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@ language-specific features when generating symbolic execution graph
@ back-end analyzes Term Rewrite Systems and/or Integer Transition Systems
@ powerful termination and complexity analysis implemented in . , and

o Termination Competition  since 2004 (Java, C, Haskell, Prolog, TRS)
e SV-COMP since 2014 (C)
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e Termination of programs is undecidable (halting problem)

@ Goal: Find classes of programs where termination is decidable

Tiwari (CAV 2004) while (3-X>b) do X+ A-X+ ¢|
e termination decidable if variables range over R

Braverman (CAV 2006)

e termination decidable if variables range over Q

o termination decidable over Z if b= =0

@ Ouaknine, Pinto, Worrell (SODA 2015)

e termination decidable over Z if A is diagonalizable or dimension < 4

Frohn & Giesl (CAV 2019)

e termination decidable over Z if A is triangular

Hosseini, Ouaknine, Worrell (ICALP 2019)

e termination decidable over Z
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Deciding termination

Theorem [LPAR 2020, IJCAR 2022]

@ Halting problem for twn-loops decidable

@ Polynomial runtime bounds computable for all twn-loops over Z
= Combination with incomplete automated complexity analysis in tool KoAT

Theorem [SAS 2020, arXiv 2022]
@ Termination of twn-loops decidable for S € {Ry, R}

@ Non-termination of twn-loops semi-decidable for S € {Z,Q}
@ Termination of linear loops with rational eigenvalues is Co-NP complete for S € {Z,Q}
e Termination of linear-update loops with real eigenvalues is VR complete for S € {R, R}

@ Termination of uniform loops is polynomial for fixed number k of eigenvalues
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e Giesl, Giesl, Hark (CADE 2019)
o (Positive) almost-sure termination is decidable
e asymptotic expected runtime is computable

e exact expected runtime is computable



