Constant Runtime Complexity of Term Rewriting is Semi-Decidable

Jürgen Giesl

LuFG Informatik 2, RWTH Aachen University, Germany

joint work with Florian Frohn

Runtime Complexity

Example TRS \mathcal{R}

$$\mathsf{f}(\mathsf{d}) \ \rightarrow \ \mathsf{c}(\mathsf{g}(\mathsf{d}))$$

$$\mathsf{g}(\mathsf{c}(x)) \ \rightarrow \ \mathsf{c}(\mathsf{g}(\mathsf{f}(x)))$$

Rewrite Sequence

$$\underline{g(c(d))} \ \rightarrow_{\mathcal{R}} \ c(g(\underline{f(d)})) \ \rightarrow_{\mathcal{R}} \ c(\underline{g(c(g(d)))}) \ \rightarrow_{\mathcal{R}} \ c(c(g(f(g(d)))))$$

Defined Symbols:	roots of lhs	f, g
Constructors:	other function symbols	c, d
Basic Term:	defined symbol only at the root	f(x), $g(c(x))$, $g(c(d))$

Runtime Complexity $rc_{\mathcal{R}}(n)$

length of longest $\rightarrow_{\mathcal{R}}$ -sequence starting with basic term t where $|t| \leq n$

Example: $\operatorname{rc}_{\mathcal{R}}(3) \geq 3$ since |g(c(d))| = 3

Runtime Complexity

Contribution: Constant runtime complexity is semi-decidable

 ${\mathcal R}$ has constant runtime complexity

$$\Leftrightarrow \qquad \mathsf{rc}_{\mathcal{R}}(n) \in \mathcal{O}(1)$$

 \Leftrightarrow $\exists m \in \mathbb{N}$. all $\rightarrow_{\mathcal{R}}$ -evaluations of basic terms take at most m steps

Motivation

Complexity Analysis: bounds on program's resource usage Constant Bounds: detect bugs

Runtime Complexity $rc_{\mathcal{R}}(n)$

length of longest $\rightarrow_{\mathcal{R}}\text{-sequence starting with basic term }t$ where $|t|\leq n$

Constructor-Based Narrowing

Example TRS ${\cal R}$

 $f(d) \ \rightarrow \ c(g(d))$

$$g(c(x)) \rightarrow c(g(f(x)))$$

Constructor-Based Narrowing Sequence

 $\underline{g(x)} \xrightarrow{\{x/c(x')\}} c(\underline{g(f(x'))}) \xrightarrow{\{x'/d\}} c(\underline{g(c(g(d)))}) \xrightarrow{\varnothing} c(c(g(f(g(d)))))$ Narrowing sequence $t_0 \xrightarrow{\sigma_1} \cdots \xrightarrow{\sigma_n} t_n$ is constructor based if $t_0 \sigma_1 \cdots \sigma_n$ is basic.

Constructor-based \mathcal{R} -narrowing terminates:	
g(x), g(c(x)), g(c(d))	3 steps
g(c(t)) for other terms t	1 step
$\mathbf{g}(t)$ for other terms t	0 steps
f(x), f(d)	1 step
f(t) for other terms t	0 steps

Goal: Show termination of cb narrowing by inspecting finitely many start terms

Constructor-Based Narrowing

Example TRS ${\cal R}$

 $f(d) \ \rightarrow \ c(g(d))$

$$g(c(x)) \rightarrow c(g(f(x)))$$

Constructor-Based Narrowing Sequence

 $\underline{g(x)} \xrightarrow{\{x/c(x')\}} c(g(\underline{f(x')})) \xrightarrow{\{x'/d\}} c(\underline{g(c(g(d)))}) \xrightarrow{\varnothing} c(c(g(f(g(d)))))$ Narrowing sequence $t_0 \xrightarrow{\sigma_1} \cdots \xrightarrow{\sigma_n} t_n$ is constructor based if $t_0 \sigma_1 \cdots \sigma_n$ is basic.

For $g(c(x)) \rightarrow c(g(x))$, cb narrowing would not terminate:

Goal: Show termination of cb narrowing by inspecting finitely many start terms

Constructor-Based Narrowing

Example TRS ${\cal R}$

 $f(d) \rightarrow$

c(g(d))	$g(c(x)) \rightarrow$	c(g(f(x)))

Constructor-Based Narrowing Sequence

g(x)	$\xrightarrow[\varepsilon]{x/c(x')}$	$c(g(\underline{f(x')}))$	$\xrightarrow{\{x'/d\}}{1.1}$	$c(\underline{g(c(g(d)))})$	$\stackrel{\varnothing}{} 1$	c(c(g(f(g(d)))))
g(c(x'))	$\stackrel{\varnothing}{\xrightarrow{\varepsilon}}$	$c(g(\underline{f(x')}))$	$\xrightarrow{ \{x'/d\} } \underset{1.1}{\overset{ 1.1}{}}$	$c(\underline{g}(c(g(d))))$	$\stackrel{\varnothing}{\xrightarrow{1}}$	c(c(g(f(g(d)))))
g(c(d))	$\stackrel{\varnothing}{\xrightarrow{\varepsilon}}$	$c(g(\underline{f(d)}))$	$\overrightarrow{1.1}^{\varnothing}$	$c(\underline{g(c(g(d)))})$	$\stackrel{\varnothing}{\xrightarrow{1}}$	c(c(g(f(g(d)))))

Def: $s_0 \xrightarrow[\pi_1]{\sigma_1} \cdots \xrightarrow[\pi_n]{\sigma_n} s_n$ is more general than $t_0 \xrightarrow[\pi_1]{\theta_1} \cdots \xrightarrow[\pi_n]{\theta_n} t_n$ if there is a substitution η with $s_0 \sigma_1 \sigma_2 \cdots \sigma_n \eta = t_0 \theta_1 \theta_2 \cdots \theta_n$ $s_1 \sigma_2 \cdots \sigma_n \eta = t_1 \theta_2 \cdots \theta_n$ $s_n \eta = t_n$

Goal: Show termination of cb narrowing by inspecting finitely many start terms

Narrowing Lemma For every $f(...) \rightarrow^n t$ there is a more general sequence $f(x_1,...,x_k) \rightarrow^n s$.

Main Theorem

Main Theorem

 ${\mathcal R}$ has constant runtime complexity ~ iff ~ constructor-based ${\mathcal R}\text{-narrowing terminates}$

Proof of "⇐"

Assume that $\mathcal R$ does not have constant runtime complexity

- $\Rightarrow \qquad f(\vec{q_1}) \rightarrow^{n_1} t_1, \qquad f(\vec{q_2}) \rightarrow^{n_2} t_2, \dots \text{ with } n_1 < n_2 < \cdots$ $\Rightarrow \qquad f(\vec{q_1}) \stackrel{g}{\rightsquigarrow}^{n_1} t_1, \qquad f(\vec{q_2}) \stackrel{g}{\rightsquigarrow}^{n_2} t_2, \dots$
- $\Rightarrow f(x_1,\ldots,x_k) \xrightarrow{\sigma_1} n_1 s_1, \quad f(x_1,\ldots,x_k) \xrightarrow{\sigma_2} n_2 s_2, \ldots \text{ by Narrowing Lemma}$
- \Rightarrow cb narrowing tree with root $f(x_1, \ldots, x_k)$
 - has infinitely many nodes
 - is finitely branching (as \mathcal{R} is finite)
 - has infinite path (by König's Lemma), i.e., infinite cb narrowing sequence

Narrowing Lemma

For every $f(\ldots) \rightarrow^n t$ there is a more general sequence $f(x_1, \ldots, x_k) \rightarrow^n s$.

Main Theorem

Main Theorem

 ${\cal R}$ has constant runtime complexity ~ iff ~ constructor-based ${\cal R}\mbox{-narrowing terminates}$

Proof of " \Rightarrow "

Assume that there is an infinite sequence $t_0 \xrightarrow{\sigma_1} t_1 \xrightarrow{\sigma_2} \cdots$

- $\Rightarrow t_0 \sigma_1 \cdots \sigma_{m+1} \rightarrow^{m+1} t_{m+1}$ for all $m \in \mathbb{N}$
- $\Rightarrow \forall m$. there is an $\rightarrow_{\mathcal{R}}$ -evaluation of a basic term with more than m steps

 $\Leftrightarrow \mathcal{R}$ does not have constant runtime complexity $\frac{1}{2}$

Semi-Decision Procedure for Constant Runtime Complexity

Example TRS ${\cal R}$

$$\mathsf{f}(\mathsf{d}) \ \rightarrow \ \mathsf{c}(\mathsf{g}(\mathsf{d}))$$

$$\mathsf{g}(\mathsf{c}(x)) \ \rightarrow \ \mathsf{c}(\mathsf{g}(\mathsf{f}(x)))$$

Semi-Decision Procedure

• For all defined symbols f, build cb narrowing tree for $f(x_1, \ldots, x_k)$.

• If constructing the trees terminates, then return "constant runtime".

Undecidability of Constant Runtime Complexity

Theorem

Constant runtime complexity of TRSs is semi-decidable, but not decidable.

Proof

Turing machine \mathcal{M} is immortal

- \Leftrightarrow rewriting *infinite* basic terms with $\mathcal{R}_{\mathcal{M}}$ does not terminate
- \Leftrightarrow narrowing basic terms f (x_1, \ldots, x_k) with $\mathcal{R}_{\mathcal{M}}$ does not terminate
- $\Leftrightarrow \mathcal{R}_{\mathcal{M}}$ does not have constant runtime complexity

(Im)mortality undecidable \Rightarrow constant runtime complexity undecidable

Theorem

Constant runtime complexity of TRSs is semi-decidable, but not decidable.

- Implementation and integration of semi-decision procedure in AProVE
- Full rewriting (959 examples from the TPDB, 60 s per example)
 - 57 TRSs with constant runtime
 - 57 TRSs detected by semi-decision procedure, 1.8 s avg. on successes
 - 51 TRSs detected by TcT or AProVE without semi-decision procedure
- Innermost rewriting (1022 examples from the TPDB, 60 s per example)
 - 59 TRSs with constant runtime
 - 58 TRSs detected by semi-decision procedure, 1.4 s avg. on successes
 - 1 TRS with *relative* rules not detected by semi-decision procedure
 - 55 TRSs detected by TcT or AProVE without semi-decision procedure

Constant Runtime Complexity of TRSs is Semi-Decidable

 $\ensuremath{\mathcal{R}}$ has constant runtime complexity

 $\Leftrightarrow \quad \exists m \in \mathbb{N}. \text{ all } \rightarrow_{\mathcal{R}} \text{-evaluations of basic terms take at most } m \text{ steps}$

Main Theorem

 $\mathcal R$ has constant runtime complexity iff constructor-based $\mathcal R$ -narrowing of all terms $f(x_1,\ldots,x_k)$ terminates

Semi-Decision Procedure (implemented in AProVE)

- For all defined symbols f, build cb narrowing tree for $f(x_1, \ldots, x_k)$.
- If constructing the trees terminates, then return "constant runtime".

Theorem

Constant runtime complexity of TRSs is semi-decidable, but not decidable.