
Constant Runtime Complexity of Term Rewriting
is Semi-Decidable

Jürgen Giesl

LuFG Informatik 2, RWTH Aachen University, Germany

joint work with Florian Frohn

Runtime Complexity

Example TRS R

f(d) → c(g(d)) g(c(x)) → c(g(f(x)))

Rewrite Sequence

g(c(d)) →R c(g(f(d))) →R c(g(c(g(d)))) →R c(c(g(f(g(d)))))

Defined Symbols: roots of lhs f, g

Constructors: other function symbols c, d

Basic Term: defined symbol only at the root f(x), g(c(x)), g(c(d))

Runtime Complexity rcR(n)

length of longest −→R-sequence starting with basic term t where |t| ≤ n

Example: rcR(3) ≥ 3 since | g(c(d)) | = 3

Runtime Complexity

Contribution: Constant runtime complexity is semi-decidable

R has constant runtime complexity

⇔ rcR(n) ∈ O(1)

⇔ ∃m ∈ N. all →R-evaluations of basic terms take at most m steps

Motivation

Complexity Analysis: bounds on program’s resource usage

Constant Bounds: detect bugs

Runtime Complexity rcR(n)

length of longest −→R-sequence starting with basic term t where |t| ≤ n

Example: rcR(3) ≥ 3 since | g(c(d)) | = 3

Constructor-Based Narrowing

Example TRS R

f(d) → c(g(d)) g(c(x)) → c(g(f(x)))

Constructor-Based Narrowing Sequence

g(x)

(c′)

{x/c(x′)}

ε c(g(f(x′)))
{x′/d}

1.1 c(g(c(g(d))))
∅
1 c(c(g(f(g(d)))))

)

Narrowing sequence t0
σ1 · · · σn tn is constructor based if t0 σ1 · · ·σn is basic.

Constructor-based R-narrowing terminates:
g(x), g(c(x)), g(c(d)) 3 steps
g(c(t)) for other terms t 1 step
g(t) for other terms t 0 steps
f(x), f(d) 1 step
f(t) for other terms t 0 steps

Goal: Show termination of cb narrowing by inspecting finitely many start terms

Main Theorem

R has constant runtime complexity iff constructor-based R-narrowing terminates

Constructor-Based Narrowing

Example TRS R

f(d) → c(g(d)) g(c(x)) → c(g(f(x)))

Constructor-Based Narrowing Sequence

g(x)

(c′)

{x/c(x′)}

ε c(g(f(x′)))
{x′/d}

1.1 c(g(c(g(d))))
∅
1 c(c(g(f(g(d)))))

)

Narrowing sequence t0
σ1 · · · σn tn is constructor based if t0 σ1 · · ·σn is basic.

For g(c(x))→ c(g(x)), cb narrowing would not terminate:

g(x)
{x/c(x′)}

c(g(x′))
{x′/c(x′′)}

c(c(g(x′′))) · · ·

)

Goal: Show termination of cb narrowing by inspecting finitely many start terms

Main Theorem

R has constant runtime complexity iff constructor-based R-narrowing terminates

Constructor-Based Narrowing

Example TRS R

f(d) → c(g(d)) g(c(x)) → c(g(f(x)))

Constructor-Based Narrowing Sequence

g(x)

(c′)

{x/c(x′)}

ε c(g(f(x′)))
{x′/d}

1.1 c(g(c(g(d))))
∅
1 c(c(g(f(g(d)))))

)

g(c(x′))
∅
ε c(g(f(x′)))

{x′/d}

1.1 c(g(c(g(d))))
∅
1 c(c(g(f(g(d)))))

g(c(d))
∅
ε c(g(f(d)))

∅
1.1 c(g(c(g(d))))

∅
1 c(c(g(f(g(d)))))

Def: s0
σ1

π1
· · · σn

πn sn is more general than t0
θ1

π1
· · · θn

πn tn if

Def:

there is a substitution η with s0 σ1σ2 · · ·σn η = t0 θ1θ2 · · · θn
s1 σ2 · · ·σn η = t1 θ2 · · · θn

. . .
sn η = tn

Goal: Show termination of cb narrowing by inspecting finitely many start terms

Narrowing Lemma

For every f(. . .) n t there is a more general sequence f(x1, . . . , xk)
n s.

Main Theorem

Main Theorem

R has constant runtime complexity iff constructor-based R-narrowing terminates

Proof of “⇐”

Assume that R does not have constant runtime complexity

⇒ f(~q1) −→n1 t1, f(~q2) −→n2 t2, . . . with n1 < n2 < · · ·

⇒ f(~q1)
∅ n1 t1, f(~q2)

∅ n2 t2, . . .

⇒ f(x1, . . . , xk)
σ1 n1 s1, f(x1, . . . , xk)

σ2 n2 s2, . . . by Narrowing Lemma

⇒ cb narrowing tree with root f(x1, . . . , xk)

has infinitely many nodes

is finitely branching (as R is finite)

has infinite path (by König’s Lemma), i.e., infinite cb narrowing sequence

Narrowing Lemma

For every f(. . .) n t there is a more general sequence f(x1, . . . , xk)
n s.

Main Theorem

Main Theorem

R has constant runtime complexity iff constructor-based R-narrowing terminates

Proof of “⇒”

Assume that there is an infinite sequence t0
σ1

t1
σ2 · · ·

⇒ t0 σ1 · · ·σm+1 −→m+1 tm+1 for all m ∈ N

⇒ ∀m. there is an →R-evaluation of a basic term with more than m steps

⇔ R does not have constant runtime complexity

Narrowing Lemma

For every f(. . .) n t there is a more general sequence f(x1, . . . , xk)
n s.

Semi-Decision Procedure for Constant Runtime Complexity

Example TRS R

f(d) → c(g(d)) g(c(x)) → c(g(f(x)))

CB Narrowing Trees

f(x)
{x/d}

c(g(d))

f(x)

g(x)
{x/c(x′)}

c(g(f(x′)))
{x′/d}

c(g(c(g(d))))

(

∅
c(c(g(f(g(d)))))

Semi-Decision Procedure

For all defined symbols f , build cb narrowing tree for f(x1, . . . , xk).

If constructing the trees terminates, then return “constant runtime”.

Undecidability of Constant Runtime Complexity

Theorem

Constant runtime complexity of TRSs is semi-decidable, but not decidable.

Proof

Turing machine M is immortal

⇔ rewriting infinite basic terms with RM does not terminate

⇔ narrowing basic terms f(x1, . . . , xk) with RM does not terminate

⇔ RM does not have constant runtime complexity

(Im)mortality undecidable ⇒ constant runtime complexity undecidable

Experiments

Theorem

Constant runtime complexity of TRSs is semi-decidable, but not decidable.

Implementation and integration of semi-decision procedure in AProVE

Full rewriting (959 examples from the TPDB, 60 s per example)

57 TRSs with constant runtime

57 TRSs detected by semi-decision procedure, 1.8 s avg. on successes

51 TRSs detected by TcT or AProVE without semi-decision procedure

Innermost rewriting (1022 examples from the TPDB, 60 s per example)

59 TRSs with constant runtime

58 TRSs detected by semi-decision procedure, 1.4 s avg. on successes

1 TRS with relative rules not detected by semi-decision procedure

55 TRSs detected by TcT or AProVE without semi-decision procedure

Constant Runtime Complexity of TRSs is Semi-Decidable

R has constant runtime complexity

⇔ ∃m ∈ N. all →R-evaluations of basic terms take at most m steps

Main Theorem

R has constant runtime complexity iff

constructor-based R-narrowing of all terms f(x1, . . . , xk) terminates

Semi-Decision Procedure (implemented in AProVE)

For all defined symbols f , build cb narrowing tree for f(x1, . . . , xk).

If constructing the trees terminates, then return “constant runtime”.

Theorem

Constant runtime complexity of TRSs is semi-decidable, but not decidable.

