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Abstract. In this paper, we show how the problem of verifying liveness proper-
ties is related to termination of term rewrite systems (TRSs). We formalize live-
ness in the framework of rewriting and present a sound and complete transforma-
tion to transform particular liveness problems into TRSs. Then the transformed
TRS terminates if and only if the original liveness property holds. This shows
that liveness and termination are essentially equivalent. To apply our approach
in practice, we introduce a simpler sound transformation which only satisfies the
‘only if’-part. By refining existing techniques for proving termination of TRSs
we show how liveness properties can be verified automatically. As examples, we
prove a liveness property of a waiting line protocol for a network of processes and
a liveness property of a protocol on a ring of processes.

1 Introduction

Usually, liveness is roughly defined as: “something will eventually happen” [1]
and it is often remarked that “termination is a particular case of liveness”.
In this paper we present liveness in a general but precise setting and study the
relationship between liveness and termination. To this end, we use the framework
of abstract reduction and term rewrite systems. Classically, TRSs are applied to
model evaluation in programming languages. Our aim is to use rewrite systems
to also study liveness questions which are of high importance in practice (e.g.,
in protocol verification for distributed processes). In particular, we show how to
verify liveness properties by existing termination techniques for TRSs.

In Sect. 2 we define a suitable notion of liveness to express eventuality prop-
erties using abstract reduction. Then in Sect. 3 this notion is specialized to the
framework of term rewriting and we show how liveness can be modelled as a
rewrite relation. Afterwards we discuss how actual liveness properties can be
verified. To this end, in Sect. 4 we investigate the connection between a partic-
ular kind of liveness and termination. More precisely, we present a sound and
complete transformation which allows us to express liveness problems as ter-
mination problems of ordinary TRSs. This shows that techniques for proving
termination of TRSs can also be used to infer liveness properties. In order to ap-
ply this approach in practice, based on our preceding results we present a sound
(but incomplete) technique to perform termination proofs for liveness properties
in Sect. 5, which is significantly easier to mechanize. In contrast to model check-
ing and related methods, our technique does not require finiteness of the state
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space. Our approach differs from other applications of term rewriting techniques
to parameterized systems or infinite state spaces, where the emphasis is on ver-
ification of other properties like reachability [4]. We demonstrate our approach
on case studies of networks with shared resources and on a (token) ring protocol
in Sect. 6.

2 Liveness in Abstract Reduction

In this section we give a formal definition of liveness using the framework of
abstract reduction. We assume a set S of states and a notion of computation
that can be expressed by a binary relation →⊆ S × S. So “t → u” means that
a computation step from t to u is possible. A computation sequence or reduction
is defined to be a finite sequence t1, t2, . . . , tn or an infinite sequence t1, t2, t3, . . .
with ti → ti+1. We write →∗ for the reflexive transitive closure of →, i.e., →∗

represents zero or more computation steps.

To define liveness we assume a set G⊆S of ‘good’ states and a set I ⊆S of
initial states. A reduction is maximal if it is either infinite or if its last element
is in the set of normal forms NF = {t ∈ S | ¬∃u : t → u}. The liveness property
Live(I,→,G) holds if every maximal reduction starting in I contains an element
of G. Thus, our notion of liveness describes eventuality properties (i.e., it does
not capture properties like starvation freedom which are related to fairness).

Definition 1 (Liveness) Let S be a set of states, →⊆ S × S, and G, I ⊆ S.
Let “t1, t2, t3, . . .” denote an infinite sequence of states. Then Live(I,→, G) holds
iff

1. ∀t1, t2, t3, . . . : (t1 ∈ I ∧ ∀i : ti → ti+1) ⇒ ∃i : ti ∈ G, and

2. ∀t1, t2, . . . , tn : (t1 ∈ I ∧ tn ∈ NF ∧ ∀i : ti → ti+1) ⇒ ∃i : ti ∈ G.

For example, termination (or strong normalization SN(I,→)) is a special
liveness property describing the non-existence of infinite reductions, i.e.,

SN(I,→) = ¬(∃t1, t2, t3, . . . : t1 ∈ I ∧ ∀i : ti → ti+1).

Theorem 2 The property SN(I,→) holds if and only if Live(I,→,NF) holds.

Proof. For the ‘if’-part, if SN(I,→) does not hold, then there is an infinite re-
duction t1 → t2 → · · · with t1 ∈ I. Due to NF’s definition, this infinite reduction
does not contain elements of NF, contradicting Property 1 in Def. 1.

Conversely, if SN(I,→) holds, then Property 1 in the definition of Live(I,→,
NF) holds trivially. Property 2 also holds, since G = NF. ⊓⊔

Thm. 2 states that termination is a special case of liveness. The next theorem
proves a kind of converse. For that purpose, we restrict the computation relation
→ such that it may only proceed if the current state is not in G.
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Definition 3 (→G) Let S, →, G be as in Def. 1. Then →G ⊆ S × S is the
relation where t →G u holds if and only if t → u and t 6∈ G.

Now we show that Live(I,→, G) is equivalent to SN(I,→G). The ‘only if’-
part holds without any further conditions. However, for the ‘if’-part we have
to demand that G contains all normal forms NF(I) reachable from I, where
NF(I) = {u ∈ NF | ∃t ∈ I : t →∗ u}. Otherwise, if there is a terminating sequence
t1 → . . . → tn with all ti /∈ G, we might have SN(I,→G) but not Live(I,→, G).

Theorem 4 Let NF(I) ⊆ G. Then Live(I,→, G) holds iff SN(I,→G) holds.

Proof. For the ‘if’-part assume SN(I,→G). Property 2 of Def. 1 holds since
NF(I) ⊆ G. If Property 1 does not hold then there is an infinite reduction
without elements of G starting in I, contradicting SN(I,→G).

Conversely assume that Live(I,→, G) holds and that SN(I,→G) does not
hold. Then there is an infinite sequence t1, t2, . . . with t1 ∈ I ∧ ∀i : ti →G ti+1.
Hence, ti 6∈ G and ti → ti+1 for all i, contradicting Property 1 in Def. 1. ⊓⊔

Thm. 4 allows us to verify actual liveness properties: if NF(I) ⊆ G, then one
can instead verify termination of →G. If NF(I) 6⊆ G, then SN(I,→G) still implies
the liveness property for all infinite computations. In Sect. 4 and 5 we show how
techniques to prove termination of TRSs can be used for termination of →G.

3 Liveness in Term Rewriting

Now we focus on liveness in rewriting, i.e., we study the property Live(I,→R, G)
where →R is the rewrite relation corresponding to a TRS R. For an introduction
to term rewriting, the reader is referred to [3], for example.

Let Σ be a signature containing at least one constant and let V be a set
of variables. We write T (Σ,V) for the set of terms over Σ and V and T (Σ) is
the set of ground terms. For a term t, V(t) and Σ(t) denote the variables and
function symbols occurring in t. Now T (Σ,V) represents computation states and
G ⊆ T (Σ,V).

By Thm. 4, Live(I,→, G) is equivalent to SN(I,→G), if NF(I) ⊆ G. In order to
verify liveness, we want to prove SN(I,→G) by approaches for termination proofs
of ordinary TRSs. However, depending on the form of G, different techniques
are required. Therefore, in the remainder we restrict ourselves to sets G of the
following form:

G = {t | t does not contain an instance of p} for some term p.

In other words, G contains all terms which cannot be written as C[pσ] for any
context C and substitution σ. As before, t →G u holds iff t →R u and t /∈ G. So
a term t may be reduced whenever it contains an instance of the term p.

A typical example of a liveness property is that eventually all processes re-
questing a resource are granted access to the resource (see Sect. 6.1 and 6.4). If a
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process waiting for the resource is represented by the unary function symbol old
and if terms are used to denote the state of the whole network, then we would
define G = {t | t does not contain an instance of old(x)}. Now Live(I,→R, G)
means that eventually one reaches a term without the symbol old.

However, for arbitrary terms and TRSs, the notion →G is not very useful: if
there is a symbol f of arity > 1 or if p contains a variable x (i.e., if p can be
written as C[x] for some context C), then termination of →G implies termination
of the full rewrite relation →R. The reason is that any infinite reduction t1 →R

t2 →R · · · gives rise to an infinite reduction f(t1, p, . . .) →R f(t2, p, . . .) →R · · · or
C[t1] →R C[t2] →R · · · where in both cases none of the terms is in G. Therefore
we concentrate on the particular case of top rewrite systems in which there is a
designated symbol top. (These TRSs can be regarded as special forms of typed
rewrite systems [10].)

Definition 5 (Top Rewrite System) Let Σ be a signature and let top /∈ Σ
be a new unary function symbol. A term t ∈ T (Σ ∪ {top},V) is a top term if its
root is top and top does not occur below the root. Let Ttop denote the set of all
ground top terms. A TRS R over the signature Σ∪{top} is a top rewrite system
iff for all rules l → r ∈ R either

– l and r are top terms (in this case, we speak of a top rule) or
– l and r do not contain the symbol top (then we have a non-top rule)

Top rewrite systems typically suffice to model networks of processes, since the
whole network is represented by a top term [6]. Clearly, in top rewrite systems,
top terms can only be reduced to top terms again. In such systems we consider
liveness properties Live(Ttop,→R, G). So we want to prove that every maximal
reduction of ground top terms contains a term without an instance of p.

Example 6 (Simple liveness example) Consider the following two-rule TRS
R.

top(c) → top(c) f(x) → x

Clearly, R is not terminating and we even have infinite reductions within Ttop:

top(f(f(c))) →R top(f(c)) →R top(c) →R top(c) →R . . .

However, in every reduction one eventually reaches a term without f. Hence, if
p = f(x), then the liveness property is fulfilled for all ground top terms. Note
that for Σ = {c, f}, we have NF(Ttop) = ∅ and thus, NF(Ttop) ⊆ G. Hence, by
Thm. 4 it is sufficient to verify that →G is terminating on Ttop. Indeed, the above
reduction is not possible with →G, since top(c) is a normal form w.r.t. →G.

4 Liveness and Termination

In this section we investigate the correspondence between liveness and termina-
tion in the framework of term rewriting. As in the previous section, we consider
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liveness properties Live(Ttop,→R, G) for top rewrite systems R where G consists
of those terms that do not contain instances of some subterm p. Provided that
NF(Ttop) ⊆ G, by Thm. 4 the liveness property is equivalent to SN(Ttop,→G).

Our aim is to prove termination of →G on Ttop by means of termination of
TRSs. In this way one can use all existing techniques for termination proofs of
term rewrite systems (including future developments) in order to prove liveness
properties. A first step into this direction was taken in [6], where the termination
proof technique of dependency pairs was used to verify certain liveness properties
of telecommunication processes. However, now our aim is to develop an approach
to connect liveness and termination in general.

Given a TRS R and a term p, we define a TRS L(R, p) such that L(R, p)
terminates (on all terms) if and only if SN(Ttop,→G). A transformation where the
‘only if’-direction holds is called sound and if the ‘if’-direction holds, it is called
complete. The existence of the sound and complete transformation L(R, p) shows
that for rewrite relations, liveness and termination are essentially equivalent.

The construction of L(R, p) is motivated by an existing transformation [7, 8]
which was developed for a completely different purpose (termination of context-
sensitive rewriting). We introduce a number of new function symbols resulting in
an extended signature ΣG. Here, proper(t) checks whether t is a ground term over
the original signature Σ (Lemma 9) and match(p, t) checks in addition whether
p matches t (Lemma 10). In this case, proper(t) and match(p, t) reduce to ok(t).
To ease the formulation of the match-rules, we restrict ourselves to linear terms
p, i.e., a variable occurs at most once in p. Moreover, for every variable x in p
we introduce a fresh constant denoted by the corresponding upper-case letter X.
We write p for the ground term obtained by replacing every variable in p by its
corresponding fresh constant and in this way, it suffices to handle ground terms
p in the match-rules. The new symbol check investigates whether its argument
is a ground term over Σ which contains an instance of p (Lemma 11). In this
case, check(t) reduces to found(t) and to find the instance of p, check may be
propagated downwards through the term until one reaches the instance of p.

Finally, active(t) denotes that t may be reduced, since it contains an instance
of p. Therefore, active may be propagated downwards to any desired redex of
the term. After the reduction step, active is replaced by mark which is then
propagated upwards to the top of the term. Now one checks whether the resulting
term still contains an instance of p and none of the newly introduced function
symbols. To this end, mark is replaced by check. If an instance of p is found, check
is turned into found and found is propagated to the top of the term where it is
replaced by active again. The TRS L(R, p) has been designed in such a way that
infinite reductions are only possible if this process is repeated infinitely often and
Lemmata 12–14 investigate L(R, p)’s behavior formally.

Definition 7 (L(R, p)) Let R be a top rewrite system over Σ∪{top} with top /∈
Σ and let p ∈ T (Σ,V) be linear. The TRS L(R, p) over the signature ΣG = Σ ∪
{top,match, active,mark, check, proper, start, found, ok} ∪ {X |x ∈ V(p)} consists
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of the following rules for all non-top rules l → r ∈ R, all top rules top(t) →
top(u) ∈ R, all f ∈ Σ of arity n > 0 and 1 ≤ i ≤ n, and all constants c ∈ ΣG:

active(l) → mark(r)
top(active(t)) → top(mark(u))
top(mark(x)) → top(check(x)) (1)

check(f(x1, .., xn)) → f(proper(x1), .., check(xi), .., proper(xn))
check(x) → start(match(p, x))

match(f(x1, .., xn), f(y1, .., yn)) → f(match(x1, y1), ..,match(xn, yn)), if f ∈ Σ(p)

match(c, c) → ok(c), if c ∈ Σ(p)
match(c, x) → proper(x), if c /∈ Σ and c ∈ Σ(p)

proper(c) → ok(c), if c ∈ Σ
proper(f(x1, . . . , xn)) → f(proper(x1), . . . , proper(xn))
f(ok(x1), . . . , ok(xn)) → ok(f(x1, . . . , xn))

start(ok(x)) → found(x)
f(ok(x1), .., found(xi), .., ok(xn)) → found(f(x1, .., xn))

top(found(x)) → top(active(x)) (2)
active(f(x1, . . . , xi, . . . , xn)) → f(x1, . . . , active(xi), . . . , xn)
f(x1, . . . ,mark(xi), . . . , xn) → mark(f(x1, . . . , xn))

Example 8 (Transformation of simple liveness example) Recall the sys-
tem from Ex. 6 again. Here, the transformation yields the following TRS L(R, p).

active(f(x)) → mark(x) proper(c) → ok(c)
top(active(c)) → top(mark(c)) proper(f(x)) → f(proper(x))
top(mark(x)) → top(check(x)) f(ok(x)) → ok(f(x))

check(f(x)) → f(check(x)) start(ok(x)) → found(x)
check(x) → start(match(f(X), x)) f(found(x)) → found(f(x))

match(f(x), f(y)) → f(match(x, y)) top(found(x)) → top(active(x))
match(X,x) → proper(x) active(f(x)) → f(active(x))

f(mark(x)) → mark(f(x))

Note that it is really necessary to introduce the symbol proper and to check
whether the whole term does not contain any new symbols from ΣG \ Σ. If
the proper-rules were removed, all remaining proper-terms were replaced by their
arguments, and in f(ok(x1), . . . , found(xi), . . . , ok(xn)) → found(f(x1, . . . , xn)),
the terms ok(xi) were replaced by xi, then the transformation would not be
complete any more. As a counterexample, regard Σ = {a, b, f} and the TRS

top(f(b, x, y)) → top(f(y, y, y))

top(f(x, y, z)) → top(f(b, b, b))

top(a) → top(b)

and let p = a. The TRS satisfies the liveness property since for any ground top
term, after at most two steps one reaches a term without a (one obtains either
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top(b) or top(f(b, b, b))). However, with the modified transformation we would
get the following non-terminating cyclic reduction where u is the term found(b):

top(mark(f(u, u, u))) → top(check(f(u, u, u))) →
top(f(u, check(u), u)) → top(found(f(b, check(u), u))) →
top(active(f(b, check(u), u))) → top(mark(f(u, u, u))) → . . .

To prove soundness and completeness of our transformation, we need several
auxiliary lemmata about reductions with L(R, p). The first lemma states that
proper really checks whether its argument does not contain symbols from ΣG\Σ.

Lemma 9 (Reducing proper) For t ∈ T (ΣG) we have proper(t) →+
L(R,p) ok(u)

if and only if t, u ∈ T (Σ) and t = u.

Proof. The proof is identical to the one in [7, Lemma 2] and [8]. ⊓⊔

Now we show that match(p, t) checks whether p matches t and t ∈ T (Σ).

Lemma 10 (Reducing match) Let p ∈ T (Σ,V), let q ∈ T (Σ(p),V) be linear,
and let t ∈ T (ΣG). We have match(q, t) →+

L(R,p) ok(u) iff t = u ∈ T (Σ) and
qσ = t for some σ.

Proof. For the ‘if’-direction, note that if q if a variable, then q = c for a con-
stant c /∈ Σ. Hence, match(q, t) →L(R,p) proper(t) →+

L(R,p) ok(t) by Lemma 9.
Otherwise, we use an easy induction on the structure of the term t. If t is a
constant c, then qσ = t implies q = q = c and hence, we have match(q, t) =
match(c, c) →L(R,p) ok(c) = ok(t). Otherwise, t has the form f(t1, . . . , tn). Since
q matches t, we obtain q = f(q1, . . . , qn) and q = f(q1, . . . , qn) where qi matches
ti for all i. Note that the induction hypothesis implies match(qi, ti) →+

L(R,p)

ok(ti).
1 Thus, we obtain match(q, t) = match(f(q1, . . . , qn), f(t1, . . . , tn)) →L(R,p)

f(match(q1, t1), . . . ,match(qn, tn)) →+
L(R,p) f(ok(t1), . . . , ok(tn)) →L(R,p) ok(f(t1,

. . . , tn)) = ok(t).
We now prove the ‘only if’-direction by induction on the length of the reduc-

tion. In other words, we prove “for all q, t, and u: match(q, t) →+
L(R,p) ok(u) im-

plies that t = u ∈ T (Σ) and that q matches t”. Thus, as induction hypothesis we
have “for all q′, t′, and u′: match(q′, t′) →+

L(R,p) ok(u′) implies that t′ = u′ ∈ T (Σ)

and that q′ matches t′ ” provided that the reduction match(q′, t′) →+
L(R,p) ok(u′)

is shorter than the reduction match(q, t) →+
L(R,p)

ok(u).

If the first reduction step is in t, then match(q, t) →L(R,p) match(q, t′) →+
L(R,p)

ok(u) for a term t′ with t →L(R,p) t′. The induction hypothesis states t′ = u ∈
T (Σ) and qσ = t′. Note that t′ ∈ T (Σ) implies t = t′ which proves the lemma.

1 Formally, we prove “match(q, t) →
+
L(R,p) ok(t) for all q” by induction on t. Hence, for all

ti which are smaller than t w.r.t. the induction relation, we have the induction hypothesis
“match(q, ti) →

+
L(R,p)

ok(t) for all q”. So in the induction hypothesis, q can be instantiated

to arbitrary terms (e.g., to qi). Similar forms of induction are used throughout the paper.
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Otherwise, the first reduction step is on the root position (since q is in
normal form). If q is a variable, then q obviously matches t and we obtain
match(q, t) →L(R,p) proper(t) →+

L(R,p) ok(u) and t = u ∈ T (Σ) by Lemma 9.
If q is a constant c, then a root reduction is only possible if t = c. We obtain
match(q, t) = match(q, c) →L(R,p) ok(c). So in this case the lemma also holds.

Finally, if q = f(q1, . . . , qn), for a root reduction we have t = f(t1, . . . , tn).
Then match(q, t) = match(f(q1, . . . , qn), f(t1, . . . , tn)) = f(match(q1, t1), . . . ,
match(qn, tn)) →+

L(R,p) ok(u). To reduce f(. . .) to ok(. . .), all arguments of f

must reduce to ok-terms. Hence, match(qi, ti) →
+
L(R,p) ok(ui) for all i where these

reductions are shorter than the reduction match(q, t) →+
L(R,p) ok(u). The induc-

tion hypothesis implies that ti = ui ∈ T (Σ) and that there are substitutions
σi with qiσi = ti. Since q is linear, we can combine these σi to one σ such that
qσ = t. Moreover, this implies u = f(u1, . . . , un) which proves the lemma. ⊓⊔

The next lemma proves that check works properly, i.e., it checks whether its
argument is a term from T (Σ) which contains an instance of p.

Lemma 11 (Reducing check) Let p ∈ T (Σ,V) be linear and t ∈ T (ΣG). We
have check(t) →+

L(R,p) found(u) iff t = u ∈ T (Σ) and t contains a subterm pσ.

Proof. The ‘if’-direction is again an easy structural induction proof on t. We
prove the ‘only if’-direction by induction on the length of the reduction.

If the first reduction step is in t, then the proof is analogous to Lemma 10.
Otherwise, let check(t) →L(R,p) start(match(p, t)) →+

L(R,p) found(u). By the start-

rule, this implies match(p, t) →+
L(R,p) ok(q) and q →∗

L(R,p) u for some term q. By

Lemma 10, p matches t, t = q ∈ T (Σ), and therefore, q = u.

Now let t = f(t1, . . . , tn) and check(f(t1, . . . , tn)) →L(R,p) f(proper(t1), . . . ,

check(ti), . . . , proper(tn)) →+
L(R,p) found(u). The only way to reduce an f -term to

a found-term is if one argument of f reduces to found(. . .) and all others reduce
to ok(. . .). Therefore, there must be terms u1, . . . , un such that check(ti) →

+
L(R,p)

found(ui) and proper(tj) →
+
L(R,p) ok(uj) for all j 6= i. Since the length of the re-

duction from check(ti) to found(ui) is shorter than the length of check(t) →+
L(R,p)

found(u), the induction hypothesis yields ti = ui ∈ T (Σ) and that ti contains pσ
for some σ. Lemma 9 implies tj = uj ∈ T (Σ). Hence, we have u = f(u1, . . . , un)
and the lemma is proved. ⊓⊔

Lemma 12 shows that the top-rules (1), (2) are applied in an alternating way.

Lemma 12 (Reducing active and check) For all t, u ∈ T (ΣG) we have

(a) active(t) 6→+
L(R,p) found(u) and active(t) 6→+

L(R,p) ok(u)

(b) check(t) 6→+
L(R,p) mark(u) and proper(t) 6→+

L(R,p) mark(u)
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Proof. (a) By induction on n ∈ IN, we show that there is no reduction from
active(t) to found(u) or to ok(u) of length n. If the first reduction step
is in t, then the claim follows from the induction hypothesis. Otherwise,
the reduction starts with a root step. This first step cannot be active(t)
→L(R,p) mark(u), since the root symbol mark can never be reduced again.
Hence, we must have t = f(t1, . . . , ti, . . . , tn) and active(t) = active(f(t1, . . . ,
ti, . . . , tn)) →L(R,p) f(t1, . . . , active(ti), . . . , tn). In order to rewrite this term
to a found- or ok-term, in particular active(ti) must be rewritten to a found-
or ok-term which contradicts the induction hypothesis.

(b) As in (a), we use induction on the length of the reduction. If the reduction
starts inside t, then the claim is obvious. The reduction cannot start with
check(t) →L(R,p) start(match(p, t)), since start(. . .) can only be reduced to a
found-term and found cannot be reduced any more. If t is a constant, then
we obtain a similar contradiction if the reduction has the form proper(t) =
proper(c) →L(R,p) ok(c), since ok can never be reduced any more either.
Otherwise, t = f(t1, . . . , ti, . . . , tn) and check(t) = check(f(t1, . . . , ti, . . . , tn))
→L(R,p) f(proper(t1), . . . , check(ti), . . . , proper(tn)) or proper(t) = proper(f(t1,
. . . , tn)) →L(R,p) f(proper(t1), . . . , proper(tn)). But in order to reduce these
terms to a mark-term, one of the arguments must be reduced to a mark-term
which is a contradiction to the induction hypothesis. ⊓⊔

We now prove that the top-rules are crucial for L(R, p)’s termination behavior.

Lemma 13 Let L′(R, p) = L(R, p) \ {(1), (2)}. Then L′(R, p) is terminating.

Proof. Termination of L′(R, p) can be proved by the recursive path order [5]
using the precedence active > check > match > proper > start > f > ok >
found > mark for all f ∈ Σ ∪ {X |x ∈ V(p)}. ⊓⊔

Before relating L(R, p) and →G, we study the connection of L(R, p) and →R.

Lemma 14 Let t, u ∈ T (Σ). Then we have active(t) →+
L(R,p) mark(u) iff t →R u

and top(active(t)) →+
L(R,p) top(mark(u)) iff top(t) →R top(u).

Proof. The ‘if’-direction is again easy by induction on t. For the ‘only if’-direc-
tion, we first prove that active(t) →+

L(R,p) mark(u) implies t →R u by induction

on the length of the reduction. Since t ∈ T (Σ), the first reduction step must be
on the root position. If active(t) →L(R,p) mark(u) on root position, then t = lσ
and u = rσ for a rule l → r ∈ R and thus, t →R u. Otherwise, t = f(t1, . . . , tn)
and active(t) = active(f(t1, . . . , tn)) →L(R,p) f(t1, . . . , active(ti), . . . , tn) →+

L(R,p)

mark(u). Thus, active(ti) →+
L(R,p) mark(ui) and u = f(t1, . . . , ui, . . . , tn). The

induction hypothesis implies ti →R ui and hence, t →R u.
Now we show that top(active(t)) →+

L(R,p) top(mark(u)) implies top(t) →R

top(u). Since t ∈ T (Σ), the first reduction step must be on the root posi-
tion or on position 1 (i.e., on the root of active(t)). If top(active(t)) →L(R,p)
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top(mark(u)) on root position, then top(t) → top(u) is an instance of an R-
rule. If top(active(t)) →L(R,p) top(mark(u)) on position 1, then t = lσ and
u = rσ for a rule l → r ∈ R and thus, t →R u and top(t) →R top(u). Oth-
erwise, t = f(t1, . . . , tn) and top(active(t)) = top(active(f(t1, . . . , tn))) →L(R,p)

top(f(t1, . . . , active(ti), . . . , tn)) →+
L(R,p) top(mark(u)). Thus, active(ti) →+

L(R,p)

mark(ui) and u = f(t1, . . . , ui, . . . , tn). As shown above, active(ti) →+
L(R,p)

mark(ui) implies ti →R ui and hence, top(t) →R top(u). ⊓⊔

Theorem 15 (Soundness and Completeness) Let R be a top rewrite system
over Σ ∪ {top} with top /∈ Σ and let p ∈ T (Σ,V) be linear. The TRS L(R, p) is
terminating (on all terms) iff the relation →G is terminating on Ttop.

Proof. We first show the ‘only if’-direction. If →G does not terminate on Ttop then
there is an infinite reduction top(t1) →G top(t2) →G . . . where t1, t2, . . . ∈ T (Σ).
By Lemma 14 we have top(active(ti)) →

+
L(R,p) top(mark(ti+1)). Lemma 11 implies

check(ti+1) →
+
L(R,p) found(ti+1), since each ti+1 contains an instance of p. So we

obtain the following contradiction to the termination of L(R, p).

top(active(t1)) →
+
L(R,p) top(mark(t2)) →L(R,p) top(check(t2)) →+

L(R,p)

top(found(t2)) →L(R,p) top(active(t2)) →
+
L(R,p) . . .

For the ‘if’-direction assume that L(R, p) is not terminating. By type intro-
duction [10] one can show that there exists an infinite L(R, p)-reduction of ground
top terms. Due to Lemma 13 the reduction contains infinitely many applications
of the rules (1) and (2). These rules must be applied in alternating order, since
active(t) can never reduce to found(u) and check(t) can never reduce to mark(u)
by Lemma 12. So the reduction has the following form where all reductions with
the rules (1) and (2) are displayed.

. . . →∗

L(R,p) top(mark(t1)) →L(R,p) top(check(t1)) →+
L(R,p)

top(found(u1)) →L(R,p) top(active(u1)) →
+
L(R,p)

top(mark(t2)) →L(R,p) top(check(t2)) →+
L(R,p)

top(found(u2)) →L(R,p) top(active(u2)) →
+
L(R,p) . . .

By Lemma 11 we have ti = ui ∈ T (Σ) and that ti contains an instance of
p. Lemma 14 implies top(ui) →R top(ti+1). Together, we obtain top(t1) →G

top(t2) →G . . . in contradiction to the termination of →G on Ttop. ⊓⊔

Example 16 (Termination proof for simple liveness example) By Thm.
15, one can now use existing techniques for termination proofs of TRSs to ver-
ify liveness of systems like the one in Ex. 6. For instance, termination of the
transformed TRS from Ex. 8 can easily be shown with dependency pairs [2]. The
dependency pairs on cycles of the estimated dependency graph are

Top(active(c)) → Top(mark(c)) (3)
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Top(mark(x)) → Top(check(x)) (4)

Top(found(x)) → Top(active(x)) (5)

Check(f(x)) → Check(x) (6)

Match(f(x), f(y)) → Match(x, y) (7)

Proper(f(x)) → Proper(x) (8)

F(ok(x)) → F(x) (9)

F(found(x)) → F(x) (10)

Active(f(x)) → Active(x) (11)

F(mark(x)) → F(x) (12)

The dependency pair (4) is narrowed to

Top(mark(f(x))) → Top(f(check(x))) (13)

Top(mark(x)) → Top(start(match(f(X), x))) (14)

Then (14) is narrowed further to

Top(mark(f(x))) → Top(start(match(X,x))) (15)

Now (3) is no longer on a cycle of the estimated dependency graph. Hence, (5)
can be narrowed to

Top(found(f(x))) → Top(mark(x)) (16)

So to summarize, the Top-dependency pairs are replaced by

Top(mark(f(x))) → Top(f(check(x))) (13)
Top(mark(f(x))) → Top(start(match(X,x))) (15)
Top(found(f(x))) → Top(mark(x)) (16)

Note that due to Lemma 12, every cycle of Top-dependency pairs contains the
pair (16). Hence, it suffices if just (16) is strictly decreasing, whereas (13) and
(15) only have to be weakly decreasing.

We use an argument filtering which maps start(x) to x and which maps
match(x, y) to match(y). Then all resulting constraints are satisfied by the recur-
sive path order using a precedence where active, mark, check, match, proper, ok,
found, and f are considered equal.

5 Proving Liveness

In Sect. 5.1 we present a sound transformation which is more suitable for mech-
anizing liveness proofs than the complete transformation from the preceding
section. The reason is that for this new transformation, termination of the trans-
formed TRS is much easier to show. On the other hand, the approach in this
section is incomplete, i.e., it cannot succeed for all examples. Subsequently, in
Sect. 5.2 we introduce an automatic preprocessing technique based on semantic
labelling [11] to simplify these termination proofs further. In this way, rewriting
techniques can be used to mechanize the verification of liveness properties.
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5.1 A Sound Transformation for Liveness

The goal of a sound transformation for liveness properties Live(Ttop,→R, G) is to
transform the original TRS R to another TRS LS(R, p) such that the required
property SN(Ttop,→G) can be concluded from termination of the transformed
system. To obtain a simple sound transformation, the idea is to introduce only
one new symbol check. A new occurrence of check is created in every application
of a top rule. If check finds an instantiation of p then check may be removed.
Otherwise, check remains in the term where it may block further reductions.

Definition 17 (LS(R, p)) For a top rewrite system R over Σ∪{top} with top /∈
Σ and p ∈ T (Σ,V), let LS(R, p) consist of the following rules.

l → r for all non-top rules l → r in R
top(t) → top(check(u)) for all top rules top(t) → top(u)

check(f(x1, .., xn)) → f(x1, .., check(xi), .., xn) for f ∈ Σ of arity n ≥ 1, i = 1, . . . , n

check(p) → p

Example 18 (Simple example revisited) To illustrate the transformation,
reconsider the system from Ex. 6. Here, LS(R, f(x)) is the following TRS whose
termination can be proved by dependency pairs and the recursive path order,
since the dependency pair Top(c) → Top(check(c)) is not on a cycle of the de-
pendency graph.

top(c) → top(check(c)) (17)

f(x) → x (18)

check(f(x)) → f(check(x)) (19)

check(f(x)) → f(x) (20)

Now we show that this transformation is indeed sound. In other words, the
above termination proof verifies the liveness property of our example.

Theorem 19 (Soundness) Let R be a top rewrite system over Σ ∪ {top} with
top /∈ Σ, let p ∈ T (Σ,V), and let G = {t | t does not contain an instance of p }.
If LS(R, p) is terminating then there is no infinite →G-reduction of top terms.

Proof. Assume there is an infinite →G-reduction of top terms top(t1) →G top(t2)
→G . . . Since top does not occur in p, every ti has the form Ci[pσi] for some con-
text Ci and substitution σi. To prove the theorem, we show that top(ti) →

+
LS(R,p)

top(ti+1) for every i, by which we obtain an infinite LS(R, p)-reduction.
If top(ti) →R top(ti+1) by the application of a non-top rule l → r then we

also have top(ti) →LS(R,p) top(ti+1) since l → r is also contained in LS(R, p).
Otherwise, top(ti) →R top(ti+1) by a top rule top(t) → top(u). Hence, ti = tσ and
ti+1 = uσ for some σ. Since LS(R, p) contains the rules check(f(x1, . . . , xn)) →
f(x1, . . . , check(xi), . . . , xn) for all f with arity ≥ 1, we obtain

top(ti) = top(tσ) →LS(R,p) top(check(uσ)) = top(check(Ci+1[pσi+1]))

→∗

LS(R,p) top(Ci+1[check(p)σi+1])

→LS(R,p) top(Ci+1[pσi+1]) = top(ti+1) ⊓⊔
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Example 20 (Sound transformation is not complete) However, the trans-
formation is incomplete as can be shown by the following top rewrite system R

top(f(x, b)) → top(f(b, b)) a → b

where Σ = {a, b, f} and p = a. In this example, normal forms do not contain a
any more and every infinite reduction of top terms reaches the term top(f(b, b))
which does not contain the symbol a either. Hence, the liveness property holds.
However, LS(R, p) admits the following infinite reduction:

top(f(b, b))→ top(check(f(b, b)))→ top(f(check(b), b))→ top(check(f(b, b)))→ ...

Thus, the transformation of Def. 17 is incomplete, because even if check remains
in a term, this does not necessarily block further (infinite) reductions.

5.2 A Preprocessing Procedure for Verifying Liveness

The aim of our sound transformation from Def. 17 is to simplify (and possibly
automate) the termination proofs which are required in order to show liveness
properties. Since the TRSs resulting from our transformation have a particular
form, we now present a method to preprocess such TRSs. This preprocessing
is especially designed for this form of TRSs and in this way, their termination
proofs can often be simplified significantly. The method consists of four steps
which can be performed automatically:

(a) First one deletes rules which cannot cause non-termination.
(b) Then one applies the well-known transformation technique of semantic la-

belling [11] with a particularly chosen model and labelling. (This restricted
form of semantic labelling can be done automatically.)

(c) Then one again deletes rules which cannot cause non-termination.
(d) Finally one uses an existing automatic technique (e.g., the recursive path

order or dependency pairs) to prove termination of the resulting TRS.

To delete rules in Step (a) and (c) we use the following lemma. For a function
symbol f ∈ Σ and a term t ∈ T (Σ,V), let #f (t) be the number of f -symbols
occurring in t. For ∅ 6= Σ′ ⊆ Σ let #Σ′(t) =

∑
f∈Σ′ #f (t).

Lemma 21 Let R be a TRS such that

– R is non-duplicating, i.e., for every rule l → r, no variable occurs more often
in r than in l, and

– #Σ′(l) ≥ #Σ′(r) for all rules l → r in R

for some Σ′ ⊆ Σ. Let R′ consist of those rules l → r from R which satisfy
#Σ′(l) > #Σ′(r). Then R is terminating if and only if R \ R′ is terminating.

Proof. The ‘only if’-part holds since R \ R′ ⊆ R. For the ‘if’-part assume that
R \ R′ is terminating and that we have an infinite R-reduction. Due to the
conditions of the lemma we have #Σ′(t) ≥ #Σ′(u) for every step t →R u and
#Σ′(t) > #Σ′(u) for every step t →R′ u. Hence, due to well-foundedness of the
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natural numbers, the infinite R-reduction contains only finitely many R′-steps.
After removing the finite initial part containing all these R′-steps, the remaining
part is an infinite R \ R′-reduction, which gives a contradiction. ⊓⊔

The application of Lemma 21 is easily automated as follows: for all sets Σ′ ⊆
Σ with |Σ′| ≤ n for some (small) n ∈ IN, it is checked whether #Σ′(l) ≥ #Σ′(r)
for all rules l → r. If so, then all rules l → r satisfying #Σ′(l) > #Σ′(r) are
removed. This process is repeated until no rule can be removed any more.

As a first example, we apply Lemma 21 to the TRS from Ex. 18. By counting
the occurrences of f, we note that the number of f-symbols strictly decreases in
Rule (18) and it remains the same in all other rules. Hence, due to Lemma 21
we can drop this rule when proving termination of the TRS. It turns out that in
this case repetition of this process does not succeed in removing more rules.

In our termination procedure, in Step (b) we apply a particular instance of
semantic labelling [11]. Before describing this instance we briefly explain how
semantic labelling works as a tool to prove termination of a TRS R over the
signature Σ: One starts by choosing a model for the TRS R. Thus, one defines
a non-empty carrier set M and for every function symbol f ∈ Σ of arity n, an
interpretation fM : Mn → M is chosen. As usual, every variable assignment
α : V → M can be extended to terms from T (Σ,V) by inductively defining
α(f(t1, . . . , tn)) = fM (α(t1), . . . , α(tn)). The interpretation is a model for R if
α(l) = α(r) for every rule l → r in R and every variable assignment α : V → M .

Using this model, the TRS R over the signature Σ is transformed into a
labelled TRS R over the labelled signature Σ. Here, every function symbol f ∈ Σ
of arity n may be labelled by n elements from M , i.e., Σ = {fa1,...,an | f ∈ Σ,n =
arity(f), ai ∈ M} where the arity of fa1,...,an is the same as the arity of f . For any
variable assignment α : V → M , we define a function labα : T (Σ,V) → T (Σ,V)
which labels every function symbol by the interpretations of its arguments:

labα(x) = x, for x ∈ V
labα(f(t1, . . . , tn)) = fα(t1),...,α(tn)(labα(t1), . . . , labα(tn))

Now the TRS R is defined to consist of all rules labα(l) → labα(r) for all variable
assignments α : V → M and all rules l → r in R. The main theorem of semantic
labelling states that R is terminating if and only if R is terminating.

In general, semantic labelling permits a lot of freedom and is hard to auto-
mate, since one may choose arbitrary models. Moreover, in full semantic labelling
one may also use arbitrary labellings. However, we will restrict ourselves to the
case where M = {0, 1}. Now there are only finitely many possibilities for the
interpretations fM in the model. This means that with this restriction the ter-
mination method consisting of the steps (a) - (d) is fully decidable.

To improve efficiency and to avoid checking all possibilities of a two-element
model for semantic labelling, we now propose heuristics for choosing the interpre-
tations fM in such a model. These heuristics are adapted to the special form of
TRSs resulting from our transformation in Def. 17 when verifying liveness prop-
erties. The main objective is that we want to distinguish between terms that
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contain instances of p and terms that do not. Therefore, our aim is to interpret
the former terms by 0 and the latter terms by 1. Since the intention of check
is that an occurrence of p should be found, check(x) will be interpreted as the
constant function 0. Since top only occurs at the top, for top(x) we may also
choose a constant function. Having these objectives in mind, we arrive at the
following heuristic for choosing the operations fM in the model M = {0, 1}:

– topM (x) = checkM (x) = fM(x1, . . . , xn) = 0 for x = 0, 1, where f is the root
symbol of p;

– cM = 1 for every constant c, except if p = c;

– fM (x1, . . . , xn) = min(x1, . . . , xn) for all other symbols f as long as this does
not conflict with the model requirement α(l) = α(r). In particular, for the
remaining unary symbols f one tries to choose fM (x) = x.

Applying these heuristics to our example results in the following interpretation:

topM (x) = checkM (x) = fM(x) = 0 for x ∈ M = {0, 1} and cM = 1

One checks that this is a model for the TRS. Here it is essential that we first
removed Rule (18), since fM (x) = 0 6= x if x = 1. The labelling results in the
TRS

top1(c) → top0(check1(c))
check0(fi(x)) → f0(checki(x)) for i ∈ {0, 1}
check0(fi(x)) → fi(x) for i ∈ {0, 1}

In Step (c) of our termination procedure, we apply Lemma 21 again. By
counting the occurrences of top1, we can drop the first rule. By counting f1, the
second rule can be removed if i is 1, and by counting check0 we can delete the third
rule. So the remaining TRS just contains the rule check0(f0(x)) → f0(check0(x))
whose termination is trivial to prove by the recursive path order.

This example indicates that preprocessing a TRS according to Steps (a) -
(c) often simplifies the termination proof considerably. For the original TRS of
Ex. 18, one needs dependency pairs for the termination proof, whereas after the
transformation a very simple recursive path order is sufficient.

6 Case Studies of Liveness

To demonstrate the applicability of our approach, we now regard four examples
of liveness properties for networks of processes. To model protocols with TRSs,
we use the approach to represent the state of a whole network of processes by a
top term. In Sect. 6.4 we also discuss a straightforward extension of our approach:
instead of one unary top symbol, the framework can easily be extended to several2

top symbols of arbitrary arity.

2 Similarly, an extension to liveness w.r.t. several terms p1, . . . , pn instead of just one p is also
easily possible.
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6.1 A Shared Resource With a Single Waiting Line

The following case study is motivated by protocols similar to the bakery protocol
[9]. We describe a network of processes which want to gain access to a shared
resource. The processes waiting for the resource are served one after another.
Since the maximal size of the waiting line is fixed, a new process can only enter
the waiting line if a process in the current line has been “served” (i.e., if it has
been granted access to the resource). The maximal length n of the waiting line
is arbitrary, and we will show that the liveness property holds for all n ∈ IN.
Hence, techniques like classical model checking are not applicable here.

The processes in the line are served on a “first in - first out” basis (this
corresponds to the serving of clients in a shop). So at the front end of the waiting
line, a process may be served, where serving is denoted by a constant serve. If a
process is served, its place in the line is replaced by a free place, denoted by free.
If the place in front of some process is free, this process may take the free place,
creating a free place on its original position. If the line has a free place at its back
end, a new process new may enter the waiting line, taking over the position of
the free place. Apart from new processes represented by new we also consider old
processes represented by old, which were already in the line initially. We want
to verify the liveness property that eventually all old processes will be served.
Introducing the symbol top at the back end of the waiting line, this network is
described by the following top rewrite system R:

top(free(x)) → top(new(x)) new(serve) → free(serve)
new(free(x)) → free(new(x)) old(serve) → free(serve)
old(free(x)) → free(old(x))

Note that the above TRS admits infinite reductions of top terms. For instance,

top(new(serve)) →R top(free(serve)) →R top(new(serve)) →R . . .

describes that the protocol for serving processes and for letting new processes
enter may go on forever. But we will prove that after finitely many steps one
reaches a term without the symbol old, i.e., eventually all old processes are served.
In our terminology this liveness property is represented by Live(Ttop,→R, G)
where G = {t | t does not contain an instance of old(x)}. Note that this liveness
property does not hold for various variations of this system. For instance, if
processes are allowed to swap by new(old(x)) → old(new(x)), or if new processes
are always allowed to line up by top(x) → top(new(x)), then liveness is destroyed.

Since top(serve) is the only ground top term that is in normal form, we
conclude that NF(Ttop) ⊆ G. Hence by Thm. 4 the required liveness property is
equivalent to SN(Ttop,→G). To prove this termination property of →G, according
to Thm. 19 we may prove termination of the TRS LS(R, p):
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top(free(x)) → top(check(new(x))) (21)

new(free(x)) → free(new(x)) (22)

old(free(x)) → free(old(x)) (23)

new(serve) → free(serve) (24)

old(serve) → free(serve) (25)

check(free(x)) → free(check(x)) (26)

check(new(x)) → new(check(x)) (27)

check(old(x)) → old(check(x)) (28)

check(old(x)) → old(x) (29)

While standard techniques for automated termination proofs of TRSs do not
succeed for this TRS, with the preprocessing steps (a) - (c) termination can
easily be shown automatically.

According to (a), we first delete rules which do not influence termination. By
counting the occurrences of old, with Lemma 21 we can remove Rule (25). Then
in Step (b), we apply the heuristics for semantic labelling and arrive at

topM (x) = checkM (x) = oldM (x) = 0, newM (x) = freeM (x) = x, serveM = 1

for x ∈ M = {0, 1}. Indeed this is a model for the TRS. For that purpose, we
had to remove Rule (25) since oldM (serveM ) = 0 6= 1 = freeM (serveM ). The
corresponding labelled TRS R is

topi(freei(x)) → top0(checki(newi(x))) (21i)
newi(freei(x)) → freei(newi(x)) (22i)
oldi(freei(x)) → free0(oldi(x)) (23i)
new1(serve) → free1(serve) (24)

checki(freei(x)) → free0(checki(x)) (26i)
checki(newi(x)) → new0(checki(x)) (27i)
check0(oldi(x)) → old0(checki(x)) (28i)
check0(oldi(x)) → oldi(x), (29i)

for i ∈ {0, 1}. It remains to prove termination of this TRS of 15 rules. According
to Step (c) we repeatedly apply Lemma 21. By consecutively choosing Σ′ =
{f} for f being top1, old1, new1, free1, free0, and check0, the rules (211), (281),
(24) and (271), (231) and (261), (210), and finally (290) and (291) are removed.
Termination of the remaining system consisting of the rules (220), (221), (230),
(260), (270), and (280) is easily proved by the recursive path order, using a
precedence satisfying check0 > old0 > free0, check0 > new0 > free0, and new1 >
free1. Hence, the liveness property of this example can be proved automatically.

6.2 Emptying Local Memories of Processes

The following example is a variant of a process verification problem from [6].
To simplify the presentation, we abstract from all details and present a variant
which represents the basic underlying problem. Essentially, a process keeps on
sending messages from its local memory (which are removed from the memory
afterwards). In general, a process can also receive messages which result in new
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items being stored in its local memory. However, in order to empty the local
memories of the processes in the end, only the empty message is sent to the
process while it keeps on sending the first m messages from its memory repeatedly
for some fixed number m. Of course, if the memory contains less than m items,
then it can only send the messages that are in its memory. Moreover, if its memory
is empty it sends the empty message. The goal is to verify that eventually the
memory of the process will indeed be empty. In the following TRS we describe the
case where m = 1. Here, top has the value of the local memory as its argument
and the goal is to prove that eventually this memory will be empty. The memory
is modelled as a list and thus, we want to prove that eventually no non-empty
list is present any more. So our aim is to prove liveness w.r.t. the term p = x : y,
where “:” is the list constructor. (More precisely, we prove that in every infinite
reduction of ground top terms, one will eventually reach a term without “:”.
Whether there exist normal forms containing “:” depends on the set I of initial
terms.) If x is the current local memory, then send(x) indicates that the local
memory contains the list x of messages and that now the first message from x
should be sent and deleted afterwards. The term sent(x) denotes that sending
has taken place and that x is the remaining list of messages in the local memory.

top(sent(x)) → top(send(x))

send(nil) → sent(nil)

send(x : y) → sent(y)

Our sound transformation of Def. 17 results in the following TRS LS(R,x : y).

top(sent(x)) → top(check(send(x))) (30)

send(nil) → sent(nil) (31)

send(x : y) → sent(y) (32)

check(sent(x)) → sent(check(x)) (33)

check(send(x)) → send(check(x)) (34)

check(x : y) → check(x) : y (35)

check(x : y) → x : check(y) (36)

check(x : y) → x : y (37)

Due to Lemma 21, by counting the occurrences of “:”, we can drop Rule (32).
Then the function symbols are labelled according to our heuristic: M = {0, 1}
and

topM (x) = checkM (x) = x :M y = 0, sentM (x) = sendM (x) = x, nilM = 1

for x, y ∈ {0, 1}. Indeed, this is a model of the TRS. Labelling the rules results
in

topi(senti(x)) → top0(checki(sendi(x)))
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send1(nil) → sent1(nil)

checki(senti(x)) → sent0(checki(x))

checki(sendi(x)) → send0(checki(x))

check0(x :ij y) → checki(x) :0j y

check0(x :ij y) → x :i0 checkj(y)

check0(x :ij y) → x :ij y

for i ∈ {0, 1}. We apply Lemma 21 and count the occurrences of top1 to drop
the first rule if i = 1. Now, by the same lemma we can drop the second rule
by counting the occurrences of send1. Moreover, in the fourth rule, i must be 0.
Similarly, i must also be 0 in the third rule as can be determined by Lemma 21
when counting the occurrences of sent1. This allows us to drop the first rule for
i = 0 as well by counting the occurrences of sent0. By regarding the occurrences
of check1, Lemma 21 also determines that in the fifth rule, i must be 0 and in
the sixth rule, j must be 0. Moreover, the last rule can be deleted by counting
the occurrences of check0. So we obtain

check0(sent0(x)) → sent0(check0(x))

check0(send0(x)) → send0(check0(x))

check0(x :0j y) → check0(x) :0j y

check0(x :i0 y) → x :i0 check0(y)

Termination is trivial to prove with the recursive path order by choosing check0

to be maximal in the precedence.

6.3 Communication on a Ring of Processes

We consider the following protocol on a ring of processes (similar to a token ring
protocol). Every process is in one of the three states sent, rec (received), or no
(nothing). Initially at least one of the processes is in state rec which means that
it has received a message (token). Now the protocol is defined as follows:

If a process is in state rec then it may send its message to its right neighbor
which then will be in state rec, while the process itself then will be in state
sent.

Clearly, at least one process will always be in state rec, and this procedure can
go on forever; we will prove that eventually no process will be in state no. This
means that eventually all processes have received the message; a typical liveness
property to be proved. The requirement NF(I) ⊆ G and in fact NF(I) = ∅ (for
I consisting of all configurations containing rec) is easily seen to hold on the
protocol level. According to Thm. 4, for proving the desired liveness property it
suffices to show SN(I,→G). The protocol is encoded by unary symbols sent, rec,
and no, where the right neighbor of each of these symbols corresponds to the
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root of its argument. To obtain a ring topology we add a unary symbol top and
a constant bot. For a symbol with the argument bot, its right neighbor is defined
to be the symbol just below top. So again the state of the whole ring network is
represented by a top-term top(f1(. . . (fn(bot)) . . .)). Here the size n of the ring is
arbitrary. In order to pass messages from the bot-process n to the top-process 1,
an auxiliary unary symbol up is introduced.

rec(rec(x)) → sent(rec(x)) (38)

rec(sent(x)) → sent(rec(x)) (39)

rec(no(x)) → sent(rec(x)) (40)

rec(bot) → up(sent(bot)) (41)

rec(up(x)) → up(rec(x)) (42)

sent(up(x)) → up(sent(x)) (43)

no(up(x)) → up(no(x)) (44)

top(rec(up(x))) → top(rec(x)) (45)

top(sent(up(x))) → top(rec(x)) (46)

top(no(up(x))) → top(rec(x)) (47)

Now we prove that every infinite top reduction reaches a term without no, proving
the desired liveness property. Applying Thm. 19 for p = no(x), this can be done
by proving termination of LS(R, p), which consists of Rules (38) - (44) and

top(rec(up(x))) → top(check(rec(x))) (48)

top(sent(up(x))) → top(check(rec(x))) (49)

top(no(up(x))) → top(check(rec(x))) (50)

check(up(x)) → up(check(x)) (51)

check(sent(x)) → sent(check(x)) (52)

check(rec(x)) → rec(check(x)) (53)

check(no(x)) → no(check(x)) (54)

check(no(x)) → no(x) (55)

Termination is easily proved completely automatically according to our heuris-
tics. First, by respectively choosing Σ′ to be {no} and {rec, up} in Lemma 21,
the rules (38), (40), (48), and (50) are removed. According to our heuristics we
now apply semantic labelling with the following model: M = {0, 1} and

topM (x) = noM (x) = checkM (x) = 0, botM = 1,

recM (x) = sentM (x) = upM (x) = x

for x ∈ {0, 1}. It is easily checked that for all 11 rules the left-hand side and
the right-hand side yield the same value in this model. Now the labelled system
reads
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reci(senti(x)) → senti(reci(x)) (39i)
rec1(bot) → up1(sent1(bot)) (41)

reci(upi(x)) → upi(reci(x)) (42i)
senti(upi(x)) → upi(senti(x)) (43i)

noi(upi(x)) → up0(noi(x)) (44i)
topi(senti(upi(x))) → top0(checki(reci(x))) (49i)

checki(upi(x)) → up0(checki(x)) (51i)
checki(senti(x)) → sent0(checki(x)) (52i)
checki(reci(x)) → rec0(checki(x)) (53i)
check0(noi(x)) → no0(checki(x)) (54i)
check0(noi(x)) → noi(x) (55i)

for i ∈ {0, 1}. On this labelled TRS we apply Lemma 21: by consecutively choos-
ing Σ′ = {f} for f being top1, no1, rec1, up1, sent1, sent0, and check0, the rules
(491), (541), (41) and (531), (441) and (511), (521), (490), and (550) and (551) are
removed. In the remaining system of 11 rules we get termination by the recursive
path order using a precedence with

check0 > reci > senti > upi for i ∈ {0, 1} and check0 > no0 > up0.

6.4 A Shared Resource With Several Waiting Lines

In order to handle more general protocols, our approach can easily be extended
to several top symbols of arbitrary arity. Then we have a signature Σ of non-top
symbols and a signature Σtop of top symbols with Σ ∩Σtop = ∅. Now top terms
are terms whose root is from Σtop and below the root there are only variables
and symbols from Σ. Let TΣtop

denote the set of ground top terms. Again, a TRS
is a top rewrite system if every rule is either a top rule (i.e., both sides are top
terms) or a non-top rule (i.e., both sides are terms from T (Σ,V)).

The sound and complete transformation of Def. 7 can be adapted to such
top rewrite systems as follows: We add a new symbol top which was not present
in the original signature Σ ∪ Σtop. Moreover, in addition to the symbol check
which checks whether its argument is from T (Σ) and contains an instance of p,
we use another symbol checktop which checks whether its argument is from TΣtop

and contains an instance of p. So the top-rules in L(R, p) are top((mark(x)) →
top(checktop(x)) and top(found(x)) → top(active(x)). Moreover, L(R, p) contains
active(l) → mark(r) for all rules l → r ∈ R (including the top rules of R). The
rule for checktop is similar to the one for check, but now one requires that the
argument starts with a symbol from Σtop. So for every f ∈ Σtop we have the
rules

checktop(f(x1, . . . , xn)) → f(proper(x1), . . . , check(xi), . . . , proper(xn)).

The rules for check, match, proper, and start as well as the rules f(ok(x1), . . . ,
ok(xn)) → ok(f(x1, . . . , xn)) remain unchanged (i.e., in these rules we have f ∈
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Σ). In contrast to that, the rules

f(ok(x1), . . . , found(xi), . . . , ok(xn)) → found(f(x1, . . . , xn)),
active(f(x1, . . . , xi, . . . , xn)) → f(x1, . . . , active(xi), . . . , xn),
f(x1, . . . ,mark(xi), . . . , xn) → mark(f(x1, . . . , xn))

are required for all f ∈ Σ ∪ Σtop.
For this modified transformation we have a theorem corresponding to Thm.

15: L(R, p) is terminating iff →G is terminating on TΣtop
. To prove this claim, one

needs lemmata corresponding to Lemma 9 – Lemma 14. Lemma 9 and 10 remain
unchanged. Lemma 11 is extended by the observation that for all t ∈ T (ΣG) we
have checktop(t) →

+
L(R,p) found(u) iff t = u ∈ TΣtop

and t contains a subterm pσ.

In Lemma 12 (b), we need the additional observation that for all t, u ∈ T (ΣG)
we have checktop(t) 6→

+
L(R,p) mark(u). Lemma 13 remains unchanged, but in the

proof the precedence used must be updated to active > checktop > check > . . .
The sound transformation of Def. 17 also has to be modified slightly. In

order to handle top rewrite systems with many top symbols of arbitrary arity,
for every top rule f(s1, . . . , sn) → g(t1, . . . , tm) in R, LS(R, p) should contain
the rules f(s1, . . . , sn) → g(t1, . . . , check(ti), . . . , tm) for all 1 ≤ i ≤ m. The
remaining rules of LS(R, p) are constructed as in Def. 17. The soundness of this
transformation can easily be shown as in Thm. 19.

The following case study is an example of a top rewrite system with several
non-unary top symbols. We modify the example in Sect. 6.1 by considering two
waiting lines of processes which want to gain access to a shared resource. Again
we want to prove the liveness property that eventually all old processes (which
are already in the lines) will be served. This problem is considerably more difficult
than the one in Sect. 6.1, since liveness only holds if the lines are synchronized
in a suitable way. For instance, if there is no communication at all between the
two lines and new processes may freely choose one of the two lines, it can be
the case that in one line serving processes goes on forever while in the other
line no processes are served at all. If then the non-serving line still contains an
old process, the desired liveness property does not hold. On the other hand,
every new process should be free to choose any of the two lines. A subtle way
to achieve this is to impose the extra requirement that both lines must offer free
positions in an alternating way. We represent two waiting lines l1 and l2 in one
term top(l1, l2). In order to keep track of the information which of the lines is
allowed to generate a free position for a new process, instead of one symbol top
we will use two symbols top1 and top2, where topi(l1, l2) means that waiting line
li is allowed to offer a free position for a new process, for i ∈ {1, 2}. For the
behavior inside a waiting line we have exactly the same rules as in Sect. 6.1. We
obtain the following top rewrite system where the binary symbols top1 and top2

act as the top symbols (i.e., Σtop = {top1, top2}).

top1(free(x), y) → top2(new(x), y)
top1(free(x), y) → top2(x, new(y))
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top2(x, free(y)) → top1(new(x), y)
top2(x, free(y)) → top1(x, new(y))

new(free(x)) → free(new(x))
old(free(x)) → free(old(x))
new(serve) → free(serve)
old(serve) → free(serve)

Again we want to prove that in an infinite reduction of ground top terms, after
a finite number of steps a term without the symbol old will be achieved. This cor-
responds to the liveness property that eventually all old processes will be served.
Here, NF(Ttop) = {top1(serve, free

n(serve)) |n ∈ IN} ∪ {top2(free
n(serve), serve) |

n ∈ IN} ⊆ G and thus, it suffices to prove termination of →G on Ttop. Applying
the sound transformation of Def. 17 for p = old(x) this can be done by proving
termination of the following TRS. Here, we extended the sound transformation
to handle several top symbols of arbitrary arity as described above.

top1(free(x), y) → top2(check(new(x)), y) (56)

top1(free(x), y) → top2(new(x), check(y)) (57)

top1(free(x), y) → top2(check(x), new(y)) (58)

top1(free(x), y) → top2(x, check(new(y))) (59)

top2(x, free(y)) → top1(check(new(x)), y) (60)

top2(x, free(y)) → top1(new(x), check(y)) (61)

top2(x, free(y)) → top1(check(x), new(y)) (62)

top2(x, free(y)) → top1(x, check(new(y))) (63)

new(free(x)) → free(new(x)) (64)

old(free(x)) → free(old(x)) (65)

new(serve) → free(serve) (66)

old(serve) → free(serve) (67)

check(free(x)) → free(check(x)) (68)

check(new(x)) → new(check(x)) (69)

check(old(x)) → old(check(x)) (70)

check(old(x)) → old(x) (71)

According to (a), due to Lemma 21, Rule (67) is removed by counting the
number of old symbols. Then we apply semantic labelling with the following
model according to our heuristics: M = {0, 1} and

top1M (x) = top2M (x) = checkM (x) = oldM (x) = 0,
newM (x) = freeM (x) = x, serveM = 1

for x ∈ {0, 1}. One checks that M is a model for the TRS. It remains to prove
termination of the labelled system consisting of the following 45 rules
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top1ij
(freei(x), y) → top20j

(checki(newi(x)), y) (56ij)

top1ij
(freei(x), y) → top2i0

(newi(x), checkj(y)) (57ij)

top1ij
(freei(x), y) → top20j

(checki(x), newj(y)) (58ij)

top1ij
(freei(x), y) → top2i0

(x, checkj(newj(y))) (59ij)

top2ij
(x, freej(y)) → top10j

(checki(newi(x)), y) (60ij)

top2ij
(x, freej(y)) → top1i0

(newi(x), checkj(y)) (61ij)

top2ij
(x, freej(y)) → top10j

(checki(x), newj(y)) (62ij)

top2ij
(x, freej(y)) → top1i0

(x, checkj(newj(y))) (63ij)

newi(freei(x)) → freei(newi(x)) (64i)
oldi(freei(x)) → free0(oldi(x)) (65i)
new1(serve) → free1(serve) (66)

checki(freei(x)) → free0(checki(x)) (68i)
checki(newi(x)) → new0(checki(x)) (69i)
check0(oldi(x)) → old0(checki(x)) (70i)
check0(oldi(x)) → oldi(x) (71i)

for i, j ∈ {0, 1}.
As a first step we apply Lemma 21 for the symbol old1 by which Rule (701)

is removed. Next we apply Lemma 21 for the symbol top111
by which Rules

(5611), (5711), (5811), (5911) are removed. Then we use Lemma 21 for the symbol
top211

by which Rules (6011), (6111), (6211), (6311) are removed. Hence in the
remaining TRS the symbols top111

and top211
do not occur any more.

Next, we count the occurrences of the two symbols top110
and top210

. In
Rules (5610), (5810), (6010), and (6210) the number of top110

and top210
strictly

decreases, whereas in all other rules this number remains the same. Hence we
remove Rules (5610), (5810), (6010), and (6210). In a similar way we remove Rules
(5701), (5901), (6101), and (6301) by counting the symbols top101

and top201
.

Next, we apply Lemma 21 by counting the three symbols free0, free1, and
new1. The number of occurrences of these symbols decreases in Rules (560j),
(5700), (5800), (59i0), (600j), (6100), (6200), (63i0), and (691) for all i, j ∈ {0, 1}
and it remains the same in all other rules. By dropping the former rules we obtain
the following system of just 15 rules.

top110
(free1(x), y) → top210

(new1(x), check0(y)) (5710)
top101

(free0(x), y) → top201
(check0(x), new1(y)) (5801)

top210
(x, free0(y)) → top110

(new1(x), check0(y)) (6110)
top201

(x, free1(y)) → top101
(check0(x), new1(y)) (6201)

newi(freei(x)) → freei(newi(x)) (64i)
oldi(freei(x)) → free0(oldi(x)) (65i)
new1(serve) → free1(serve) (66)

checki(freei(x)) → free0(checki(x)) (68i)
check0(new0(x)) → new0(check0(x)) (690)
check0(old0(x)) → old0(check0(x)) (700)
check0(oldi(x)) → oldi(x) (71i)
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for i ∈ {0, 1}. Now Lemma 21 is no longer applicable. Termination of this system
can be proved automatically with dependency pairs. The resulting dependency
pairs on cycles of the estimated dependency graph are

Top110
(free1(x), y) → Top210

(new1(x), check0(y)) (72)

Top101
(free0(x), y) → Top201

(check0(x), new1(y)) (73)

Top210
(x, free0(y)) → Top110

(new1(x), check0(y)) (74)

Top201
(x, free1(y)) → Top101

(check0(x), new1(y)) (75)

Newi(freei(x)) → Newi(x)

Oldi(freei(x)) → Oldi(x)

Checki(freei(x)) → Checki(x)

Check0(new0(x)) → Check0(x)

Check0(old0(x)) → Check0(x)

for i ∈ {0, 1}. We use an argument filtering which eliminates the first arguments
of Top110

, Top210
, top110

, and top210
and which eliminates the second argument

of Top101
, Top201

, top101
, and top201

. So every term Top110
(s, t) is replaced by

Top110
(t), etc. Moreover, the argument filtering maps check0 to its argument,

i.e., every term check0(t) is replaced by t. Then the resulting constraints are
satisfied by the recursive path order using a precedence where all Top-symbols
are equal, all top-symbols are equal, and also newi, freei, oldi, and check1 are
considered equal for i ∈ {0, 1}. More precisely, the dependency pairs (72) and
(75) and all rules are weakly decreasing and the remaining dependency pairs are
strictly decreasing. This is sufficient, since only one dependency pair on each
cycle has to be strictly decreasing and (72) and (75) do not form cycles on their
own. (Dependency pair (72) is only on a cycle with (74) and (75) is only on a
cycle with (73).) This concludes the termination proof of the TRS LS(R, p), and
therefore the liveness property of the system with two waiting lines is proved.

Similar to the above example with two waiting lines, a corresponding liveness
property can be proved for any such system with n waiting lines (where n ≥ 1).
The n2 top rules of the TRS R would be

top1(free(x1), x2, . . . , xn) → top2(new(x1), . . . , xn)
. . .

top1(free(x1), x2, . . . , xn) → top2(x1, . . . , new(xn))
. . .

top2(x1, free(x2), . . . , xn) → top3(new(x1), . . . , xn)
. . .

top2(x1, free(x2), . . . , xn) → top3(x1, . . . , new(xn))
. . .

topn(x1, . . . , xn−1, free(xn)) → top1(new(x1), . . . , xn)
. . .

topn(x1, . . . , xn−1, free(xn)) → top1(x1, . . . , new(xn))
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In order to prove that this TRS satisfies the liveness property w.r.t. the term
p = old(x), one can proceed exactly as in the case where n = 2. Thus, one first
uses the transformation of Def. 17. For example, the top1-rules of LS(R, p) are

top1(free(x1), x2, . . . , xn) → top2(check(new(x1)), . . . , xn)
. . .

top1(free(x1), x2, . . . , xn) → top2(new(x1), . . . , check(xn))
. . .

top1(free(x1), x2, . . . , xn) → top2(check(x1), . . . , new(xn))
. . .

top1(free(x1), x2, . . . , xn) → top2(x1, . . . , check(new(xn)))

Now according to Step (a), we remove the rule old(serve) → free(serve) (Rule
(67)) by counting the occurrences of old. Then we apply semantic labelling with
the same model as before, where topjM

(x) = 0 for all j. In the labelled system,
the rules for top1 are changed into

top1i1,...,in
(freei1(x1), x2, . . . , xn) → top20,...,in

(checki1(newi1(x1)), . . . , xn)

. . .
top1i1,...,in

(freei1(x1), x2, . . . , xn) → top2i1,...,0
(newi1(x1), . . . , checkin(xn))

. . .
top1i1,...,in

(freei1(x1), x2, . . . , xn) → top20,...,in
(checki1(x1), . . . , newin(xn))

. . .
top1i1,...,in

(freei1(x1), x2, . . . , xn) → top2i1,...,0
(x1, . . . , checkin(newin(xn)))

for all i1, . . . , in ∈ {0, 1}, and we obtain similar rules for the other symbols.
Thus, the labelled system contains 2n ∗ n3 top rules. Now Lemma 21 is applied
repeatedly as in the case where n = 2. First, check0(old1(x)) → old0(check1(x))
(Rule (701)) is removed by counting old1. Then Lemma 21 is used to delete all
top rules where the label of the left-hand side differs from the label of the right-
hand side. Next, by counting free0, free1, and new1, all remaining top rules can
be eliminated except those where the right-hand side contains new1 and check0.
So the only remaining labelled top1-rules are

top11,0,...,in
(free1(x1), x2, . . . , xn) → top21,0,...,in

(new1(x1), check0(x2), . . . , xn)

. . .
top11,...,0

(free1(x1), . . . , xn) → top21,...,0
(new1(x1), . . . , check0(xn))

. . .
top10,...,1

(free0(x1), . . . , xn) → top20,...,1
(check0(x1), . . . , new1(xn))

. . .
top1i1,...,0,1

(freei1(x1), ..., xn−1, xn) → top2i1,...,0,1
(x1, ..., check0(xn−1), new1(xn))

Termination of this TRS can be proved with dependency pairs. For all Top- or
top-symbols we use an argument filtering which removes the argument positions
labelled with 1. Moreover, the argument filtering maps check0 to its argument.
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Now the resulting constraints are satisfied by the recursive path order where all
Top-symbols are equal, all top-symbols are equal, and also newi, freei, oldi, and
check1 are considered equal in the precedence.

More precisely, all dependency pairs with free0 in their left-hand sides are
strictly decreasing and all other dependency pairs are weakly decreasing. This is
sufficient, since every cycle of dependency pairs contains a pair with free0 in its
left-hand side. Otherwise, there would be a cycle containing dependency pairs of
the form topji1,...,ij−1,1,ij+1,...,in

(x1, . . . , xj−1, free1(xj), xj+1, . . . , xn) → . . . for all

1 ≤ j ≤ n in the cycle. Since the labels of the tuple symbols in a cycle do not
change, this would imply i1 = . . . = in = 1. However, symbols with such a label
are no longer present in the current TRS. Hence we proved the liveness property
for the network with n waiting lines for arbitrary n ≥ 1.

7 Conclusion

In this paper, we showed how to relate liveness and termination of term rewriting.
We presented a sound and complete transformation such that liveness holds iff
the transformed TRS is terminating. By a simpler sound transformation and by
refining techniques for proving termination of TRSs we developed an approach to
verify liveness properties mechanically. We discussed extensions of our approach
and demonstrated its applicability on case studies of liveness in networks of
processes.
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