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Abstract. Recently, we adapted the well-known dependency pair (DP)
framework to a dependency tuple framework in order to prove almost-sure
innermost termination (iAST) of probabilistic term rewrite systems. While
this approach was incomplete, in this paper, we improve it into a complete
criterion for iAST by presenting a new, more elegant definition of DPs for
probabilistic term rewriting. Based on this, we extend the probabilistic
DP framework by new transformations. Our implementation in the tool
AProVE shows that they increase its power considerably.

1 Introduction

Termination of term rewrite systems (TRSs) has been studied for decades and
TRSs are used for automated termination analysis of many programming languages.
One of the most powerful techniques integrated in essentially all current termi-
nation tools for TRSs is the dependency pair (DP) framework [2, 17, 18, 24] which
allows modular proofs that apply different techniques in different sub-proofs.

In [8, 9], term rewriting was extended to the probabilistic setting. Probabilistic
programs describe randomized algorithms and probability distributions, with ap-
plications in many areas. In the probabilistic setting, there are several notions of
“termination”. A program is almost-surely terminating (AST) if the probability of
termination is 1. A strictly stronger notion is positive AST (PAST), which requires
that the expected runtime is finite. While numerous techniques exist to prove
(P)AST of imperative programs on numbers (e.g., [1, 4, 10, 14, 21, 25–27, 33–36]),
there are only few automatic approaches for programs with complex non-tail re-
cursive structure [7, 11, 12]. The approaches that are also suitable for algorithms
on recursive data structures [6, 32, 40] are mostly specialized for specific data
structures and cannot easily be adjusted to other (possibly user-defined) ones, or
are not yet fully automated. In contrast, our goal is a fully automatic termination
analysis for (arbitrary) probabilistic TRSs (PTRSs).

Up to now, only two approaches for automatic termination analysis of PTRSs
were developed [3, 28]. In [3], orderings based on interpretations were adapted to
prove PAST. However, already for non-probabilistic TRSs such a direct application
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of orderings is limited in power. To obtain a powerful approach, one should combine
such orderings in a modular way, as in the DP framework.

Indeed, in [28], we adapted the DP framework to the probabilistic setting in
order to prove innermost AST (iAST), i.e., AST for rewrite sequences which follow
the innermost evaluation strategy. However, in contrast to the DP framework
for ordinary TRSs, the probabilistic dependency tuple (DT) framework in [28] is
incomplete, i.e., there are PTRSs which are iAST but where this cannot be proved
with DTs. In this paper, we introduce a new concept of probabilistic DPs and
a corresponding new rewrite relation. In this way, we obtain a novel complete
criterion for iAST via DPs while maintaining soundness for all processors that were
developed in the probabilistic DT framework of [28]. Moreover, our improvement
allows us to introduce additional more powerful “transformational” probabilistic
DP processors which were not possible in the framework of [28].

We recapitulate the DP framework for non-probabilistic TRSs in Sect. 2. Then,
we present our novel ADPs (annotated dependency pairs) for probabilistic TRSs in
Sect. 3. In Sect. 4, we show how to adapt the processors from the framework of [28]
to our probabilistic ADP framework. In addition, our framework allows for the
definition of new processors which transform ADPs. As an example, in Sect. 5 we
adapt the rewriting processor to the probabilistic setting, which benefits from our
new, more precise rewrite relation. The implementation of our approach in the
tool AProVE is evaluated in Sect. 6. We refer to App. A for all proofs. In App.
B we show how the other transformational processors of the DP framework can
also be adapted to the probabilistic setting. Finally, in App. C we present selected
examples from our new set of benchmarks.

2 The DP Framework

We assume familiarity with term rewriting [5] and recapitulate the DP framework
with its core processors (see e.g., [2, 17, 18, 24] for details). We regard finite
TRSs R over a finite signature Σ and let T (Σ,V) denote the set of terms over
Σ and a set of variables V. We decompose Σ = D ⊎ C such that f ∈ D if f =
root(ℓ) for some ℓ → r ∈ R. The symbols in D are called defined symbols. For
every f ∈ D, we introduce a fresh annotated symbol f# of the same arity.1 Let
D# be the set of all annotated symbols and Σ# = D# ⊎ Σ. For any t = f(t1,
. . . , tn) ∈ T (Σ,V) with f ∈ D, let t# = f#(t1, . . . , tn). For every rule ℓ → r
and every (not necessarily proper) subterm t of r with defined root symbol, one
obtains a dependency pair (DP) ℓ# → t#. DP(R) denotes the set of all dependency
pairs of R. As an example, consider Rex = {(1), (2)} with its dependency pairs
DP(Rex) = {(3), (4)}. To ease readability, we often write F instead of f#, etc.

f(s(x))→c(f(g(x))) (1)

g(x)→s(x) (2)

F(s(x))→F(g(x)) (3)

F(s(x))→G(x) (4)

The DP framework uses DP problems (P,R) where P is a (finite) set of DPs
and R is a TRS. A (possibly infinite) sequence t0, t1, t2, . . . with ti

i→P,R ◦ i→∗
R ti+1

1 The symbols f# were called tuple symbols in the original DP framework [18] and also
in [28], as they represent the tuple of arguments of the original defined symbol f .
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for all i is an (innermost) (P,R)-chain which represents subsequent “function
calls” in evaluations. Here, “◦” denotes composition and steps with

i→P,R are
called p-steps, where

i→P,R is the restriction of →P to rewrite steps where the
used redex is in NFR (the set of normal forms w.r.t. R). Steps with

i→∗
R are called

r-steps and are used to evaluate the arguments of an annotated function symbol. So
an infinite chain consists of an infinite number of p-steps with a finite number of
r-steps between consecutive p-steps. For example, F(s(x)),F(s(x)), . . . is an infinite
(DP(Rex),Rex)-chain, as F(s(x))

i→DP(Rex),Rex
F(g(x)) i→∗

Rex
F(s(x)). Throughout

the paper, we restrict ourselves to innermost rewriting (“
i→R”), because our

adaption of DPs to the probabilistic setting relies on this evaluation strategy.2

A DP problem (P,R) is called innermost terminating (iTerm) if there is no
infinite innermost (P,R)-chain. The main result on DPs is the chain criterion
which states that there is no infinite sequence t1

i→R t2
i→R . . ., i.e., R is iTerm,

iff (DP(R),R) is iTerm. The DP framework is a divide-and-conquer approach,
which applies DP processors to transform DP problems into simpler sub-problems.
A DP processor Proc has the form Proc(P,R) = {(P1,R1), . . . , (Pn,Rn)}, where
P,P1, . . . ,Pn are sets of DPs and R,R1, . . . ,Rn are TRSs. A processor Proc is
sound if (P,R) is iTerm whenever (Pi,Ri) is iTerm for all 1 ≤ i ≤ n. It is complete
if (Pi,Ri) is iTerm for all 1 ≤ i ≤ n whenever (P,R) is iTerm.

So given a TRS R, one starts with the initial DP problem (DP(R),R) and
applies sound (and preferably complete) DP processors repeatedly until all sub-
problems are “solved” (i.e., sound processors transform them to the empty set).
This yields a modular framework for termination proofs, as different techniques
can be used for different sub-problems (Pi,Ri). The following three theorems
recapitulate the three most important processors of the DP framework.

The (innermost) (P,R)-dependency graph is a control flow graph that indicates
which DPs can be used after each other in a chain. Its set of nodes is P and there
is an edge from ℓ#1 → t#1 to ℓ#2 → t#2 if there exist substitutions σ1, σ2 such that

t#1 σ1
i→∗
R ℓ#2 σ2 and ℓ#1 σ1, ℓ

#
2 σ2 ∈ NFR. Any infinite (P,R)-chain corresponds to

an infinite path in the dependency graph, and since the graph is finite, this infinite
path must end in some strongly connected component (SCC).3 Hence, it suffices to
consider the SCCs of this graph independently.

Theorem 1 (Dependency Graph Processor). For the SCCs P1, . . . ,Pn of
the (P,R)-dependency graph, ProcDG(P,R) = {(P1,R), . . . , (Pn,R)} is sound and
complete.

Example 2 (Dependency Graph). Consider the TRS Rffg={(5)} with DP(Rffg)=
{(6), (7), (8)}. The (DP(Rffg),Rffg)-dependency graph is on the right.

2 Moreover, already in the non-probabilistic setting, the restriction to innermost rewriting
makes termination analysis with DPs substantially more powerful, e.g., by allowing
the application of additional techniques like usable rules and rewriting of DPs [17, 18].
Indeed, we also adapt these techniques in our novel ADP framework for probabilistic
rewriting. Nevertheless, we conjecture that ADPs are also suitable for an adaption to
analyze full instead of innermost AST, and we will investigate that in future work.

3 Here, a set P ′ of DPs is an SCC if it is a maximal cycle, i.e., it is a maximal set such
that for any ℓ#1 → t#1 and ℓ#2 → t#2 in P ′ there is a non-empty path from ℓ#1 → t#1 to
ℓ#2 → t#2 which only traverses nodes from P ′.
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f(f(g(x)))→ f(g(f(g(f(x))))) (5)

F(f(g(x)))→F(g(f(g(f(x))))) (6)

F(f(g(x)))→F(g(f(x))) (7)

F(f(g(x)))→F(x) (8)

(6)

(7)

(8)

While the exact dependency graph is not computable in general, there exist
several techniques to over-approximate it automatically, see, e.g., [2, 18, 24]. In our
example, ProcDG(DP(Rffg),Rffg) yields the DP problem ({(8)},Rffg).

The next processor removes rules that cannot be used for right-hand sides of
dependency pairs when their variables are instantiated with normal forms.

Theorem 3 (Usable Rules Processor). Let R be a TRS. For every f ∈Σ# let
RulesR(f) = {ℓ → r ∈ R | root(ℓ) = f}. For any t ∈ T

(
Σ#,V

)
, its usable rules

UR(t) are the smallest set such that UR(x) = ∅ for all x ∈ V and UR(f(t1, . . . , tn))
= RulesR(f) ∪

⋃n
i=1 UR(ti) ∪

⋃
ℓ→r∈RulesR(f) UR(r). The usable rules for the

DP problem (P,R) are U(P,R) =
⋃

ℓ#→t#∈P UR(t#). Then ProcUR(P,R) =
{(P,U(P,R))} is sound but not complete.4

ProcUR
(
{(8)},Rffg

)
yields the problem ({(8)},∅), i.e., it removes all rules, be-

cause the right-hand side of (8) does not contain the defined symbol f.
A polynomial interpretation Pol is a Σ-algebra which maps every function

symbol f ∈ Σ to a polynomial fPol ∈ N[V] over the variables V with coefficients
from N, see [31]. Pol(t) denotes the interpretation of a term t by the Σ-algebra Pol.
An arithmetic inequation like Pol(t1) > Pol(t2) holds if it is true for all instantiations
of its variables by natural numbers. The reduction pair processor5 allows us to
use weakly monotonic polynomial interpretations that do not have to depend on
all of their arguments, i.e., x ≥ y implies fPol(. . . , x, . . .) ≥ fPol(. . . , y, . . .) for all
f ∈ Σ#. The processor requires that all rules and DPs are weakly decreasing and
it removes those DPs that are strictly decreasing.

Theorem 4 (Reduction Pair Processor). Let Pol : T
(
Σ#,V

)
→ N[V] be a

weakly monotonic polynomial interpretation. Let P = P≥ ⊎ P> with P> ̸= ∅ such
that:

(1) For every ℓ → r ∈ R, we have Pol(ℓ) ≥ Pol(r).
(2) For every ℓ# → t# ∈ P, we have Pol(ℓ#) ≥ Pol(t#).
(3) For every ℓ# → t# ∈ P>, we have Pol(ℓ#) > Pol(t#).

Then ProcRP(P,R) = {(P≥,R)} is sound and complete.

For ({(8)},∅), one can use the reduction pair processor with the polynomial
interpretation that maps f(x) to x + 1 and both F(x) and g(x) to x. Then,
ProcRP

(
{(8)},∅

)
= {

(
∅,∅

)
}. As ProcDG(∅, . . .) = ∅ and all processors used are

sound, this means that there is no infinite innermost chain for the initial DP
problem (DP(Rffg),Rffg) and thus, Rffg is innermost terminating.

4 See [17] for a complete version of this processor. It extends DP problems by an additional
set to store the left-hand sides of all rules (including the non-usable ones) to determine
whether a rewrite step is innermost. We omit this here for readability.

5 In this paper, we only regard the reduction pair processor with polynomial interpreta-
tions, because for most other classical orderings it is not clear how to extend them to
probabilistic TRSs, where one has to consider “expected values of terms”.
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3 Probabilistic Annotated Dependency Pairs

In this section we present our novel adaption of DPs to the probabilistic setting. As
in [3, 9, 13, 28], the rules of a probabilistic TRS have finite multi-distributions on
the right-hand sides. A finite multi-distribution µ on a set A ≠ ∅ is a finite multiset
of pairs (p : a), where 0 < p ≤ 1 is a probability and a ∈ A, with

∑
(p:a)∈µ p = 1.

FDist(A) is the set of all finite multi-distributions on A. For µ ∈ FDist(A), its
support is the multiset Supp(µ)={a | (p :a)∈µ for some p}.

A pair ℓ → µ ∈ T (Σ,V) × FDist(T (Σ,V)) such that ℓ ̸∈ V and V(r) ⊆ V(ℓ)
for every r ∈ Supp(µ) is a probabilistic rewrite rule. A probabilistic TRS (PTRS)
is a finite set of probabilistic rewrite rules. As an example, consider the PTRS
Rrw with the rule g(x)→{1/2 : g(g(x)), 1/2 : x}, which corresponds to a symmetric
random walk. Let g2(x) abbreviate g(g(x)), etc.

A PTRS R induces a rewrite relation →R ⊆ T (Σ,V)×FDist(T (Σ,V)) where
s →R {p1 : t1, . . . , pk : tk} if there is a position π of s, a rule ℓ → {p1 : r1, . . . , pk :
rk} ∈ R, and a substitution σ such that s|π = ℓσ and tj = s[rjσ]π for all 1 ≤ j ≤ k.
We call s →R µ an innermost rewrite step (denoted s

i→R µ) if ℓσ ∈ ANFR, where
ANFR is the set of all terms in argument normal form w.r.t. R, i.e., t ∈ ANFR iff
t′ ∈ NFR for all proper subterms t′ of t.

To track all possible rewrite sequences (up to non-determinism) with their
probabilities, we lift

i→R to (innermost) rewrite sequence trees (RSTs). An (inner-
most) R-RST is a tree whose nodes v are labeled by pairs (pv, tv) of a probability
pv and a term tv such that the edge relation represents a probabilistic inner-
most rewrite step. More precisely, T = (V,E, L) is an (innermost) R-RST if
(1) (V,E) is a (possibly infinite) directed tree with nodes V ̸= ∅ and directed
edges E ⊆ V × V where vE = {w | (v, w) ∈ E} is finite for every v ∈ V ,
(2) L : V → (0, 1] × T (Σ,V) labels every node v by a probability pv and a
term tv where pv = 1 for the root v ∈ V of the tree, and (3) for all v ∈ V : if
vE = {w1, . . . , wk} ≠ ∅, then tv

i→R {pw1

pv
: tw1 , . . . ,

pwk

pv
: twk

}. For any innermost

R-RST T we define |T|Leaf =
∑

v∈Leaf pv, where Leaf is the set of T’s leaves. An
RST T is innermost almost-surely terminating (iAST) if |T|Leaf = 1. Similarly,
a PTRS R is iAST if all innermost R-RSTs are iAST. While |T|Leaf = 1 holds
for every finite RST T, for infinite RSTs T we may have |T|Leaf < 1, and even
|T|Leaf = 0 if T has no leaf at all. This notion is equivalent to the notions of AST in
[3, 28], where one uses a lifting to multisets instead of trees. For example, the infinite

1 g(x)

1/2 g2(x) 1/2 x

1/4 g3(x) 1/4 g(x)

. . . . . . . . . . . .

Rrw-RST T on the side has |T|Leaf = 1. In fact,
Rrw is iAST, because |T|Leaf = 1 holds for all
innermost Rrw-RSTs T.

As shown in [28], to adapt the DP framework
in order to prove iAST of PTRSs, one has to
regard all DPs resulting from the same rule at
once. Otherwise, one would not be able to distinguish between the DPs of the
TRS with the rule a → {1/2 : b, 1/2 : c(a, a)} which is iAST and the rule a →
{1/2 : b, 1/2 : c(a, a, a)}, which is not iAST. For that reason, in the adaption of the
DP framework to PTRSs in [28], one constructs dependency tuples (DTs) whose
right-hand sides combine the right-hand sides of all dependency pairs resulting
from one rule. However, a drawback of this approach is that the resulting chain
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criterion is not complete, i.e., it allows for chains that do not correspond to any
rewrite sequence of the original PTRS R.
Example 5. Consider the PTRS Rincpl with the rules

a → {1 : f(h(g), g)} (9)

g → {1/2 : b1, 1/2 : b2} (10)

h(b1) → {1 : a} (11)

f(x, b2) → {1 : a} (12)

and the Rincpl-RST below. So a can be rewritten to the normal form f(h(b2), b1)

1 a

1 f(h(g), g)

1/2 f(h(g), b1) 1/2 f(h(g), b2)

1/4 f(h(b1), b1) 1/4 f(h(b2), b1)

normal form

1/4 f(h(b1), b2) 1/4 f(h(b2), b2)

1/4 f(a, b1) 1/4 f(a, b2) 1/4 a

. . . . . . . . .

with probability 1/4
and to the terms
f(a, b1) and a that
contain the redex a
with a probability of
1/4+ 1/4 = 1/2. In the
term f(a, b2), one can
rewrite the subterm
a, and if that ends in a normal form, one can still rewrite the outer f which will
yield a again. So to over-approximate the probability of non-termination, one could
consider the term f(a, b2) as if one had two occurrences of a. Then this would
correspond to a random walk where the number of a symbols is decreased by 1
with probability 1/4, increased by 1 with probability 1/4, and kept the same with
probability 1/2. Such a random walk is AST, and since a similar observation holds
for all Rincpl-RSTs, Rincpl is iAST (we will prove iAST of Rincpl with our new ADP
framework in Sect. 4 and 5).

In contrast, the DT framework from [28] fails on this example. As mentioned,
the right-hand sides of DTs combine the right-hand sides of all dependency pairs
resulting from one rule. So the right-hand side of the DT for (9) contains the term
com4(F(h(g), g),H(g),G,G), where com4 is a special compound symbol of arity 4.
However, here it is no longer clear which occurrence of the annotated symbol G
corresponds to which occurrences of g. Therefore, when rewriting an occurrence of G,
in the “chains” of [28] one may also rewrite arbitrary occurrences of g simulta-
neously. (For that reason, in [28] one also couples the DT together with its original
rule.) In particular, [28] also allows a simultaneous rewrite step of all underlined
symbols in com(F(h(g), g),H(g),G,G) even though the underlined G cannot corre-
spond to both underlined g symbols. As shown in Lemma 28 in App. A, this leads
to a chain that is not iAST and that does not correspond to any Rincpl-rewrite
sequence. To avoid this problem, one would have to keep track of the connections
between annotated symbols and the corresponding original subterms. However,
such an improvement would become very complicated in the formalization of [28].

Therefore, in contrast to [28], in our new notion of DPs, we annotate defined
symbols directly in the original rewrite rule instead of extracting annotated subterms
from its right-hand side. This makes the definition easier, more elegant, and more
readable, and allows us to solve the incompleteness problem of [28].

Definition 7 (Annotations). Let t ∈ T
(
Σ#,V

)
be an annotated term and for

Σ′ ⊆ Σ#, let posΣ′(t) be all positions of t with symbols from Σ′. For a set of
positions Φ ⊆ posD∪D#(t), let #Φ(t) be the variant of t where the symbols at
positions from Φ in t are annotated and all other annotations are removed. Thus,
posD#(#Φ(t)) = Φ, and #∅(t) removes all annotations from t, where we often
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write ♭(t) instead of #∅(t). We extend ♭ to multi-distributions, rules, and sets of
rules by removing the annotations of all occurring terms. We write #D(t) instead
of #posD(t)(t) to annotate all defined symbols in t, and #ε(t) instead of #{ε}(t)

to annotate just the root symbol of t. Moreover, let ♭↑π(t) result from removing all
annotations from t that are strictly above the position π. Finally, we write t ⊴# s
if there is a π ∈ posD#(s) and t = ♭(s|π), i.e., t results from a subterm of s with
annotated root symbol by removing its annotation.

Example 8. So if g ∈ D, then we have #{1}(g(g(x))) = #{1}(G(G(x))) = g(G(x)),
#D(g(g(x))) = #{ε,1}(g(g(x))) = G(G(x)), and ♭(G(G(x))) = g(g(x)). Moreover,

♭↑1(G(G(x))) = g(G(x)) and g(x) ⊴# g(G(x)).

Next, we define the canonical annotated dependency pairs for a given PTRS.

Definition 9 (Canonical Annotated Dependency Pairs). For a rule ℓ →
µ = {p1 : r1, . . . , pk : rk}, its canonical annotated dependency pair (ADP) is

DP(ℓ → µ) = ℓ → {p1 : #D(r1), . . . , pk : #D(rk)}true

The canonical ADPs of a PTRS R are DP(R) = {DP(ℓ → µ) | ℓ → µ ∈ R}.

Example 10. For Rrw, the canonical ADP for g(x) → {1/2 : g(g(x))), 1/2 : x} is
g(x) → {1/2 : G(G(x)), 1/2 : x}true instead of the (complicated) DT from [28]:

DT (Rrw) = {⟨G(x), g(x)⟩ → {1/2 : ⟨com2(G(g(x)),G(x)), g
2(x)⟩, 1/2 : ⟨com0, x⟩}}

So the left-hand side of an ADP is just the left-hand side of the original rule.
The right-hand side of the ADP results from the right-hand side of the original
rule by replacing all f ∈ D with f#. Moreover, every ADP has a flag m ∈ {true,
false} to indicate whether this ADP may be used for an r-step at a position below
the next p-step. (This flag will later be modified by our usable rules processor.) In
general, we work with the following rewrite systems in our new framework.

Definition 11 (Annotated Dependency Pairs,
i
↪→P). An ADP has the form

ℓ −→ {p1 : r1, . . . , pk : rk}m, where ℓ ∈ T (Σ,V) with ℓ /∈ V, m ∈ {true, false}, and
for all 1 ≤ j ≤ k we have rj ∈T

(
Σ#,V

)
with V(rj) ⊆ V(ℓ).

Let P be a finite set of ADPs (a so-called ADP problem). An annotated term
s ∈ T

(
Σ#,V

)
rewrites with P to µ = {p1 : t1, . . . , pk : tk} (denoted s

i
↪→P µ) if

there is a rule ℓ −→ {p1 : r1, . . . , pk : rk}m ∈ P, a substitution σ, and a position
π ∈ posD∪D#(s) such that ♭(s|π) = ℓσ ∈ ANFP , and for all 1 ≤ j ≤ k we have

tj = s[rjσ]π if π ∈ posD#(s) and m = true (pr)
tj = ♭↑π( s[rjσ]π) if π ∈ posD#(s) and m = false (p)
tj = s[♭(rj)σ]π if π ̸∈ posD#(s) and m = true (r)
tj = ♭↑π( s[♭(rj)σ]π) if π ̸∈ posD#(s) and m = false (irr)

To highlight the position π of the redex, we also write s
i
↪→P,π t. Again, ANFP is the

set of all terms in argument normal form w.r.t. P.

Rewriting with P can be seen as ordinary term rewriting while considering
and modifying annotations. In the ADP framework, we represent all DPs resulting
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from a rule as well as the original rule by just one ADP. So for example, the
ADP g(x) → {1/2 : G(G(x)), 1/2 : x}true for the rule g(x) → {1/2 : g(g(x)), 1/2 : x}
represents both DPs resulting from the two occurrences of g on the right-hand
side, and the rule itself (by simply disregarding all annotations of the ADP).

As in the classical DP framework, our goal is to track specific reduction sequences
where (1) there are p-steps where the root symbol of the redex is annotated and
a DP is applied, and (2) between two p-steps there can be several r-steps where
rules are applied below the position of the next p-step.

A step of the form (pr) in Def. 11 can represent both p- and r-steps. All
annotations are kept during this step except for annotations of the subterms that
correspond to variables of the applied rule. These subterms are always in normal
form due to the innermost evaluation strategy and we erase their annotations in
order to handle rewriting with non-left-linear rules correctly. A (pr)-step at posi-
tion π plays the role of an r-step for terms in multi-distributions where one later
rewrites an annotated symbol at a position above π, and for all other terms it plays
the role of a p-step. As an example, for a PTRS Rex2 with the rules g(x, x) → {1 :
f(x)} and f(a) → {1 : f(b)}, we have the canonical ADPs g(x, x) → {1 : F(x)}true
and f(a) → {1 : F(b)}true, and we can rewrite G(F(b), f(b))

i
↪→DP(Rex2)

{1 : F(f(b))}
using the first ADP. Here, we have π = ε, ♭(s|ε) = g(f(b), f(b)) = ℓσ where σ
instantiates x with the normal form f(b), and r1 = F(x).

A step of the form (r) rewrites at the position of a non-annotated defined symbol.
So this represents an r-step and thus, we remove all annotations from the right-hand
side rj . As an example, we have G(F(b), f(a))

i
↪→DP(Rex2)

{1 : G(F(b), f(b))} using

the ADP f(a) → {1 : F(b)}true.
A step of the form (p) represents a p-step. Thus, we remove all annotations

above the position π, because no p-steps are possible above π. So if P contains
f(a) → {1 : F(b)}false, then G(F(b),F(a))

i
↪→P {1 : g(F(b),F(b))}.

Finally, a step of the form (irr) is an r-step that is irrelevant for proving
iAST, because due to m = false, afterwards there cannot be a p-step at a position
above. For example, if P again contains f(a) → {1 : F(b)}false, then G(F(b), f(a))
i
↪→P {1 : g(F(b), f(b))}. Such (irr)-steps are needed to ensure that all rewrite steps
with R are also possible with the ADP problems P that result from DP(R) when
applying ADP processors. These processors only modify annotations, but keep the
rest of the rules unchanged. So for all these ADP problems P, we have R = ♭(P)
and ♭(t) ∈ ANFR iff t ∈ ANFP for all t ∈ T

(
Σ#,V

)
, i.e., the innermost evaluation

strategy is not affected by the application of ADP processors. This is different from
the classical DP framework, where the usable rules processor reduces the number
of rules. This may result in new redexes that are allowed for innermost rewriting.
Thus, the usable rules processor in our new ADP framework is complete, whereas
in [17], one has to extend DP problems by an additional component to achieve
completeness of this processor (see Footnote 4).

Now, s
i→R {p1 : t1, . . . , pk : tk} essentially6 implies #D(s)

i
↪→DP(R) {p1 :

#D(t1), . . . , pk : #D(tk)}, and we got rid of any ambiguities in the rewrite relation

6 We have #D(s)
i
↪→DP(R) {p1 : t′1, . . . , pk : t′k} where t′j and #D(tj) are the same up to

some annotations of subterms that are DP(R)-normal forms. The reason is that as
mentioned above, annotations of the subterms (in normal form) that correspond to
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that led to incompleteness in [28]. While our ADPs are much simpler than the DTs
of [28], due to their annotations they still contain all information that is needed to
define the required DP processors.

Instead of chains of DPs, in the probabilistic setting one works with chain trees
[28], where p- and r-steps are indicated by P - and R-nodes in the tree. Chain trees
are defined analogously to RSTs, but the crucial requirement is that every infinite
path of the tree must contain infinitely many steps of the forms (pr) or (p). Thus,
in our setting T = (V,E, L, P ) is a P-chain tree (CT) if

1. (V,E) is a (possibly infinite) directed tree with nodes V ̸= ∅ and directed
edges E ⊆ V × V where vE = {w | (v, w) ∈ E} is finite for every v ∈ V .

2. L : V → (0, 1]× T
(
Σ#,V

)
labels every node v by a probability pv and a term

tv. For the root v ∈ V of the tree, we have pv = 1.
3. P ⊆ V \ Leaf (where Leaf are all leaves) is a subset of the inner nodes to

indicate whether we use (pr) or (p) for the next rewrite step. R = V \(Leaf∪P )
are all inner nodes that are not in P , i.e., where we rewrite using (r) or (irr).

4. For all v ∈ P : if vE = {w1, . . . , wk}, then tv
i
↪→P {pw1

pv
: tw1

, . . . ,
pwk

pv
: twk

}
using Case (pr) or (p).

5. For all v ∈ R: if vE = {w1, . . . , wk}, then tv
i
↪→P {pw1

pv
: tw1 , . . . ,

pwk

pv
: twk

}
using Case (r) or (irr).

6. Every infinite path in T contains infinitely many nodes from P .

Let |T|Leaf =
∑

v∈Leaf pv. We define that P is iAST if |T|Leaf = 1 for all P-CTs T.
So Conditions 1–5 ensure that the chain tree corresponds to an RST and Condition
6 requires that one may only use finitely many r-steps before the next p-step. This
yields a chain criterion as in the non-probabilistic setting, where (in contrast to
the chain criterion of [28]) we again have “iff” instead of “if”.

Theorem 12 (Chain Criterion). R is iAST iff DP(R) is iAST.

Our chain criterion is complete (“only if”), because ADPs only add annotations
to rules. Hence, every DP(R)-CT can be turned into an R-RST by omitting all
annotations. So in contrast to [28], the step from the original PTRS to ADPs
does not affect the “potential power” of the approach. Moreover, in the future this
may also allow the development of techniques to disprove iAST within the ADP
framework. To prove soundness (“if”), one has to show that every R-RST can
be simulated by a DP(R)-CT. As mentioned, all proofs can be found in App. A.

4 The ADP Framework

Our new (probabilistic) ADP framework again applies processors to transform an
ADP problem into simpler sub-problems. An ADP processor Proc has the form
Proc(P) = {P1, . . . ,Pn}, where P,P1, . . . ,Pn are ADP problems. Proc is sound if
P is iAST whenever Pi is iAST for all 1 ≤ i ≤ n. It is complete if Pi is iAST for
all 1 ≤ i ≤ n whenever P is iAST. For a PTRS R, one starts with the canonical

variables of the rule are erased. So for example, rewriting G(F(b),F(b)) with DP(Rex2)
yields {1 : F(f(b))} and not {1 : F(F(b))}.
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ADP problem DP(R) and applies sound (and preferably complete) ADP processors
repeatedly until the ADPs contain no annotations anymore. Such an ADP problem
is trivially iAST. The framework again allows for modular termination proofs,
since different techniques can be applied on each sub-problem Pi.

We now adapt the processors from [28] to our new framework. The (innermost)
P-dependency graph is a control flow graph between ADPs from P, indicating
whether an ADP α may lead to an application of another ADP α′ on an annotated
subterm introduced by α. This possibility is not related to the probabilities. Hence,
we can use the non-probabilistic variant np(P) = {ℓ → ♭(rj) | ℓ → {p1 : r1, . . . , pk :
rk}true ∈ P, 1 ≤ j ≤ k}, which is an ordinary TRS over the signature Σ. Note that
for np(P) we only need to consider rules with the flag true, since only such rules
can be used at a position below the next p-step.

Definition 13 (Dependency Graph). The P-dependency graph has the nodes
P and there is an edge from ℓ1 −→ {p1 : r1, . . . , pk : rk}m to ℓ2 → . . . if there are

substitutions σ1, σ2 and a t ⊴# rj for some 1 ≤ j ≤ k such that t#σ1
i→∗
np(P) ℓ

#
2 σ2

and both ℓ1σ1 and ℓ2σ2 are in ANFP .

So there is an edge from an ADP α to an ADP α′ if after a step of the form (pr)
or (p) with α at position π there may eventually come another step of the form
(pr) or (p) with α′ on or below π. Hence, for every path in a P-CT from a P -node
where an annotated subterm f#(. . .) is introduced to the next P -node where the
subterm f#(. . .) at this position is rewritten, there is a corresponding edge in
the P-dependency graph. Since every infinite path in a CT contains infinitely
many nodes from P , every such path traverses a cycle of the dependency graph
infinitely often. Thus, it suffices to consider the SCCs of the dependency graph
separately. In our framework, this means that we remove the annotations from
all rules except those that are in the SCC that we want to analyze. As in [28], to
automate the following two processors, the same over-approximation techniques as
for the non-probabilistic dependency graph can be used.

Theorem 14 (Probabilistic Dependency Graph Processor). For the SCCs
P1, . . . ,Pn of the P-dependency graph, ProcDG(P) = {P1∪ ♭(P \P1), . . . ,Pn∪ ♭(P \
Pn)} is sound and complete.

Example 15. Consider the PTRS Rincpl from Ex. 5 with the canonical ADPs

a → {1 : F(H(G),G)}true (13)

g → {1/2 : b1, 1/2 : b2}true (14)

h(b1) → {1 : A}true (15)

f(x, b2) → {1 : A}true (16)

(13) (14)

(15) (16)
The DP(Rincpl)-dependency graph can be seen on the right. As (14)
is not contained in the only SCC, we can remove all annotations from
(14). However, since (14) already does not contain any annotations,
here the dependency graph processor does not change DP(Rincpl).

To remove the annotations of non-usable terms like G in (13) that lead out of
the SCCs of the dependency graph, one can apply the usable terms processor.

Theorem 16 (Usable Terms Processor). Let ℓ1 ∈ T (Σ,V) and P be an ADP
problem. We call t ∈ T

(
Σ#,V

)
with root(t) ∈ D# usable w.r.t. ℓ1 and P if there
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are substitutions σ1, σ2 and an ℓ2 −→ µ2 ∈ P where µ2 contains an annotated

symbol, such that #ε(t)σ1
i→∗
np(P) ℓ

#
2 σ2 and both ℓ1σ1 and ℓ2σ2 are in ANFP . Let

♭ℓ,P(s) result from s by removing the annotations from the roots of all its subterms
that are not usable w.r.t. ℓ and P, i.e., posD#(♭ℓ,P(s)) = {π ∈ posD#(s) | s|π is
usable w.r.t. ℓ1 and P }. The transformation that removes the annotations from
the roots of all non-usable terms in the right-hand sides of ADPs is TUT(P) =
{ℓ→ {p1 : ♭ℓ,P(r1), . . . , pk : ♭ℓ,P(rk)}m | ℓ→ {p1 : r1, . . . , pk : rk}m ∈ P}. Then
ProcUT(P) = {TUT(P)} is sound and complete.

So for DP(Rincpl), ProcUT replaces (13) by a → {1 : F(H(g), g)}true (13′).
As in Thm. 3 of the ordinary DP framework, the idea of the usable rules proces-

sor remains to find rules that cannot be used below steps at annotations in
right-hand sides of ADPs when their variables are instantiated with normal forms.

Theorem 17 (Prob. Usable Rules Processor). For an ADP problem P and
f ∈Σ#, let RulesP(f) = {ℓ → µtrue ∈ P | root(ℓ) = f}. For any t∈T

(
Σ#,V

)
, its

usable rules UP(t) are the smallest set with UP(x) = ∅ for all x ∈ V and UP(f(t1,
. . . , tn)) = RulesP(f)∪

⋃n
i=1 UP(ti) ∪

⋃
ℓ→µtrue∈RulesP(f),r∈Supp(µ) UP(♭(r)), other-

wise. The usable rules for P are U(P) =
⋃

ℓ→µm∈P,r∈Supp(µ),t⊴#r UP(t
#). Then

ProcUR(P) = {U(P) ∪ {ℓ → µfalse | ℓ → µm ∈ P \ U(P)}} is sound and complete,
i.e., we turn the flag of all non-usable rules to false.

Example 18. For our ADP problem {(13′), (14), (15), (16)}, (16) is not usable be-
cause neither f nor F occur below annotated symbols on right-hand sides. Hence,
ProcUR replaces (16) by f(x, b2) → {1 : A}false (16′). As discussed after Def. 11, in
contrast to the processor of Thm. 3, our usable rules processor is complete since
we do not remove non-usable rules but only set their flag to false.

Finally, we adapt the reduction pair processor. Here, (1) for every rule with
the flag true (which can therefore be used for r-steps), the expected value must be
weakly decreasing when removing the annotations. Since rules can also be used
for p-steps, (2) we also require a weak decrease when comparing the annotated
left-hand side with the expected value of all annotated subterms in the right-hand
side. Since we sum up the values of the annotated subterms of each right-hand
side, we can again use weakly monotonic interpretations. As in [3, 28], to ensure
“monotonicity” w.r.t. expected values we have to restrict ourselves to interpretations
with multilinear polynomials, where all monomials have the form c · xe1

1 · . . . · xen
n

with c ∈ N and e1, . . . , en ∈ {0, 1}. The processor then removes the annotations
from those ADPs where (3) in addition there is at least one right-hand side rj
whose annotated subterms are strictly decreasing.7

7 In addition, the corresponding non-annotated right-hand side ♭(rj) must be at least
weakly decreasing. The reason is that in contrast to the original DP framework, we
may now have nested annotated symbols and thus, we have to ensure that they behave
“monotonically”. So we have to ensure that Pol(A) > Pol(B) also implies that the
measure of F (A) is greater than F (B). Every term r is “measured” as

∑
t⊴#r Pol(t

#),

i.e., F (A) is measured as Pol(F (a)) + Pol(A). Hence, in this example we must ensure
that Pol(A) > Pol(B) implies Pol(F (a)) + Pol(A) > Pol(F (b)) + Pol(B). For that
reason, we also have to require Pol(a) ≥ Pol(b).
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Theorem 19 (Probabilistic Reduction Pair Processor). Let Pol : T (Σ#,
V) → N[V] be a weakly monotonic, multilinear polynomial interpretation. Let
P = P≥ ⊎ P> with P> ̸= ∅ such that:

(1) For every ℓ −→ {p1 : r1, . . . , pk : rk}true ∈ P, we have
Pol(ℓ) ≥

∑
1≤j≤k pj · Pol(♭(rj)).

(2) For every ℓ −→ {p1 : r1, . . . , pk : rk}m ∈ P, we have
Pol(ℓ#) ≥

∑
1≤j≤k pj ·

∑
t⊴#rj

Pol(t#).

(3) For every ℓ −→ {p1 : r1, . . . , pk : rk}m ∈ P>, there exists a 1 ≤ j ≤ k with
Pol(ℓ#) >

∑
t⊴#rj

Pol(t#).

If m = true, then we additionally have Pol(ℓ) ≥ Pol(♭(rj)).

Then ProcRP(P) = {P≥ ∪ ♭(P>)} is sound and complete.

Example 20. In Sect. 5, we will present a new rewriting processor and show how
the ADP (13′) can be transformed into

a → {1/4 : f(H(b1), b1), 1/4 : f(h(b2), b1), 1/4 : F(H(b1), b2), 1/4 : F(h(b2), b2)}true (13′′)

For the resulting ADP problem {(13′′), (14), (15), (16′)} with

g → {1/2 : b1, 1/2 : b2}true (14) h(b1) → {1 : A}true (15) f(x, b2) → {1 : A}false (16′)

we use the reduction pair processor with the polynomial interpretation that maps A,
F, and H to 1 and all other symbols to 0, to remove all annotations from the a-ADP
(13′′), because it contains the right-hand side f(h(b2), b1) without annotations and
thus, Pol(A) = 1 >

∑
t⊴#f(h(b2),b1)

Pol(t#) = 0. Another application of the usable

terms processor removes the remaining A-annotations from (15) and (16′). Since
there are no more annotations left, this proves iAST of Rincpl.

Finally, in proofs with the ADP framework, one may obtain ADP problems P
that have a non-probabilistic structure, i.e., every ADP has the form ℓ → {1 : r}m.
Then the probability removal processor allows us to switch to ordinary DPs.

Theorem 21 (Probability Removal Processor). Let P be an ADP problem
where every ADP in P has the form ℓ → {1 : r}m. Let dp(P) = {ℓ# → t# |
ℓ → {1 : r}m ∈ P, t ⊴# r}. Then P is iAST iff the non-probabilistic DP problem
(dp(P),np(P)) is iTerm. So the processor ProcPR(P) = ∅ is sound and complete
iff (dp(P),np(P)) is iTerm.

5 Transforming ADPs

Compared to the DT framework for PTRSs in [28], our new ADP framework is
not only easier, more elegant, and yields a complete chain criterion, but it also has
important practical advantages, because every processor that performs a rewrite
step benefits from our novel definition of rewriting with ADPs (whereas the rewrite
relation with DTs in [28] was an “incomplete over-approximation” of the rewrite
relation of the original TRS). To illustrate this, we adapt the rewriting processor
from the original DP framework [18] to the probabilistic setting, which allows us
to prove iAST of Rincpl from Ex. 5. Such transformational processors had not been
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adapted in the probabilistic DT framework of [28]. While one could also adapt the
rewriting processor to the setting of [28], then it would be substantially weaker,
and we would fail in proving iAST of Rincpl. We refer to App. B for our adaption
of the remaining transformational processors from [18] (based on instantiation,
forward instantiation, and narrowing) to the probabilistic setting.

In the non-probabilistic setting, the rewriting processor may rewrite a redex in
the right-hand side of a DP if this does not affect the construction of chains. To
ensure that, the usable rules for this redex must be non-overlapping (NO). If the
DP occurs in a chain, then this redex is weakly innermost terminating, hence by
NO also terminating and confluent, and thus, it has a unique normal form [22].

In the probabilistic setting, to ensure that the probabilities for the normal forms
stay the same, in addition to NO we require that the rule used for the rewrite
step is linear (L) (i.e., every variable occurs at most once in the left-hand side and
in each term of the multi-distribution µ on the right-hand side) and non-erasing
(NE) (i.e., each variable of the left-hand side occurs in each term of Supp(µ)).

Definition 22 (Rewriting Processor). Let P be an ADP problem with P =
P ′ ⊎ {ℓ → {p1 : r1, . . . , pk : rk}m}. Let τ ∈ posD(rj) for some 1 ≤ j ≤ k such
that rj |τ ∈ T (Σ,V), i.e., there is no annotation below or at the position τ . If
rj ↪−→true

P,τ {q1 :e1, . . . , qh :eh}, where ↪−→true
P,τ is defined like

i
↪→P,τ but the used redex

rj |τ does not have to be in ANFP and the applied rule from P must have the flag
m = true, then we define

Procr(P) =
{
P ′ ∪ { ℓ → {p1 : ♭(r1), . . . , pk : ♭(rk)}m,

ℓ → {p1 : r1, . . . , pk : rk} \ {pj : rj}
∪ {pj · q1 : e1, . . . , pj · qh : eh}m }

}
In the non-probabilistic DP framework, one only transforms the DPs by rewrit-

ing, but the rules are left unchanged. But since our ADPs represent both DPs
and rules, when rewriting an ADP, we add a copy of the original ADP without
any annotations (i.e., this corresponds to the original rule which can now only be
used for (r)-steps). Another change to the rewriting processor in the classic DP
framework is the requirement that there exists no annotation below τ . Otherwise,
rewriting would potentially remove annotations from rj . For the soundness of the
processor, we have to ensure that this cannot happen.

Theorem 23 (Soundness8 of the Rewriting Processor). Procr as in Def. 22
is sound if one of the following cases holds:

1. UP(rj |τ ) is NO, and the rule used for rewriting rj |τ is L and NE.
2. UP(rj |τ ) is NO, and all its rules have the form ℓ′ → {1 : r′}true.
3. UP(rj |τ ) is NO, rj |τ is a ground term, and rj

i
↪→P,τ {q1 : e1, . . . , qh : eh} is an

innermost step.

We refer to App. A for a discussion on the requirements L and NE in the first
case (see the counterexamples in Ex. 35 and 36). The second case corresponds to

8 For completeness in the non-probabilistic setting [18], one uses a different definition of
“non-terminating” (or “infinite”) DP problems. In future work, we will examine if such
a definition would also yield completeness of Procr in the probabilistic case.
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the original rewrite processor where all usable rules of rj |τ are non-probabilistic. In
the last case, for any instantiation only a single innermost rewrite step is possible
for rj |τ . The restriction to innermost rewrite steps is only useful if rj |τ is ground.
Otherwise, an innermost step on rj |τ might become a non-innermost step when
instantiating rj |τ ’s variables.

The rewriting processor benefits from our ADP framework, because it applies
the rewrite relation ↪−→P . In contrast, a rewriting processor in the DT framework
of [28] would have to replace a DT by multiple new DTs, due to the ambiguities in
their rewrite relation. Such a rewriting processor would fail for Rincpl whereas with
the processor of Thm. 23 we can now prove that Rincpl is iAST.

Example 24. After applying the usable terms and the usable rules processor to
DP(Rincpl), we obtained:

a → {1 : F(H(g), g)}true (13′)

g → {1/2 : b1, 1/2 : b2}true (14)

h(b1) → {1 : A}true (15)

f(x, b2) → {1 : A}false (16′)

Now we can apply the rewriting processor on (13′) repeatedly until all gs are
rewritten and replace it by the ADP a → {1/4 : F(H(b1), b1), 1/4 : F(H(b2), b1), 1/4 :

F(H(b1), b2), 1/4 : F(H(b2), b2)}true as well as several resulting ADPs a → . . . without
annotations. Now in the subterms F(. . . , b1) and H(b2), the annotations are removed
from the roots by the usable terms processor, as these subterms cannot rewrite
to annotated instances of left-hand sides of ADPs. So the a-ADP is changed to
a → {1/4 : f(H(b1), b1), 1/4 : f(h(b2), b1), 1/4 : F(H(b1), b2), 1/4 : F(h(b2), b2)}true (13′′). This
ADP corresponds to the observations that explain why Rincpl is iAST in Ex. 5: We
have two terms in the right-hand side that correspond to one A each, both with
probability 1/4, one term that corresponds to a normal form with probability 1/4,
and one that corresponds to two As with probability 1/4. So again this corresponds
to a random walk where the number of As is decreased by 1 with probability 1/4,
increased by 1 with probability 1/4, and kept the same with probability 1/2. Then
we use the reduction pair processor as in Ex. 20 to prove iAST for Rincpl.

6 Conclusion and Evaluation

We developed a new ADP framework, which advances our work in [28] into a
complete criterion for almost-sure innermost termination by using annotated DPs
instead of dependency tuples, which also simplifies the framework substantially.
Moreover, we adapted the rewriting processor of the classic DP framework to
the probabilistic setting. We also adapted the other transformational processors
of the non-probabilistic DP framework, see App. B. The soundness proofs for
the adapted processors are much more involved than in the non-probabilistic
setting, due to the more complex structure of chain trees. However, the processors
themselves are analogous to their non-probabilistic counterparts, and thus, existing
implementations of the processors can easily be adapted to their probabilistic
versions.

We implemented our new contributions in our termination prover AProVE
[19] and compared the new probabilistic ADP framework with transformational
processors (ADP) to the DT framework from [28] (DT) and to AProVE’s techniques



A Complete DP Framework for iAST of PTRSs 15

for ordinary non-probabilistic TRSs (AProVE-NP), which include many additional
processors and which benefit from using separate dependency pairs instead of ADPs
or DTs. For the processors in Sect. 4, we could re-use the existing implementation
of [28] for our ADP framework. The main goal for probabilistic termination analysis
is to become as powerful as termination analysis in the non-probabilistic setting.
Therefore, in our first experiment, we considered the non-probabilistic TRSs of
the TPDB [38] (the benchmark set used in the annual Termination and Com-
plexity Competition (TermComp) [20]) and compared ADP and DT with AProVE-
NP, because at the current TermComp, AProVE-NP was the most powerful tool for
termination of ordinary non-probabilistic TRSs. Clearly, a TRS can be represented
as a PTRS with trivial probabilities, and then (innermost) AST is the same as
(innermost) termination. While both ADP and DT have a probability removal
processor to switch to the classical DP framework for such problems, we disabled
that processor in this experiment. Since ADP and DT can only deal with innermost
evaluation, we used the benchmarks from the “TRS Innermost” and “TRS Standard”
categories of the TPDB, but only considered innermost evaluation for all examples.
We used a timeout of 300 seconds for each example. The “TRS Innermost” category
contains 366 benchmarks, where AProVE-NP proves innermost termination for 293,
DT is able to prove it for 133 (45% of AProVE-NP), and for ADP this number rises to
159 (54%). For the 1512 benchmarks from the “TRS Standard” category, AProVE-
NP can prove innermost termination for 1114, DT for 611 (55% of AProVE-NP),
and ADP for 723 (65%). This shows that the transformations are very important
for automatic termination proofs as we get around 10% closer to AProVE-NP’s
results in both categories.

As a second experiment, we extended the PTRS benchmark set from [28] by 33
new PTRSs for typical probabilistic programs, including some examples with
complicated probabilistic structure. For instance, we added the following PTRS
Rqsrt for probabilistic quicksort. Here, we write r instead of {1 : r} for readability.

rotate(cons(x, xs)) → {1/2 : cons(x, xs), 1/2 : rotate(app(xs, cons(x, nil)))}
qsrt(xs) → if(empty(xs), low(hd(xs), tl(xs)), hd(xs), high(hd(xs), tl(xs)))

if(true, xs, x, ys) → nil empty(nil) → true empty(cons(x, xs)) → false
if(false, xs, x, ys) → app(qsrt(rotate(xs)), cons(x, qsrt(rotate(ys))))
hd(cons(x, xs)) → x tl(cons(x, xs)) → xs

The rotate-rules rotate a list randomly often (they are AST, but not termina-
ting). Thus, by choosing the first element of the resulting list, one obtains random
pivot elements for the recursive calls of qsrt in the second if-rule. In addition to
the rules above, Rqsrt contains rules for list concatenation (app), and rules such
that low(x, xs) (high(x, xs)) returns all elements of the list xs that are smaller
(greater or equal) than x, see App. C.1. In contrast to the quicksort example in [28],
proving iAST of the above rules requires transformational processors to instantiate
and rewrite the empty-, hd-, and tl-subterms in the right-hand side of the qsrt-rule.
So while DT fails for this example, ADP can prove iAST of Rqsrt.

90 of the 100 PTRSs in our set are iAST, and DT succeeds for 54 of them
(60 %) with the technique of [28] that does not use transformational processors.
Adding the new processors in ADP increases this number to 77 (86 %), which
demonstrates their power for PTRSs with non-trivial probabilities. For details on
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our experiments and for instructions on how to run our implementation in AProVE
via its web interface or locally, see:

https://aprove-developers.github.io/ProbabilisticADPs/

On this website, we also performed experiments where we disabled individual
transformational processors of the ADP framework, which shows the usefulness
of each new processor. In addition to the ADP and DT framework, an alter-
native technique to analyze PTRSs via a direct application of interpretations
was presented in [3]. However, [3] analyzes PAST (or rather strong AST), and a
comparison between the DT framework and their technique can be found in [28]. In
future work, we will adapt more processors of the DP framework to the proba-
bilistic setting. Moreover, we work on analyzing AST also for full instead of inner-
most rewriting and already developed criteria when iAST implies full AST [30].
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Appendix

In App. A we give all proofs for our new results and observations. Then in App. B
we adapt further transformational DP processors to the probabilistic setting. More
precisely, we consider the instantiation, forward instantiation, and the narrowing
processor. Because the original narrowing processor turns out to be unsound in
the probabilistic setting, the probabilistic narrowing processor only instantiates
variables according to the narrowing substitutions. Hence, we call it the rule overlap
instantiation processor. Finally, in App. C, we present some examples from our
collection of benchmarks that demonstrate certain aspects of our new contributions.

A Proofs

We start by showing that Rincpl is a counterexample for completeness of the DT
framework from [28]. First, we introduce the framework and all needed notation.

For any term t ∈ T (Σ,V) with f ∈ D, we say that t is the flattened copy of t#.
In the probabilistic adaption of the DP framework from [28], for any term r in the
right-hand side of a rule, one has to consider all subterms of r with defined root
symbol at once. In order to deal just with terms instead of multisets, one defines
r’s dt transformation dt(r) = comn(t

#
1 , . . . , t

#
n ), if {t1, . . . , tn} are all subterms of

r with defined root symbol. Here, C is extended by fresh compound constructor
symbols comn of arity n for every n ∈ N. To make dt(r) unique, one uses the
lexicographic ordering < on positions where ti = r|πi

and π1 < . . . < πn. As an
example, dt(g2(x)) = com2(G(g(x)),G(x)).

To abstract from nested compound symbols and from the order of their ar-
guments, the following normalization is introduced. For any term t, its content
cont(t) is the multiset defined by cont(comn(t1, . . . , tn)) = cont(t1)∪ . . .∪ cont(tn)
and cont(t) = {t} for other terms t. For any term t with cont(t) = {t1, . . . , tn},
the term comn(t1, . . . , tn) is a normalization of t. For two terms t, t′, one defines
t ≈ t′ if cont(t) = cont(t′). So for example, com3(x, x, y) is a normalization of
com2(com1(x), com2(y, x)). One does not distinguish between terms that are equal
w.r.t. ≈ and writes comn(t1, . . . , tn) for any term t with a compound root symbol
where cont(t) = {t1, . . . , tn}, i.e., all such t are considered to be normalized.

For every rule ℓ → µ = {p1 : r1, . . . , pk : rk}, the corresponding dependency
tuple (DT) relates ℓ# with {p1 : dt(r1), . . . , pk : dt(rk)}. However, in addition,
DTs also store the original rule ℓ → µ. As shown in [28], this is needed for
the soundness of the approach, because otherwise, one cannot simulate every
possible rewrite sequence with dependency tuples. So one defines DT (ℓ → µ) =
⟨ℓ#, ℓ⟩ → {p1 : ⟨dt(r1), r1⟩, . . . , pk : ⟨dt(rk), rk⟩}. DT (R) denotes the set of all
dependency tuples of a PTRS R. For example, DT (Rrw) = {⟨G(x), g(x)⟩ → {1/2 :
⟨com2(G(g(x)),G(x)), g

2(x)⟩, 1/2 : ⟨com0, x⟩}}. This type of rewrite system is called
a probabilistic pair term rewrite system (PPTRS).

Definition 25 (PPTRS,
i

P,R). Let P be a finite set of rules of the form ⟨ℓ#, ℓ⟩
→ {p1 : ⟨d1, r1⟩, . . . , pk : ⟨dk, rk⟩}. For every such rule, let proj1(P) contain ℓ# →
{p1 : d1, . . . , pk : dk} and proj2(P) contain ℓ → {p1 : r1, . . . , pk : rk}. If proj2(P)
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is a PTRS and cont(dj) ⊆ cont(dt(rj)) for all 1 ≤ j ≤ k, then P is a PPTRS.
A normalized term comn(s1, . . . , sn) rewrites with the PPTRS P to {p1 : b1, . . . ,

pk : bk} w.r.t. a PTRS R (denoted
i

P,R) if there are an ⟨ℓ#, ℓ⟩ → {p1 :
⟨d1, r1⟩, . . . , pk : ⟨dk, rk⟩} ∈ P, a substitution σ, and an 1 ≤ i ≤ n with si =
ℓ#σ ∈ ANFR, and for all 1 ≤ j ≤ k we have bj = comn(t

j
1, . . . , t

j
n) where:

(a) tji = djσ for all 1 ≤ j ≤ k, i.e., we rewrite the term si using proj1(P).
(b) For every 1 ≤ i′ ≤ n with i′ ̸= i we have

(i) tji′ = si′ for all 1 ≤ j ≤ k or

(ii) tji′ = si′ [rjσ]τ for all 1 ≤ j ≤ k,
if si′ |τ = ℓσ for some position τ and if ℓ → {p1 : r1, . . . , pk : rk} ∈ R.

So si′ stays the same in all bj or one can apply the rule from proj2(P) to
rewrite si′ in all bj, provided that this rule is also contained in R. Note that
even if the rule is applicable, the term si′ can still stay the same in all bj.

Now one can simulate the rewrite step g2(x)
i→Rrw {1/2 : g3(x), 1/2 : g(x)} by

com2(G(g(x)),G(x))
i

DT (Rrw),Rrw {1/2 : com3(G(g
2(x)),G(g(x)),G(x)), 1/2 : com1(G(x))}

using DT (Rrw). In com2(G(g(x)),G(x)), due to (a), the (underlined) second ar-

gument si = s2 = G(x) is rewritten with proj1(DT (Rrw)) to com2(G(g(x)),G(x))
or com0, both with probability 1/2. At the same time, due to (b)(ii), the (twice
underlined) subterm g(x) of the first argument si′ = s1 = G(g(x)) is rewritten

using the original rule g(x) → {1/2 : g2(x), 1/2 : x} to g2(x) or x, both with
probability 1/2. So when rewriting si = s2 = G(x) one can also perform the cor-
responding rewrite step on its flattened copy inside si′ = s1 = G(g(x)). But the

ambiguity in Def. 25 also allows the step com2(G(g(x)),G(x))
i

DT (Rrw),Rrw
{1/2 :

com3(G(g(x)),G(g(x)),G(x)), 1/2 :com1(G(g(x)))} that does not simulate any origi-
nal rewrite step with Rrw. Therefore, the approach of [28] is not complete in the
probabilistic setting.

In [28], there is also an analogous rewrite relation for PTRSs, where one can
apply the same rule simultaneously to the same subterms in a single rewrite step.

Definition 26 (
i

R). For a normalized term comn(s1, . . . , sn) and a PTRS R,
let comn(s1, ..., sn)

i

R {p1 :b1, ..., pk :bk} if there are ℓ→{p1 :r1, . . . , pk :rk} ∈ R,
a position π, a substitution σ, and an 1≤ i≤ n with si|π=ℓσ ∈ ANFR, and for all
1≤ j≤ k we have bj = comn(t

j
1, . . . , t

j
n) where

(a) tji = si[rjσ]π for all 1 ≤ j ≤ k, i.e., we rewrite the term si using R.
(b) For every 1 ≤ i′ ≤ n with i′ ̸= i we have

(i) tji′ = si′ for all 1 ≤ j ≤ k or

(ii) tji′ = si′ [rjσ]τ for all 1 ≤ j ≤ k, if si′ |τ = ℓσ for some position τ .

The DT framework of [28] works on (probabilistic) DT problems (P,R), where
P is a PPTRS and R is a PTRS. To analyze a PTRS R, one starts with the DT
problem (DT (R),R). For the chain criterion for DTs, one uses a notion of chain
trees that is defined as follows. T = (V,E, L, P ) is a (P,R)-chain tree (CT) if

1. (V,E) is a (possibly infinite) directed tree with nodes V ̸= ∅ and directed
edges E ⊆ V × V where vE = {w | (v, w) ∈ E} is finite for every v ∈ V .
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2. L : V → (0, 1]× T
(
Σ#,V

)
labels every node v by a probability pv and a term

tv. For the root v ∈ V of the tree, we have pv = 1.

3. P ⊆ V \ Leaf (where Leaf are all leaves) is a subset of the inner nodes to
indicate whether we use P or R for the next rewrite step. R = V \ (Leaf ∪ P )
are all inner nodes that are not in P . Thus, V = P ⊎R ⊎ Leaf.

4. For all v∈P : If vE={w1, . . . , wk}, then tv
i

P,R {pw1

pv
: tw1 , . . . ,

pwk

pv
: twk

}.
5. For all v ∈ R: If vE = {w1, . . . , wk}, then tv

i

R {pw1

pv
: tw1

, . . . ,
pwk

pv
: twk

}.
6. Every infinite path in T contains infinitely many nodes from P .

Again, one defines |T|Leaf =
∑

v∈Leaf pv and says that (P,R) is iAST if |T|Leaf = 1
for all (P,R)-CTs T. This yields a chain criterion which is only incomplete, i.e.,
here we only have “if” instead of “iff”.

Theorem 27 (Chain Crit. of [28]).A PTRS R is iAST if (DT (R),R) is iAST.

Lemma 28 (Incompleteness of Chain Criterion for Rincpl). The DT Problem
(DT (Rincpl),Rincpl) is not iAST.

Proof. Consider Rincpl from Ex. 5 with the rules

a → {1 : f(h(g), g)}
g → {1/2 : b1, 1/2 : b2}

h(b1) → {1 : a}
f(x, b2) → {1 : a}

The set DT (Rincpl) consists of the dependency tuples

⟨A, a⟩ → {1 : ⟨com4(F(h(g), g),H(g),G,G), f(h(g), g)⟩}
⟨G, g⟩ → {1/2 : ⟨com0, b1⟩, 1/2 : ⟨com0, b2⟩}

⟨H(b1), h(b1)⟩ → {1 : ⟨com1(A), a⟩}
⟨F(x, b2), f(x, b2)⟩ → {1 : ⟨com1(A), a⟩}

Now we obtain the following (DT (Rincpl),Rincpl)-chain tree T with |T|Leaf = 0 that
uses both

i

DT (Rincpl),Rincpl
and

i

Rincpl
for the edge relation:

1 com1(A)

1 com4(F(h(g), g), H(g), G, G)

1/2 com3(F(h(g), b1), H(b1), G) 1/2 com3(F(h(g), b2), H(b2), G)

1/4 com2(F(h(b1), b1), H(b1)) 1/4 com2(F(h(b2), b1), H(b1)) 1/4 com2(F(h(b1), b2), H(b2)) 1/4 com2(F(h(b2), b2), H(b2))

1/4 com2(F(h(b1), b1), A) 1/4 com2(F(h(b2), b1), A) . . . 1/4 com2(A, H(b2))

. . . . . . 1/4 com2(A, H(b2)) . . .

. . .

The part marked with a circle has the following form:
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1 com2(F(a, b2), H(b2))

1 com2(F(f(h(g), g), b2), H(b2))

1/2 com2(F(f(h(g), b1), b2), H(b2)) 1/2 com2(F(f(h(g), b2), b2), H(b2))

1/4 com2(F(f(h(b1), b1), b2), H(b2))

1/4 com2(F(f(h(b2), b1), b2), H(b2))

NFRincpl

1/4 com2(F(f(h(b1), b2), b2), H(b2))

1/4 com2(F(f(h(b2), b2), b2), H(b2))

1/4 com2(F(f(a, b1), b2), H(b2)) 1/4 com2(F(f(a, b2), b2), H(b2))

1/4 com2(F(a, b2), H(b2))

. . . . . . . . .

This tree has the form of the RST from Ex. 5 with the additional context
com2(F(□, b2),H(b2)) around it. Again, the part inside this context will reach
a normal form with probability 1 and afterwards, e.g., at the node labeled with
com2(F(f(h(b2), b1), b2),H(b2)), we can rewrite F(. . .) with the DT to A, which
yields com2(A,H(b2)) in the gray node. In this way, one obtains infinitely many
nodes labeled with com2(A,H(b2)) whose probabilities add up to 1/4 (in the tree
we depicted this by a gray node instead).

Note that this tree satisfies the conditions (1)-(5) of a CT, but it does not satisfy
condition (6) as the part corresponding to the circle contains infinite paths without
P nodes. We have to additionally cut these infinite paths to create a valid CT T
and show that we still have |T|Leaf < 1. Since these infinite subtrees of the parts
that do not use any DTs are all iAST, we can use the same idea as in the proof of
the P-Partition Lemma of [29, Lemma 50] (see also Lemma 33). The variant of
the P-Partition Lemma that we apply here is called Cutting Lemma (Lemma 30)
below. Then we obtain the desired (DT (Rincpl),Rincpl)-CT T with |T|Leaf < 1.

The problem with this CT is that when applying a DT to rewrite the underlined
G in the child of the root, then one should not rewrite both flattened copies g in

com4(F(h(g), g),H(g),G,G). The reason is that G either corresponds to the two

flattened copies g in the arguments of h and H or to the flattened copy g in the second
argument of F. This “wrong” rewriting yields terms like com2(F(h(b2), b1),H(b1))
which do not correspond to any terms in the original RST since the arguments of h
and H are different. Indeed, while the corresponding term f(h(b2), b1) in the RST
is a normal form, com2(F(h(b2), b1),H(b1)) contains the subterm H(b1) which is
not a normal form. ⊓⊔

We first recapitulate the notion of a sub-chain tree from [29].

Definition 29 (Subtree, Sub-CT). Let (P,R) be a DT problem and let T =
(V,E,L, P ) be a tree that satisfies Conditions (1)-(5) of a (P,R)-CT. Let W ⊆ V
be non-empty, weakly connected, and for all x ∈ W we have xE ∩ W = ∅ or
xE ∩W = xE. Then, we define the subtree (or sub-CT if it satisfies Condition (6)
as well) T[W ] by T[W ] = (W,E ∩ (W ×W ), LW , P ∩ (W \WLeaf)). Here, WLeaf

denotes the leaves of the tree GT[W ] = (W,E ∩ (W × W )) so that the new set
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P ∩ (W \WLeaf) only contains inner nodes. Let w ∈ W be the root of GT[W ]. To
ensure that the root of our subtree has the probability 1 again, we use the labeling

LW (x) = (
pT
x

pT
w
: tTx ) for all nodes x ∈ W . If W contains the root of (V,E), then we

call the sub-chain tree grounded.

The property of being non-empty and weakly connected ensures that the
resulting graph GT[W ] is a tree again. The property that we either have xE∩W = ∅
or xE ∩W = xE ensures that the sum of probabilities for the successors of a node
x is equal to the probability for the node x itself.

We say that a CT (or RST) T converges (or terminates) with probability p ∈ R
if we have |T|Leaf = p. Now we can prove the cutting lemma that is needed for the
proof of Lemma 28.

Lemma 30 (Cutting Lemma). Let (P,R) be a DT problem, let T = (V,E, L, P )
be a tree that only satisfies Conditions (1)-(5) of a (P,R)-CT, and let T converge
with probability < 1. Assume that every subtree that only contains nodes from R
converges with probability 1. Then there exists a subtree T′ that converges with
probability < 1 such that every infinite path has an infinite number of nodes from
P , i.e., T′ is a valid (P,R)-CT as it now also satisfies Condition (6).

Proof. Let T = (V,E,L, P ) be a tree that only satisfies Conditions (1)-(5) of a
(P,R)-CT with |T|Leaf = c < 1 for some c ∈ R. Since we have 0 ≤ c < 1, there is
an ε > 0 such that c+ ε < 1. Remember that the formula for the geometric series
is:

∞∑
n=1

(
1

d

)n

=
1

d− 1
, for all d ∈ R such that

1

|d|
< 1

Let d = 1
ε + 2. Now, we have 1

d = 1
1
ε+2

< 1 and:

1

ε
+ 1 <

1

ε
+ 2 ⇔ 1

ε
+ 1 < d ⇔ 1

ε
< d− 1 ⇔ 1

d− 1
< ε ⇔

∞∑
n=1

(
1

d

)n

< ε (17)

We will now construct a subtree T′ = (V ′, E′, L′, P ′) such that every infinite path
has an infinite number of P nodes and such that

|T′|Leaf ≤ |T|Leaf +
∞∑

n=1

(
1

d

)n

(18)

and then, we finally have

|T′|Leaf
(18)

≤ |T|Leaf +
∞∑

n=1

(
1

d

)n

= c+

∞∑
n=1

(
1

d

)n
(17)
< c+ ε < 1

The idea of this construction is that we cut infinite subtrees of pure R nodes as
soon as the probability for normal forms is high enough. In this way, one obtains
paths where after finitely many R nodes, there is a P node, or we reach a leaf.

The construction works as follows. For any node x ∈ V , let L(x) be the number
of P nodes in the path from the root to x. Furthermore, for any set W ⊆ V and
k ∈ N, let L(W,k) = {x ∈ W | L(x) ≤ k ∨ (x ∈ P ∧ L(x) ≤ k + 1)} be the set of
all nodes in W that have at most k nodes from P in the path from the root to its
predecessor. So if x ∈ L(W,k) is not in P , then we have at most k nodes from P
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in the path from the root to x and if x ∈ L(W,k) is in P , then we have at most
k+ 1 nodes from P in the path from the root to x. We will inductively define a set
Uk ⊆ V such that Uk ⊆ L(V, k) and then define the subtree as T′ = T[

⋃
k∈N Uk].

We start by considering the subtree T0 = T[L(V, 0)]. This tree only contains
nodes from R. While the node set L(V, 0) itself may contain nodes from P , they
can only occur at the leaves of T0, and by definition of a subtree, we remove every
leaf from P in the creation of T0. Using the prerequisite of the lemma, we get
|T0|Leaf = 1. In Fig. 1 one can see the different possibilities for T0. Either T0 is
finite or T0 is infinite. In the first case, we can add all the nodes to U0 since there
is no infinite path of pure R nodes. Hence, we define U0 = L(V, 0). In the second
case, we have to cut the tree at a specific depth once the probability of leaves is
high enough. Let d0(y) be the depth of the node y in the tree T0. Moreover, let
D0(k) = {x ∈ L(V, 0) | d0(y) ≤ k} be the set of nodes in T0 that have a depth of
at most k. Since |T0|Leaf = 1 and | · |Leaf is monotonic w.r.t. the depth of the tree
T0, we can find an N0 ∈ N such that

∑
x∈LeafT0 ,d0(x)≤N0

pT0
x ≥ 1− 1

d

Here, LeafT and pTx denote the set of leaves and the probability of the node x in
the tree T, resp.

We include all nodes from D0(N0) in U0 and delete every other node of T0. In
other words, we cut the tree after depth N0. This cut can be seen in Fig. 1, indicated
by the dotted line. We now know that this cut may increase the probability of
leaves by at most 1

d . Therefore, we define U0 = D0(N0) in this case.

RP PR

R

NF NF NFP P

RR

(a) Tx finite

RP PR

R

NF NF RP R

RR
Nx

(b) Tx infinite

Fig. 1: Possibilities for Tx
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For the induction step, assume that we have already defined a subset Ui ⊆ L(V, i).
Let Hi = {x ∈ Ui | x ∈ P,L(x) = i+ 1} be the set of leaves in T[Ui] that are in P .
For each x ∈ Hi, we consider the subtree that starts at x until we reach the next
node from P , including the node itself. Everything below such a node will be cut.
To be precise, we regard the tree Tx = (Vx, Ex, Lx, Px) = T[L(xE∗, i+ 1)]. Here,
xE∗ is the set of all nodes that are reachable from x by arbitrary many steps.

First, we show that |Tx|Leaf = 1. For every direct successor y of x, the subtree
Ty = Tx[yE

∗
x] of Tx that starts at y does not contain any nodes from P . Hence,

we have |Ty|Leaf = 1 by the prerequisite of the lemma, and hence

|Tx|Leaf =
∑
y∈xE

py · |Ty|Leaf =
∑
y∈xE

py · 1 =
∑
y∈xE

py = 1.

For the construction of Ui+1, we have the same cases as before, see Fig. 1. Either
Tx is finite or Tx is infinite. Let Zx be the set of nodes that we want to add to our
node set Ui+1 from the tree Tx. In the first case we can add all the nodes again
and set Zx = Vx. In the second case, we once again cut the tree at a specific depth
once the probability for leaves is high enough. Let dx(z) be the depth of the node
z in the tree Tx. Moreover, let Dx(k) = {x ∈ Vx | dx(z) ≤ k} be the set of nodes
in Tx that have a depth of at most k. Since |Tx|Leaf = 1 and | · |Leaf is monotonic
w.r.t. the depth of the tree Tx, we can find an Nx ∈ N such that

∑
y∈LeafTx ,dx(y)≤Nx

pTx
y ≥ 1−

(
1

d

)i+1

· 1

|Hi|

We include all nodes from Dx(Nx) in Ui+1 and delete every other node of Tx. In
other words, we cut the tree after depthNx. We now know that this cut may increase

the probability of leaves by at most
(
1
d

)i+1 · 1
|Hi| . Therefore, we set Zx = Dx(Nx).

We do this for each x ∈ Hi and in the end, we set Ui+1 = Ui ∪
⋃

x∈Hi
Zx.

It is straightforward to see that
⋃

k∈N Uk satisfies the conditions of Def. 29, as we
only cut after certain nodes in our construction. Hence,

⋃
k∈N Uk is non-empty and

weakly connected, and for each of its nodes, it either contains no or all successors.
Furthermore, T′ = T[

⋃
k∈N Uk] is a sub-chain tree which does not contain an infinite

path of pure R nodes as we cut every such path after a finite depth.
It remains to prove that |T′|Leaf ≤ |T|Leaf +

∑∞
n=1

(
1
d

)n
holds. During the i-th

iteration of the construction, we may increase the value of |T|Leaf by the sum of all
probabilities corresponding to the new leaves resulting from the cuts. As we cut
at most |Hi| trees in the i-th iteration and for each such tree, we added at most

a total probability of
(
1
d

)i+1 · 1
|Hi| for the new leaves, the value of |T|Leaf might

increase by

|Hi| ·
(
1

d

)i+1

· 1

|Hi|
=

(
1

d

)i+1

in the i-th iteration, and hence in total, we then get

|T′|Leaf ≤ |T|Leaf +
∞∑

n=1

(
1

d

)n

,
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as desired (see (18)). ⊓⊔

Next, we want to prove our new chain criterion for ADPs (Thm. 12), which is
both sound and complete. Due to our new definition of ADPs, this proof is easier
than for the probabilistic chain criterion that is only sound from [28] (Thm. 27).
We start by defining an important set of positions that we will use throughout the
proof.

Definition 31 (posPoss). Let R be a PTRS. For a term t ∈ T (Σ,V) we define
posPoss(t,R) = {π | π ∈ posD(t), t|π /∈ NFR}. Here, NFR again denotes the set of
all normal forms w.r.t. R.

So posPoss(t,R) contains all positions of subterms of t that may be used as
a redex now or in future rewrite steps, because the subterm has a defined root
symbol and is not in NFR.

Example 32. Consider the following PTRS R over a signature with D = {f, g} and
C = {a, s} with the rules f(a, a) → {1 : s(f(g, g))} and g → {1 : a}. For the term
t = s(f(g, g)) we have posPoss(t,R) = {1, 1.1, 1.2}.

Finally, for two (possibly annotated) terms s, t we define s
.
= t if ♭(s) = ♭(t).

Theorem 12 (Chain Criterion). R is iAST iff DP(R) is iAST.

Proof. In the following, we will often implicitly use that for an annotated term
t ∈ T

(
Σ#,V

)
, we have ♭(t) ∈ ANFR iff t ∈ ANFDP(R) since a rewrite rule and its

corresponding canonical annotated dependency pair have the same left-hand side.

Soundness: Assume thatR is not iAST. Then, there exists an innermostR-RST T =
(V,E,L) whose root is labeled with (1 : t) for some term t ∈ T (Σ,V) that converges
with probability < 1. We will construct a DP(R)-CT T′ = (V,E, L′, V \ LeafT)
with the same underlying tree structure and an adjusted labeling such that pTx = pT

′

x

for all x ∈ V , where all the inner nodes are in P . Since the tree structure and the
probabilities are the same, we then get |T|Leaf = |T′|Leaf. To be precise, the set of
leaves in T is equal to the set of leaves in T′, and they have the same probabilities.
Since |T|Leaf < 1, we thus have |T′|Leaf < 1. Hence, there exists a DP(R)-CT T′

that converges with probability < 1 and DP(R) is not iAST either.

1 t

p1 t1 p2 t2

p3 t3 p4 t4 p5 t5

. . . . . . . . .

⇝

1 #D(t)

P

p1 t′1

P

p2 t′2

P

p3 t′3

P

p4 t′4

P

p5 t′5

P

. . . . . . . . .

We construct the new labeling L′ for the DP(R)-CT inductively such that for
all inner nodes x ∈ V \ Leaf with children nodes xE = {y1, . . . , yk} we have
t′x

i
↪→DP(R) {

py1

px
: t′y1

, . . . ,
pyk

px
: t′yk

}. Let X ⊆ V be the set of nodes x where we
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have already defined the labeling L′(x). During our construction, we ensure that
the following property holds:

For every node x ∈ X we have tx
.
= t′x and posPoss(tx,R) ⊆ posD#(t′x). (19)

This means that the corresponding term tx for the node x in T has the same
structure as the term t′x in T′, and additionally, all the possible redexes in tx
are annotated in t′x. The annotations ensure that we rewrite with Case (PR) of
Def. 11 so that the node x is contained in P . We label the root of T′ with #D(t).
Here, we have t

.
= #D(t) and posPoss(t,R) ⊆ posD(t) = posD#(#D(t)). As long

as there is still an inner node x ∈ X such that its successors are not contained
in X, we do the following. Let xE = {y1, . . . , yk} be the set of its successors. We
need to define the corresponding terms t′y1

, . . . , t′yk
for the nodes y1, . . . , yk. Since

x is not a leaf, we have tx
i→R {py1

px
: ty1 , . . . ,

pyk

px
: tyk

}. This means that there is a

rule ℓ → {p1 : r1, . . . , pk : rk} ∈ R, a position π, and a substitution σ such that
tx|π = ℓσ ∈ ANFR. Furthermore, we have tyj = tx[rjσ]π for all 1 ≤ j ≤ k. So the
labeling of the successor yj in T is L(yj) = (px · pj : tx[rjσ]π) for all 1 ≤ j ≤ k.

The corresponding ADP for the rule is ℓ → {p1 : #D(r1), . . . , pk : #D(rk)}true.
Furthermore, π ∈ posPoss(tx,R) ⊆(IH) posD#(t′x) and tx

.
=(IH) t

′
x. Hence, we can

rewrite t′x with ℓ → {p1 : #D(r1), . . . , pk : #D(rk)}true, using the position π and
the substitution σ, and Case (PR) of Def. 11 applies. We get t′x

i
↪→DP(R) {p1 :

t′y1
, . . . , pk : t′yk

} with t′yj
= t′x[#D(rj)σ]π by (PR). This means that we have

tyj

.
= t′yj

. It remains to prove posPoss(tyj
,R) ⊆ posD#(t′yj

) for all 1 ≤ j ≤ k. For all
positions τ ∈ posPoss(tyj

,R) = posPoss(tx[rjσ]π,R) that are orthogonal or above
π, we have τ ∈ posPoss(tx,R) ⊆(IH) posD#(t′x), and all annotations orthogonal or
above π remain in t′yj

as they were in t′x. For all positions τ ∈ posPoss(tyj ,R) =
posPoss(tx[rjσ]π,R) that are below π, we know that, due to innermost evaluation,
at least the defined root symbol of a term that is not in normal form must be
inside rj , and thus τ ∈ posD#(t′yj

), as all defined symbols of rj are annotated in
t′yj

= t′x[#D(rj)σ]π. This ends the induction proof for this direction.

Completeness: Assume that DP(R) is not iAST. Then, there exists a DP(R)-
CT T = (V,E, L, P ) whose root is labeled with (1 : t) for some annotated term
t ∈ T

(
Σ#,V

)
that converges with probability < 1. We will construct an R-RST

T′ = (V,E, L′) with the same underlying tree structure and an adjusted labeling
such that pTx = pT

′

x for all x ∈ V . Since the tree structure and the probabilities are
the same, we then get |T′|Leaf = |T|Leaf < 1. Therefore, there exists an R-RST T′

that converges with probability < 1. Hence, R is not iAST either.

We construct the new labeling L′ for the R-RST inductively such that for
all inner nodes x ∈ V \ Leaf with children nodes xE = {y1, . . . , yk} we have
t′x

i→R {py1

px
: t′y1

, . . . ,
pyk

px
: t′yk

}. Let X ⊆ V be the set of nodes x where we have

already defined the labeling L′(x). During our construction, we ensure the following
property:

For every node x ∈ X we have tx
.
= t′x and posD#(t′x) = ∅. (20)
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1 t

P

p1 t1

P

p2 t2

P

p3 t3

P

p4 t4

P

p5 t5

P

. . . . . . . . .

⇝

1 ♭(t)

p1 t′1 p2 t′2

p3 t′3 p4 t′4 p5 t′5

. . . . . . . . .

This means that the corresponding term tx for the node x in T has the same
structure as the term t′x in T′, and additionally, it contains no annotations. We
label the root of T′ with ♭(t). Here, we have t

.
= ♭(t) and posD#(♭(t)) = ∅. As long

as there is still an inner node x ∈ X such that its successors are not contained in
X, we do the following. Let xE = {y1, . . . , yk} be the set of its successors. Since x
is not a leaf, we have tx

i
↪→DP(R) {

py1

px
: ty1

, . . . ,
pyk

px
: tyk

}. This means that there

is an ADP ℓ → {p1 : #D(r1), . . . , pk : #D(rk)}true ∈ DP(R), a position π, and a
substitution σ such that ♭(tx|π) = ℓσ ∈ ANFR. Furthermore, we have tyj

= tx[rjσ]π
or tyj

= tx[#D(rj)σ]π for all 1 ≤ j ≤ k.
The original rule for the ADP is ℓ → {p1 : r1, . . . , pk : rk}. Furthermore, we

have tx
.
=(IH) t

′
x. Hence, we can rewrite t′x with ℓ → {p1 : r1, . . . , pk : rk}, using

the position π and the substitution σ, since t′x|π = ℓσ ∈ ANFR (as posD#(t′x) = ∅).
We get t′x

i→R {p1 : t′y1
, . . . , pk : t′yk

} with tyj = t′x[rjσ]π. This means that we have
tyj

.
=(IH) t

′
yj

and posD#(t′yj
) = ∅ for all 1 ≤ j ≤ k, which ends the induction proof

for this direction. ⊓⊔

Next, we prove the theorems regarding the processors that we adapted from
[28] to our new ADP framework. We will see that the proofs become way more
readable compared to [28] (even though they are still more complicated than in
the non-probabilistic setting). First, we repeat two lemmas from [28] and prove the
theorems on the processors afterwards. We start with the P-partition lemma. This
lemma was proven in [28] and still applies to our new ADP problems, since the
structure of CTs are the same as in [28].

Lemma 33 (P-Partition Lemma, [28]). Let P be an ADP problem and let
T = (V,E, L, P ) be a P-CT that converges with probability < 1. Assume that we
can partition P = P1 ⊎ P2 such that every sub-CT that only contains P -nodes from
P1 converges with probability 1. Then there is a grounded sub-CT T′ that converges
with probability < 1 such that every infinite path has an infinite number of nodes
from P2.

Proof. Analogous to the proof for Lemma 30. ⊓⊔

Next, we recapitulate the starting lemma. W.l.o.g., we will often assume that
we label the root of our CT with (1 : t) for an annotated term t such that
♭(t) = sθ ∈ ANFP for a substitution θ and an ADP s → . . . ∈ P , and posD#(t) = {ε}.

Lemma 34 (Starting Lemma, [28]). If an ADP problem P is not iAST, then
there exists a P-CT T with |T|Leaf < 1 that starts with (1 : t) with ♭(t) = sθ ∈ ANFP
for a substitution θ and an ADP s → . . . ∈ P, and posD#(t) = {ε}.
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Proof. We prove the contraposition. Assume that every P-CT T converges with
probability 1 if it starts with (1 : t) and ♭(t) = sθ ∈ ANFP for a substitution θ
and an ADP s → . . . ∈ P, and posD#(t) = {ε}. We now prove that then also
every P-CT T that starts with (1 : t) for some arbitrary term t converges with
probability 1, and thus P is iAST. We prove the claim by induction on the number
of annotations in the initial term t.

If t contains no annotation, then the CT starting with (1 : t) is trivially finite
(it cannot contain an infinite path, since there are no nodes in P ) and hence, it
converges with probability 1. Next, if t contains exactly one annotation at position
π, then we can ignore everything above the annotation, as we will never use a P -step
above the annotated position. If t|π is in normal form, then the claim is again
trivial. If we have t|π = sσ for some ADP s → . . . ∈ P and some substitution σ
such that t|π = sθ ∈ ANFP and posD#(t|π) = {ε}, then we know by our assumption
that such a CT converges with probability 1. Otherwise, we can rewrite below π.
However, in this case, we have to eventually rewrite at position π in every infinite
path of the tree (as this is the only annotation in the beginning), hence again, such
a CT converges with probability 1 by assumption.

Now we regard the induction step, and assume that for a term t with n > 1
annotations, there is a CT T that converges with probability < 1. Here, our
induction hypothesis is that every P-CT T that starts with (1 : t′), where t′

contains m annotations for some 1 ≤ m < n converges with probability 1. Let
Φ1 = {τ} and Φ2 = {χ ∈ posD#(t) | χ ̸= τ} for some τ ∈ posD#(t) and consider the
two terms #Φ1

(t) and #Φ2
(t), which contain both strictly less than n annotations.

By our induction hypothesis, we know that every P-CT that starts with (1 : #Φ1
(t))

or (1 : #Φ2(t)) converges with probability 1. Let T1 = (V,E, L1, P1) be the tree
that starts with (1 : #Φ1(t)) and uses the same rules as we did in T. We can
partition P into the sets P1 and P2 = P \ P1. Note that every sub-CT of T such
that every infinite path has an infinite number of P1-nodes is a P-CT again. In
order to use the P-Partition Lemma (Lemma 33) for the tree T, we have to show
that every sub-CT T′

1 of T that only contains P -nodes from P1 converges with
probability 1. Let T′

1 = (V ′, E′, L′, P ′) be a sub-CT of T that does not contain
nodes from P2. There exists a set W satisfying the conditions of Def. 29 such that
T′
1 = T[W ]. Since T and T1 have the same tree structure, T1[W ] is a sub-CT of T1.

Moreover, T1[W ] is a P-CT, since the set W does not contain any inner nodes from
P2. Finally, since T1[W ] is a sub-CT of a P-CT that converges with probability 1,
we know that T1[W ] must be converging with probability 1 as well.

Now, we have shown that the conditions for the P-Partition Lemma (Lemma 33)
are satisfied. We can now apply the P-Partition Lemma to get a grounded sub-CT
T′ of T with |T′|Leaf < 1 such that on every infinite path, we have an infinite
number of P2 nodes. Let T2 be the tree that starts with #Φ2(t) and uses the same
rules as we did in T′.

Again, all local properties for a P-CT are satisfied. Additionally, this time we
know that every infinite path has an infinite number of P2-nodes in T′, hence we
also know that the global property for T2 is satisfied. This means that T2 is a P-CT
that starts with #Φ2

(t) and with |T2|Leaf < 1. This is our desired contradiction,
which proves the induction step. ⊓⊔
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Now we show soundness and completeness for all processors.

Theorem 14 (Probabilistic Dependency Graph Processor). For the SCCs
P1, . . . ,Pn of the P-dependency graph, ProcDG(P) = {P1∪ ♭(P \P1), . . . ,Pn∪ ♭(P \
Pn)} is sound and complete.

Proof. Let X = X ∪ ♭(P \X) for X ⊆ P.

Completeness: Every Pi-CT is also a P-CT with fewer annotations in the terms. So

if some Pi is not iAST, then there exists a Pi-CT T that converges with probability
< 1. By adding annotations to the terms of the tree, we result in a P-CT that
converges with probability < 1 as well. Hence, if Pi is not iAST, then P is not
iAST either.

Soundness: Let G be the P-dependency graph. Suppose that every Pi-CT converges
with probability 1 for all 1 ≤ i ≤ n. We prove that then also every P-CT converges
with probability 1. Let W = {P1, . . . ,Pn} ∪ {{v} ⊆ P | v is not in an SCC of G}
be the set of all SCCs and all singleton sets of nodes that do not belong to any
SCC. The core steps of this proof are the following:

1. We show that every ADP problem X with X ∈ W is iAST.
2. We show that composing SCCs maintains the iAST property.
3. We show that for every X ∈ W , the ADP problem

⋃
X>∗

GY Y is iAST by

induction on >G.
4. We conclude that P must be iAST.

Here, for two X1, X2 ∈ W we say that X2 is a direct successor of X1 (denoted
X1 >G X2) if there exist nodes v ∈ X1 and w ∈ X2 such that there is an edge
from v to w in G.

1. Every ADP problem X with X ∈ W is iAST.
We start by proving the following:

Every ADP problem X with X ∈ W is iAST. (21)

To prove (21), note that if X is an SCC, then it follows from our assumption that
X is iAST. If X is a singleton set of a node that does not belong to any SCC,
then assume for a contradiction that X is not iAST. By Lemma 34 there exists an
X-CT T = (V,E, L, P ) that converges with probability < 1 and starts with (1 : t)
where ♭(t) = sθ ∈ ANFP for a substitution θ and some ADP s → {p1 : r1, . . . , pk :
rk}m ∈ X, and posD#(t) = {ε}. If s → . . . /∈ X, then the resulting terms after
the first rewrite step contain no annotations anymore and this cannot start a CT
that converges with probability < 1. Hence, we have s → . . . ∈ X. Assume for a
contradiction that there exists a node x ∈ P in T that is not the root and introduces
new annotations. W.l.o.G., let x be reachable from the root without traversing
any other node from P . This means that for the corresponding term tx for node x
there is a t′ ⊴# tx such that t′ = sσ′ ∈ ANFP for some substitution σ′ and the only
ADP s → . . . ∈ X (which is the only ADP that contains any annotations in the
right-hand side). Let (z0, . . . , zm) with zm = x be the path from the root to x in
T. The first rewrite step at the root must be sθ

i
↪→

X
{p1 : r1θ, . . . , pk : rkθ}. After
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that, we only use steps at non-annotated positions in the path since all the nodes
z1, . . . , zm−1 are contained in R. Therefore, we must have an 1 ≤ j ≤ k and a
t′′ ⊴# rj such that t′′#θ

i→∗
np(P) s

#σ′, which means that there must be a self-loop
for the only ADP in X, which is a contradiction to our assumption that X is a
singleton consisting of an ADP that is not in any SCC of G.

Now, we have proven that the X-CT T does not introduce new annotations.
By definition of a P-CT, every infinite path must contain an infinite number of
nodes in P , i.e., nodes where we rewrite at an annotation. Thus, every path in T
must be finite, which means that T is finite itself, as the tree is finitely branching.
But every finite CT converges with probability 1, which is a contradiction to our
assumption that T converges with probability < 1.

2. Composing SCCs maintains the iAST property.
Next, we show that composing SCCs maintains the iAST property. More precisely,
we prove the following:

Let X̂ ⊆ W and Ŷ ⊆ W such that there are no X1, X2 ∈ X̂ and Y ∈ Ŷ
which satisfy both X1 >∗

G Y >∗
G X2 and Y ̸∈ X̂, and such that there are

no Y1, Y2∈ Ŷ and X∈X̂ which satisfy both Y1 >∗
G X >∗

G Y2 and X ̸∈ Ŷ . If

both
⋃

X∈X̂ X and
⋃

Y ∈Ŷ Y are iAST, then
⋃

X∈X̂ X ∪
⋃

Y ∈Ŷ Y is iAST.

(22)

To show (22), we assume that both
⋃

X∈X̂ X and
⋃

Y ∈Ŷ Y are iAST. Let Z =⋃
X∈X̂ X ∪

⋃
Y ∈Ŷ Y . The property in (22) for X̂ and Ŷ says that a path between

two nodes from
⋃

X∈X̂ X that only traverses nodes from Z must also be a path
that only traverses nodes from

⋃
X∈X̂ X, so that

⋃
Y ∈Ŷ Y cannot be used to

“create” new paths between two nodes from
⋃

X∈X̂ X, and vice versa. Assume for a

contradiction that Z is not iAST. By Lemma 34 there exists a Z-CT T = (V,E, L, P )
that converges with probability < 1 and starts with (1 : t) where ♭(t) = sθ ∈ ANFP
for a substitution θ and an ADP s → . . . ∈ Z, and posD#(t) = {ε}.

If s → . . . /∈
⋃

X∈X̂ X∪
⋃

Y ∈Ŷ Y , then the resulting terms contain no annotations
anymore and this cannot start a CT that converges with probability < 1. W.l.o.g.,
we may assume that the ADP that is used for the rewrite step at the root is in⋃

X∈X̂ X. Otherwise, we simply swap
⋃

X∈X̂ X with
⋃

Y ∈Ŷ Y in the following.

We can partition the set P of our Z-CT T into the sets

• P1 := {x ∈ P | x together with the labeling and its successors represents a step
with an ADP from

⋃
X∈X̂ X}

• P2 := P \ P1

Note that in the case of x ∈ P2, we know that x together with its successors and
the labeling represents a step with an ADP from P \

⋃
X∈X̂ X. We know that

every
⋃

Y ∈Ŷ Y -CT converges with probability 1, since
⋃

Y ∈Ŷ Y is iAST. Thus, also

every
⋃

Y ∈Ŷ Y \
⋃

X∈X̂ X-CT converges with probability 1 (as it contains fewer

annotations than
⋃

Y ∈Ŷ Y ). Furthermore, we have |T|Leaf < 1 by our assumption.

By the P-Partition Lemma (Lemma 33) we can find a grounded sub Z-CT T′ =
(V ′, E′, L′, P ′) with |T′|Leaf < 1 such that every infinite path has an infinite number
of P1-edges. Since T′ is a grounded sub-CT of T it must also start with (1 : t).
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We now construct a
⋃

X∈X̂ X-CT T′′ = (V ′, E′, L′′, P ′′) with P1∩P ′ ⊆ P ′′ that
has the same underlying tree structure and adjusted labeling such that all nodes
get the same probabilities as in T′. Since the tree structure and the probabilities
are the same, we then get |T′|Leaf = |T′′|Leaf. To be precise, the set of leaves in T′

is equal to the set of leaves in T′′, and every leaf has the same probability. Since
|T′|Leaf < 1 we thus have |T′′|Leaf < 1, which is a contradiction to our assumption
that

⋃
X∈X̂ X is iAST.

1 : t

P1

p1 : t′1 p2 : t′2

P2

p3 : t′3

P1

p4 : t′4

P2

p5 : t′5

P1

. . . . . . . . .

⇝
1 : t

P1

p1 : t′′1 p2 : t′′2

p3 : t′′3

P1

p4 : t′′4 p5 : t′′5

P1

. . . . . . . . .

Fig. 2: Construction for this proof. Some nodes x ∈ P2 in T′ are removed from P ,
which yields T′′.

The core idea of this construction is that annotations introduced by rewrite
steps at a node x ∈ P2 are not important for our computation. The reason is that
if annotations are introduced using an ADP from

⋃
Y ∈Ŷ Y that is not contained

in
⋃

X∈X̂ X, then by the prerequisite of (22), we know that such an ADP has no
path in the dependency graph to an ADP in

⋃
X∈X̂ X. Hence, by definition of the

dependency graph, we are never able to use these terms for a rewrite step with
an ADP from

⋃
X∈X̂ X to introduce new annotations. We can therefore apply the

non-annotated ADP from
⋃

Y ∈Ŷ Y to perform the rewrite step.

We now construct the new labeling L′′ for the
⋃

X∈X̂ X-CT T′′ recursively. Let
Q ⊆ V be the set of nodes where we have already defined the labeling L′′. During
our construction, we ensure that the following property holds:

For every x ∈ Q we have t′x
.
= t′′x and posD#(t′x)\Junk(t′x, X̂) ⊆ posD#(t′′x). (23)

Here, for any term t′x, let Junk(t
′
x, X̂) denote the positions of all annotated subterms

s ⊴# t′x that can never be used for a rewrite step with an ADP from X̂, as indicated

by the dependency graph. To be precise, we define π ∈ Junk(t′x, X̂):⇔ there is
no A ∈ W with A >∗

G X for some X ∈ X̂ such that there is an ADP ℓ → {p1 :
r1, . . . , pk : rk}m ∈ A, and a substitution σ with #ε(t

′
x|π)

i→∗
np(P) ℓ

#σ ∈ ANFP .

We start by setting t′′v = t′v for the root v of T′. Here, our property (23) is clearly
satisfied. As long as there is still an inner node x ∈ Q such that its successors are
not contained in Q, we do the following. Let xE = {y1, . . . , yk} be the set of its
successors. We need to define the corresponding terms for the nodes y1, . . . , yk in
T′′. Since x is not a leaf and T′ is a Z-CT, we have t′x

i
↪→

Z
{py1

px
: t′y1

, . . . ,
pyk

px
: t′yk

},
and hence, we have to deal with the following two cases:
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1. If we use an ADP from
⋃

X∈X̂ X in T′, then we perform the rewrite step with
the same ADP, the same position π, and the same substitution in T′′. Since we
have t′x

.
=(IH) t

′′
x, we also get t′yj

.
= t′′yj

for all 1 ≤ j ≤ k. Furthermore, since we

rewrite at position π it cannot be in Junk(t′x, X̂), and hence, if π ∈ posD#(t′x),
then also π ∈ posD#(t′′x) by (23). Thus, whenever we create annotations in
the rewrite step in T′ (a step with (p) or (pr)), then we do the same in T′′

(the step is also a (p) or (pr) step, respectively), and whenever we remove
annotations in the rewrite step in T′′ (a step with (p) or (irr)), then we do
the same in T′ (the step is also either a (p) or (irr) step). Therefore, we also
get posD#(t′yj

) \ Junk(t′yj
, X̂) ⊆ posD#(t′′yj

) for all 1 ≤ j ≤ k and (23) is again
satisfied.

2. If we use an ADP from P \
⋃

X∈X̂ X in T′, and we use the ADP ℓ → {p1 :
r1, . . . , pk : rk}m, then we can use ℓ → {p1 : ♭(r1), . . . , pk : ♭(rk)}m instead,
with the same position π, and the same substitution. Note that if π ∈ posD#(t′x),
then all the annotations introduced by the ADP are in Junk(t′yj

, X̂) for all
1 ≤ j ≤ k, since the used ADP is not in

⋃
X∈X̂ X and by (22) we cannot use

another ADP to create a path in the dependency graph to a node in
⋃

X∈X̂ X
again. Otherwise, we remove the annotations during the application of the rule
anyway. Again, (23) is satisfied.

We have now shown that (22) holds.

3. For every X ∈ W , the ADP problem
⋃

X>∗
GY Y is iAST.

Using (21) and (22), by induction on >G we now prove that

for every X ∈ W , the ADP problem
⋃

X>∗
GY Y is iAST. (24)

Note that >G is well founded, since G is finite.
For the base case, we consider an X ∈ W that is minimal w.r.t. >G. Hence, we

have
⋃

X>∗
GY Y = X. By (21), X is iAST.

For the induction step, we consider an X ∈ W and assume that
⋃

Y >∗
GZ Z is

iAST for every Y ∈ W with X >+
G Y . Let Succ(X) = {Y ∈ W | X >G Y } =

{Y1, . . . Ym} be the set of all direct successors of X. The induction hypothesis states
that

⋃
Yu>∗

GZ Z is iAST for all 1 ≤ u ≤ m. We first prove by induction that for all

1 ≤ u ≤ m,
⋃

1≤i≤u

⋃
Yi>∗

GZ Z is iAST.

In the inner induction base, we have u = 1 and hence
⋃

1≤i≤u

⋃
Yi>∗

GZ Z =⋃
Y1>∗

GZ Z. By our outer induction hypothesis we know that
⋃

Y1>∗
GZ Z is iAST.

In the inner induction step, assume that the claim holds for some 1 ≤ u < m.
Then

⋃
Yu+1>∗

GZ Z is iAST by our outer induction hypothesis and⋃
1≤i≤u

⋃
Yi>∗

GZ Z is iAST by our inner induction hypothesis. By (22), we know

that then
⋃

1≤i≤u+1

⋃
Yi>∗

GZ Z is iAST as well. The conditions for (22) are clearly

satisfied, as we use the reflexive, transitive closure >∗
G of the direct successor

relation in both
⋃

1≤i≤u

⋃
Yi>∗

GZ Z and
⋃

Yu+1>∗
GZ Z.

Now we have shown that
⋃

1≤i≤m

⋃
Yi>∗

GZ Z is iAST. We know that X is iAST

by our assumption and that
⋃

1≤i≤m

⋃
Yi>∗

GZ Z is iAST. Hence, by (22) we obtain
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that
⋃

X>∗
GY Y iAST. Again, the conditions of (22) are satisfied, since X is strictly

greater w.r.t. >+
G than all Z with Yi >

∗
G Z.

4. P is iAST.
In (24) we have shown that

⋃
X>∗

GY Y for every X ∈ W is iAST. Let X1, . . . , Xm

∈ W be the maximal elements of W w.r.t. >G. By induction, one can prove that⋃
1≤i≤u

⋃
Xi>∗

GY Y is iAST for all 1 ≤ u ≤ m by (22), analogous to the previous

induction. Again, the conditions of (22) are satisfied as we use the reflexive,
transitive closure of >G. In the end, we know that

⋃
1≤i≤m

⋃
Xi>∗

GY Y = P is iAST

and this ends the proof. ⊓⊔

Theorem 16 (Usable Terms Processor). Let ℓ1 ∈ T (Σ,V) and P be an ADP
problem. We call t ∈ T

(
Σ#,V

)
with root(t) ∈ D# usable w.r.t. ℓ1 and P if there

are substitutions σ1, σ2 and an ℓ2 −→ µ2 ∈ P where µ2 contains an annotated

symbol, such that #ε(t)σ1
i→∗
np(P) ℓ

#
2 σ2 and both ℓ1σ1 and ℓ2σ2 are in ANFP . Let

♭ℓ,P(s) result from s by removing the annotations from the roots of all its subterms
that are not usable w.r.t. ℓ and P, i.e., posD#(♭ℓ,P(s)) = {π ∈ posD#(s) | s|π is
usable w.r.t. ℓ1 and P }. The transformation that removes the annotations from
the roots of all non-usable terms in the right-hand sides of ADPs is TUT(P) =
{ℓ→ {p1 : ♭ℓ,P(r1), . . . , pk : ♭ℓ,P(rk)}m | ℓ→ {p1 : r1, . . . , pk : rk}m ∈ P}. Then
ProcUT(P) = {TUT(P)} is sound and complete.

Proof.

Completeness: Every TUT(P)-CT is also a P-CT with fewer annotations in the
terms. So if TUT(P) is not iAST, then there exists a TUT(P)-CT T that converges
with probability < 1. By adding annotations to the terms of the tree, we result in
a P-CT that converges with probability < 1 as well. Hence, if TUT(P) is not iAST,
then P is not iAST either.

Soundness: Let P be not iAST. Then by Lemma 34 there exists a P-CT T =
(V,E, L, P ) that converges with probability < 1 whose root is labeled with (1 : t)
and ♭(t) = sθ ∈ ANFP for a substitution θ and an ADP s → . . . ∈ P, and
posD#(t) = {ε}. We will now create a TUT(P)-CT T′ = (V,E,L′, P ), with the same
underlying tree structure, and an adjusted labeling such that pTx = pT

′

x for all
x ∈ V . Since the tree structure and the probabilities are the same, we then get
|T′|Leaf = |T|Leaf < 1, and hence TUT(P) is not iAST either.

We now construct the new labeling L′ for the TUT(P)-CT T′ recursively. Let
X ⊆ V be the set of nodes where we have already defined the labeling L′. During
our construction, we ensure that the following property holds for every node x ∈ X:

For every x ∈ X we have tx
.
= t′x and posD#(tx) \ Junk(tx) ⊆ posD#(t′x). (25)

Here, for any annotated term tx, let Junk(tx) denote the set of all positions of
annotations in tx that will never be used for a rewrite step in T. To be precise,
we define Junk(tx) recursively: For the term t at the root, we define Junk(t) = ∅.
For a node yj for some 1 ≤ j ≤ h with predecessor x such that tx

i
↪→P {py1

px
:

ty1
, . . . ,

pyh

px
: tyh

} at a position π, we define Junk(tyj
) = {ρ | ρ ∈ Junk(tx), π ≮ ρ}
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if π /∈ posD#(tx), and otherwise, we define Junk(tyj
) = {ρ | ρ ∈ Junk(tx), π ≮ ρ}

∪ Junk((tx)
j
+,T). Here, we have ρ ∈ Junk((tx)

j
+,T), if ρ = π.τ and τ ∈ posD#(r̂j),

for the used ADP ℓ̂ → {p̂1 : r̂1, . . . , p̂h : r̂h}m
′
, and there is no (not necessarily

direct) successor node in T that rewrites at position ρ without rewriting above
position ρ before.

We start with the same term t at the root. Here, our property (25) is clearly
satisfied. As long as there is still an inner node x ∈ X such that its successors are
not contained in X, we do the following. Let xE = {y1, . . . , yk} be the set of its
successors. We need to define the terms for the nodes y1, . . . , yk in T′. Since x is not
a leaf and T is a P-CT, we have tx

i
↪→P {py1

px
: ty1 , . . . ,

pyk

px
: tyk

}. If we performed a

step with
i
↪→P using the ADP ℓ → {p1 : r1, . . . , pk : rk}m, the position π, and the

substitution σ in T, then we can use the ADP ℓ → {p1 : ♭ℓ,P(r1), . . . , pk : ♭ℓ,P(rk)}m
with the same position π and the same substitution σ. Now, we directly get tyj

.
= t′yj

and posD#(tyj
) \ Junk(tyj

) ⊆ posD#(t′yj
) for all 1 ≤ j ≤ k since the original rule

contains the same terms with more annotations, but all missing annotations are in
Junk(tx) by definition of ♭ℓ,P(rj) for each 1 ≤ j ≤ k. ⊓⊔

Theorem 17 (Prob. Usable Rules Processor). For an ADP problem P and
f ∈Σ#, let RulesP(f) = {ℓ → µtrue ∈ P | root(ℓ) = f}. For any t∈T

(
Σ#,V

)
, its

usable rules UP(t) are the smallest set with UP(x) = ∅ for all x ∈ V and UP(f(t1,
. . . , tn)) = RulesP(f)∪

⋃n
i=1 UP(ti) ∪

⋃
ℓ→µtrue∈RulesP(f),r∈Supp(µ) UP(♭(r)), other-

wise. The usable rules for P are U(P) =
⋃

ℓ→µm∈P,r∈Supp(µ),t⊴#r UP(t
#). Then

ProcUR(P) = {U(P) ∪ {ℓ → µfalse | ℓ → µm ∈ P \ U(P)}} is sound and complete,
i.e., we turn the flag of all non-usable rules to false.

Proof. Let P = U(P) ∪ {ℓ → µfalse | ℓ → µm ∈ P \ U(P)}.
Completeness: Every P-CT is also a P-CT with fewer annotations in the terms.

So if P is not iAST, then there exists a P-CT T that converges with probability
< 1. By adding annotations into the terms of the tree, we result in a P-CT that
converges with probability < 1 as well. Hence, if P is not iAST, then P is not iAST
either.

Soundness: Assume that P is not iAST. Then by Lemma 34 there exists a P-CT
T = (V,E, L, P ) that converges with probability < 1 whose root is labeled with
(1 : t) and ♭(t) = sθ ∈ ANFP for a substitution θ and an ADP s → . . . ∈ P, and
posD#(t) = {ε}.

By the definition of usable rules, as in the non-probabilistic case, rules ℓ → µ ∈ P
that are not usable (i.e., ℓ → µ ̸∈ P) will never be used below an annotated symbol
in such a P-CT. Hence, we can also view T as a P-CT that converges with
probability < 1 and thus P is not iAST. ⊓⊔

Theorem 19 (Probabilistic Reduction Pair Processor). Let Pol : T (Σ#,
V) → N[V] be a weakly monotonic, multilinear polynomial interpretation. Let
P = P≥ ⊎ P> with P> ̸= ∅ such that:

(1) For every ℓ −→ {p1 : r1, . . . , pk : rk}true ∈ P, we have
Pol(ℓ) ≥

∑
1≤j≤k pj · Pol(♭(rj)).
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(2) For every ℓ −→ {p1 : r1, . . . , pk : rk}m ∈ P, we have
Pol(ℓ#) ≥

∑
1≤j≤k pj ·

∑
t⊴#rj

Pol(t#).

(3) For every ℓ −→ {p1 : r1, . . . , pk : rk}m ∈ P>, there exists a 1 ≤ j ≤ k with
Pol(ℓ#) >

∑
t⊴#rj

Pol(t#).

If m = true, then we additionally have Pol(ℓ) ≥ Pol(♭(rj)).

Then ProcRP(P) = {P≥ ∪ ♭(P>)} is sound and complete.

Proof. Let P = P≥ ∪ ♭(P>).

Completeness: Every P-CT is also a P-CT with fewer annotations in the terms. So

if P is not iAST, then there exists a P-CT T that converges with probability < 1.
By adding annotations to the terms of the tree, we result in a P-CT that converges
with probability < 1 as well. Hence, if P is not iAST, then P is not iAST either.

Soundness: This proof uses the proof idea for AST from [33]. The core steps of the
proof are the following:

(I) We extend the conditions (1), (2), and (3) to rewrite steps instead of just rules
(and thus, to edges of a CT).

(II) We create a CT T≤N for any N ∈ N.
(III) We prove that |T≤N |Leaf ≥ pNmin for any N ∈ N.
(IV) We prove that |T≤N |Leaf = 1 for any N ∈ N.
(V) Finally, we prove that |T|Leaf = 1.

Parts (II) to (V) remain completely the same as in [28]. We only show that we can
adjust part (I) to our new rewrite relation and new annotated dependency pairs.

(I) We extend the conditions to rewrite steps instead of just rules

We set V (s) =
∑

t⊴#s Pol(t
#), and show that the conditions (1), (2), and (3) of

the lemma extend to rewrite steps instead of just rules:

(a) If s
i→ {p1 : t1, . . . , pk : tk} using a rewrite rule ℓ → {p1 : r1, . . . , pk : rk}

with Pol(ℓ) ≥ Pol(rj) for some 1 ≤ j ≤ k, then we have Pol(s) ≥ Pol(tj).
(b) If a

i
↪→P {p1 : b1, . . . , pk : bk} using the rule ℓ → {p1 : r1, . . . , pk : rk}m ∈ P>

at a position π ∈ posD#(s), then V (a) > V (bj) for some 1 ≤ j ≤ k.
(c) If s

i→ {p1 : t1, . . . , pk : tk} using a rewrite rule ℓ → {p1 : r1, . . . , pk : rk}
with Pol(ℓ) ≥

∑
1≤j≤k pj · Pol(rj), then Pol(s) ≥

∑
1≤j≤k pj · Pol(tj).

(d) If a
i
↪→P {p1 : b1, . . . , pk : bk} using the rule ℓ → {p1 : r1, . . . , pk : rk}m ∈ P,

then V (a) ≥
∑

1≤j≤k pj · V (bj).

(a) In this case, there exist a rule ℓ → {p1 : r1, . . . , pk : rk} with Pol(ℓ) ≥ Pol(rj)
for some 1 ≤ j ≤ k, a substitution σ, and a position π of s such that s|π =
ℓσ ∈ ANFP , and tj = s[rjσ]π for all 1 ≤ j ≤ k.
We perform structural induction on π. So in the induction base, let π = ε.
Hence, we have s = ℓσ

i→ {p1 : r1σ, . . . , pk : rkσ}. By assumption, we have
Pol(ℓ) ≥ Pol(rj) for some 1 ≤ j ≤ k. As these inequations hold for all
instantiations of the occurring variables, for tj = rjσ we have

Pol(s) = Pol(ℓσ) ≥ Pol(rjσ) = Pol(tj).
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In the induction step, we have π = i.π′, s = f(s1, . . . , si, . . . , sn), f ∈ Σ, si
i→

{p1 : ti,1, . . . , pk : ti,k}, and tj = f(s1, . . . , ti,j , . . . , sn) with ti,j = si[rjσ]π′ for
all 1 ≤ j ≤ k. Then by the induction hypothesis we have Pol(si) ≥ Pol(ti,j).
For tj = f(s1, . . . , ti,j , . . . , sn) we obtain

Pol(s) = Pol(f(s1, . . . , si, . . . , sn))
= fPol(Pol(s1), . . . ,Pol(si), . . . ,Pol(sn))
≥ fPol(Pol(s1), . . . ,Pol(ti,j), . . . ,Pol(sn))

(by weak monotonicity of fPol and Pol(si) ≥ Pol(ti,j))
= Pol(f(s1, . . . , ti,j , . . . , sn))
= Pol(tj).

(b) In this case, there exist an ADP ℓ → {p1 : r1, . . . , pk : rk}m ∈ P>, a substitution
σ, and position π ∈ posD#(a) with ♭(a|π) = ℓσ ∈ ANFP and bj

.
= a[rjσ]π. First,

assume that m = true. Let I1 = {τ ∈ posD#(a) | τ < π} be the set of positions
of all annotations strictly above π, I2 = {τ ∈ posD#(a) | τ > π} be the set of
positions of all annotations strictly below π, and let I3 = {τ ∈ posD#(a) | τ⊥π}
be the set of positions of all annotations orthogonal to π. Furthermore, for each
i ∈ I1 let τi be the positions such that i.τi = π. By Requirement (3), there
exists a 1 ≤ j ≤ k with Pol(ℓ#) >

∑
t⊴#rj

Pol(t#) and, additionally, Pol(ℓ) ≥
Pol(♭(rj)) since m = true. As these inequations hold for all instantiations of
the occurring variables, we have

V (a) =
∑

s⊴#a Pol(s#)

= Pol(#ε(s|π)) +
∑

i∈I1
Pol(#ε(a|i)) +

∑
i′∈I2

Pol(#ε(a|i′ )) +
∑

i′∈I3
Pol(#ε(a|i′ ))

≥ Pol(#ε(s|π)) +
∑

i∈I1
Pol(#ε(a|i)) +

∑
i′∈I3

Pol(#ε(a|i′ ))
= Pol(#ε(ℓ)σ) +

∑
i∈I1

Pol(#ε(a|i)) +
∑

i′∈I3
Pol(#ε(a|i′ ))

(as #ε(s|π) = #ε(ℓ)σ)
>

∑
s⊴#rj

Pol(#ε(s)σ) +
∑

i∈I1
Pol(#ε(a|i)) +

∑
i′∈I3

Pol(#ε(a|i′ ))
(as Pol(#ε(ℓ)) >

∑
s⊴#rj

Pol(#ε(s)), hence Pol(#ε(ℓ)σ) >
∑

s⊴#rj
Pol(#ε(s)σ))

≥
∑

s⊴#bj |π
Pol(#ε(s)) +

∑
i∈I1

Pol(#ε(a|i[rjσ]τi )) +
∑

i′∈I3
Pol(#ε(a|i′ ))

(by Pol(ℓ) ≥ Pol(rj) and (a))

=
∑

s⊴#bj
Pol(s#)

= V (bj)

In case of m = false we additionally remove
∑

i∈I1
Pol(#ε(a|i[rjσ]τi)), so that

the inequation remains correct.
(c) In this case, there exists a rule ℓ → {p1 : r1, . . . , pk : rk} with Pol(ℓ) ≥∑

1≤j≤k pj · Pol(rj), a substitution σ, and a position π of s such that s|π =
ℓσ ∈ ANFP , and th = s[rhσ]π for all 1 ≤ h ≤ k.
We perform structural induction on π. So in the induction base π = ε we have
s = ℓσ

i→ {p1 : r1σ, . . . , pk : rkσ}. As Pol(ℓ) ≥
∑

1≤j≤k pj ·Pol(rj) holds for all
instantiations of the occurring variables, for tj = rjσ we obtain

Pol(s) = Pol(ℓσ) ≥
∑

1≤j≤k

pj · Pol(rjσ) =
∑

1≤j≤k

pj · Pol(tj).

In the induction step, we have π = i.π′, s = f(s1, . . . , si, . . . , sn), si
i→ {p1 :

ti,1, . . . , pk : ti,k}, and tj = f(s1, . . . , ti,j , . . . , sn) with ti,j = si[rjσ]π′ for all 1 ≤
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j ≤ k. Then by the induction hypothesis we have Pol(si) ≥
∑

1≤j≤k pj ·Pol(ti,j).
Thus, we have

Pol(s) = Pol(f(s1, . . . , si, . . . , sn))
= fPol(Pol(s1), . . . ,Pol(si), . . . ,Pol(sn))
≥ fPol(Pol(s1), . . . ,

∑
1≤j≤k pj · Pol(ti,j), . . . ,Pol(sn))

(by weak monotonicity of fPol and Pol(si) ≥
∑

1≤j≤k pj · Pol(ti,j))
=

∑
1≤j≤k pj · fPol(Pol(s1), . . . ,Pol(ti,j), . . . ,Pol(sn))

(as fPol is multilinear)
=

∑
1≤j≤k pj · Pol(f(s1, . . . , ti,j , . . . , sn))

=
∑

1≤j≤k pj · Pol(tj).

(d) In this case, there exist an ADP ℓ → {p1 : r1, . . . , pk : rk}m ∈ P , a substitution
σ, and position π with ♭(a|π) = ℓσ ∈ ANFP and bj

.
= a[rjσ]π. First, assume

that m = true and π ∈ posD#(a). Let I1 = {τ ∈ posD#(a) | τ < π} be the set
of positions of all annotations strictly above π, I2 = {τ ∈ posD#(a) | τ > π}
be the set of positions of all annotations strictly below π, and let I3 = {τ ∈
posD#(a) | τ⊥π} be the set of positions of all annotations orthogonal to π.
Furthermore, for each i ∈ I1 let τi be the position such that i.τi = π. By
Requirement (2), we have Pol(#ε(ℓ)) ≥

∑
1≤j≤k pj ·

∑
t⊴#rj

Pol(#ε(t)) and by

(1) we have Pol(ℓ) ≥
∑

1≤j≤k pj · Pol(♭(rj)). As these inequations hold for all
instantiations of the occurring variables, we have

V (a) =
∑

t⊴#a Pol(t#)

= Pol(#ε(a|π)) +
∑

i∈I1
Pol(#ε(a|i)) +

∑
i′∈I2

Pol(#ε(a|i′ )) +
∑

i′∈I3
Pol(#ε(a|i′ ))

≥ Pol(#ε(a|π)) +
∑

i∈I1
Pol(#ε(a|i)) +

∑
i′∈I3

Pol(#ε(a|i′ ))
= Pol(#ε(ℓ)σ) +

∑
i∈I1

Pol(#ε(a|i)) +
∑

i′∈I3
Pol(#ε(a|i′ ))

(as a|π = #ε(ℓ)σ)
≥

∑
1≤j≤k pj ·

∑
t⊴#rjσ

Pol(#ε(t)) +
∑

i∈I1
Pol(#ε(a|i)) +

∑
i′∈I3

Pol(#ε(a|i′ ))
(by Pol(#ε(ℓ)) ≥

∑
1≤j≤k pj ·

∑
t⊴#rj

Pol(#ε(t)),

hence Pol(#ε(ℓ)σ) ≥
∑

1≤j≤k pj ·
∑

t⊴#rjσ
Pol(#ε(t)))

≥
∑

1≤j≤k pj ·
∑

t⊴#rjσ
Pol(#ε(t)) +

∑
i∈I1

∑
1≤j≤k pj · Pol(#ε(a|i[rjσ]τi ))

+
∑

i′∈I3
Pol(#ε(a|i′ ))

(by Pol(ℓ) ≥
∑

1≤j≤k pj · Pol(rj) and (c))

=
∑

1≤j≤k pj ·
∑

t⊴#rjσ
Pol(#ε(t)) +

∑
1≤j≤k

∑
i∈I1

pj · Pol(#ε(a|i[rjσ]τi ))
+

∑
i′∈I3

Pol(#ε(a|i′ ))
=

∑
1≤j≤k pj ·

∑
t⊴#rjσ

Pol(#ε(t)) +
∑

1≤j≤k pj ·
∑

i∈I1
Pol(#ε(a|i[rjσ]τi ))

+
∑

i′∈I3
Pol(#ε(a|i′ ))

=
∑

1≤j≤k pj ·
∑

t⊴#rjσ
Pol(#ε(t)) +

∑
1≤j≤k pj ·

∑
i∈I1

Pol(#ε(a|i[rjσ]τi ))
+

∑
1≤j≤k pj ·

∑
i′∈I3

Pol(#ε(a|i′ ))
=

∑
1≤j≤k pj · (

∑
t⊴#rjσ

Pol(#ε(t)) +
∑

i∈I1
Pol(#ε(a|i[rjσ]τi )) +

∑
i′∈I3

Pol(#ε(a|i′ )))
=

∑
1≤j≤k pj ·

∑
t⊴#bj

Pol(t#)

= V (bj)

In case of π /∈ posD#(a), we remove
∑

t⊴#rjσ
Pol(t#) in the end, and in case

of m = false we remove
∑

i∈I1
Pol(#ε(a|i[rjσ]τi)).

The rest is completely analogous to the proof in [28]. ⊓⊔
Finally, we prove soundness of the new rewriting processor.

Theorem 23 (Soundness of the Rewriting Processor). Procr as in Def. 22
is sound if one of the following cases holds:
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1. UP(rj |τ ) is NO, and the rule used for rewriting rj |τ is L and NE.
2. UP(rj |τ ) is NO, and all its rules have the form ℓ′ → {1 : r′} for some ℓ′, r′.
3. UP(rj |τ ) is NO, rj |τ is a ground term, and rj

i
↪→τ {q1 : e1, . . . , qh : eh} is an

innermost step.

Proof. Let P ′ = P ′ ∪N ∪ {ℓ −→ {p1 : ♭(r1), . . . , pk : ♭(rk)}m} and P = P ′ ∪ {ℓ −→
{p1 : r1, . . . , pk : rk}m}. We call ℓ −→ {p1 : r1, . . . , pk : rk}m the old ADP, we call
ℓ → {p1 : r1, . . . , pk : rk} \ {pj : rj} ∪ {pj · q1 : e1, . . . , pj · qh : eh}m the new ADP,
and ℓ −→ {p1 : ♭(r1), . . . , pk : ♭(rk)}m is called the non-annotated old ADP.
First Case
We start with the case where UP(rj |τ ) is NO and the used rule ℓ̂ → {p̂1 : r̂1, . . . , p̂h :
r̂h} is L and NE. First, note that the rule used for rewriting rj |τ in the rewrite
processor is contained in UP(rj |τ ).9 Since UP(rj |τ ) is NO, we can therefore be sure
that there is only a single rule applicable at position τ .

Let P be not iAST. Then there exists a P-CT T = (V,E, L, P ) that converges
with probability c < 1. We will now create a P ′-CT T′ = (V ′, E′, L′, P ′) such that
|T′|Leaf ≤ |T|Leaf < 1, and hence P ′ is not iAST either.

The core steps of the proof are the following:

1. We iteratively remove usages of the old ADP using a construction Φ(◦). The
limit of this iteration, namely T(∞) is a P ′-CT that converges with probability
at most c < 1, hence, P ′ is not iAST.
1.1. For a P-CT Tx that uses the old ADP at the root x at a position

π ∈ posD#(tx), we create a new P-CT Φ(Tx) that uses the new ADP
at the root.

1.2. For a P-CT Tx that uses the old ADP at the root x at a position
π ̸∈ posD#(tx), we create a new P ′-CT Φ(Tx) that uses the non-annotated
old ADP at the root.

This proof structure will also be used in the other cases for soundness.

1. We iteratively remove usages of the old ADP
W.l.o.g., in T there exists at least one rewrite step performed at some node x
with the old ADP (otherwise, T would already be a P ′-CT). Furthermore, we can
assume that this is the first such rewrite step in the path from the root to the node
x and that x is a node of minimum depth with this property. We will now replace
this rewrite step with a rewrite step using the new ADP such that we result in a
CT T(1) with the following connections between T and T(1). Here, for an infinite
path p = v1, v2, . . . in a CT T = (V,E, L, P ), by C(p) = w1, w2, . . . we denote the
sequence of {P,R}-labels for these nodes, i.e., we have wi = P if vi ∈ P or wi = R
otherwise for all i.

(a) |T(1)|Leaf ≤ |T|Leaf = c, and
(b) for every infinite path p in T(1) we can find an infinite path p′ in T such that

C(p) and C(p′) only differ in a finite number of R-nodes, i.e., we can remove
and add a finite number of R-nodes from C(p′) to get C(p).

9 The rules that are applicable at position τ do not have to be applicable in an innermost
RST, see [16, Sect. 6] and [39, Ex. 5.14].
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This construction only works because UP(rj |τ ) is NO and there exists no annotation
below τ , and the resulting CT has only at most the same probability of termination
as the original one due to the fact that ℓ̂ → {p̂1 : r̂1, . . . , p̂h : r̂h}m

′
is also L and

NE. Let Tx be the induced sub-CT that starts at node x, i.e. Tx = T[xE∗]. The
construction defines a new tree Φ(Tx) such that (a) and (b) w.r.t. Tx and Φ(Tx)
holds, and where we use the new ADP at the root node x instead of the old one (i.e.,
we pushed the first use of the old ADP deeper into the tree). Then, by replacing
the subtree Tx with the new tree Φ(Tx) in T, we get a P-CT T(1), with (a) and
(b) w.r.t. T and T(1), and where we use the new ADP at node x instead of the old
one. We can then do this replacement iteratively for every use of the old ADP, i.e.,
we again replace the first use of the old ADP in T(1) to get T(2) with (a) and (b)
w.r.t. T(1) and T(2), and so on. In the end, the limit of all these CTs limi→∞ T(i)

is a P ′-CT, that we denote by T(∞) and that converges with probability at most
c < 1, and hence, P ′ is not iAST.

To see that T(∞) is indeed a valid P ′-CT, note that in every iteration of the
construction we turn a use of the old ADP at minimum depth into a use of the
new one. Hence, for every depth H of the tree, we eventually turned every use of
the old ADP up to depth H into a use of the new one so that the construction will
not change the tree above depth H anymore, i.e., there exists an mH such that
T(∞) and T(mH) are the same trees up to depth H. This means that the sequence
limi→∞ T(i) really converges into a tree that satisfies the first five conditions of a
P ′-CT. We only have to show that the last condition of a CT, namely that every
infinite path in limi→∞ T(i) contains infinitely many nodes from P , holds as well.
First, by induction on n one can prove that all trees T(i) for all 1 ≤ i ≤ n satisfy
Condition (6), because due to (b) we can find for each infinite path p ∈ T(i) an
infinite path p′ in T such that C(p) and C(p′) only differ in a finite number of
R-labels. Hence, if p contains no nodes from P , then p′ contains no nodes from P ,
which is a contradiction to T satisfying Condition (6). Moreover, we only replace
subtrees after a node in P , the node itself remains in P , and after we replaced the
subtree at a node v, we will never replace a predecessor of v anymore. This means
that the subsequence between the i-th and (i+ 1)-th occurrence of P in p and the
subsequence between the i-th and (i+ 1)-th occurrence of P in p′ only differ in a
finite number of R nodes again, for every i. Now, let p = v1, v2, . . . be an infinite
path that starts at the root in T(∞) and only contains finitely many nodes from P ,
i.e., there exists an 1 ≤ i such that vi, vi+1, . . . contains no node from P . Again,
let mH ∈ N such that T(∞) and T(mH) are the same trees up to depth H. The
path v1, . . . , vH must be a path in T(mH) as well. For two different H1, H2 with
i < H1 < H2 we know that since the path vi, . . . , vH2

contains no node from P ,
the path must also exist in T(mH1

). We can now construct an infinite path in T(mi)

that contains no nodes from P , which is a contradiction.

Next, we want to prove that we really have |T(∞)|Leaf ≤ c. Again, by induction
on n one can prove that |T(i)|Leaf ≤ c for all 1 ≤ i ≤ n. Assume for a contradiction
that T(∞) converges with probability greater than c, i.e. |T(∞)|Leaf > c. Then
there exists an H ∈ N for the depth such that

∑
x∈LeafT(∞)

,d(x)≤H
px > c. Here,

d(x) denotes the depth of node x. Again, let mH ∈ N such that T(∞) and T(mH)

are the same trees up to depth H. But this would mean that |T(mH)|Leaf ≥
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x∈LeafT(mH )

,d(x)≤H
px =

∑
x∈LeafT(∞)

,d(x)≤H
px > c, which is a contradiction to

|T(mH)|Leaf ≤ c.
It remains to show the mentioned construction Φ(◦).

1.1. Construction of Φ(◦) if π ∈ posD#(tx)
Let Tx be a P-CT that uses the old ADP at the root node x, i.e, tx

i
↪→P {py1 :

ty1 , . . . , pyk
: tyk

} using the ADP ℓ −→ {p1 : r1, . . . , pk : rk}m, the position π
with π ∈ posD#(tx), and a substitution σ such that ♭(tx|π) = ℓσ ∈ ANFP . Then
tyj

= tx[rjσ]π if m = true, or tyj
= ♭↑π(tx[rjσ]π), otherwise.

1.1.1 General construction of Φ(Tx)
Instead of applying only the old ADP at the root x

px tx

py1 ty1 . . . pyj tyj . . . pyk tyk

where we use an arbitrary rewrite step at node yj afterwards, we want to directly
apply the rewrite rule at position π.τ of the term tyj

in our CT, which we performed
on rj at position τ to transform the old into the new ADP, to get

px tx

py1 ty1 . . . pyj tyj . . . pyk tyk

pyj1
tyj1

. . . pyjh
tyjh

Then, we can contract the edge (x, yj) to get

px tx

py1 ty1 . . . pyj1
tyj1

. . . pyjh
tyjh

. . . pyk tyk

and this is equivalent to applying the new ADP. Note that the rewrite step at
position π.τ may not be an innermost rewrite step in the CT. x

yj

The subtrees that start at the nodes
y1, . . . , yj−1, yj+1, . . . , yk remain completely the
same. We only have to construct a new subtree for
node yj , i.e., the node that really changed when
applying the rewriting processor. To be precise, let
Tyj = Tx[yjE

∗] be the subtree starting at node
yj . The construction first creates a new subtree
Ψ(Tyj

) such that (a) and (b) hold w.r.t. Tyj
and

Ψ(Tyj
), and that directly performs the first rewrite

step at position π.τ at the root of the tree, by pushing it from the original position
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in the tree Tyj
to the root. This can be seen in the diagram above. Again, this

push only results in the exact same termination probability due to our restriction
that ℓ̂ → {p̂1 : r̂1, . . . , p̂h : r̂h} is L and NE. Then, by replacing Tyj by Ψ(Tyj ) in
Tx we result in a tree T′

x such that (a) and (b) hold w.r.t. Tx and T′
x, and such

that we perform the desired rewrite step at node yj . Finally, we contract the edge
(x, yj) in T′

x, in order to get Φ(Tx). Again, (a) and (b) hold w.r.t. Tx and Φ(Tx),
and we use the new ADP at the root x in Φ(Tx). It only remains to explain the
construction of Ψ(Tyj

).

1.1.2. Construction of Ψ(Tyj
)

We will move the first rewrite step that takes place at position π.τ from the original
tree Tyj (example on the left below) to the top of the new tree Ψ(Tyj ) (example
on the right below) and show that (a) and (b) both hold after this construction.
Below, the circled nodes represent the nodes where we perform a rewrite step at
position π.τ .

Tyj

v0

v1 v2 v3

v4 v5 v6

v7 v8

v9

Z ⇝

Ψ(Tyj
)

v̂

1.v0

1.v1 1.v2 1.v3

1.v5 1.v6

v9

We will define the P-CT Ψ(Tyj
) that satisfies the properties (a) and (b) w.r.t.

Tyj
and Ψ(Tyj

), and that directly performs the rewrite step tyj

i
↪→P,π.τ {p̂1 :

tyj1
, . . . , p̂h : tyjh

}, with the rule ℓ̂ → {p̂1 : r̂1, . . . , p̂h : r̂h}m̂ ∈ P, a substitution
σ̂, and the position π.τ , at the new root v̂. Here, we have ♭(tyj

|π.τ ) = ♭(rjσ|τ ) =
♭(rj |τσ) = ℓ̂σ̂. Let Z be the set of all nodes v of Tyj

where we did not perform a
rewrite step at position π.τ in the path from the root x to the node v, or v is the
first node in the path that performs a rewrite step at position π.τ . In the example
we have Z = {v0, . . . , v6} \ {v4}. For each of these nodes z ∈ Z and each 1 ≤ e ≤ h,
we create a new node e.z ∈ V ′ with edges as in Tyj

for the nodes in Z, e.g., for the
node 1.v3 we create an edge to 1.v5 and 1.v6. Furthermore, we add the edges from
the new root v̂ to the nodes e.yj for all 1 ≤ e ≤ h. Remember that yj was the root
in the tree Tyj

and has to be contained in Z. For example, for the node v̂ we create
an edge to 1.v0. For all these new nodes in Z, we show that the following holds:

(T1) tz[r̂eγ]π.τ
.
= t′e.z for the substitution γ such that ♭(tz|π.τ ) = ℓ̂γ

(T2) posD#(tz[♭(r̂e)γ]π.τ ) ⊆ posD#(t′e.z).

(T3) p
Ψ(Tyj

)
e.z = p

Tyj
z · p̂e
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Note that we only regard the subtree of the j-th child of the root. Because of the
prerequisite in the definition of the rewrite processor (there is no annotation below
or at position τ), there are no annotations on or below π.τ for all nodes in Z.

Now, for a leaf e.z ∈ V ′ either z ∈ V is also a leaf (e.g., node v2) or we
rewrite the position π.τ at node z in Tyj

(e.g., node v1). If we rewrite tz
i
↪→P,π.τ

{p̂1 : tw1
, . . . , p̂h : twh

}, then we have twe
= tx[♭(r̂e)γ]π.τ if m = true or twe

=
♭↑π.τ (tx[♭(r̂e)γ]π.τ ), otherwise. In both cases, we get twe

.
= tx[♭(r̂e)γ]π.τ

.
=(T1) t

′
e.z,

posD#(twe) ⊆ posD#(tz[♭(r̂e)γ]π.τ ) ⊆(T2) posD#(t′e.z) and p
Ψ(Tyj

)
e.z = p

Tyj
z · p̂e =(T3)

p
Tyj
we , and we can again copy the rest of this subtree of Tyj

in our newly generated
tree Ψ(Tyj ). In our example, v1 has the only successor v4, hence we can copy the
subtree starting at node v4, which is only the node itself, to the node 1.v1 in Ψ(Tyj ).
For v5 we have the only successor v7, hence we can copy the subtree starting at
node v7, which is the node itself together with its successor v9, to the node 1.v5 in
Ψ(Tyj

). So essentially, we just have to define the part of the tree before we reach
the rewrite step in Tyj

, and then, we have to show that (a) and (b) for Tyj
and

Ψ(Tyj ) are satisfied. We show the latter first, and then explain the proof that this
label gives us indeed a valid P-CT.

We start by showing (a) for Tyj and Ψ(Tyj ). Let u be a leaf in Ψ(Tyj ). If
u = e.v for some node v ∈ Z that is a leaf in Tyj (e.g., node 1.v2), then also e.v

must be a leaf in Ψ(Tyj
) for every 1 ≤ e ≤ h. Here, we get

∑
1≤e≤h p

Ψ(Tyj
)

e.v
(T3)
=∑

1≤e≤h p
Tyj
v · p̂e = p

Tyj
v ·

∑
1≤e≤h p̂e = p

Tyj
v · 1 = p

Tyj
v . If u = e.v for some node

v ∈ Z that is not a leaf in Tyj
(e.g., node 1.v1), then we know by construction

that all successors of v in Tyj
are not contained in Z and are leaves. Here, we get

p
Ψ(Tyj

)
e.v

(T3)
= p

Tyj
v · p̂e = p

Tyj
w for the (unique) e-th successor w of v. Finally, if u

does not have the form u = e.v, then u is also a leaf in Tyj with p
Ψ(Tyj

)
u = p

Tyj
u .

Note that these cases cover no leaf of Tyj twice. This implies that we have

|Ψ(Tyj )|Leaf

=
∑

v∈Leaf
Ψ(Tyj

)

p
Ψ(Tyj

)

e.v

=
∑

e.v∈Leaf
Ψ(Tyj

)

v∈Z

p
Ψ(Tyj

)

e.v +
∑

e.v∈Leaf
Ψ(Tyj

)

v∈wE,v ̸∈Z,w∈Z

p
Ψ(Tyj

)

e.v +
∑

v∈Leaf
Ψ(Tyj

)

v∈Leaf
Tyj ,v∈wE,w ̸∈Z

p
Ψ(Tyj

)

v

≤
∑

v∈Leaf
Tyj

v∈Z

 ∑
1≤e≤h

p
Ψ(Tyj

)

e.v

+
∑

v∈Leaf
Tyj ,1≤e≤h

v∈wE,v ̸∈Z,w∈Z

p
Ψ(Tyj

)

e.v +
∑

v∈Leaf
Tyj

v∈wE,w ̸∈Z

p
Ψ(Tyj

)

v

≤
∑

v∈Leaf
Tyj

v∈Z

p
Tyj
v +

∑
v∈Leaf

Tyj

v∈wE,v ̸∈Z,w∈Z

p
Tyj
v +

∑
v∈Leaf

Tyj

v∈wE,w ̸∈Z

p
Tyj
v

=
∑

v∈Leaf
Tyj

p
Tyj
v

=|Tyj |Leaf
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Next, we show (b) for Tyj
and Ψ(Tyj

). Let p = u0, u1, . . . be an infinite path in
Ψ(Tyj

) that starts at the root v̂. If for all 1 ≤ i we have ui = e.vi for some node
vi ∈ Z and 1 ≤ e ≤ h, then p = v1, . . . is our desired path in Tyj . Otherwise, there
is a maximal 1 ≤ o such that for all 1 ≤ i ≤ o we have ui = e.vi for some node
vi ∈ Z and 1 ≤ e ≤ h. Then our desired path is v1, . . . , vo, w, uo+1, . . .. Here, w is
the e-th successor of vo in Tyj

. Note that in the first case, we remove one R-label
at the start of our path, while in the other case, we just move an R-label from the
first position to a later one in the path. This shows that (b) is satisfied.

Finally, we prove that Ψ(Tyj
) is a valid P-CT. We only need to prove the

construction that satisfies all of our conditions for the nodes in Z. As the rest of
the tree is copied, we can be sure that all Conditions (1)-(5) of a P-CT are satisfied.
Additionally, due to (b) w.r.t. Tyj and Ψ(Tyj ), we get (6) as well, because Tyj

satisfies (6).

At the root, after applying the old ADP, we directly perform the rewrite step
tyj

i
↪→P {p̂1 : t′1.yj

, . . . , p̂h : t′h.yj
}, with the rule ℓ̂ → {p̂1 : r̂1, . . . , p̂h : r̂h}m̂ ∈ P,

a substitution σ̂, and the position τ . Then, te.yj = tyj [♭(r̂e)σ̂]π.τ if m = true or
twe

= ♭↑π.τ (tyj
[♭(r̂e)σ̂]π.τ ), otherwise. Here, the conditions (T1)-(T3) are clearly

satisfied. We now construct the rest of this subtree by mirroring the rewrite steps
in the original tree (which is always possible due to the fact that UP(rj |τ ) is NO),
and once we encounter the rewrite step that we moved to the top, i.e., once we
use a rewrite step at position π.τ , we skip this rewrite step and directly go on
with the e-th successor if we are in a path that went to the e-th successor in the
initial rewrite step, as described above. In the following, we distinguish between
two different cases for a rewrite step at a node u:

(A) We use a step with
i
↪→P in Tyj at a position orthogonal to π.τ .

(B) We use a step with
i
↪→P in Tyj

at a position below π.τ . Note that this is the
more interesting case, where we need to use the properties L and NE.

Note that we cannot rewrite above π.τ before rewriting at position π.τ due to the
innermost restriction.
(A) If we have tu

i
↪→P {pg1

pu
: tg1 , . . . ,

pg
h

pu
: tgh}, then there is a rule ℓ̄ → {p̄1 :

r̄1, . . . , p̄h : r̄h}m ∈ P, a substitution δ, and a position ζ ∈ N+ with ♭(tu|ζ) = ℓ̄δ ∈
ANFP . Furthermore, let ζ⊥π.τ . Then, we have t′e.u|ζ

.
=(T1) tu[r̂eγ]π.τ |ζ = tu|ζ for

the substitution γ such that tu|π.τ = ℓ̂γ, and we can rewrite t′e.u using the same rule,
same substitution, and same position. Then (T3) is again satisfied. Furthermore,

we have t′e.gj = t′e.u[r̄eδ]ζ if ζ ∈ posD#(t′e.u) and m = true, t′e.gj = ♭↑ζ(t
′
e.u[r̄eδ]ζ) if

ζ ∈ posD#(t′e.u) and m = false, t′e.gj = t′e.u[♭(r̄e)δ]ζ if ζ /∈ posD#(t′e.u) and m = true,

or t′e.gj = ♭↑ζ(t
′
e.u[♭(r̄e)δ]ζ) if ζ /∈ posD#(t′e.u) and m = false. In all four cases we get

(T1) (using the same substitution γ) and (T2) as well.

(B) If we have tu
i
↪→P {pg1

pu
: tg1 , . . . ,

pg
h

pu
: tgh}, then there is a rule ℓ̄ → {p̄1 :

r̄1, . . . , p̄h : r̄h}m ∈ P, a substitution δ, and a position ζ ∈ N+ with ♭(tu|ζ) =

ℓ̄δ ∈ ANFP . Furthermore, let ζ > π.τ . Since ℓ̂ → {p̂1 : r̂1, . . . , p̂h : r̂h} is L and

NE, we know that ℓ̂ contains exactly the same variables as r̂e and all of them
exactly once. Furthermore, since UP(rj |τ ) is non-overlapping, we know that the
rewriting must be completely inside the substitution γ for the substitution γ
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such that tu|π.τ = ℓ̂γ, i.e., there is a position αc of a variable c in ℓ̂ and another
position βc with π.τ.αc.βc = ζ. Let φe(c) be the (unique) variable position of c
in r̂e. Then, we have t′e.u|π.τ.φe(c).βc

.
=(T1) tu[r̂eγ]π.τ |π.τ.φe(c).βc

= r̂eγ|φe(c).βc
=

γ(c)|βc = ℓ̂σ̂|αc.βc = tu|π.τ.αc.βc , and we can rewrite t′e.u using the same rule,
same substitution, and position π.τ.φe(c).βc. Again, in all four cases (T1)-(T3) are
satisfied.

1.2. π /∈ posD#(tx)

If we have π /∈ posD#(tx), then we can simply use the non-annotated old ADP
instead of the old one. Since we would remove all annotations in the right-hand
side of the rule anyway, due to π /∈ posD#(tx), this leads to the same labels in the
resulting P-CT.

Second Case

Next, we prove the theorem in the case where UP(rj |τ ) is NO and all rules in
UP(rj |τ ) have the form ℓ′ → {1 : r′} for some terms ℓ′ and r′.

The proof uses the same idea as in the first case but the construction of Φ(◦) is
easier since UP(rj |τ ) is non-probabilistic. First assume that UP(rj |τ ) is not weakly
innermost terminating. This means that after using the ADP ℓ −→ {p1 : r1, . . . , pk :
rk}m as we did in the soundness proof for the first case, every subterm at a
position above π.τ will never be in NFP in the subtree starting at the j-th successor
yj . Furthermore, since all rules in UP(rj |τ ) have the form ℓ′ → {1 : r′}, we can
simply remove all nodes that perform a rewrite step below π.τ . To be precise, if
there is a node v that performs a rewrite step below position π.τ , then we have
tv

i
↪→P {1 : tw} for the only successor w of v. Here, we have tw

.
= tv[r

′σ]ζ for the
used substitution σ and position ζ below π.τ . The construction Ψ(Tyj

) contracts
all edges (x, y) where we use a rewrite step at a position below π.τ . This only
removes R-nodes, as there is no annotation below or at position π.τ . Furthermore,
we adjust the labeling such that the subterm at position π.τ remains the same for
the whole CT. Finally, we exchange the rewrite step at the root x from using the
old ADP to using the new ADP. Since all subterms at a position above π.τ will
never be reduced to normal forms in the original CT, it does not matter which
subterms really occur. It is easy to see that Φ(Tx) is a valid P-CT and that (a)
and (b) hold w.r.t. Tx and Φ(Tx), and this ends the proof if UP(rj |τ ) is not weakly
innermost terminating.

If UP(rj |τ ) is weakly innermost terminating, then it follows directly that it
is also confluent and terminating [23, Thm. 3.2.11]. We can use the construction
Ψ(◦) from the first case to iteratively push the next innermost rewrite step that is
performed below position π.τ to a higher position in the tree, until we reach the
node that performs the rewrite step at position π.τ . Note that we do not need the
conditions L or NE for the used rule here, because only Case (A) of the construction
can happen. There is no rewrite step below possible (Case (B)), since we move an
innermost rewrite step further up and there is no rewrite step above possible, since
before doing this construction it was a valid innermost P-CT. Since UP(rj |τ ) is
terminating, this construction ends after a finite number of Ψ(◦)-applications in
a tree T

(∞)
yj . Now T

(∞)
yj first rewrites below or at position π.τ until it is a normal

form. Since all rules in UP(rj |τ ) have the form ℓ′ → {1 : r′}, these rewrite steps are
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a single path in T
(∞)
yj , and it does not matter how long the path is. Furthermore,

it does not matter which rewrite strategy we use, since UP(rj |τ ) is confluent. We
will always reach the same normal form at the end of this path. Hence, we can
replace the steps with the old ADP and the corresponding innermost rewrite steps
in the CT by a step with the new ADP (where the rewriting does not necessarily
correspond to the innermost strategy), i.e., we move this non-innermost step directly
to the point where the ADP is applied. We will reach the same normal form and
can copy the rest of the tree again.

Third Case

Finally, we prove the theorem in the case where UP(rj |τ ) is NO, rj |τ is a ground
term, and we have Dj

i
↪→P,π.τ {q1 : E1, . . . , qh : Eh}, i.e., it is an innermost step.

Once again, we use the same idea as in the proof for the second case but the
construction of Φ(◦) is, again, easier. Note that if UP(rj |τ ) is non-overlapping, rj
contains no variable below position τ , and we perform an innermost rewrite step,
then this is always an innermost rewrite step in every possible CT and this is the
only possible rewrite step at this position. Hence, we can move this innermost step
directly after the use of the ADP using the construction Ψ(◦). Again, here only
Case (A) can happen. The reason is that we have to perform this rewrite step
eventually if we want to rewrite above position τ , and all other rewrite steps that
we can perform in such a situation would be at orthogonal positions. So we get the
same normal forms in the leaves with the same probability. ⊓⊔

Next, we show why the rewriting processor needs the new requirement L
that was not imposed in the non-probabilistic setting. More precisely, we give
counterexamples for soundness if the used rule is not left-linear, i.e., a variable
occurs more than once in the left-hand side, and if the used rule is not right-linear,
i.e., a variable occurs more than once in a term on the right-hand side. The other
new requirement, namely NE, is currently used in the soundness proof, but we
were unable to find a counterexample to soundness if the used rule is not NE.
In fact, we conjecture that one can omit this requirement, but then one needs a
much more complicated construction and estimation of the resulting termination
probability in the soundness proof. The reason is that with only L we can guarantee
that performing this rewrite step at a (possibly) non-innermost redex can only
increase the probability of innermost termination for the rewritten subterm but not
decrease it. Increasing the probability of termination for a proper subterm without
any annotations means that we have a higher probability to apply a rewrite step at
the position of an annotated symbol. Remember that we have to rewrite redexes
with annotated root symbol on each path of the CT infinitely often (the nodes that
are labeled P ), hence a higher probability of termination of the proper subterm
leads to a lower probability of the leaves in the actual CT as the probability to
rewrite redexes with annotated root is higher. However, proving this requires a
much more involved approximation of the probability for termination than our
current proof, where we additionally require NE.
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Example 35 (Left-Linearity is Required for Soundness). To see why left-linearity
is required for soundness in the probabilistic setting, consider the ADP problem10

with

g(f(x, y)) → {1 : d(G(f(a, a)),G(f(a, a)),G(f(a, a)))}false
f(x, x) → {1 : e(f(a, a))}true

a → {1/2 : b1, 1/2 : b2}true

This example could also be made non-erasing by adding x as an additional argument
to e and by instantiating x, y by all possible values from {b1, b2} in the g-rule. This
ADP problem is not iAST, as it allows for the following CT whose leaves have a
probability < 1.

1 G(f(a, a))

1/2 G(f(b1, a)) 1/2 G(f(b2, a))

1/4 G(f(b1, b1)) 1/4 G(f(b1, b2)) 1/4 G(f(b2, b1)) 1/4 G(f(b2, b2))

1/4 G(e(f(a, a))) 1/4 G3(f(a, a)) 1/4 G3(f(a, a)) 1/4 G(e(f(a, a)))

. . . . . .

Here,G3(f(a, a)) is an abbreviation for the term d(G(f(a, a)),G(f(a, a)),G(f(a, a))).
The paths starting in G(e(f(a, a))) can never use a rewrite step with the g-ADP
anymore and therefore, they converge with probability 1 in our CT. So we can
rewrite a single G-term to a leaf with a probability of 1/2 and to three copies of
itself with a probability of 1/2. Hence, this CT corresponds to a random walk that
terminates with probability < 1. But without the restriction to left-linearity, we
could apply the rewriting processor and replace the g-ADP by g(f(x, y)) → {1 :

d(G(e(f(a, a))),G(e(f(a, a))),G(e(f(a, a))))}false. Now in every path of the CT this ADP
can be used at most once and hence, the resulting ADP problem is iAST, which
shows unsoundness of the rewriting processor without left-linearity.

Example 36 (Right-Linearity is Required for Soundness). For right-linearity con-
sider the ADP problem11 P with

f(e(b1, b1)) → {1 : h(F(d(g)),F(d(g)),F(d(g)),F(d(g)))}false
d(x) → {1 : e(x, x)}true

g → {1/2 : b1, 1/2 : b2}true

Note that for the term d(g) we have the following innermost P-rewrite sequence
tree:

1 d(g)

1/2 d(b1) 1/2 d(b2)

1/2 e(b1, b1) 1/2 e(b2, b2)

10 Here, we have already applied the usable rules processor to turn the flag of the g-ADP
to false, and we have moved the f-ADP with F on its right-hand side to another ADP
problem via the dependency graph processor.

11 Again, this ADP problem results from an actual PTRS, where we already applied the
usable rules processor and the usable terms processor before.
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Hence, the term F(d(g)) can rewrite to F(e(b1, b1)) and then to four occurrences
of F(d(g)) again with a chance of 1/2, or it reaches a leaf with a chance of 1/2
as it can never rewrite an annotated redex again. This is once again a random
walk that terminates with probability < 1, so that our ADP problem is not
iAST. But without the restriction to right-linearity of the used rule, it would be
possible to apply the rewriting processor and replace the f-ADP by f(e(b1, b1)) →
{1 : h(F(e(g, g)),F(e(g, g)),F(e(g, g)),F(e(g, g)))}false. The term e(g, g) can now be
rewritten to the term e(b1, b1) with a probability of 1/4, whereas one obtains a
term of the form e(bi, bj) with i ̸= 1 or j ̸= 1 with a probability of 3/4. Hence,
now F(e(g, g)) can rewrite to a term with four subterms F(e(g, g)) only with a
probability of 1/4, or it reaches a leaf with a chance of 3/4. This is now a random
walk that terminates with probability 1 and the same happens for all possible
CTs. Hence, the resulting ADP problem is iAST, which shows unsoundness of the
rewriting processor without right-linearity.

As mentioned in Footnote 8, the rewriting processor is complete in the non-
probabilistic setting. The reason is that there one used a different definition to
determine when a DP problem (P,R) is “not terminating” (in [18], this was called
“infinite”). There, a problem is not only considered to be non-terminating if there
is an infinite (P,R)-chain, but also if R is not terminating. In the future, we will
examine whether such a modified definition is also useful in the probabilistic setting.
However, as in [18], this modified definition would mean that there can be ADP
problems that are both “iAST” and “non iAST”.

B Further ADP Transformation Processors

Now we present three further transformational ADP processors which we adapted
to the probabilistic setting, viz., the instantiation, forward instantiation, and rule
overlap instantiation processors. The latter is a weaker version of the narrowing
processor, which is unsound in the probabilistic setting in general, as we will see in
Ex. 42.

B.1 Instantiation

In the non-probabilistic setting [18], the idea of the instantiation processor is to
consider all possible predecessors s → t of a dependency pair u → v in a chain and
to compute the skeleton Cap(t) of t that remains unchanged when we reduce tσ to
uσ, i.e., when going from one DP in a chain to the next. Then Cap(t) and u must
unify with some mgu δ, and tσ

i→∗
R uσ implies that σ is an instance of δ. Hence,

the instantiation processor replaces the DP u → v by uδ → vδ.
As in [18], CapP(t) results from replacing all those subterms of t by different

fresh variables whose root is a defined symbol of P. Here, multiple occurrences
of the same subterm are also replaced by pairwise different variables. So if g ∈ D
and c ∈ C, then CapP(c(g(x), g(x))) = c(x1, x2). There exist several improvements
in order to replace this definition of CapP by more precise approximations of the
“skeleton”, see, e.g., [18, 24, 39]. Moreover, one could also improve CapP by only



A Complete DP Framework for iAST of PTRSs 49

regarding the root symbols of left-hand sides of ADPs with the flag m = true as
“defined”.

To adapt the instantiation processor to ADPs, we consider all terms in the
distributions on the right-hand sides of all predecessors. Note that in the ordinary
DP framework, one only instantiates the DPs, but the rules are left unchanged.
Since our ADPs represent both DPs and rules, when instantiating an ADP, we
add a copy of the original ADP without any annotations (i.e., this corresponds to
the original non-instantiated rule which can now only be used for R-steps). In the
following, vr(P) is a variable-renamed copy of P where all variables are replaced
by fresh ones.

Theorem 37 (Instantiation Processor). Let P be an ADP problem with
P = P ′ ⊎ {ℓ −→ {p1 : r1, . . . , pk : rk}m}. Then Proci is sound and complete, where
Proci(P)={P ′ ∪N ∪ {ℓ −→ {p1 : ♭(r1), . . . , pk : ♭(rk)}m}} with

N = {ℓδ −→ {p1 : r1δ, . . . , pk : rkδ}m∣∣∣∣∣ ℓ′ −→ {p′1 : r′1, . . . , p
′
h : r′h}m

′ ∈ vr(P), 1 ≤ j ≤ h,
t ⊴# r′j , δ = mgu(CapP(t

#), ℓ#), {ℓ′δ, ℓδ} ⊆ ANFP

}

Example 38. Consider the PTRS R with the rules f(x, y, z) → {1 : g(x, y, z)}
and g(a, b, u) → {1/2 : f(u, u, u), 1/2 : g(a, b, u)}. Its ADPs are f(x, y, z) → {1 :
G(x, y, z)}true and g(a, b, u) → {1/2 : F(u, u, u), 1/2 : G(a, b, u)}true. Using only the
processors of Sect. 4, we cannot prove that R is iAST. However, we can apply the
instantiation processor on the f-ADP.

There is a term t = F(u, u, u) in the right-hand side of the g-ADP. As it
does not contain defined symbols, we have CapR(#ε(t)) = CapR(t) = t. For the
left-hand side ℓ = f(x, y, z), δ = mgu(t,#ε(ℓ)) = mgu(t,F(x, y, z)) instantiates x,
y, and z by u. So the instantiation processor replace the f-ADP by f(u, u, u) →
{1 : G(u, u, u)}true (and moreover, we add f(x, y, z) → {1 : g(x, y, z)}true). We
can now remove the annotation in the transformed f-ADP by the dependency
graph processor, and afterwards remove the annotation in the g-ADP by applying
the reduction pair processor with the polynomial interpretation that maps every
function symbol to the constant 0 except for G that is mapped to 1. As we removed
all annotations, DP(R), and hence R must be iAST.

Before we can prove soundness and completeness of the new instantiation
processor, we start with a corollary that expresses the essential property of the
CapP -function.

Corollary 39 (Property of CapP). Let t, u ∈ T
(
Σ#,V

)
. If tσ

i→∗
np(P) u for

some substitution σ, then u = CapP(t)δ for some substitution δ which only differs
from σ on the fresh variables that are introduced by CapP .

Proof. Let tσ
i→np(P),ρ1

u1
i→np(P),ρ2

. . .
i→np(P),ρn

un = u. Let {π1, . . . , πm} be
the set of positions where CapP replaces the subterms of t by corresponding fresh
variables x1, . . . , xm. By the definition of CapP for each ρi there is a higher position
πj ≤ ρi. Hence, u can at most differ from tσ on positions below a πj . We define δ
to be like σ but on the fresh variables x1, . . . , xm we define δ(xj) = u|πj

. Then by
construction CapP(t)δ = u and δ and σ differ only on the fresh variables. ⊓⊔
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We now prove Thm. 37, i.e., we prove soundness and completeness of the
instantiation processor.

Proof. We will use the following two observations. As in the proof of Thm. 23,
let P ′ = P ′ ∪ N ∪ {ℓ −→ {p1 : ♭(r1), . . . , pk : ♭(rk)}m} and P = P ′ ∪ {ℓ −→ {p1 :
r1, . . . , pk : rk}m}. First, note that ANFP = ANFP = ANFP′ , since the left-hand
sides in P and P ′ are either already from rules in P or instantiated left-hand
sides from P. So it suffices to consider only ANFP . Second, assume that there
exists a P-CT T that converges with probability < 1 whose root is labeled with
(1 : t) and ♭(t) = sθ ∈ ANFP for a substitution θ and an ADP s → . . . ∈ P, and
posD#(t) = {ε}. If in addition, the ADP ℓ −→ {p1 : r1, . . . , pk : rk}m may only be
used at the root, then we know that not only P is not iAST but also that P ′ is not
iAST. The reason is that if only the root x uses the ADP ℓ −→ {p1 : r1, . . . , pk : rk}m
then all the subtrees starting at one of its direct successors xE = {y1, . . . , yk} are
P ′-CTs. Furthermore, since T converges with probability < 1, there must be at
least one subtree T[yiE

∗] that starts at the node yi for some 1 ≤ i ≤ k and also
converges with probability < 1.
Soundness: Let P be not iAST. Then by Lemma 34 there exists a P-CT T =
(V,E, L, P ) that converges with probability < 1 whose root is labeled with (1 : t)
and ♭(t) = sθ ∈ ANFP for a substitution θ and an ADP s → . . . ∈ P, and
posD#(t) = {ε}. We will now create a P-CT T′ = (V,E,L′, P ), with the same
underlying tree structure, and an adjusted labeling such that pTx = pT

′

x for all
x ∈ V . Furthermore, we will at most use the ADP ℓ −→ {p1 : r1, . . . , pk : rk}m at
the root. Since the tree structure and the probabilities are the same, we then get
|T′|Leaf = |T|Leaf < 1, and hence, using our previous discussion, P ′ is not iAST
either.

The core idea is that every rewrite step with ℓ −→ {p1 : r1, . . . , pk : rk}m at
a node v that is not the root can also be done with a rule from N , or we can
use ℓ −→ {p1 : ♭(r1), . . . , pk : ♭(rk)}m if the annotations do not matter, e.g., we
rewrite at a position that is not annotated. We construct the new labeling L′ for
the P-CT T′ inductively such that for all nodes x ∈ V \ Leaf with children nodes
xE = {y1, . . . , yh} we have t′x

i
↪→P {py1

px
: t′y1

, . . . ,
pyh

px
: t′yh

} and for all non-root

nodes in P we even have t′x
i
↪→P′ {

py1

px
: t′y1

, . . . ,
pyh

px
: t′yh

}. Let X ⊆ V be the set of

nodes x where we have already defined the labeling L′(x). During our construction,
we ensure that the following property holds:

For every node x ∈ X we have tx
.
= t′x and posD#(tx) ⊆ posD#(t′x). (26)

This means that the corresponding term tx for the node x in T has the same
structure as the term t′x in T′, and additionally, every annotation in tx also exists
in t′x. The second condition ensures that if we rewrite using Case (p) or (pr) of
Def. 11 in T, we do the same in T′, i.e., the corresponding node x remains in P in
T′. We label the root of T′ by (1 : t). Here, (26) obviously holds. As long as there
is still an inner node x ∈ X such that its successors are not contained in X, we do
the following. Let xE = {y1, . . . , yh} be the set of its successors. We need to define
the corresponding terms t′y1

, . . . , t′ym
for the nodes y1, . . . , yh. Since x is not a leaf

and T is a P-CT, we have tx
i
↪→P {py1

px
: ty1

, . . . ,
pyh

px
: tyh

}. We have the following
three different cases:
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(A) We have tx
i
↪→P {py1

px
: ty1

, . . . ,
pyh

px
: tyh

} with an ADP ℓ′ −→ {p1 : r′1, . . . , ph :

r′h}m
′
that is either different to ℓ −→ {p1 : r1, . . . , pk : rk}m or the node x is the root,

using the position π, and a substitution σ such that ♭(tx|π) = ℓσ ∈ ANFP . Then,
tx

.
=(IH) t

′
x, and hence also ♭(t′x|π) = ℓσ ∈ ANFP . Thus, we can rewrite the term t′x

using the same ADP, the same position and the same substitution. This means
that we have t′x

i
↪→P {py1

px
: t′y1

, . . . ,
pyh

px
: t′yh

}. Let 1 ≤ j ≤ h. If π ∈ posD#(tx),

then also π ∈ posD#(t′x) by (26). Whenever we create annotations in the rewrite
step in T (a step with (p) or (pr)), then we do the same in T′ (the step is also a
(p)- or (pr)-step, respectively), and whenever we remove annotations in the rewrite
step in T′ (a step with (r) or (irr)), then we do the same in T (the step is also
either a (r)- or (irr)-step). Therefore, we also get posD#(tyj

) ⊆ posD#(t′yj
) for all

1 ≤ j ≤ k and (26) is again satisfied.

(B) We have tx
i
↪→P {py1

px
: ty1 , . . . ,

pyk

px
: tyk

} using the ADP ℓ −→ {p1 : r1, . . . , pk :

rk}m, the position π, and a substitution σ such that ♭(tx|π) = ℓσ ∈ ANFP , and
π ̸∈ posD#(tx). Since tx

.
=(IH) t′x, we can rewrite the term t′x using the ADP

ℓ −→ {p1 : ♭(r1), . . . , pk : ♭(rk)}m, the same position, and the same substitution.
This means that we have t′x

i
↪→P {py1

px
: t′y1

, . . . ,
pyk

px
: t′yk

} and (26) is again satisfied.
In order to prove this, one can do a similar analysis as above. Note that only cases
(irr) and (r) can be applied in T (since π ̸∈ posD#(tx)), and we would remove the
annotations of the terms rj anyway in those cases.

(C) Finally, we have tx
i
↪→P {py1

px
: ty1 , . . . ,

pyk

px
: tyk

} using the ADP ℓ −→ {p1 :

r1, . . . , pk : rk}m, the position π, and a substitution σ such that ♭(tx|π) = ℓσ ∈ ANFP ,
π ∈ posD#(tx), and x is not the root. Then tyj = ♭↑π(tx[rjσ]π) if m = false and
tyj = tx[rjσ]π, otherwise.

We now look at the (not necessarily direct) predecessor v of x that is in P ,
where an ADP is applied on a position above or equal to π, and where in the path
from v to x, no ADP is applied on a position on or above π. There is always such a
node v. The reason is that x is not the first node in P and by the Starting Lemma
(Lemma 34) we can assume that a step at the root of the term takes place at the
root of the CT, i.e., tx results from right-hand sides of P . Furthermore, we only use
rules with the flag m = true as otherwise, the position π would not be annotated
in tx. We show that the path from v to x can also be taken when using one of the
new instantiations of ℓ −→ {p1 : r1, . . . , pk : rk}m instead.

Let this predecessor v ∈ P use the ADP ℓ′ → {p′1 : r′1, . . . , p
′
h : r′h}m, the

position π′, and the substitution σ′. Furthermore, let τ be the position such that
π′.τ = π. Because we never rewrite at a position above π before reaching node x,
we have #ε(r

′
j |τ )σ′ = #ε(tv|π)

i→∗
np(P) #ε(tx|π) = #ε(ℓ)σ.

pv tv

P

. . .

. . .

. . .

px tx

P

. . .

. . .

. . .

. . .

From #ε(r
′
j |τ )σ′ i→∗

np(P) #ε(ℓ)σ, Cor. 39 implies #ε(ℓ)σ = CapP(#ε(r
′
j |τ ))δ for

some substitution δ that differs from σ′ at most on the variables that are introduced
by CapP . W.l.o.g. we can assume that σ′ is equal to δ on all these fresh variables, and
since the ADPs are variable-renamed, we can also assume that σ is equal to δ on all
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the fresh variables and all the variables from ℓ′. Hence, #ε(ℓ)δ = CapP(#ε(r
′
j |τ ))δ

shows there is an mgu γ of #ε(ℓ) and CapP(#ε(r
′
j |τ )) with σ = γζ for some

substitution ζ. Moreover, the property {ℓ′σ′, ℓσ} ⊆ ANFP must remain true when
replacing σ and σ′ by the more general substitution γ, i.e., {ℓ′γ, ℓγ} ⊆ ANFP . Hence,
we can apply the new ADP ℓγ −→ {p1 : r1γ, . . . , pk : rkγ}m ∈ N with the position
π and the substitution ζ. This means that we have t′x

i
↪→P {py1

px
: t′y1

, . . . ,
pyk

px
: t′yj

}
with t′yj

= t′x[rjγζ]π if m = true, or t′yj
= ♭↑π(t

′
x[rjγζ]π), otherwise. Since, σ = γζ

we directly get tyj

.
= t′yj

and posD#(tyj ) ⊆ posD#(t′yj
) so that (26) is satisfied

again, and this ends the proof.

Completeness: Let P ′ be not iAST. Then there exists a P ′-CT T = (V,E,L, P ) that
converges with probability < 1. We will now create a P-CT T′ = (V,E,L′, P ), with
the same underlying tree structure, and an adjusted labeling such that pTx = pT

′

x

for all x ∈ V . Since the tree structure and the probabilities are the same, we then
get |T′|Leaf = |T|Leaf < 1, and thus P is not iAST either.

The core idea of this construction is that every rewrite step with an ADP from
N or the ADP ℓ −→ {p1 : ♭(r1), . . . , pk : ♭(rk)}m is also possible with the more
general ADP ℓ −→ {p1 : r1, . . . , pk : rk}m that may also contain more annotations.
We construct the new labeling L′ for the P-CT T′ inductively such that for
all inner nodes x ∈ V \ Leaf with children nodes xE = {y1, . . . , ym} we have
t′x

i
↪→P {py1

px
: t′y1

, . . . ,
pym

px
: t′yh

}. Let X ⊆ V be the set of nodes x where we have

already defined the labeling L′(x). During our construction, we ensure that the
following property holds (analogous to the soundness construction):

For every node x ∈ X we have tx
.
= t′x and posD#(tx) ⊆ posD#(t′x). (27)

We label the root of T′ exactly as the root of T. Here, (27) obviously holds. As
long as there is still an inner node x ∈ X such that its successors are not contained
in X, we do the following. Let xE = {y1, . . . , yh} be the set of its successors. We
need to define the corresponding terms t′y1

, . . . , t′yh
for the nodes y1, . . . , yh. Since

x is not a leaf and T is a P ′-CT, we have tx
i
↪→P′ {

py1

px
: ty1 , . . . ,

pyh

px
: tyh

}. We
have the following three different cases:

(A) If it is a step with
i
↪→P using an ADP from P ′ in T, then we perform a rewrite

step with the same ADP, the same position, and the same substitution in T′.
This is analogous to Case (A) of the soundness proof.

(B) If it is a step with
i
↪→P using the ADP ℓ −→ {p1 : ♭(r1), . . . , pk : ♭(rk)}m in T,

then we use the ADP ℓ −→ {p1 : r1, . . . , pk : rk}m that contain more annotations
in T′. Since we use the same rule but with more annotations, we end up with
tyj

.
= t′yj

and posD#(tyj ) ⊆ posD#(t′yj
) again.

(C) If it is a step with
i
↪→P using an ADP from N in T, then we use the more

general ADP ℓ −→ {p1 : r1, . . . , pk : rk}m in T′. For this rewrite step, we use
the substitution δ such that γδ = σ.

⊓⊔

B.2 Forward Instantiation

Next we adapt the forward instantiation processor and prove its soundness and
completeness. In the non-probabilistic setting, the idea of the forward instantiation
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processor [18] is to consider all possible successors u → v of a DP s → t in a chain,
again, in order to find the skeleton that remains unchanged when rewriting tσ to uσ.
To find this skeleton, we reverse the rules of the TRS and then proceed as for the
instantiation processor. Moreover, we can restrict ourselves to the (reversed) usable
rules of t. Note that these reversed rules might violate the variable conditions of
TRSs, i.e., the right-hand side of a rule may contain variables that do not occur in
the left-hand side or the left-hand side may be a variable.

Theorem 40 (Forward Instantiation Processor). Let P be an ADP problem
with P = P ′ ⊎ {ℓ −→ {p1 : r1, . . . , pk : rk}m}. Then Procf is sound and complete,
where Procf={P ′ ∪N ∪ {ℓ −→ {p1 : ♭(r1), . . . , pk : ♭(rk)}m}}. Here,

N =

{
ℓδ −→ {p1 : r1δ, . . . , pk : rkδ}m∣∣∣∣∣

ℓ′ −→ {p′1 : r′1, . . . , p
′
h : r′h}m

′
∈ vr(P), 1 ≤ j ≤ k, t ⊴# rj ,

Q =
(
np(UP(t

#))
)−1

,

δ = mgu(t#,CapQ(ℓ′#)), {ℓδ, ℓ′δ} ⊆ ANFP

}

Example 41. Consider the PTRS P with the rules
f(x) → {1/2 : g(x), 1/2 : h(x)}
g(a) → {1 : f(q(a))}
h(b) → {1 : f(q(b))}

q(a) → {1 : a}
q(b) → {1 : b}

After the usable rules and the usable terms processor, we obtain the ADPs
f(x) → {1/2 : G(x), 1/2 : H(x)}false

g(a) → {1 : F(q(a))}false

h(b) → {1 : F(q(b))}false

q(a) → {1 : a}true

q(b) → {1 : b}true

In this case, the instantiation processor is useless because both, the mgu of
CapP(F(q(a))) = F(y) and F(x), and the mgu of CapP(F(q(b))) = F(z) and
F(x), do not modify F(x). However, the forward instantiation processor can re-
place the original f-ADP with f(a) → {1/2 : G(a), 1/2 : H(a)}false and f(b) → {1/2 :
G(b), 1/2 : H(b)}false. We can now remove the annotations of the normal forms G(b)
and H(a) with the usable terms processor and apply the reduction pair processor
with the polynomial interpretation that maps every function symbol to the constant
1, in order to remove all annotations of both new f-ADPs. Finally, we can remove
all remaining annotations and prove iAST using the dependency graph processor.
Note that without the forward instantiation processor, we would have to find a
polynomial interpretation that is at least linear.

Ex. 41 shows that the processors that instantiate a given ADP are not only
needed in some cases for a successful innermost almost-sure termination proof (as
in Ex. 38), but sometimes they can also ease the search for polynomials in the
reduction pair processor, the most time-consuming part of the ADP framework.

We now prove Thm. 40, i.e., soundness and completeness of Thm. 40. The
construction in the proof is very similar to the one for the proof of Thm. 37.

Proof. As in the proof of Thm. 37, let P ′ = P ′ ∪ N ∪ {ℓ −→ {p1 : ♭(r1), . . . , pk :
♭(rk)}m} and P = P ′ ∪ {ℓ −→ {p1 : r1, . . . , pk : rk}m}.
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Soundness: The core proof idea, the construction itself, and even the induction
hypothesis are completely the same as for the soundness proof of Thm. 37, only
the third case (C) changes.
(C) If we have tx

i
↪→P {py1

px
: ty1 , . . . ,

pyk

px
: tyk

} using the ADP ℓ −→ {p1 :

r1, . . . , pk : rk}m, the position π ∈ posD#(s), and a substitution σ such that
♭(tx|π) = ℓσ ∈ ANFP , and x is not the root, then tyj = ♭↑π(tx[rjσ]π) if m = false
and tyj

= tx[rjσ]π, otherwise.
First consider the case, where there is no successor v of x where an ADP is

applied at a position τ ≥ π with τ ∈ posD#(tv), or an ADP is applied on a position
above π before reaching such a node v. Then, we can use ℓ −→ {p1 : ♭(r1), . . . , pk :
♭(rk)}m instead, because the annotations will never be used.

Otherwise, there exists a successor v of x where an ADP is applied at a position
τ ≥ π with τ ∈ posD#(tv), and no ADP is applied on a position above π. We
show that the path to this successor can also be taken when using one of the
new instantiations of ℓ −→ {p1 : r1, . . . , pk : rk}m instead.12 At node v we use an
ADP ℓ′ −→ {p′1 : r′1, . . . , p

′
h : r′h}m

′
, a position τ with τ ≥ π and τ ∈ posD#(tv), a

substitution σ′, and on the path from x to v there is no ADP used with a position
above τ , and no ADP used with a position below τ that has a flag m = false. This
means we have #ε(rj |τ )σ

i→∗
np(P) #ε(ℓ

′)σ′.

px tx

P

. . .

. . .

. . .

pv tv

P

. . .

. . .

. . .

. . .

Let Q′ = np(UP(#ε(rj |τ ))) and let Q = Q′−1. Note that #ε(rj |τ )σ
i→∗
Q′ #ε(ℓ

′)σ′

and hence, #ε(ℓ
′)σ′ i→∗

Q #ε(rj |τ )σ. By Cor. 39 one obtains
#ε(rj |τ )σ = CapQ(#ε(ℓ

′))δ for some substitution δ that differs from σ′ at most
on the variables that are introduced by CapQ. W.l.o.g. we can assume that σ′ is
equal to δ on all these fresh variables, and since the ADPs are variable-renamed,
we can also assume that σ is equal to δ on all the fresh variables and all the
variables from #ε(ℓ

′). Hence, #ε(rj |τ )σ = CapQ(#ε(ℓ
′))σ shows there is an mgu γ

of #ε(rj |τ ) and CapQ(#ε(ℓ
′)) with σ = γζ for some substitution ζ. Moreover, the

property {ℓσ, ℓ′σ′} ⊆ ANFP must remain true when replacing σ and σ′ by the more
general substitution γ, i.e., {ℓγ, ℓ′γ} ⊆ ANFP . Hence, we can apply the new ADP
ℓγ −→ {p1 : r1γ, . . . , pk : rkγ}m ∈ N with the position π and the substitution ζ.
This means that we have t′x

i
↪→P {py1

px
: t′y1

, . . . ,
pyk

px
: t′yj

} with t′yj
= ♭↑π(t

′
x[rjγζ]π)

if m = true, or t′yj
= t′x[rjγζ]π, otherwise. Since, σ = γζ we directly get tyj

.
= t′yj

and posD#(tyj
) ⊆ posD#(t′yj

) so that (26) is satisfied again, and this ends the proof
for this case. The rest of the proof is completely analogous to the one of Thm. 37.

Completeness: Completely the same as for Thm. 37. ⊓⊔

12 It suffices to consider only one of those successors v of x to find an instantiation of the
ADP that could be used instead of the old ADP in order to reach all such successors.
The reason is that this instantiation is equal or more general than the actual concrete
instantiation of the ADP that was used to perform the ADP-step in the actual CT.
Hence, every other such successor can also be used with the more general instantiation
of the ADP.
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B.3 Narrowing

The narrowing processor [2, 18] can only be used in a weaker version in the
probabilistic setting. Let P = P ′ ⊎ {ℓ −→ {p1 : r1, . . . , pk : rk}m} be an ADP
problem. For each 1 ≤ j ≤ k and each t ⊴# rj , we define its narrowing substitutions
and its narrowing results (as in [37], where narrowing was adapted to dependency
tuples for complexity analysis of ordinary term rewriting). If we have to perform
rewrite steps on (an instance of) t in order to reach the next ADP usage at an
annotated position, then the idea of the narrowing processor is to perform the
first step of this reduction already on the ADP ℓ −→ {p1 : r1, . . . , pk : rk}m. So
whenever there is a t ⊴# rj and a position τ in t such that t|τ unifies with the

left-hand side ℓ′ of some rule ℓ′ −→ {p1 : r′1, . . . , pk : r′k}m
′ ∈ vr(P) using an mgu

δ such that ℓδ, ℓ′δ ∈ ANFP , then δ is a narrowing substitution of t. While the
corresponding narrowing result could also be defined for probabilistic rules, to
simplify the presentation let us assume for the moment that the rule just has the
form ℓ′ → {1 : r′}. Then the corresponding narrowing result is s = t[r′]τδ if we
rewrite at an annotated position of t, and s = t[♭(r′)]τδ otherwise.

If δ1, . . . , δd are all narrowing substitutions of t with the corresponding narrowing
results s1, . . . , sd, then one would like to define a narrowing processor that replaces
ℓ −→ {p1 : r1, . . . , pk : rk}m by ℓδe → {p1 : r1δe, . . . , pj : se, . . . , pk : rkδe}, for all
1 ≤ e ≤ d.

In addition, there could be another subterm t′ ⊴# rj (with t′ ̸= t) which was
involved in a CT (i.e., t′#σ

i→∗
np(P) ℓ

′σ′ for some substitutions σ, σ′), but this CT is

no longer possible when instantiating t′ to t′δ1, . . . , t
′δd. We say that t′ is captured

by δ1, . . . , δd if for each narrowing substitution ρ of t′, there is a δe with 1 ≤ e ≤ d
such that δe is more general than ρ (i.e., ρ = δeρ

′ for some substitution ρ′). So the
narrowing processor has to add another ADP ℓ −→ {p1 : #capt1(δ1,...,δd)

(r1), . . . , pk :
#captk(δ1,...,δd)

(rk)}m, where capti(δ1, . . . , δd) contains all positions of subterms
t′ ⊴# ri which are not captured by the narrowing substitutions δ1, . . . , δd of t.
(Therefore, in contrast to instantiation and forward instantiation, here we do not
have to add another copy of the original rule without annotations.)

However, the main idea of the narrowing processor, i.e., performing the first
rewrite step directly on the ADPs, is unsound for probabilistic ADP problems, as
shown by the following example.

Example 42. Consider the PTRS R with the rules

f(b1, d1) → {1 : f(a, e)}
f(b2, d2) → {1 : f(a, e)}

a → {1/2 : b1, 1/2 : b2}

e → {1 : d1}
e → {1 : d2}

This PTRS is not iAST. The usable rules and the usable terms processor transform
the initial ADP problem into P with

f(b1, d1) → {1 : F(a, e)}false

f(b2, d2) → {1 : F(a, e)}false

a → {1/2 : b1, 1/2 : b2}true

e → {1 : d1}true

e → {1 : d2}true

Indeed, this ADP problem allows for the CT below on the left without any leaves.
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Note that all occurring terms are ground terms, hence all narrowing substitutions
are just the identity function.

But if we apply the narrowing processor to the ADPs in order to rewrite e, then
we obtain the four new ADPs

f(b1, d1) → {1 : F(a, d1)}false

f(b1, d1) → {1 : F(a, d2)}false
f(b2, d2) → {1 : F(a, d1)}false

f(b2, d2) → {1 : F(a, d2)}false

This new ADP problem is iAST, as we will reach a normal form with a probability
of 1/2 after each application of an ADP. For example, if we use the first ADP, then
we get the CT below on the right. There we reach the normal form F(b2, d1) with
probability 1/2.

1 F(b1, d1)

1 F(a, e)

1/2 F(b1, e) 1/2 F(b2, e)

1/2 F(b1, d1) 1/2 F(b2, d2)

. . . . . .

1 F(b1, d1)

1 F(a, d1)

1/2 F(b1, d1) 1/2 F(b2, d1)

. . .

The difference is that when narrowing the ADP, we have to decide how to rewrite
e before we split the term into different ones with a certain probability, i.e., before
we rewrite a to {1/2 : b1, 1/2 : b2}.

Thus, in the probabilistic setting, we can only transform the ADP by applying
a rewrite rule if we can ensure the same conditions as for the rewriting processor.
So in the probabilistic setting, the narrowing processor can only instantiate the
ADP by the narrowing substitutions, but it must not perform any rewrite step.
Instead, the rewrite steps have to be done via the rewriting processor afterwards.
Thus, instead of calling it narrowing processor, we call it rule overlap instantiation
processor as it only instantiates the ADPs but does not perform any rewrite steps.

Theorem 43 (Rule Overlap Instantiation Processor). Let P be an ADP
problem with P = P ′ ⊎ {ℓ −→ {p1 : r1, . . . , pk : rk}m}, let 1 ≤ j ≤ k, and let
t ⊴# rj. Let δ1, . . . , δd be all narrowing substitutions of t, where d ≥ 0. Then
Procroi={P ′ ∪N} is sound and complete, where

N =
{
ℓδe → {p1 : r1δe, . . . , pk : rkδe}

∣∣∣1 ≤ e ≤ d
}

∪
{
ℓ −→ {p1 : #capt1(δ1,...,δd)

(r1), . . . , pk : #captk(δ1,...,δd)
(rk)}m

}
Example 44. Consider R with

f(d(x)) → {3/4 : e(f(g(x)), f(h(x))), 1/4 : a}
g(a) → {1 : d(a)}
h(b) → {1 : d(b)}

The usable rules and the usable terms processor transform the initial ADP problem
into P with

f(d(x)) → {3/4 : e(F(g(x)),F(h(x))), 1/4 : a}false
g(a) → {1 : d(a)}true

h(b) → {1 : d(b)}true
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The ADP problem P (and thus also the original PTRS R) is iAST because for
every instantiation, at most one of the two “recursive F-calls” in the right-hand
side of the f-ADP can be applied. The reason is that we can either use the g-rule
if the variable x is instantiated with a, or we can apply the h-rule if the variable
is instantiated with b, but not both. We apply Procroi using the term F(g(x)),
whose only narrowing substitution is δ = {x/a}. The other subterm F(h(x)) with
annotated root is not captured by this substitution, and hence, we have to generate
an additional ADP where this second subterm is annotated. Thus, we replace the
former f-ADP by the following two new ADPs.

f(d(a)) → {3/4 : e(F(g(a)),F(h(a))), 1/4 : a}false

f(d(x)) → {3/4 : e(f(g(x)),F(h(x))), 1/4 : a}false

Now one can remove the annotation of F(h(a)) from the first ADP by the usable
terms processor and then apply the reduction pair processor with the polyno-
mial interpretation that maps F to 1 and all other symbols to 0 to remove all
annotations, which proves iAST. Again, proving iAST with such a simple polyno-
mial interpretation would not be possible without the rule overlap instantiation
processor.

We now prove Thm. 43, i.e., soundness and completeness of the rule overlap
instantiation processor.

Proof.

Soundness: We use the same idea as in the proof of soundness for Thm. 40 but at
a node v that uses the position π ∈ posD#(tx) we do not look at the next node
that rewrites at an annotated position below or equal to π, but at all such nodes
that can be either annotated or not.

Let P be not iAST. Then by Lemma 34 there exists a P-CT T = (V,E, L, P )
that converges with probability < 1 that starts with (1 : t) and t = sθ ∈ ANFP for
a substitution θ and an ADP s → . . . ∈ P, and posD#(t) = {ε}. Let P ′ = P ′ ∪N .
We will now create a P ′-CT T′ = (V,E, L′, P ), with the same underlying tree
structure, and an adjusted labeling such that pTx = pT

′

x for all x ∈ V . Since the tree
structure and the probabilities are the same, we then get |T′|Leaf = |T|Leaf < 1,
and hence P ′ is not iAST either.

The core idea of this construction is that every rewrite step with ℓ −→ {p1 :
r1, . . . , pk : rk}m can also be done with a rule from N . If we use ℓ −→ {p1 :
#capt1(δ1,...,δd)

(r1), . . . , pk : #captk(δ1,...,δd)
(rk)}m ∈ N , we may create fewer anno-

tations than we did when using the old ADP ℓ −→ {p1 : r1, . . . , pk : rk}m. However,
we will never rewrite at the position of the annotations that do not get created
in the CT T, hence we can ignore them. We construct the new labeling L′ for the
P ′-CT T′ inductively such that for all nodes x ∈ V \ Leaf with xE = {y1, . . . , ym}
we have t′x

i
↪→P′ {

py1

px
: t′y1

, . . . ,
pym

px
: t′ym

}. Let X ⊆ V be the set of nodes x where

we have already defined the labeling L′(x). During our construction, we ensure
that the following property holds:

For every x ∈ X we have tx
.
= t′x and posD#(tx) \ Junk(tx) ⊆ posD#(t′x). (28)
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Here, we define Junk(tx) as in the proof of Thm. 16.
For the construction, we start with the same term at the root. Here, (28)

obviously holds. As long as there is still an inner node x ∈ X such that its
successors are not contained in X, we do the following. Let xE = {y1, . . . , ym} be
the set of its successors. We need to define the corresponding sets t′y1

, . . . , t′ym
for

the nodes y1, . . . , ym. Since x is not a leaf and T is a P-CT, we have tx
i
↪→P {py1

px
:

ty1
, . . . ,

pym

px
: tym

}. We have the following three cases:

(A) If it is a step with
i
↪→P using an ADP that is different from ℓ −→ {p1 : r1, . . . , pk :

rk}m in T, then we perform a rewrite step with the same ADP, the same redex,
and the same substitution in T′. Analogous to Case (A) of the soundness proof
for Thm. 37, we can show (28) for the resulting terms.

(B) If it is a step with
i
↪→P using the ADP ℓ −→ {p1 : r1, . . . , pk : rk}m at a po-

sition π /∈ posD#(tx) in T, then we perform a rewrite step with ℓ −→ {p1 :
#capt1(δ1,...,δd)

(r1), . . . , pk : #captk(δ1,...,δd)
(rk)}m, same redex, same substitu-

tion, and same position in T′. Analogous to Case (B) of the soundness proof for
Thm. 37, we can show (28) for the resulting terms. Note that the rule that we
use contains fewer annotations than the original rule, but since π /∈ posD#(tx),
we remove all annotations from the rule during the application of the rewrite
step anyway.

(C) If it is a step with
i
↪→P using the ADP ℓ −→ {p1 : r1, . . . , pk : rk}m at a position

π ∈ posD#(tx) in T, then we look at specific successors to find a substitution δ
such that ℓδ −→ {p1 : r1δ, . . . , pk : rkδ}m ∈ N or we detect that we can use the
ADP ℓ −→ {p1 : #capt1(δ1,...,δd)

(r1), . . . , pk : #captk(δ1,...,δd)
(rk)}m and perform

a rewrite step with this new ADP in T′.

So it remains to consider Case (C) in detail. Here, we have tx
i
↪→P {py1

px
:

ty1 , . . . ,
pyk

px
: tyk

} using the ADP ℓ −→ {p1 : r1, . . . , pk : rk}m, the position

π ∈ posD#(tx), and a substitution σ such that ♭(tx|π) = ℓσ ∈ ANFP .
We first consider the case where there is no successor v of x where an ADP

is applied at an annotated position below or at π, or an ADP is applied on a
position above π before reaching such a node v. Then, we can use ℓ −→ {p1 :
#capt1(δ1,...,δd)

(r1), . . . , pk : #captk(δ1,...,δd)
(rk)}m instead, because the annotations

will never be used, so they do not matter.
Otherwise, there exists a successor v of x where an ADP is applied at an

annotated position below or at π, and no ADP is applied on a position above
π before. Let v1, . . . , vn be all (not necessarily direct) successors that rewrite
below position π, or rewrite at position π, and on the path from x to v there
is no other node with this property, and no node that performs a rewrite step
above π. Furthermore, let t1, . . . , tn be the used redexes and ρ1, . . . , ρn be the used
substitutions.

– (C1) If none of the redexes t1, . . . , tn are captured by t, then we use the ADP
ℓ −→ {p1 : #capt1(δ1,...,δd)

(r1), . . . , pk : #captk(δ1,...,δd)
(rk)}m with the position

π ∈ posD#(tx) \ Junk(tx) ⊆(IH) posD#(t′x) and the substitution σ. Once again,
(28) is satisfied for our resulting terms.

– (C2) If t = ti for some 1 ≤ i ≤ n, then we can find a narrowing substitution
δe of t that is more general than σ, i.e., we have δeγ = σ. Now, we use the
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ADP ℓδe −→ {p1 : r1δe, . . . , pk : rkδe}m with the position π ∈ posD#(tx) \
Junk(tx) ⊆(IH) posD#(t′x) and the substitution γ such that ♭(tx|π) = ℓδeγ =
ℓσ ∈ ANFP . Once again, (28) is satisfied for our resulting terms.

– (C3) If t ̸= ti for all 1 ≤ i ≤ n but there is an 1 ≤ i ≤ n such that ti is
captured, then, since ti is captured, there exists a narrowing substitution δe of t
that is more general than ρi, i.e., there exists a substitution κ1 with δeκ1 = ρi,
and since we use ρi later on we additionally have that ρi is more general than σ,
i.e., there exists a substitution κ2 with ρiκ2 = σ. Now, we use the ADP ℓδe −→
{p1 : r1δe, . . . , pk : rkδe}m with the position π ∈ posD#(tx) \ Junk(tx) ⊆(IH)

posD#(t′x) and the substitution κ1κ2 such that ♭(tx|π) = ℓδeκ1κ2 = ℓσ ∈ ANFP .
Once again, (28) is satisfied for our resulting terms.

Completeness: The proof is analogous to the completeness proof of Thm. 37. We
can replace each ADP ℓδe −→ {p1 : r1δe, . . . , pk : rkδe}m with the more general one
ℓ −→ {p1 : r1, . . . , pk : rk}m, and each ADP ℓ −→ {p1 : #capt1(δ1,...,δd)

(r1), . . . , pk :
#captk(δ1,...,δd)

(rk)}m can be replaced by ℓ −→ {p1 : r1, . . . , pk : rk}m as well, leading
to more annotations than before. ⊓⊔

C Examples

In this section, we present several examples to illustrate specific strengths and
weaknesses of the new transformational processors.

C.1 Probabilistic Quicksort

In Sect. 6 we have already seen a version of the probabilistic quicksort algorithm
where iAST can only be proved if we use the new transformational processors. The
following PTRS represents the full implementation of this probabilistic quicksort
algorithm.

rotate(nil)→{1 : nil}
rotate(cons(x, xs))→{1/2 : cons(x, xs), 1/2 : rotate(app(xs, cons(x, nil)))}

empty(nil)→{1 : true}
empty(cons(x, xs))→{1 : false}

qsrt(xs)→{1 : if(empty(xs), low(hd(xs), tl(xs)), hd(xs), high(hd(xs), tl(xs)))}
if(true, xs, x, ys)→{1 : nil}
if(false, xs, x, ys)→{1 : app(qsrt(rotate(xs)), cons(x, qsrt(rotate(ys))))}
hd(cons(x, xs))→{1 : x}
tl(cons(x, xs))→{1 : xs}

low(x, nil)→{1 : nil}
low(x, cons(y, ys))→{1 : ifLow(leq(x, y), x, cons(y, ys))}

ifLow(true, x, cons(y, ys))→{1 : low(x, ys)}
ifLow(false, x, cons(y, ys))→{1 : cons(y, low(x, ys))}

high(x, nil)→{1 : nil}
high(x, cons(y, ys))→{1 : ifHigh(leq(x, y), x, cons(y, ys))}

ifHigh(true, x, cons(y, ys))→{1 : cons(y, high(x, ys))}
ifHigh(false, x, cons(y, ys))→{1 : high(x, ys)}

leq(0, x)→{1 : true}
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leq(s(x), 0)→{1 : false}
leq(s(x), s(y))→{1 : leq(x, y)}

app(nil, ys)→{1 : ys}
app(cons(x, xs), ys)→{1 : cons(x, app(xs, ys))}

This quicksort algorithm searches for a random pivot element using the first
two rotate rules. Here, we rotate the list and always move the head element to the
end of the list. With a chance of 1/2 we stop this iteration and use the current
head element as the next pivot element. The rest of the rules represents the
classical quicksort algorithm without any probabilities. Here, app computes list
concatenation, low(x, xs) returns all elements of the list xs that are smaller than
x, and high works analogously. Furthermore, hd returns the head element of a list
and tl returns the rest of the list without the head. Finally, empty checks whether
the list is empty or not.

Using our new ADP framework with the new transformational processors,
AProVE can automatically prove that this PTRS Rqsrt is iAST. In particular, we
need the transformations (i.e., the rewriting processor) to evaluate the hd, tl, and
empty functions, and we need the rule overlap instantiation processor to determine
all possible terms that these functions can actually be applied on, e.g., we need to
detect that if we have the term empty(x) for a variable x, then in order to apply any
rewrite step, the variable x needs to be instantiated with either nil or cons(y, ys)
for some new variables y and ys.

C.2 Moving Elements in Lists Probabilistically

Another interesting probabilistic algorithm that deals with lists is the following: We
are given two lists L1 and L2. If one of the two lists is empty, then the algorithm
terminates. Otherwise, we either move the head of list L1 to L2 or vice versa,
both with a chance of 1/2, and then we repeat this procedure. This algorithm is
represented by the following PTRS.

or(false, false)→{1 : false}
or(true, x)→{1 : true}
or(x, true)→{1 : true}

moveElements(xs, ys)→{1 : if(or(empty(xs), empty(ys)), xs, ys)}
if(true, xs, ys)→{1 : xs}
if(false, xs, ys)→{1/2 : moveElements(tl(xs), cons(hd(xs), ys)),

1/2 : moveElements(cons(hd(ys), xs), tl(ys))}
empty(nil)→{1 : true}

empty(cons(x, xs))→{1 : false}
hd(cons(x, xs))→{1 : x}
tl(cons(x, xs))→{1 : xs}

This algorithm is iAST (and even AST) because we can view this as a classical
random walk on the number of elements in the first list that is both bounded from
below by 0 and from above by the sum of the length of both lists. In order to prove
this automatically, we again have to use some kind of instantiation processor, e.g.,
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the rule overlap instantiation processor, to find all possible terms that the functions
hd, tl, and empty can actually be applied on. In addition, we also need the rewriting
processor again to then evaluate these functions. Once the moveElements-ADP
contains the symbols cons and nil in the left-hand side, we can detect the structure
of the random walk using an application of the reduction pair processor that
removes all annotations of this ADP. After that, there is no SCC in the dependency
graph left, and we have proven iAST.

C.3 Conditions on Numbers

Another important task of termination analysis is to be able to handle conditions
on numbers. These occur in nearly every program and often impact the termination
behavior. The same is true for probabilistic programs. For a successful proof of
iAST without transformations, we need that the rules of the PTRS have these
conditions integrated in their left-hand sides of the rules, i.e., if one wants to check
whether a number is zero or not, then one needs two different rules f(0) → . . . and
f(s(x)) → . . . to perform this case analysis. However, in programs, conditions are
mostly implemented by an if-construct, where one could use, e.g., an additional
function gt to check whether a number is greater than another. The same is true
for conditions on other data structures than numbers, as we have seen above. If
one wants to check whether the list is empty or not, then without transformations,
one needs two rules (for nil and cons), whereas with transformations, one can use
conditions and auxiliary functions like empty.

The following PTRS depicts the classical random walk, but we check the
condition x > 0 not directly in the left-hand side of the rule but with an additional
function gt(x, y) which checks whether x > y. Additionally, in order to decrease
the value of a number by one, we use the predecessor function p(x) = x− 1.

gt(0, 0)→{1 : false}
gt(s(x), 0)→{1 : true}
gt(0, s(y))→{1 : false}

gt(s(x), s(y))→{1 : gt(x, y)}
p(0)→{1 : 0}

p(s(x))→{1 : x}
loop(x)→{1 : if(gt(x, 0), x)}

if(false, x)→{1 : stop}
if(true, x)→{1/2 : loop(p(x)), 1/2 : loop(s(x))}

In this case, we need the rewriting processor to evaluate the functions gt and p
and once again we need the rule overlap instantiation processor to check for all
possible terms that these functions can actually be applied on.

C.4 Limits of the Instantiation Processors

Whenever we have an ADP where the left-hand side of the rule is also contained
in the support of the right-hand side, then instantiations become useless, because
we will always have at least the same ADP again after applying the processor.
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For example, we need to apply one of the instantiation processors in order to
prove termination for the TRS with the rules f(x, y, z) → g(x, y, z) and g(a, b, z) →
f(z, z, z). If we make the rules probabilistic by adding the possibility to do nothing
in a rewrite step with the probability 1/2, then we result in the following PTRS.

f(x, y, z)→{1/2 : g(x, y, z), 1/2 : f(x, y, z)}
g(a, b, z)→{1/2 : f(z, z, z), 1/2 : g(a, b, z)}

This PTRS is iAST (since the original TRS was innermost terminating) but we
are unable to show this using the instantiation processor, because if one tries to
instantiate any of the rules, this will result in at least the same rule after the
processor. In contrast, in Ex. 38 we had nearly the same PTRS but the first rule
remained non-probabilistic. There, we were able to apply the instantiation processor
and prove iAST using the ADP Framework. (However, while instantiation does not
help in our example above, we can prove iAST using the rule overlap instantiation
processor.)

C.5 Transformations do not Suffice for Inductive Reasoning

Transformational processors are useful to perform a case analysis, but they do
not suffice for PTRSs where one needs inductive reasoning for the termination
analysis. For example, we cannot show iAST of the following PTRS even though
the if-structure seems similar to the one of the probabilistic quicksort example. This
example was proposed to us by Johannes Niederhauser at the 0-th probabilistic
termination competition in August 2023.

even(0)→{1 : true} even(s(0))→{1 : false}
even(s(s(x)))→{1 : even(x)} loop(x)→{1 : if(even(x), x)}

if(false, x)→{1 : stop} if(true, x)→{1/2 : loop(x), 1/2 : loop(s(x))}

The idea here is that the recursion of loop stops if its argument contains an even
number. If it is not even, then we either increase the value by 1 or use the same
value again. Here, a simple case analysis does not suffice, but we actually have to
show (inductively), that if a number x is odd, then x+1 is even. This is not possible
with the new transformational processors but needs other types of processors for
inductive reasoning (e.g., as in [15] for the non-probabilistic DP framework).
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