) and either t

i

= a
tive(u

i

) or t

i

= mark(u

i

)

t

i

otherwise

Let 1 6 i 6 n. We 
laim that t

i

!

�

1

s

i

. If s

i

= t

i

this is trivial. If t

i

= a
tive(u

i

)

and s

i

= u

i

this follows by applying the rule a
tive(x)! x. If t

i

= mark(u

i

) and

s

i

= u

i

then root(u

i

) 2 F be
ause t is an A-normal form and hen
e we 
an apply

the indu
tion hypothesis. This yields t

i

!

�

1

a
tive(u

i

) and thus t

i

!

�

1

u

i

by an

appli
ation of the rule a
tive(x)! x. We obtain

mark(t)!

�

1

mark(f(s

1

; : : : ; s

n

))

!

1

a
tive(f([s

1

℄

f

1

; : : : ; [s

n

℄

f

n

))

!

�

1

a
tive(f(t

1

; : : : ; t

n

)) (see explanation below)

We show that [s

i

℄

f

i

!

�

3

t

i

for all 1 6 i 6 n.

If i 2 �(f) and t

i

= mark(u

i

) then [s

i

℄

f

i

= mark(u

i

) = t

i

. If i 2 �(f)

and t

i

= a
tive(u

i

) then [s

i

℄

f

i

= mark(u

i

) !

�

1

a
tive(u

i

) = t

i

by the indu
-

tion hypothesis (whi
h is appli
able be
ause root(u

i

) 2 F due to the require-

ments on t). Otherwise we have s

i

= t

i

and root(t

i

) 2 F . If i 2 �(f) then
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[s

i

℄

f

i

= mark(s

i

) !

�

1

a
tive(s

i

) !

1

s

i

= t

i

by the indu
tion hypothesis and an

appli
ation of the rule a
tive(x)! x. If i =2 �(f) then [s

i

℄

f

i

= s

i

= t

i

. ut

The next lemma shows how to eliminate a
tive or mark-symbols at the root of

terms by R

1

�

-redu
tions. Together with Lemma 28 this implies mark(t)!

+

1

t for

ground terms t with root(t) 2 F and without adja
ent a
tive or mark-symbols.

Hen
e, for su
h (sub)terms, the last rules of R

3

�


an also be simulated in R

1

�

.

Lemma 29. For every t 2 T (F

1

), a
tive(t)#

A

!

�

1

t#

A

and mark(t)#

A

!

�

1

t#

A

.

Proof. We distinguish three 
ases. If root(t) 2 F then a
tive(t)#

A

= a
tive(t#

A

)

!

1

t#

A

and mark(t)#

A

= mark(t#

A

) !

+

1

a
tive(t#

A

) !

1

t#

A

by Lemma 28. Let

� denote an arbitrary sequen
e of a
tive and mark-symbols. If t = �(a
tive(u))

and root(u) 2 F , then a
tive(t)#

A

= mark(t)#

A

= a
tive(u#

A

) = t#

A

. In the

remaining 
ase we have t = �(mark(u)) with � and u as before, and therefore

a
tive(t)#

A

= mark(t)#

A

= mark(u#

A

) = t#

A

. ut

Using the two previous lemmata, we 
an now show that R

3

�

is not more

powerful than R

1

�

for proving termination of CSRSs.

Theorem 30. Let (R; �) be a CSRS. If R

1

�

is terminating then R

3

�

is terminat-

ing.

Proof. Let F be the signature of R. We show that if s !

3

t with s; t 2 T (F

1

)

then s#

A

!

�

1

t#

A

. Moreover, if s!

3

t by applying a rule of the form a
tive(l)!

mark(r) then s#

A

!

+

1

t#

A

. As explained before, the remaining rules of R

3

�

ter-

minate and therefore, this proves the theorem.

1. First suppose that sj

�

= �(a
tive(l))� and t = s[�(mark(r))�℄

�

for some

position �, substitution �, and rule l ! r 2 R, su
h that there is no a
tive or

mark-symbol dire
tly above the position � in s. Again, � denotes an arbitrary

sequen
e of a
tive and mark-symbols. Moreover, let the substitution �

0

be

de�ned by �

0

(x) = �(x)#

A

for all variables x. Then we have

s#

A

= s#

A

[a
tive(l)�

0

)℄

�

0

(l does not 
ontain a
tive or mark-symbols)

!

1

s#

A

[mark(r)�

0

℄

�

0

!

�

1

s#

A

[mark(r)�#

A

℄

�

0

(see explanation below)

= s[mark(r)�℄

�

#

A

(neither a
tive nor mark dire
tly above �)

= s[�(mark(r))�℄

�

#

A

= t#

A

It remains to show that mark(r)�

0

!

�

1

mark(r)�#

A

. We distinguish three


ases. If r� = �

0

(a
tive(u)) with root(u) 2 F then r�

0

= a
tive(u#

A

) and
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hen
e

mark(r)�

0

= mark(a
tive(u#

A

))

!

1

mark(u#

A

)

!

+

1

a
tive(u#

A

) (due to Lemma 28)

= mark(�

0

(a
tive(u)))#

A

= mark(r)�#

A

If r� = �

0

(mark(u)) with root(u) 2 F then r�

0

= mark(u#

A

) and hen
e

mark(r)�

0

= mark(mark(u#

A

))

!

+

1

mark(a
tive(u#

A

)) (due to Lemma 28)

!

1

mark(u#

A

)

= mark(�

0

(mark(u)))#

A

= mark(r)�#

A

Finally, if root(r�) 2 F then we 
learly have mark(r)�

0

= mark(r)�#

A

.

2. Let sj

�

= �(mark(f(u

1

; : : : ; u

n

))) and t = s[�(a
tive(f([u

1

℄

f

1

; : : : ; [u

n

℄

f

n

)))℄

�

for some position �, terms u

1

; : : : ; u

n

, and f 2 F , su
h that there is no a
tive

or mark-symbol dire
tly above the position � in s. Then we have

s#

A

= s#

A

[mark(f(u

1

#

A

; : : : ; u

n

#

A

))℄

�

0

!

1

s#

A

[a
tive(f([u

1

#

A

℄

f

1

; : : : ; [u

n

#

A

℄

f

n

))℄

�

0

!

�

1

s#

A

[a
tive(f([u

1

℄

f

1

#

A

; : : : ; [u

n

℄

f

n

#

A

))℄

�

(see explanation below)

= s[�(a
tive(f([u

1

℄

f

1

; : : : ; [u

n

℄

f

n

)))℄

�

#

A

= t#

A

We show that we always have [u

i

#

A

℄

f

i

!

�

1

[u

i

℄

f

i

#

A

. For i =2 �(f) this is 
lear,

sin
e [u

i

#

A

℄

f

i

= u

i

#

A

= [u

i

℄

f

i

#

A

. If i 2 �(f) then [u

i

#

A

℄

f

i

= mark(u

i

#

A

) and

[u

i

℄

f

i

#

A

= mark(u

i

)#

A

. We distinguish three 
ases. If u

i

= �

0

(a
tive(u)) with

root(u) 2 F then

mark(u

i

#

A

) = mark(a
tive(u#

A

))

!

1

mark(u#

A

)

!

+

1

a
tive(u#

A

) (by Lemma 28)

= mark(u

i

)#

A

If u

i

= �

0

(mark(u)) with root(u) 2 F then

mark(u

i

#

A

) = mark(mark(u#

A

))

!

+

1

mark(a
tive(u#

A

)) (by Lemma 28)

!

1

mark(u#

A

)

= mark(u

i

)#

A

Finally, if root(u

i

) 2 F then 
learly mark(u

i

#

A

) = mark(u

i

)#

A

.
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3. Next let sj

�

= f(u

1

; : : : ;mark(u

i

); : : : ; u

n

) and t = s[f(u

1

; : : : ; u

n

)℄

�

for some

position �, terms u

1

; : : : ; u

n

, and f 2 F . Then we have

s#

A

= s#

A

[f(u

1

#

A

; : : : ;mark(u

i

)#

A

; : : : ; u

n

#

A

)℄

�

0

!

�

1

s#

A

[f(u

1

#

A

; : : : ; u

i

#

A

; : : : ; u

n

#

A

)℄

�

0

(Lemma 29)

= t#

A

4. Finally, let sj

�

= f(u

1

; : : : ; a
tive(u

i

); : : : ; u

n

) and t = s[f(u

1

; : : : ; u

n

)℄

�

for

some position �, terms u

1

; : : : ; u

n

, and f 2 F . Then we have

s#

A

= s#

A

[f(u

1

#

A

; : : : ; a
tive(u

i

)#

A

; : : : ; u

n

#

A

)℄

�

0

!

�

1

s#

A

[f(u

1

#

A

; : : : ; u

i

#

A

; : : : ; u

n

#

A

)℄

�

0

(Lemma 29)

= t#

A

ut

Next we show that termination ofR

3

�

implies termination ofR

1

�

. The problem

when simulating R

1

�

-steps in R

3

�

is that R

3

�

does not allow the elimination of

a
tive unless there is a symbol from F dire
tly above it. Thus, our aim is again

to restri
t ourselves to ground terms without adja
ent a
tive or mark-symbols.

We show that every ground rewrite step s !

1

t 
an be transformed into a

redu
tion a
tive(s)#

B

!

�

3

a
tive(t)#

B

. Moreover, if the step s !

1

t is done by a

rule of the form a
tive(l) ! mark(r) then a
tive(s)#

B

!

+

3

a
tive(t)#

B

. (This is

suÆ
ient to transform in�nite R

1

�

-redu
tions into in�nite R

3

�

-redu
tions.) Here

B repla
es every sequen
e � of adja
ent a
tive and mark-symbols by mark, if �


ontains any mark-symbol, and by a
tive, otherwise. Moreover, mark-symbols

are propagated downwards to a
tive positions using the rules of M. Hen
e,

a
tive(s)#

B


ontains no mark-symbols and it has an a
tive-symbol dire
tly above

every a
tive position of s and dire
tly above those positions whi
h were 
onsid-

ered a
tive due to the a
tive and mark-symbols in s. Thus, we use the rewrite

system de�ned below.

De�nition 31. Let B be the rewrite system 
onsisting of the rules ofM together

with the following rules:

a
tive(a
tive(x))! a
tive(x) a
tive(mark(x))! mark(x)

mark(a
tive(x))! mark(x) mark(mark(x))! mark(x)

It is easy to show that B is terminating and 
on
uent.

We start with two preliminary lemmata. Lemma 32 shows that for 
ertain

terms, the result of normalizing with B 
an also be a
hieved with the rules of

R

3

�

.

Lemma 32. Let t 2 T (F

1

) be in B-normal form. If root(t) 2 F then mark(t)

!

�

3

mark(t)#

B

.
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Proof. The lemma is proved by indu
tion on the term stru
ture of t. Write t =

f(t

1

; : : : ; t

n

). We de�ne terms s

1

; u

1

; : : : ; s

n

; u

n

as follows:

s

i

=

(

t

0

i

if i 2 �(f) and t

i

= a
tive(t

0

i

)

t

i

otherwise

and

u

i

=

(

mark(s

i

)#

B

if i 2 �(f)

s

i

otherwise

We have

mark(t)!

�

3

mark(f(s

1

; : : : ; s

n

)) (see explanation below)

!

3

a
tive(f([s

1

℄

f

1

; : : : ; [s

n

℄

f

n

))

!

�

3

a
tive(f(u

1

; : : : ; u

n

)) (see explanation below)

The initial redu
tion mark(t)!

�

3

mark(f(s

1

; : : : ; s

n

)) is obtained by appli
ations

of rules of the form f(x

1

; : : : ; a
tive(x

i

); : : : ; x

n

) ! f(x

1

; : : : ; x

n

). For the �nal

part of the above redu
tion it is suÆ
ient to show [s

i

℄

f

i

!

�

3

u

i

for all 1 6 i 6 n.

If i 2 �(f) and t

i

= a
tive(t

0

i

) then s

i

= t

0

i

starts with a fun
tion symbol of F

(be
ause t

i

is in B-normal form) and thus we 
an apply the indu
tion hypothesis

whi
h yields [s

i

℄

f

i

= mark(s

i

) !

�

3

mark(s

i

)#

B

= u

i

. If i 2 �(f) and root(t

i

) 6=

a
tive then s

i

= t

i

and root(t

i

) 2 F (be
ause ground B-normal forms do not


ontain any mark-symbols) and thus [s

i

℄

f

i

= mark(s

i

)!

�

3

mark(s

i

)#

B

= u

i

by the

indu
tion hypothesis. If i =2 �(f) then [s

i

℄

f

i

= s

i

= t

i

= u

i

.

Obviously, a
tive(f(u

1

; : : : ; u

n

)) is in B-normal form. In order to 
on
lude

that a
tive(f(u

1

; : : : ; u

n

)) is the B-normal form of mark(t), it suÆ
es to show

mark(t)!

�

B

a
tive(f(u

1

; : : : ; u

n

)). We have mark(t)!

B

a
tive(f([t

1

℄

f

1

; : : : ; [t

n

℄

f

n

))

and [s

i

℄

f

i

!

�

B

u

i

for all 1 6 i 6 n. Hen
e, it remains to show that [t

i

℄

f

i

!

�

B

[s

i

℄

f

i

for all 1 6 i 6 n. If i 2 �(f) and t

i

= a
tive(t

0

i

) then we have [t

i

℄

f

i

=

mark(a
tive(t

0

i

))!

B

mark(t

0

i

) = [s

i

℄

f

i

. Otherwise t

i

= s

i

and thus [t

i

℄

f

i

= [s

i

℄

f

i

. ut

Lemma 33 proves that the R

3

�

-redu
tion sket
hed in Lemma 32 
an be ex-

tended to obtain the root symbol a
tive.

Lemma 33. Let t 2 T (F

1

) with root(t) 2 F . If t#

B

= t then mark(t)#

B

!

�

3

a
tive(t).

Proof. We again use indu
tion on the term stru
ture of t. Write t = f(t

1

; : : : ; t

n

).

We de�ne terms u

1

; v

1

; : : : ; u

n

; v

n

as follows:

u

i

=

8

>

<

>

:

mark(t

0

i

)#

B

if i 2 �(f) and t

i

= a
tive(t

0

i

)

mark(t

i

)#

B

if i 2 �(f) and root(t

i

) 2 F

t

i

otherwise
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and

v

i

=

8

>

<

>

:

a
tive(t

0

i

) if i 2 �(f) and t

i

= a
tive(t

0

i

)

a
tive(t

i

) if i 2 �(f) and root(t

i

) 2 F

t

i

otherwise

Let 1 6 i 6 n. We 
laim that u

i

!

�

3

v

i

. For i =2 �(f) this is obvious. If i 2 �(f)

and root(t

i

) 2 F then u

i

= mark(t

i

)#

B

!

�

3

a
tive(t

i

) = v

i

by the indu
tion

hypothesis. If i 2 �(f) and t

i

= a
tive(t

0

i

) then root(t

0

i

) 2 F be
ause t is in

B-normal form. Hen
e we obtain u

i

!

�

3

v

i

as in the previous 
ase. Using this

observation, now we 
an prove the lemma. We have

mark(t)#

B

= a
tive(f(u

1

; : : : ; u

n

)) (as in the proof of Lemma 32)

!

�

3

a
tive(f(v

1

; : : : ; v

n

))

!

�

3

a
tive(f(t

1

; : : : ; t

n

))

= a
tive(t)

The �nal part of the above redu
tion follows by suitable appli
ations of rules of

the form f(x

1

; : : : ; a
tive(x

i

); : : : ; x

n

)! f(x

1

; : : : ; x

n

). ut

With the two previous lemmata we 
an now prove the desired theorem.

Theorem 34. Let (R; �) be a CSRS. If R

3

�

is terminating then R

1

�

is terminat-

ing.

Proof. Let F be the signature of R. We 
laim that for terms s; t 2 T (F

1

), if

s!

1

t then a
tive(s)#

B

!

�

3

a
tive(t)#

B

. Moreover, if a rule of the form a
tive(l)!

mark(r) is used then a
tive(s)#

B

!

+

3

a
tive(t)#

B

. Sin
e M[ fa
tive(x) ! xg is

terminating (whi
h 
an be shown by RPO using the pre
eden
e mark > a
tive),

every in�nite R

1

�

-redu
tion is transformed into an in�nite R

3

�

-redu
tion, whi
h

proves the theorem.

To prove the 
laim, we distinguish three 
ases depending on the form of the

rewrite rule applied in s!

1

t.

1. Suppose that sj

�

= �(a
tive(l�)) and t = s[�(mark(r�))℄

�

for some posi-

tion �, substitution �, and rule l ! r 2 R, su
h that there is no a
tive

or mark-symbol dire
tly above the position � in s. As usual, � denotes an

arbitrary sequen
e of a
tive and mark-symbols. Moreover, let the substitu-

tion �

0

be de�ned by �

0

(x) = �(x)#

B

for all variables x. First we show that

a
tive(s)#

B

!

�

3

a
tive(s)#

B

[a
tive(l�

0

)℄

�

. We distinguish two 
ases.

(a) Suppose � = �

0

�

00

su
h that root(sj

�

0

) = mark and �

00

is an a
tive position

in sj

�

0

. (As usual, the argument positions of a
tive and mark are also


onsidered a
tive.) In this 
ase, when B-normalizing a
tive(s), the mark-

symbol at position �

0

is propagated to the root of sj

�

and subsequently
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onsumes all a
tive and mark-symbols in front of l�. Hen
e

a
tive(s)#

B

= a
tive(s)#

B

[mark(l�)#

B

℄

�

= a
tive(s)#

B

[mark(l�

0

)#

B

℄

�

(l� !

�

B

l�

0

)

!

�

3

a
tive(s)#

B

[a
tive(l�

0

)℄

�

(Lemma 33)

Note that Lemma 33 is appli
able be
ause l�

0

#

B

= l�

0

and root(l�

0

) 2 F .

(b) If there is no mark-symbol above position � su
h that � is in its \a
tive

range" then we 
learly have

a
tive(s)#

B

= a
tive(s)#

B

[a
tive(l�)#

B

℄

�

= a
tive(s)#

B

[a
tive(l�

0

)℄

�

It remains to prove that a
tive(s)#

B

[a
tive(l�

0

)℄

�

!

+

3

a
tive(t)#

B

. We again

distinguish two 
ases.

(a) If root(r�

0

) 2 F then

a
tive(s)#

B

[a
tive(l�

0

)℄

�

!

3

a
tive(s)#

B

[mark(r�

0

)℄

�

!

�

3

a
tive(s)#

B

[mark(r�

0

)#

B

℄

�

(Lemma 32)

= a
tive(s)#

B

[mark(r�)#

B

℄

�

(r� !

�

B

r�

0

)

= a
tive(t)#

B

(b) The 
ase where root(r�

0

) =2 F requires some more e�ort. We must have

r 2 V . Be
ause r�

0

is in B-normal form, r�

0

= a
tive(u) with root(u) 2 F .

We de�ne the substitution � as follows:

�(x) =

(

u if x = r

�

0

(x) otherwise

By suitable appli
ations of rules of the form f(x

1

; : : : ; a
tive(x

i

); : : : ; x

n

)

! f(x

1

; : : : ; x

n

) we obtain l�

0

!

�

3

l� . We have

mark(r�

0

) = mark(a
tive(u))!

B

mark(u) = mark(r�)

and thus mark(r�

0

)#

B

= mark(r�)#

B

. Therefore

a
tive(s)#

B

[a
tive(l�

0

)℄

�

!

�

3

a
tive(s)#

B

[a
tive(l�)℄

�

!

3

a
tive(s)#

B

[mark(r�)℄

�

!

�

3

a
tive(s)#

B

[mark(r�)#

B

℄

�

(Lemma 32)

= a
tive(s)#

B

[mark(r�

0

)#

B

℄

�

= a
tive(s)#

B

[mark(r�)#

B

℄

�

(r� !

�

B

r�

0

)

= a
tive(t)#

B
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2. Next let sj

�

= mark(f(u

1

; : : : ; u

n

))) and t = s[a
tive(f([u

1

℄

f

1

; : : : ; [u

n

℄

f

n

))℄

�

for

some position �, terms u

1

; : : : ; u

n

, and f 2 F . In this 
ase we have s !

B

t

and thus trivially a
tive(s)#

B

= a
tive(t)#

B

.

3. Finally, let sj

�

= �(a
tive(u)) and t = s[�(u)℄

�

for some position � and term

u, su
h that there is no a
tive or mark-symbol dire
tly above the position

� in s. If � is not empty then �(a
tive(u))#

B

= �(u)#

B

and hen
e also

a
tive(s)#

B

= a
tive(t)#

B

. So suppose that � is empty. We distinguish two

further 
ases.

(a) Suppose � = �

0

�

00

su
h that root(sj

�

0

) = mark and �

00

is an a
tive

position in sj

�

0

. In this 
ase, when B-normalizing a
tive(s), the mark-

symbol at position �

0

is propagated to the root of sj

�

and the a
tive-

symbol at position � is subsequently 
onsumed by an appli
ation of

the rule mark(a
tive(x)) ! mark(x) of B. It follows that a
tive(s)#

B

=

a
tive(s)#

B

[mark(u)#

B

℄

�

= a
tive(t)#

B

.

(b) In the remaining 
ase there is nomark-symbol above position � su
h that �

is in its \a
tive range". If � = � then a
tive(s)#

B

= a
tive(a
tive(u))#

B

=

a
tive(u)#

B

= a
tive(t)#

B

. If � > � then we must have � = �

0

j with

sj

�

0

= f(s

1

; : : : ; s

n

) and s

j

= a
tive(u). Hen
e

a
tive(s)#

B

= a
tive(s)#

B

[f(s

1

#

B

; : : : ; a
tive(u)#

B

; : : : ; s

n

#

B

)℄

�

and

a
tive(t)#

B

= a
tive(s)#

B

[f(s

1

#

B

; : : : ; u#

B

; : : : ; s

n

#

B

)℄

�

If root(u) 2 fa
tive;markg then a
tive(u)#

B

= u#

B

and thus a
tive(s)#

B

=

a
tive(t)#

B

. Otherwise, root(u) 2 F and thus a
tive(u)#

B

= a
tive(u#

B

).

In this latter 
ase we apply the rewrite rule f(x

1

; : : : ; a
tive(x

j

); : : : ; x

n

)!

f(x

1

; : : : ; x

n

) to 
on
lude a
tive(s)#

B

!

3

a
tive(t)#

B

.

ut

8 Con
lusion

We investigated �ve existing transformations from 
ontext-sensitive to ordinary

rewrite systems. Of these �ve transformations, only the transformations �

1

and

�

2

from [14℄ are sound for proving innermost termination of CSRSs. We showed

that �

2

is not very useful when it 
omes to innermost termination, but that ter-

mination of a CSRS (R; �) already implies innermost termination of �

1

(R; �).

So for 
lasses of CSRSs where termination and innermost termination are equiv-

alent, �

1

is sound and 
omplete for innermost termination. While in general �

1

is still in
omplete, we developed a new transformation �

3

whi
h is sound and


omplete for innermost termination. As far as (non-innermost) termination is


on
erned, �

3

and �

1

are equally powerful.
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So with our new transformation, innermost termination of 
ontext-sensitive

rewriting 
an be fully redu
ed to innermost termination of ordinary rewriting.

Moreover, for orthogonal CSRSs innermost termination already suÆ
es for ter-

mination. So for su
h systems, innermost termination of the transformed TRS

even implies termination of the CSRS. The existing methods for innermost ter-

mination analysis of TRSs are mu
h more powerful than the ones for termina-

tion. Hen
e, our result now enables the use of these methods for (innermost)

termination of 
ontext-sensitive rewriting, 
f. Appendix A, where we use our

transformation in 
ombination with the dependen
y pair te
hnique for TRSs in

order to verify (innermost) termination of CSRSs.
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A Examples

In this se
tion, we demonstrate how our transformation �

3


an be used in 
ombi-

nation with dependen
y pairs in order to prove innermost termination of 
ontext-

sensitive rewrite systems. For an introdu
tion to dependen
y pairs we refer to

[1℄.

The TRSs R

3

�

resulting from our transformation have a spe
ial form and

hen
e, to ease their innermost termination proof, the following re�nements 
an
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be used when applying dependen
y pairs. (Re�nement (E) 
an even be used for

arbitrary TRSs, but the other re�nements are due to the spe
ial form of R

3

�

.)

(A) If s ! t is a dependen
y pair with root(s) 2 fACTIVE;MARKg, then no

narrowing is needed whi
h would instantiate variables with terms 
ontaining

a
tive or mark.

(B) If s ! t is a dependen
y pair with root(s) 2 fACTIVE;MARKg, then s ! t


an be repla
ed by all pairs of the form s� ! w� for all dependen
y pairs

v ! w where � is the most general uni�er of 
ap

0

(t) and v. Here, 
ap

0

repla
es all subterms built with mark or a
tive by pairwise di�erent fresh

variables. (In other words, one 
an 
ombine s! t with all pairs v ! w whi
h

possibly follow this pair in an innermost 
hain.)

(C) In any dependen
y pair of the form

ACTIVE(C[x℄)! C

0

[f(: : : ;mark(x); : : :)℄

where x is on an a
tive position of C[x℄, the subterm mark(x) 
an be repla
ed

by x, i.e., one 
an repla
e the dependen
y pair by

ACTIVE(C[x℄)! C

0

[f(: : : ; x; : : :)℄

(D) If 
onstru
tors only have a
tive argument positions and (R; �) is an orthog-

onal 
onstru
tor system

8

su
h that in right-hand sides of dependen
y pairs

of R

3

�

de�ned symbols of R o

ur only at position 1 and where dependen
y

pairs do not 
ontain the symbol a
tive, then the a
tive-rules are not \usable"

[1℄.

(E) Rewriting dependen
y pairs [12℄ 
an be extended to overlapping systems as

follows: if s ! t is a dependen
y pair and tj

�

is a redu
ible ground term

then s ! t 
an be repla
ed by the pairs s ! t[u

1

℄

�

, . . . , s ! t[u

n

℄

�

, where

u

1

; : : : ; u

n

are the terms rea
hable from tj

�

in one innermost rewrite step.

All these re�nements 
an also be used for modular innermost termination proofs

[13℄ where one regards subsets of dependen
y pairs separately for every 
y
le of

the innermost dependen
y graph.

Note that re�nements (B), (C), (E), as well as the re�nements of narrowing,

rewriting, and instantiating dependen
y pairs in [12℄ modify the original depen-

den
y pairs to new pairs of terms. When formulating the re�nements above, we

also refer to these new pairs as \dependen
y pairs". In other words, the re�ne-

ments may be applied repeatedly after ea
h other and �nally, the resulting set of

pairs is taken as \the" set of dependen
y pairs. So for example, re�nement (D)


an also be applied if the set of pairs resulting from modifying the dependen
y

pairs has the required form.

8

A 
onstru
tor system has the property that no de�ned symbol o

urs below the root position

in some left-hand side.
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The above re�nements are generally appli
able when proving innermost ter-

mination of systems resulting from transforming CSRSs. The 
onditions for their

appli
ation 
an be 
he
ked automati
ally.

We demonstrate the usefulness of our transformation with two examples. In

Se
tion A.1 we handle a variant of Example 6, i.e., a CSRS that is innermost

terminating but not terminating. Example 1 (Se
tion A.2) is a natural CSRS

that is terminating but where innermost termination is signi�
antly easier to

prove than termination and where innermost termination is already suÆ
ient for

termination. A thorough justi�
ation of the re�nements (A){(E) 
an be found

in Se
tion A.3.

A.1 Variant of Example 6

We regard the following CSRS (R; �) with R 
onsisting of the three rules

f(g(b))! f(g(a)) f(a)! f(a) a! b

and �(f) = f1g and �(g) = ?. The TRS R is not innermost terminating. The

CSRS (R; �) is innermost terminating but not terminating. (This CSRS 
orre-

sponds to Example 6 extended by the additional rule f(g(b))! f(g(a)). This rule

is added to demonstrate that our method is also su

essful for systems whi
h are

innermost terminating as a CSRS but not as a TRS. The innermost termination

proof of Example 6 pro
eeds in the same way.) Our transformation produ
es the

following TRS R

3

�

:

a
tive(f(g(b)))! mark(f(g(a))) mark(f(x))! a
tive(f(mark(x)))

a
tive(f(a))! mark(f(a)) mark(g(x))! a
tive(g(x))

a
tive(a)! mark(b) mark(a)! a
tive(a)

mark(b)! a
tive(b)

f(a
tive(x))! f(x) f(mark(x))! f(x)

g(a
tive(x))! g(x) g(mark(x))! g(x)

We show that innermost termination of this TRS 
an be proved easily with

dependen
y pairs. We omit pairs of the form MARK(�) ! F(�) and MARK(�) !

G(�) as well as ACTIVE(�) ! F(�) and ACTIVE(�) ! G(�) sin
e these pairs are

obviously not on 
y
les of the (estimated) innermost dependen
y graph. In the

sequel we abbreviate MARK to M and ACTIVE to a
tive.

A(f(g(b)))! M(f(g(a))) (1) M(f(x))! A(f(mark(x))) (5)

A(f(a))! M(f(a)) (2) M(g(x))! A(g(x)) (6)

A(a)! M(b) (3) M(a)! A(a) (7)

M(f(x))! M(x) (4) M(b)! A(b) (8)

F(a
tive(x))! F(x) (9) F(mark(x))! F(x) (11)

G(a
tive(x))! G(x) (10) G(mark(x))! G(x) (12)
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Dependen
y pairs (3), (6), (7), and (8) are not on 
y
les of the innermost de-

penden
y graph (this 
an easily be dete
ted using re�nement (B)). A

ording

to re�nement (B), both (1) and (2) 
an be 
ombined with dependen
y pairs (4)

and (5) and hen
e are repla
ed by

A(f(g(b)))! M(g(a)) (13) A(f(a))! M(a) (15)

A(f(g(b)))! A(f(mark(g(a)))) (14) A(f(a))! A(f(mark(a))) (16)

Pairs (13) and (15) are not on 
y
les. Sin
e the right-hand sides of (14) and (16)

are ground, one 
an innermost rewrite them a

ording to re�nement (E). This

yields

A(f(g(b)))! A(f(g(a))) A(f(a))! A(f(b))

With re�nement (B) we immediately dete
t that these pairs are not on 
y
les and

hen
e, they 
an be deleted. But then (5) is not on a 
y
le either, be
ause there is

no longer any dependen
y pair whose left-hand side has the root A. So the only

dependen
y pairs on 
y
les are (4) and (9){(12). Sin
e these pairs have no usable

rules, the resulting 
onstraints are already satis�ed by the embedding order.

Hen
e, R

3

�

is innermost terminating (and using our re�nements, this innermost

termination proof 
an easily be performed automati
ally).

A.2 Example 1

We regard the CSRS (R; �) with R 
onsisting of the rules

0 6 y ! true p(0)! 0

s(x) 6 0! false p(s(x))! x

s(x) 6 s(y)! x 6 y if(true; x; y)! x

x� y ! if(x 6 y; 0; s(p(x)� y)) if(false; x; y)! y

with �(if) = f1g and �(f) = f1; : : : ; arity(f)g for all other fun
tion symbols f .

This system is a natural formulation of the subtra
tion algorithm using a


onditional if. In fun
tional languages like LISP whi
h have no pattern mat
h-

ing, p and if would be built-in and one would have to formulate algorithms using

if and sele
tors like p. A 
orresponding algorithm was already treated in [1, Ex-

ample 41℄, but there the if-symbol had to be en
oded in a 
ounterintuitive way

to prevent the evaluation of the third argument of if. In 
ontrast, the formula-

tion above is natural, but it is only possible in 
ontext-sensitive rewriting. Our

transformation produ
es the following TRS R

3

�

:

a
tive(p(0))! mark(0) mark(0)! a
tive(0)

a
tive(p(s(x)))! mark(x) mark(true)! a
tive(true)

a
tive(0 6 y)! mark(true) mark(false)! a
tive(false)
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a
tive(s(x) 6 0)! mark(false) mark(s(x))! a
tive(s(mark(x)))

a
tive(s(x) 6 s(y))! mark(x 6 y) mark(p(x))! a
tive(p(mark(x)))

a
tive(if(true; x; y))! mark(x) mark(x 6 y)! a
tive(mark(x) 6 mark(y))

a
tive(if(false; x; y))! mark(y) mark(x� y)! a
tive(mark(x)�mark(y))

a
tive(x� y)! mark(if(x 6 y; 0; s(p(x)� y)))

mark(if(x; y; z))! a
tive(if(mark(x); y; z))

s(f(x))! s(x) x 6 f(y)! x 6 y if(f(x); y; z)! if(x; y; z)

p(f(x))! p(x) f(x)� y ! x� y if(x; f(y); z)! if(x; y; z)

f(x) 6 y ! x 6 y x� f(y)! x� y if(x; y; f(z))! if(x; y; z)

for f 2 fmark; a
tiveg. We show how innermost termination of this TRS is proved

with dependen
y pairs. Sin
e R

3

�

is a non-overlapping TRS, innermost termina-

tion of this TRS 
oin
ides with its termination. Nevertheless, proving innermost

termination is 
onsiderably easier than proving termination dire
tly. We again

omit dependen
y pairs of the form M(�) ! F (�) and A(�) ! F (�) where f 2 F

sin
e these pairs are obviously not on 
y
les of the (estimated) innermost depen-

den
y graph.

A(p(0))! M(0) (17) M(0)! A(0) (24)

A(p(s(x)))! M(x) (18) M(true)! A(true) (25)

A(0 6 y)! M(true) (19) M(false)! A(false) (26)

A(s(x) 6 0)! M(false) (20) M(s(x))! A(s(mark(x))) (27)

A(s(x) 6 s(y))! M(x 6 y) (21) M(p(x))! A(p(mark(x))) (28)

A(if(true; x; y))! M(x) (22) M(x 6 y)! A(mark(x) 6 mark(y)) (29)

A(if(false; x; y))! M(y) (23) M(x� y)! A(mark(x)�mark(y)) (30)

A(x� y)! M(if(x 6 y; 0; s(p(x)� y))) (31)

M(if(x; y; z))! A(if(mark(x); y; z)) (32)

M(s(x))! M(x) (33) M(x� y)! M(x) (37)

M(p(x))! M(x) (34) M(x� y)! M(y) (38)

M(x 6 y)! M(x) (35) M(if(x; y; z))! M(x) (39)

M(x 6 y)! M(y) (36)

plus dependen
y pairs like S(f(x)) ! S(x), et
. These latter dependen
y pairs

are only on 
y
les with themselves and they have no usable rules. Hen
e the 
on-

straints for these 
y
les of dependen
y pairs are easily solved by the embedding

order.

Dependen
y pairs (17), (19), (20), (24), (25), (26), and (27) are not on any


y
le (this 
an easily be seen using re�nement (B)) and hen
e we will not 
onsider
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them further. By 
ombining (31) with (32) and (39) a

ording to re�nement (B),

we 
an repla
e (31) by

A(x� y)! A(if(mark(x 6 y); 0; s(p(x)� y))) (40)

A(x� y)! M(x 6 y) (41)

Narrowing (40) one step (where we do not have to narrow on p(x), p(x)� y, or

x 6 y a

ording to re�nement (A)) yields

A(x� y)! A(if(x 6 y; 0; s(p(x)� y))) (42)

A(x� y)! A(if(a
tive(mark(x) 6 mark(y)); 0; s(p(x)� y))) (43)

Moreover, due to re�nement (C), in (43) we 
an repla
e mark(x) and mark(y) by

x and y, respe
tively:

A(x� y)! A(if(a
tive(x 6 y); 0; s(p(x)� y))) (44)

Now we perform narrowing on (44) (observing re�nement (A)) and repla
e it by

the pairs (42) and

A(0� y)! A(if(true; 0; s(p(0)� y))) (45)

A(s(x)� 0)! A(if(false; 0; s(p(s(x))� 0))) (46)

A(s(x)� s(y))! A(if(mark(x 6 y); 0; s(p(s(x))� s(y)))) (47)

Dependen
y pairs (42) and (45) are not on a 
y
le. This is dete
ted by re�nement

(B), sin
e (42) 
annot be 
ombined with any pair and (45) 
an be 
ombined with

(22), but the resulting pair 
annot be 
ombined any further. Pair (46) is 
ombined

with (23) whi
h yields

A(s(x)� 0)! M(s(p(s(x))� 0)) (48)

Pair (47) 
an be 
ombined with (22) and (23). In order to perform the uni�
ation

required for the 
ombination, we �rst have to repla
e the subterm mark(x 6 y)

by a new variable. This yields

A(s(x)� s(y))! M(0) (49)

A(s(x)� s(y))! M(s(p(s(x))� s(y))) (50)

Dependen
y pair (49) is not on a 
y
le. Both pairs (48) and (50) 
an be 
ombined

with (33) whi
h yields

A(s(x)� 0)! M(p(s(x))� 0) A(s(x)� s(y))! M(p(s(x))� s(y))

Combining these pairs with (30), (37), and (38) yields

A(s(x)� 0)! A(mark(p(s(x)))�mark(0)) (51)

A(s(x)� s(y))! A(mark(p(s(x)))�mark(s(y))) (52)

40



A(s(x)� 0)! M(p(s(x))) (53) A(s(x)� s(y))! M(p(s(x))) (55)

A(s(x)� 0)! M(0) (54) A(s(x)� s(y))! M(s(y)) (56)

Dependen
y pair (54) is not on a 
y
le. For dependen
y pair (51) we perform

narrowing repeatedly until no further narrowing steps are possible. However, in

this pro
ess we do not regard narrowing steps whi
h would instantiate variables

with terms 
ontaining a
tive ormark (due to re�nement (A)). Moreover, whenever

we en
ounter a subterm of the form mark(x), we repla
e it by x (due to re�nement

(C)) before 
ontinuing the narrowing pro
ess. We pro
eed in an analogous way

for dependen
y pair (52). Thus, these two pairs are transformed into

A(s(x)� 0)! A(x� 0) (57) A(s(x)� s(y))! A(x� s(y)) (59)

A(s(x)� 0)! A(p(s(x))� 0) (58) A(s(x)� s(y))! A(p(s(x))� s(y)) (60)

Combining (58) and (60) with (41) yields

A(s(x)� 0)! M(p(s(x)) 6 0) (61) A(s(x)� s(y))! M(p(s(x)) 6 s(y)) (62)

Pairs (61) and (62) are now 
ombined with (29), (35), and (36), whi
h yields

A(s(x)� 0)! A(mark(p(s(x))) 6 mark(0)) (63)

A(s(x)� 0)! M(p(s(x))) (53)

A(s(x)� 0)! M(0) (54)

A(s(x)� s(y))! A(mark(p(s(x))) 6 mark(s(y))) (64)

A(s(x)� s(y))! M(p(s(x))) (55)

A(s(x)� s(y))! M(s(y)) (56)

Again, pair (54) is not on a 
y
le. For (63) and (64) we perform narrowing re-

peatedly until no further narrowing steps are possible. However, in this pro
ess

we do not regard narrowing steps whi
h would instantiate variables with terms


ontaining a
tive or mark (due to re�nement (A)). Moreover, whenever we en-


ounter a subterm of the form mark(x), we repla
e it by x (due to re�nement

(C)) before 
ontinuing the narrowing pro
ess. This transforms these two pairs

into

A(s(x)� 0)! A(p(s(x)) 6 0) (65) A(s(x)� s(y))! A(p(s(x)) 6 s(y)) (67)

A(s(x)� 0)! A(x 6 0) (66) A(s(x)� s(y))! A(x 6 s(y)) (68)

Now (65), (66), and (67) are not on a 
y
le. To summarize, we are left with the

following pairs:

A(p(s(x)))! M(x) (18) A(s(x)� 0)! A(x� 0) (57)

A(s(x) 6 s(y))! M(x 6 y) (21) A(s(x)� s(y))! A(x� s(y)) (59)

A(if(true; x; y))! M(x) (22) A(s(x)� 0)! M(p(s(x))) (53)

A(if(false; x; y))! M(y) (23) A(x� y)! M(x 6 y) (41)

A(s(x)� s(y))! M(x 6 s(y)) (68) M(x� y)! M(x) (37)

A(s(x)� s(y))! M(p(s(x))) (55) M(x� y)! M(y) (38)

A(s(x)� s(y))! M(s(y)) (56) M(if(x; y; z))! M(x) (39)
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M(p(x))! A(p(mark(x))) (28) M(s(x))! M(x) (33)

M(x 6 y)! A(mark(x) 6 mark(y)) (29) M(p(x))! M(x) (34)

M(x� y)! A(mark(x)�mark(y)) (30) M(x 6 y)! M(x) (35)

M(if(x; y; z))! A(if(mark(x); y; z)) (32) M(x 6 y)! M(y) (36)

To solve the resulting 
onstraints we use an argument �ltering whi
h repla
es

mark and a
tive by their arguments and RPO with a pre
eden
e where \�" is

greater than both p and \6" and where A and M are equal in the pre
eden
e.

Then the dependen
y pairs (28){(32) are weakly de
reasing and all other pairs

are stri
tly de
reasing.

Note thatR is an orthogonal 
onstru
tor system where all argument positions

of 
onstru
tors are a
tive. Moreover, in the above dependen
y pairs ofR

3

�

, de�ned

symbols of R o

ur only at position 1 in right-hand sides. Hen
e, re�nement (D)

is appli
able whi
h implies that the a
tive-rules are not usable. As a 
onsequen
e,

by the above argument �ltering, the left and right-hand sides of all usable rules

are made equal. In other words, the 
onstraints resulting from the usable rules

are ful�lled. Hen
e, the transformed system is innermost terminating and thus,

the original CSRS is also innermost terminating. Sin
e the CSRS is orthogonal,

this also implies its termination.

This example demonstrates that our results are also helpful for termination

proofs of su
h CSRSs, be
ause they imply that it is suÆ
ient to prove innermost

termination of the transformed system. In general, proving innermost termina-

tion is signi�
antly easier than proving termination [1℄. Indeed, in our proof we

made use of several re�nements of the dependen
y pair approa
h whi
h 
an only

be used for innermost termination proofs:

{ Re�nements (A){(E) only work for innermost termination.

{ The te
hnique of narrowing dependen
y pairs (for non-right-linear systems

like R

3

�

) 
an only be used for innermost termination.

{ The te
hnique of usable rules only works for innermost termination (this is

also important when handling the S(f(x)) ! S(x) dependen
y pairs whi
h

have no usable rules).

A.3 Re�nements to the Dependen
y Pair Approa
h

In this se
tion we 
omment on the 
orre
tness of the re�nements (A){(E) that

were used in the pre
eding examples.

A.3.1 Re�nement (A)

In innermost 
hains one only regards instantiations of dependen
y pairs where

the left-hand side is a normal form. Sin
e there is a symbol f 2 F above every

variable in the left-hand side of every A or M-dependen
y pair, it follows that the

variables in these pairs 
annot be be instantiated by terms 
ontaining a
tive or
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mark. Hen
e, in A or M-dependen
y pairs, no narrowing is needed whi
h would

instantiate variables with terms 
ontaining a
tive or mark.

A.3.2 Re�nement (B)

Re�nement (B) is a spe
ial 
ase of the following re�nement, whi
h 
an be used

for dependen
y pairs in general.

Theorem 35 (
ombining dependen
y pairs). Let R be a TRS, let P be a

set of pairs of terms su
h that Var(v) � Var(u) for all u ! v 2 P, and let

s ! t 2 P. Let t = t

0

� with Dom(�) = Var(t

0

) n Var(t) su
h that for all � with

s� a normal form and Dom(�) \ Dom(�) = ?, any normal form of t� has the

form t

0

(� [ �

0

) for some �

0

with Dom(�

0

) � Dom(�). Let

P

0

= P n fs! tg [ fs�! v� j u! v 2 P and � = mgu(t

0

; u)g

If there exists no in�nite innermost R-
hain of pairs from P

0

, then there exists

no in�nite innermost R-
hain of pairs from P.

Proof. If

� � � ; s! t; u! v; � � �

is an innermost 
hain of pairs from P , then there exists a substitution � su
h

that s� and u� are normal forms and su
h that t�

i

!

�

R

u�. Sin
e �

0

only operates

on the new variables in t

0

we have u� = t

0

(� [ �

0

) = u(� [ �

0

). Hen
e, � [ �

0

is a uni�er of t

0

and u. Let � be the mgu of these two terms. So there exists a

substitution � su
h that �[ �

0

= ��. Hen
e, the two dependen
y pairs s! t and

u ! v in the innermost 
hain 
an be repla
ed by the new pair s� ! v� where

instead of the instantiation � one now has to use the instantiation �. ut

Re
all that the variables in the A and M-dependen
y pairs 
annot be instan-

tiated by terms 
ontaining a
tive or mark. Thus, the symbols from F o

urring in

right-hand sides of dependen
y pairs 
an be treated like 
onstru
tors when using

the te
hnique of 
ombining dependen
y pairs. In other words, all dependen
y

pairs s ! t with root(s) 2 fA;Mg and no a
tive and mark-symbols o

urring in

t have the property required in Theorem 35, i.e., for all � where s� is a normal

form, t� is a normal form, too.

Due to the form of R

3

�

, for arbitrary terms t the following holds. Let t =

C[t

1

; : : : ; t

k

℄ where the 
ontext C does not 
ontain mark and a
tive-symbols, and

where the root symbol of the terms t

i

is mark or a
tive. For substitutions �

whi
h do not introdu
e mark or a
tive-symbols, t� has the form C�[t

1

�; : : : ; t

k

�℄

and again, C� does not 
ontain mark and a
tive-symbols. Note that t� 
an only

rewrite in R

3

�

to terms of the form C�[u

1

; : : : ; u

k

℄. Hen
e, if we repla
e all mark

and a
tive-subterms in t by pairwise di�erent fresh variables then the resulting

term 
ap

0

(t) satis�es the requirements on the term t

0

in Theorem 35.
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A.3.3 Re�nement (C)

First note that if R

3

�

is not innermost terminating, then there also exists an

in�nite innermost R

3

�

-redu
tion with terms from T where T is de�ned as in

De�nition 19. (To see this, note that if R

3

�

is not innermost terminating then

(R; �) is not innermost terminating as a 
onsequen
e of the 
ompleteness of

�

3

. From the proof of Theorem 18 we then infer the existen
e of an in�nite

innermost redu
tion starting from a term of the form mark(s)#

M

. Obviously,

mark(s)#

M

2 T .) Further note that a

ording to the proof of Lemma 20, the set

T is 
losed under innermost R

3

�

-redu
tion.

Now we show that without loss of generality we 
an assume that in the left-

hand side A(C[x℄) of every A-dependen
y pair with x on an a
tive position of

C[x℄, x 
an only be instantiated with terms s 2 T (F ;V) su
h that for all a
tive

positions � in s, sj

�

is not an R-redex. Every in�nite innermost R

3

�

-redu
tion


orresponds to an in�nite innermost 
hain of dependen
y pairs. As explained

above, we 
an restri
t ourselves to redu
tions between terms of T . Then an

instantiation of a dependen
y pair A(C[x℄)! : : : with a substitution � 
an only

o

ur in this innermost 
hain if there is a term t = t[a
tive(C�[x�℄)℄

�

0

2 T in the

in�nite innermost R

3

�

-redu
tion. A

ording to the de�nition of T , the position

�

0

of the displayed o

urren
e of a
tive in t is a
tive. Be
ause the position of x is

a
tive in C[x℄, it is also a
tive in t. Let s = x�. Due to the form of the dependen
y

pairs, C[x℄ 
ontains at least one symbol of F above x. Moreover, in innermost


hains, the variables of A or M-dependen
y pairs 
annot be instantiated by terms


ontaining a
tive or mark, 
f. the argumentation for re�nements (A) and (B).

From these two observations we infer that the a
tive positions � of s are not

a
tivated. Hen
e, by the de�nition of T , sj

�

is not an R-redex. Thus, we 
an

indeed assume that in dependen
y pairs A(C[x℄) ! : : : with x on an a
tive

position of C[x℄, x is only instantiated with terms s 2 T (F ;V) withoutR-redexes

on a
tive positions.

Note that for su
h terms s, the normal form of mark(s) (rea
hable by inner-

most R

3

�

-redu
tion) is mark(s) or a
tive(s). To see this, we 
onsider two 
ases.

If s 2 V then mark(s) is a normal form. Otherwise, by Lemma 17 the normal

form of mark(s) is a
tive(s) sin
e any innermost R

3

�

-redu
tion would �rst redu
e

mark(s) to mark(s)#

M

. Hen
e, any instantiation of a dependen
y pair

A(C[x℄)! C

0

[f(: : : ;mark(x); : : :)℄

will only lead to a right-hand side that is redu
ed to C

0

[f(: : : ; a
tive(s); : : : )℄ or

C

0

[f(: : : ;mark(s); : : : )℄ and then to C

0

[f(: : : ; s; : : : )℄. Hen
e, one 
an immediately

repla
e the right-hand side by C

0

[f(: : : ; x; : : : )℄.

A.3.4 Re�nement (D)

We have the following theorem.
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Theorem 36. Let (R; �) be an orthogonal CSRS whi
h is a 
onstru
tor system

with �(
) = f1; : : : ; arity(
)g for all 
onstru
tors 
. If (R; �) is not innermost

terminating then there exists a term without de�ned symbols below the root whi
h

starts an in�nite innermost redu
tion.

Proof. For an innermost terminating term u we denote by #(u) the result of

repla
ing in the unique �-normal form of u all subterms with de�ned root symbol

by a (distinguished) variable. We 
all a term that is obtained from a term s by

repla
ing some o

urren
es of some innermost terminating subterms u by #(u)

a normal form variant of s.

Let s

i

!

�

t and let s

0

be a normal form variant of s. We 
laim that there

exists a normal form variant t

0

of t su
h that s

0

i

!

=

�

t

0

. To prove the 
laim we

distinguish two 
ases.

1. We �rst regard the 
ase where in the step from s to t a rule l ! r is applied

to a redex not inside one of the repla
ed subterms. Thus we have s = C[l�℄

�

and t = C[r�℄

�

su
h that no subterm on or above position � is repla
ed

in s

0

. Sin
e 
onstru
tors have only a
tive argument positions, repla
ing a

term u by #(u) is the same as repla
ing all subterms u

0

of u with de�ned

root symbol by #(u

0

). Hen
e, without loss of generality we 
an assume that

below � one only repla
es subterms with de�ned root symbol. Sin
e R is a


onstru
tor system, all subterms with de�ned root symbol are introdu
ed by

the substitution �. Sin
eR is orthogonal, the repla
ement of su
h subterms u

0

by #(u

0

) 
orresponds to the use of a modi�ed substitution �

0

. So s

0

= C

0

[l�

0

℄

�

for a suitable substitution �

0

. The resulting term t

0

= C

0

[r�

0

℄

�

is easily seen

to be a normal form variant of t and the step from s

0

to t

0

is innermost.

2. If the step from s to t takes pla
e inside a repla
ed subterm u of s then we

have s = C[u℄ and t = C[v℄ with u

i

!

�

v. In the normal form variant s

0

, the

term u has been repla
ed by #(u). We have #(u) = #(v) sin
e u and v have

the same �-normal form. Hen
e, s

0

= C

0

[#(u)℄ = C

0

[#(v)℄ is a normal form

variant of t.

Let s be a minimal term with an in�nite innermost redu
tion, i.e., all proper

subterms are innermost terminating. From the pre
eding dis
ussion we infer that

the normal form variant s

0

of s obtained by repla
ing all proper subterms u of s by

#(u) again has an in�nite innermost redu
tion; note that the se
ond alternative

above happens only �nitely many times as the repla
ed subterms are innermost

terminating. Sin
e s

0

has no de�ned symbols below the root, this proves the

theorem. ut

One should remark that the above theorem does not hold if 
onstru
tors have

ina
tive argument positions. As a 
ounterexample 
onsider the CSRS 
onsisting

of the two rules

f(
(x))! f(x) b! 
(b)
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with �(f) = f1g and �(
) = ?. The term f(
(b)) starts an in�nite innermost


ontext-sensitive redu
tion, but all terms without de�ned symbols below the

root are innermost terminating.

Furthermore, the orthogonality requirement 
annot be weakened to non-

overlappingness, as 
an be seen from the CSRS

f(x)! g(x; i(h(
))) g(x; x)! f(h(b)) h(b)! i(h(
))

with the argument positions of all fun
tion symbols a
tive. The term f(h(b))

starts an in�nite innermost redu
tion, but all terms without de�ned symbols

below the root are innermost terminating.

A

ording to Theorem 36, if (R; �) is not innermost terminating, then there

exists a term f(t

1

; : : : ; t

n

) with an in�nite innermost �-redu
tion su
h that the

terms t

1

; : : : ; t

n


ontain no R-de�ned fun
tion symbols. Then mark(f(t

1

; : : : ; t

n

))

has an in�nite innermostR

3

�

-redu
tion. The reason is that sin
e t

1

; : : : ; t

n


ontain

no R-redexes, any innermost R

3

�

-redu
tion would �rst redu
e mark(f(t

1

; : : : ; t

n

))

to mark(f(t

1

; : : : ; t

n

))#

M

. Then the 
laim follows from the proof of Theorem 18.

The term mark(f(t

1

; : : : ; t

n

)) is obviously a minimal term with an in�nite

innermost R

3

�

-redu
tion, i.e., all its subterms are innermost terminating with

respe
t to R

3

�

. From the soundness proof of the dependen
y pairs te
hnique [1,

Theorems 31 and 6℄ one 
an see that every minimal non-innermost terminating

term f

1

(u

1

) gives rise to an in�nite innermost 
hain of dependen
y pairs

F

1

(v

1

)! F

2

(u

2

); F

2

(v

2

)! F

3

(u

3

); � � �

su
h that every f

i

(v

i

) ! r

i

is a rewrite rule, f

i+1

(u

i+1

) is a subterm of r

i

,

there are substitutions �

i

su
h that F

i+1

(u

i+1

)�

i

i

!

�

3

F

i+1

(v

i+1

)�

i+1

, and every

F

i+1

(v

i+1

)�

i+1

is a normal form. Moreover, we have F

1

(u

1

)

i

!

�

3

F

1

(v

1

)�

1

. Hen
e,

in our setting there is an in�nite innermost 
hain starting with a dependen
y

pair whose left-hand side is M(f(: : :)) and �

1

instantiates the variables of this

dependen
y pair by terms without R-de�ned symbols.

By assumption no right-hand side F

i

(u

i

) of a dependen
y pair 
ontains an

R-de�ned symbol stri
tly below position 1. Hen
e, if R-de�ned symbols only

o

ur at position 1 in an instantiated left-hand side F

i

(v

i

)�

i

of a dependen
y

pair, then this also holds for the instantiated right-hand side F

i

(u

i+1

)�

i

of the

pair. Hen
e, in the instantiated dependen
y pairs, mark is only applied to terms

whi
h 
ontain no R-de�ned fun
tion symbols. The terms resulting from these

redu
tions again 
ontain no R-de�ned symbols. It follows that the only usable

rules are rules of the form mark(f(: : :)) ! a
tive(f(: : :)) for 
onstru
tors f and

rules f(: : : ; g(x); : : :)! f(: : : ; x; : : :) for f 2 F and g 2 fmark; a
tiveg.

A.3.5 Re�nement (E)

The following theorem holds for arbitrary TRSs.
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Theorem 37. Let R be a TRS and let P be a set of pairs of terms. Let s! t 2

P, let tj

�

be a redu
ible ground term, and let u

1

; : : : ; u

n

be the terms rea
hable

from tj

�

in one innermost rewrite step. Let P

0

result from P by repla
ing s! t

with s ! t[u

1

℄

�

, . . . , s ! t[u

n

℄

�

. If there exists no in�nite innermost 
hain of

pairs from P

0

, then there exists no in�nite innermost 
hain from P either.

Proof. Let

� � � ; s! t; u! v; � � �

be an innermost 
hain of pairs from P . Then there must be a substitution �

with t�

i

!

�

R

u� where u� is a normal form. Sin
e t�j

�

= tj

�

is redu
ible, there is

at least one rewrite step in this redu
tion. Sin
e the redu
tion is innermost, tj

�

must be normalized before redu
tion steps are applied to positions above � in t�.

Obviously, it does not matter in whi
h order redu
tion steps are performed on

pairwise disjoint positions. Hen
e, we 
an assume that in the redu
tion t�

i

!

�

R

u�

one �rst normalizes tj

�

. So there exists a term u

i

su
h that t�

i

!

R

t[u

i

℄

�

�

i

!

�

R

u�.

Hen
e, we 
an repla
e the dependen
y pair s ! t by s ! t[u

i

℄

�

in the above

innermost 
hain. ut
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