Constant Runtime Complexity of Term Rewriting

is Semi-Decidable

Jirgen Giesl

LuFG Informatik 2, RWTH Aachen University, Germany

joint work with Florian Frohn

Runtime Complexity

Example TRS R

f(d) — c(g(d)) glc(z)) — cle(f(z)))

Rewrite Sequence

g(c(d)) —r c(g(f(d)) == c(g(c(g(d)))) —r clc(a(f(g(d)))))

Defined Symbols: roots of |hs
Constructors: other function symbols c, d
Basic Term: defined symbol only at the root f(z), glc(z)), glc(d))

Runtime Complexity rcg(n)

length of longest —-sequence starting with basic term ¢ where [t| <n

Example: rcer(3) >3 since lg(c(d)) | =3

Runtime Complexity

Contribution: Constant runtime complexity is semi-decidable

R has constant runtime complexity

& rer(n) € O(1)
& Im € N. all —r-evaluations of basic terms take at most m steps
Motivation

Complexity Analysis: bounds on program’s resource usage

Constant Bounds: detect bugs

Runtime Complexity rcg(n)

length of longest —-sequence starting with basic term ¢ where [t| <n

Constructor-Based Narrowing

Example TRS R

f(d) — c(g(d)) glc(z)) — clg(f(z)))

Constructor-Based Narrowing Sequence

glo) SUEL c(gf(@) S cgle(g(d) S clc(glfgd))))

. o1
Narrowing sequence to ~+ - - - ~% t,, is constructor based if ¢ty o7 - - - 0, is basic.

Constructor-based R-narrowing terminates:

g(z), g(c(z)), gl(c(d)) 3 steps
g(c(t)) for other terms ¢ 1 step
g(t) for other terms ¢ 0 steps
f(x), f(d) 1 step
f(t) for other terms ¢ 0 steps

Goal: Show termination of cb narrowing by inspecting finitely many start terms

Main Theorem

R has constant runtime complexity iff constructor-based R-narrowing terminates

Constructor-Based Narrowing

Example TRS R

f(d) — c(g(d)) glc(z)) — clg(f(z)))

Constructor-Based Narrowing Sequence

glo) SUEL c(gf(@) S cgle(g(d) S clc(glfgd))))

. o1
Narrowing sequence to ~+ - - - ~% t,, is constructor based if ¢ty o7 - - - 0, is basic.

For g(c(z)) — c(g(x)), cb narrowing would not terminate:

glo) L c(g(a) AL c(c(g(@)

Goal: Show termination of cb narrowing by inspecting finitely many start terms

Main Theorem
R has constant runtime complexity iff constructor-based R-narrowing terminates

Constructor-Based Narrowing

Example TRS R

f(d) — c(g(d)) g(c(z)) — c(g(f(z)))
Constructor-Based Narrowing Sequence
go) E c(gf@) S o) Pcle(af(e(d)
g(c(z')) - c(gf(z) 5 clglelg(d)) 5 clc(glf(g(d))
g(c(d)) = c(g(fd)) 1 clglc(gd)) P clc(s(f(gd))) |
Def: sy~ -+ ~> s, is more general than ¢, wf;li» %’i—) t, if
there is a substitution 7 with sy oy00---0, n = to 0102---0,
S1 g2 0p 1] = tl 92"'6n
Sn, i = tn

Goal: Show termination of cb narrowing by inspecting finitely many start terms

Narrowing Lemma

For every f(...) ~™ ¢ there is a more general sequence f(z1,...,z) ~" s.

Main Theorem

Main Theorem

R has constant runtime complexity iff constructor-based R-narrowing terminates

Proof of “<”

Assume that R does not have constant runtime complexity

= flgr) =™ t, f(@) =™ to, ... withng <ng<---
= F(gi) =t F(@) =" to, ...

= f(zx1,...,o5) ™ sy, f(21,...,28) ~2"2 s, ... by Narrowing Lemma
= cb narrowing tree with root f(z1,...,xx)

@ has infinitely many nodes
@ is finitely branching (as R is finite)

@ has infinite path (by Kdnig's Lemma), i.e., infinite cb narrowing sequence é

Narrowing Lemma

For every f(...) ~™t there is a more general sequence f(zy,...,x) ~" s.

Main Theorem
R has constant runtime complexity iff constructor-based R-narrowing terminates

Proof of “="
Assume that there is an infinite sequence tq ~% t] ~» ---
= tgor Ome1 —" tyq forallmeN

= Vm. there is an —-evaluation of a basic term with more than m steps

< R does not have constant runtime complexity é

Narrowing Lemma

For every f(...) ~™t there is a more general sequence f(zy,...,x) ~" s.

Semi-Decision Procedure for Constant Runtime Complexity

Example TRS R

f(d) — c(g(d)) glc(z)) — clg(f(z)))

CB Narrowing Trees

flz) S (g(d))

Semi-Decision Procedure

o For all defined symbols f, build cb narrowing tree for f(z1,...,xx).

o If constructing the trees terminates, then return “constant runtime".

Undecidability of Constant Runtime Complexity

Constant runtime complexity of TRSs is semi-decidable, but not decidable.

Proof

Turing machine M is immortal

< rewriting infinite basic terms with R n¢ does not terminate

3

narrowing basic terms f(z1,...,xx) with R does not terminate

< R does not have constant runtime complexity

(Im)mortality undecidable = constant runtime complexity undecidable []

Constant runtime complexity of TRSs is semi-decidable, but not decidable.

@ Implementation and integration of semi-decision procedure in AProVE

@ Full rewriting (959 examples from the TPDB, 60 s per example)

e 57 TRSs with constant runtime
o 57 TRSs detected by semi-decision procedure, 1.8 s avg. on successes
e 51 TRSs detected by TcT or AProVE without semi-decision procedure

@ Innermost rewriting (1022 examples from the TPDB, 60 s per example)

e 59 TRSs with constant runtime

58 TRSs detected by semi-decision procedure, 1.4 s avg. on successes
e 1 TRS with relative rules not detected by semi-decision procedure
o 55 TRSs detected by TcT or AProVE without semi-decision procedure

Constant Runtime Complexity of TRSs is Semi-Decidable

R has constant runtime complexity

< dm € N. all =p-evaluations of basic terms take at most m steps

R has constant runtime complexity iff

constructor-based R-narrowing of all terms f(z1,...,xy) terminates

Semi-Decision Procedure (implemented in AProVE)

@ For all defined symbols f, build cb narrowing tree for f(z1,...,xx).

@ If constructing the trees terminates, then return “constant runtime”.

Constant runtime complexity of TRSs is semi-decidable, but not decidable.

