
Annotated Dependency Pairs for
Full Almost-Sure Termination of
Probabilistic Term Rewriting⋆

Jan-Christoph Kassing and Jürgen Giesl

RWTH Aachen University, Aachen, Germany
{kassing,giesl}@cs.rwth-aachen.de

Abstract. Dependency pairs (DPs) are one of the most powerful techniques
for automated termination analysis of term rewrite systems. Recently, we
adapted the DP framework to the probabilistic setting to prove almost-sure
termination (AST) via annotated DPs (ADPs). However, this adaption only
handled AST w.r.t. the innermost evaluation strategy. In this paper, we
improve the ADP framework to prove AST for full rewriting. Moreover,
we refine the framework for rewrite sequences that start with basic terms
containing a single defined function symbol. We implemented and evaluated
the new framework in our tool AProVE.

1 Introduction

Term rewrite systems (TRSs) are used for automated termination analysis of many
programming languages. There exist numerous powerful tools to prove termination
of TRSs, e.g., [19,34,49,22]. Dependency pairs (DPs, see e.g., [2,17,18,23,24]) are
one of the main concepts used in all these tools.

In [9,10,4,14], TRSs were extended to the probabilistic setting. Probabilis-
tic programs describe randomized algorithms and probability distributions, with
applications in many areas, see, e.g., [21]. Instead of only considering ordinary
termination (i.e., absence of infinite evaluation sequences), in the probabilistic
setting one is interested in almost-sure termination (AST), where infinite evaluation
sequences are allowed, but their probability is 0. A strictly stronger notion is
positive AST (PAST), which requires that the expected runtime is finite [10,43].

There exist numerous techniques to prove (P)AST of imperative programs on
numbers (like the probabilistic guarded command language pGCL [35,38]), e.g.,
[26,39,40,1,11,27,15,20,25,41,5,42]. In contrast, probabilistic TRSs (PTRSs) are
especially suitable for modeling and analyzing functional programs and algorithms
operating on (user-defined) data structures like lists, trees, etc. Up to now, there
exist only few automatic approaches to analyze (P)AST of probabilistic programs
with complex non-tail recursive structure [8,12,13]. The approaches that are suitable
for algorithms on recursive data structures [48,37,7] are mostly specialized for
specific data structures and cannot easily be adjusted to other (possibly user-
defined) ones, or are not yet fully automated. In contrast, our goal is a fully

⋆ funded by the DFG Research Training Group 2236 UnRAVeL

http://orcid.org/0009-0001-9972-2470
http://orcid.org/0000-0003-0283-8520

2 J.-C. Kassing, J. Giesl

automatic termination analysis for arbitrary PTRSs.

For PTRSs, orderings based on interpretations were adapted to prove PAST of
full rewriting (w.r.t. any evaluation strategy) in [4], and we presented a related
technique to prove AST in [28]. However, already for non-probabilistic TRSs, such a
direct application of orderings is limited in power. To obtain a powerful approach,
one should combine orderings in a modular way, as in the DP framework.

Indeed, based on initial work in [28], in [31] we adapted the DP framework to
the probabilistic setting to prove innermost AST (iAST) of PTRSs via so-called an-
notated dependency pairs (ADPs). However, this adaption is restricted to innermost
rewriting, i.e., one only considers sequences that rewrite at innermost positions
of terms. Already for non-probabilistic TRSs, innermost termination is easier
to prove than full termination, and this remains true in the probabilistic setting.

Algorithm 1:

x← 0
while x = 0 do
{
x← 0⊕1/2 x← 1;
y ← 2 · y;
}□{
x← 0⊕1/3 x← 1;
y ← 3 · y;
}

while y > 0 do
y ← y − 1;

In the current paper, we adapt the definition of ADPs
to use them for any evaluation strategy. As our run-
ning example, we transform Alg. 1 on the right (writ-
ten in pGCL) into an equivalent PTRS and show how
our new ADP framework proves AST. Here, ⊕1/2 de-
notes probabilistic choice, and □ denotes demonic non-
determinism. Note that there are proof rules (e.g., [39])
and tools (e.g., [41]) that can prove AST for both loops
of Alg. 1 individually, and hence for the whole algorithm.
Moreover, the tool Caesar [44] can prove AST if one pro-
vides super-martingales for the two loops. However, to
the best of our knowledge there exist no automatic tech-
niques to handle similar algorithms on arbitrary algebraic
data structures, i.e., (non-deterministic) algorithms that
first create a random data object y in a first loop and then access or modify it in a
second loop, whereas this is possible with our new ADP framework.1 Note that
while Alg. 1 is AST, its expected runtime is infinite, i.e., it is not PAST.2

In [30], we developed the first criteria for classes of PTRSs where iAST implies
AST. So for PTRSs from these classes, one can use our ADP framework for iAST
in order to conclude AST. However, these criteria exclude non-probabilistic non-
determinism, i.e., they require that the rules of the PTRS must be non-overlapping.
In addition, they impose linearity restrictions on both sides of the rewrite rules. In
contrast, our novel ADP framework can be applied to overlapping PTRSs and it
also weakens the linearity requirements considerably.

We start with preliminaries on (probabilistic) term rewriting in Sect. 2. In
Sect. 3 we recapitulate annotated dependency pairs for innermost AST [31], explain
why they cannot prove AST for full rewriting, and adapt them accordingly. We
present the probabilistic ADP framework in Sect. 4, illustrate its main processors,
and show how to adapt them from iAST to AST. Finally, in Sect. 5 we evaluate the

1 Such examples can be found in our benchmark set, see Sect. 5 and App. A.
2 This already holds for the program where only the first possibility of the first while-loop
is considered (i.e., where y is always doubled in its body). Then for the initial value
y = 1, the expected number of iterations of the second while-loop which decrements y
is 1

2
· 2 + 1

4
· 4 + 1

8
· 8 + . . . = 1 + 1 + 1 + . . . = ∞.

Annotated DPs for Full AST of Probabilistic Term Rewriting 3

implementation of our approach in the tool AProVE [19]. We refer to App. A to
illustrate our approach on examples with non-numerical data structures like lists
or trees, and to App. B for all proofs.

2 Preliminaries

Sect. 2.1 to 2.3 recapitulate classic [6] and probabilistic [4,9,10,28] term rewriting,
and results on PTRSs where iAST and AST are equivalent, respectively.

2.1 Term Rewriting

We regard a (finite) signature Σ =
⊎

n∈N Σn and a set of variables V. The set of
terms T (Σ,V) (or simply T) is the smallest set with V ⊆ T (Σ,V), and if f ∈ Σn

and t1, . . . , tn ∈ T (Σ,V) then f(t1, . . . , tn) ∈ T (Σ,V). We say that s is a subterm
of t (denoted s ⊴ t) if s = t, or t = f(t1, . . . , tn) and s ⊴ ti for some 1 ≤ i ≤ n. It
is a proper subterm (denoted s ◁ t) if s ⊴ t and s ≠ t. A substitution is a function
σ : V → T with σ(x) = x for all but finitely many x ∈ V . We often write xσ instead
of σ(x). Substitutions can also be applied to terms: If t = f(t1, . . . , tn) ∈ T then
tσ = f(t1σ, . . . , tnσ). For a term t ∈ T , the set of positions Pos(t) is the smallest
subset of N∗ satisfying ε ∈ Pos(t), and if t = f(t1, . . . , tn) then for all 1 ≤ i ≤ n and
all π ∈ Pos(ti) we have i.π ∈ Pos(t). If π ∈ Pos(t) then t|π denotes the subterm at
position π, where we have t|ε = t for the root position ε and f(t1, . . . , tn)|i.π = ti|π.
The root symbol at position ε is also denoted by root(t). If r ∈ T and π ∈ Pos(t)
then t[r]π denotes the term that results from replacing the subterm t|π with the
term r.

A rewrite rule ℓ → r ∈ T × T is a pair with ℓ ̸∈ V and V(r) ⊆ V(ℓ). A term
rewrite system (TRS) is a (finite) set of rewrite rules. For example, Rd with the only
rule d(x)→ c(x, x) is a TRS. A TRS R induces a rewrite relation →R ⊆ T × T
where s→R t holds if there are an ℓ→ r ∈ R, a substitution σ, and a π ∈ Pos(s)
such that s|π = ℓσ and t = s[rσ]π. A term s is in normal form w.r.t. R (denoted
s ∈ NFR) if there is no term t with s →R t, and in argument normal form w.r.t.
R (denoted s ∈ ANFR) if s′ ∈ NFR for all proper subterms s′ ◁ s. A rewrite step
s→R t is innermost (denoted s

i→R t) if the used redex ℓσ is in argument normal
form. For example, d(d(0))

i→Rd
d(c(0, 0)), but d(d(0))→Rd

c(d(0), d(0)) is not an
innermost step. A TRS R is (innermost) terminating if (

i→R) →R is well founded.

Two rules ℓ1 → r1, ℓ2 → r2 ∈ R with renamed variables such that V(ℓ1)∩V(ℓ2)
= ∅ are overlapping if there exists a non-variable position π of ℓ1 such that ℓ1|π
and ℓ2 are unifiable, i.e., there exists a substitution σ such that ℓ1|πσ = ℓ2σ. If
(ℓ1 → r1) = (ℓ2 → r2), then we require that π ̸= ε. R is non-overlapping if it has no
overlapping rules (e.g., Rd is non-overlapping). A TRS is left-linear (right-linear)
if every variable occurs at most once in the left-hand side (right-hand side) of a
rule. Finally, a TRS is non-duplicating if for every rule, every variable occurs at
most as often in the right-hand side as in the left-hand side. As an example, Rd is
left-linear, not right-linear, and hence duplicating.

4 J.-C. Kassing, J. Giesl

2.2 Probabilistic Term Rewriting

In contrast to TRSs, a probabilistic TRS (PTRS) [4,9,10,28] has (finite) multi-
distributions on the right-hand sides of its rewrite rules. A finite multi-distribution
µ on a set A ̸= ∅ is a finite multiset of pairs (p : a), where 0 < p ≤ 1 is a
probability and a ∈ A, such that

∑
(p:a)∈µ p = 1. FDist(A) is the set of all finite

multi-distributions on A. For µ ∈ FDist(A), its support is the multiset Supp(µ)=
{a | (p : a) ∈ µ for some p}. A probabilistic rewrite rule ℓ → µ ∈ T × FDist(T)
is a pair such that ℓ ̸∈ V and V(r) ⊆ V(ℓ) for every r ∈ Supp(µ). Examples for
probabilistic rewrite rules are

g→ {3/4 : d(g), 1/4 : 0} (1) d(x)→ {1 : c(x, x)} (2)

d(d(x))→ {1 : c(x, g)} (3) d(x)→ {1 : 0} (4)

A probabilistic TRS is a finite set R of probabilistic rewrite rules, e.g., R1 =
{(1)}, R2 = {(1), (2)}, or R3 = {(1), (3), (4)}. Similar to TRSs, a PTRS R
induces a rewrite relation →R ⊆ T × FDist(T) where s→R {p1 : t1, . . . , pk : tk}
if there are an ℓ → {p1 : r1, . . . , pk : rk} ∈ R, a substitution σ, and a π ∈
Pos(s) such that s|π = ℓσ and tj = s[rjσ]π for all 1 ≤ j ≤ k. The step is innermost
(denoted s

i→R {p1 : r1, . . . , pk : rk}) if ℓσ ∈ ANFR. So the PTRS R1 can be
interpreted as a biased coin flip that terminates in each step with a chance of 1/4.

To track all possible rewrite sequences (up to non-determinism) with their
corresponding probabilities, as in [31] we lift →R to rewrite sequence trees (RSTs).
The nodes v of anR-RST are labeled by pairs (pv : tv) of a probability pv and a term
tv, where the root is always labeled with the probability 1. For each node v with
the successors w1, . . . , wk, the edge relation represents a probabilistic rewrite step,
i.e., tv →R {

pw1

pv
: tw1

, . . . ,
pwk

pv
: twk

}. An R-RST is an innermost R-RST if the

edge relation represents only innermost steps. For an R-RST T we define |T|Leaf =∑
v∈Leaf pv, where Leaf is the set of all its leaves, and we say that a PTRS R is

almost-surely terminating (AST) (almost-surely innermost terminating (iAST)) if
|T|Leaf = 1 holds for all R-RSTs (innermost R-RSTs) T. While |T|Leaf = 1 for every
finite RST T, for infinite RSTs T we may have |T|Leaf < 1 or even |T|Leaf = 0 if T

1 g

3/4 d(g) 1/4 0

NFR1
9/16 d(d(g)) 3/16 d(0)

NFR1.

has no leaf at all. This notion of AST is equivalent
to the ones in [10,4,28], where AST is defined via
a lifting of →R to multisets or via stochastic
processes. The infinite R1-RST T on the side has
|T|Leaf = 1. As this holds for all R1-RSTs, R1 is
AST.

Example 1. R2 is not AST. If we always apply (2) directly after (1), this corresponds
to the rule g→ {3/4 : c(g, g), 1/4 : 0}, which represents a random walk on the number
of g’s in a term biased towards non-termination (as 3

4 > 1
4). R3 is not AST either,

because if we always apply (3) after two applications of (1), this corresponds to
g→ {9/16 : c(g, g), 3/16 : 0, 1/4 : 0}, which is also biased towards non-termination
(as 9

16 > 3
16 + 1

4).
However, in innermost evaluations, the d-rule (2) can only duplicate normal

forms, and hence R2 is iAST, see [30]. R3 is iAST as well, as (3) is not applicable in
innermost evaluations. For both R2 and R3, iAST can also be proved automatically
by our implementation of the ADP framework for iAST in AProVE [28,31].

Annotated DPs for Full AST of Probabilistic Term Rewriting 5

Example 2. The following PTRS Ralg corresponds to Alg. 1. Here, the non-deter-
minism is modeled by the non-deterministic choice between the overlapping rules
(5) and (6). In Sect. 4, we will prove that Ralg is AST via our new notion of ADPs.

loop1(y) → {1/2 : loop1(double(y)), 1/2 : loop2(double(y))} (5)

loop1(y) → {1/3 : loop1(triple(y)), 2/3 : loop2(triple(y))} (6)

loop2(s(y)) → {1 : loop2(y)}
double(s(y)) → {1 : s(s(double(y)))}

double(0) → {1 : 0}

triple(s(y)) → {1 : s(s(s(triple(y))))}
triple(0) → {1 : 0}

A PTRS R is right-linear iff the TRS {ℓ → r | ℓ → µ ∈ R, r ∈ Supp(µ)}
is right-linear. Left-linearity and being non-overlapping can be lifted to PTRSs
directly, as their rules also have just a single term on their left-hand sides.

For a PTRS R, we decompose its signature Σ = C ⊎ D such that f ∈ D iff
f = root(ℓ) for some ℓ→ µ ∈ R. The symbols in C and D are called constructors
and defined symbols, respectively. For R2 we have C = {c, 0} and D = {g, d}.
A term t ∈ T is basic if t = f(t1, . . . , tn) with f ∈ D and ti ∈ T (C,V) for all
1 ≤ i ≤ n. So a basic term represents an algorithm f applied to arguments ti which
only represent data and do not contain executable functions.

Finally, we define spareness [16], which prevents the duplication of redexes
if the evaluation starts with a basic term. A rewrite step ℓσ →R µσ is spare if
σ(x) ∈ NFR for every x ∈ V that occurs more than once in some r ∈ Supp(µ). An
R-RST is spare if all rewrite steps corresponding to its edges are spare. A PTRS
R is spare if each R-RST that starts with {1 : t} for a basic term t is spare. So
for example, R2 is not spare, because the basic term g starts a rewrite sequence
where the redex g is duplicated by Rule (2). Computable sufficient conditions for
spareness were presented in [16].

2.3 Existing Techniques for Proving Full AST

In order to prove AST automatically, one can either use orderings directly on the
whole PTRS [4,28], or check whether the PTRS R belongs to a class where it
is known that R is AST iff R is iAST. Then, it suffices to analyze iAST, and to
this end, one can use the existing ADP framework [31]. In [30], we introduced the
following first criteria for classes of PTRSs where iAST is equivalent to AST.

Theorem 3 (From iAST to AST (1) [30]). If a PTRS R is non-overlapping,
left-linear, and right-linear, then R is AST iff R is iAST.

Moreover, if one restricts the analysis to basic start terms, then we can weaken
right-linearity to spareness. In the following, “b(i)AST” (basic (i)AST) means that
one only considers rewrite sequences that start with {1 : t} for basic terms t.

Theorem 4 (From iAST to AST (2) [30]). If a PTRS R is non-overlapping,
left-linear, and spare, then R is bAST iff R is biAST.

6 J.-C. Kassing, J. Giesl

Since iAST obviously implies biAST, under the conditions of Thm. 4 it suffices
to analyze iAST to prove bAST.3 In addition to Thm. 3 and 4, [30] presented another
criterion to weaken the left-linearity condition. We do not recapitulate it here,
as our novel approach in Sect. 3 and 4 will not require left-linearity anyway.
Ralg from Ex. 2 is left- and right-linear, but overlapping. Hence, Ralg does not

belong to any known class of PTRSs where iAST is equivalent to AST. Thus, to
prove AST of such PTRSs, one needs a new approach, e.g., as in Sect. 3 and 4.

3 Probabilistic Annotated Dependency Pairs

In Sect. 3.1 we recapitulate annotated dependency pairs (ADPs) [31] which adapt
DPs in order to prove iAST. Then in Sect. 3.2 we introduce our novel adaption of
ADPs for full probabilistic rewriting w.r.t. any evaluation strategy.

3.1 ADPs and Chains - Innermost Rewriting

Instead of comparing left- and right-hand sides of rules to prove termination, ADPs
only consider the subterms with defined root symbols in the right-hand sides, as
only these subterms might be evaluated further. In the probabilistic setting, we use
annotations to mark which subterms in right-hand sides could potentially lead to a
non-(i)AST evaluation. For every f ∈ D, we introduce a fresh annotated symbol f#

of the same arity. Let D# denote the set of all annotated symbols, Σ# = D# ⊎Σ,
and T # = T

(
Σ#,V

)
. To ease readability, we often use capital letters like F

instead of f#. For any t = f(t1, . . . , tn) ∈ T with f ∈ D, let t# = f#(t1, . . . , tn).
For t ∈ T # and X ⊆ Σ# ∪ V, let PosX (t) be all positions of t with symbols or
variables from X . For a set of positions Φ ⊆ PosD∪D#(t), let #Φ(t) be the variant
of t where the symbols at positions from Φ in t are annotated, and all other anno-
tations are removed. Thus, PosD#(#Φ(t)) = Φ, and #∅(t) removes all annotations
from t, where we often write ♭(t) instead of #∅(t). Moreover, let ♭↑π(t) result from
removing all annotations from t that are strictly above the position π. So for R2,
we have #{1}(d(g)) = #{1}(D(G)) = d(G), ♭(D(G)) = d(g), and ♭↑1(D(G)) = d(G).
To transform the rules of a PTRS into ADPs, initially we annotate all f ∈ D
occurring in right-hand sides.

Every ADP also has a flag m ∈ {true, false} to indicate whether this ADP
may be applied to rewrite at a position below an annotated symbol in non-(i)AST
evaluations. This flag will be modified and used by the processors in Sect. 4.

Definition 5 (ADPs). An annotated dependency pair (ADP) has the form
ℓ −→ {p1 : r1, . . . , pk : rk}m, where ℓ ∈ T with ℓ /∈ V, m ∈ {true, false}, and for all
1 ≤ j ≤ k we have rj ∈T # with V(rj) ⊆ V(ℓ).
3 Instead of restricting start terms to basic terms, one could allow start terms in argu-
ment normal form (denoted ANF-AST). Both Thm. 4 as well as our results on the ADP
framework in Sect. 3 and 4 also hold for ANF-AST (ANF-iAST) instead of bAST (biAST).
While ANF-iAST is equivalent to iAST, the requirement of start terms in ANFR is a real
restriction for AST. Already in the non-probabilistic setting there are non-terminating
TRSs R where all terms in ANFR are terminating (e.g., the well-known example of [46]
with the rules f(a, b, x) → f(x, x, x), h(x, y) → x, and h(x, y) → y).

Annotated DPs for Full AST of Probabilistic Term Rewriting 7

For a rule ℓ→ µ = {p1 : r1, . . . , pk : rk}, its canonical annotated dependency
pair is DP(ℓ → µ) = ℓ → {p1 : #PosD(r1)(r1), . . . , pk : #PosD(rk)(rk)}true. The
canonical ADPs of a PTRS R are DP(R) = {DP(ℓ→ µ) | ℓ→ µ ∈ R}.

Example 6. We obtain DP(R2) = {(7), (8)} and DP(R3) = {(7), (9), (10)} with

g → {3/4 : D(G), 1/4 : 0}true (7) d(x) → {1 : c(x, x)}true (8)

d(d(x)) → {1 : c(x,G)}true (9) d(x) → {1 : 0}true (10)

Example 7. For Ralg, the canonical ADPs are

loop1(y) → {1/2 : L1(D(y)), 1/2 : L2(D(y))}true (11)

loop1(y) → {1/3 : L1(T(y)), 2/3 : L2(T(y))}true (12)

loop2(s(y)) → {1 : L2(y)}true (13)

double(s(y)) → {1 : s(s(D(y)))}true (14)

double(0) → {1 : 0}true (15)

triple(s(y)) → {1 : s(s(s(T(y))))}true (16)

triple(0) → {1 : 0}true (17)

We use the following rewrite relation in the ADP framework for iAST.

Definition 8 (Innermost Rewriting with ADPs,
i
↪→P). Let P be a finite set

of ADPs (a so-called ADP problem). We define t ∈ ANFP if there are no t′ ◁ t,
ℓ→ µm ∈ P, and substitution σ with ℓσ = ♭(t′) (i.e., no left-hand side ℓ matches
a proper subterm t′ of t when removing its annotations).

A term s ∈ T # rewrites innermost with P to µ = {p1 : t1, . . . , pk : tk} (denoted
s

i
↪→P µ) if there are ℓ −→ {p1 : r1, . . . , pk : rk}m ∈ P, a substitution σ, and a

π ∈ PosD∪D#(s) such that ♭(s|π) = ℓσ ∈ ANFP , and for all 1 ≤ j ≤ k we have:

tj = s[rjσ]π if π ∈ PosD#(s) and m = true (at)
tj = ♭↑π(s[rjσ]π) if π ∈ PosD#(s) and m = false (af)
tj = s[♭(rj)σ]π if π ̸∈ PosD#(s) and m = true (nt)
tj = ♭↑π(s[♭(rj)σ]π) if π ̸∈ PosD#(s) and m = false (nf)

Rewriting with P is like ordinary probabilistic term rewriting while considering
and modifying annotations that indicate where a non-iAST evaluation may arise. A
step of the form (at) (for annotation and true) is performed at the position of an
annotation, i.e., this can potentially lead to a non-iAST evaluation. Hence, all an-
notations from the right-hand side rj of the used ADP are kept during the rewrite
step. However, annotations of subterms that correspond to variables of the ADP
are removed, as these subterms are in normal form due to the innermost strategy.
An example is the rewrite step D(G)

i
↪→DP(R3)

{3/4 : D(D(G)), 1/4 : D(0)} using the

ADP (7). A step of the form (af) (for annotation and false) is similar but due
to the flag m = false this ADP cannot be used below an annotation in a non-
iAST evaluation. Hence, we remove all annotations above the used redex. So using
an ADP of the form g → {3/4 : D(G), 1/4 : 0}false on the term D(G) would yield
D(G)

i
↪→ {3/4 : d(D(G)), 1/4 : d(0)}, i.e., we remove the annotation of D at the root.

A step of the form (nt) (for no annotation and true) is performed at the po-
sition of a subterm without annotation. Hence, the subterm cannot lead to a
non-iAST evaluation, but this rewrite step may be needed for an annotation at a

8 J.-C. Kassing, J. Giesl

position above. As an example, one could rewrite the non-annotated subterm g
in D(g)

i
↪→DP(R3)

{3/4 : D(d(g)), 1/4 : D(0)} using the ADP (7). Finally, a step of

the form (nf) (for no annotation and false) is irrelevant for non-iAST evalu-
ations, because the redex is not annotated and due to m = false, afterwards
one cannot rewrite an annotated term at a position above. For example, if one
had the ADP g → {3/4 : D(G), 1/4 : 0}false, then we would obtain D(g)

i
↪→ {3/4 :

d(d(g)), 1/4 : d(0)}. The case (nf) is only needed to ensure that normal forms always
remain the same, even if we remove or add annotations in rules.

Due to the annotations, we now consider specific RSTs, called chain trees [28,31].
Chain trees are defined analogously to RSTs, but the crucial requirement is that
every infinite path of the tree must contain infinitely many steps of the forms (at)
or (af), as we specifically want to analyze the rewrite steps at annotated positions.
We say that T = (V,E, L,A) is a P-innermost chain tree (iCT) if

1. (V,E) is a (possibly infinite) directed tree with nodes V ̸= ∅ and directed
edges E ⊆ V × V where vE = {w | (v, w) ∈ E} is finite for every v ∈ V .

2. L : V → (0, 1]× T # labels every node v by a probability pv and a term tv. For
the root v ∈ V of the tree, we have pv = 1.

3. A ⊆ V \ Leaf (where Leaf are all leaves) is a subset of the inner nodes to
indicate that we use (at) or (af) for the next step. N = V \ (Leaf ∪A) are all
other inner nodes, i.e., where we rewrite using (nt) or (nf).

4. If vE = {w1, . . . , wk}, then tv
i
↪→P {

pw1

pv
: tw1

, . . . ,
pwk

pv
: twk

}, where we use

Case (at) or (af) if v ∈ A, and where we use Case (nt) or (nf) if v ∈ N .
5. Every infinite path in T contains infinitely many nodes from A.

1 G

3/4 D(G) 1/4 0

9/16 D(D(G)) 3/16 D(0)

.

Let |T|Leaf =
∑

v∈Leaf pv. Then a PTRS P
is iAST if |T|Leaf = 1 for all P-iCTs T. The cor-
responding DP(R1)-chain tree for the R1-RST
from Sect. 2.2 is shown on the right. Here, we
again have |T|Leaf = 1. With these definitions, in
[31] we obtained the following result.

Theorem 9 (Chain Criterion for iAST).A PTRS R is iAST iff DP(R) is iAST.

So for iAST, one can analyze the canonical ADPs instead of the original PTRS.

3.2 ADPs and Chains - Full Rewriting

When adapting ADPs from innermost to full rewriting, the most crucial part is to
define how to handle annotations if we rewrite above them. For innermost ADPs,
we removed the annotations below the position of the redex, as such terms are
always in normal form. However, this is not the case for full rewriting.

Example 10. Reconsider R3 and its canonical ADPs DP(R3) = {(7), (9), (10)}
from Ex. 6. As noted in Ex. 1, R3 is iAST, but not AST. To adapt Def. 8 to full
rewriting, clearly we have to omit the requirement that the redex is in ANF. However,
this is not sufficient for soundness for full AST: Applying two rewrite steps with
(7) to G would result in a chain tree with the leaves 9/16 : D(D(G)), 3/16 : D(0)

Annotated DPs for Full AST of Probabilistic Term Rewriting 9

(which can be extended by the child 3/16 : 0), and 1/4 : 0. However, by Def. 8, every
application of the ADP (9) removes the annotations of its arguments. So when
applying (9) to D(D(G)), we obtain {1 : c(g,G)}. But this would mean that the
number of G-symbols is never increased. However, for all such chain trees T we
have |T|Leaf = 1, i.e., we would falsely conclude that R3 is AST.

Ex. 10 shows that for full rewriting, we have to keep certain annotations below
the used redex. After rewriting above a subterm like G (which starts a non-AST
evaluation), it should still be possible to continue the evaluation of G if this subterm
was “completely inside” the substitution of the applied rewrite step.

We use variable reposition functions (VRFs) to relate positions of variables in
the left-hand side of an ADP to those positions of the same variables in the right-
hand sides where we want to keep the annotations of the instantiated variables. So
for an ADP ℓ→ µ with ℓ|π = x, we indicate which occurrence of x in r ∈ Supp(µ)
should keep the annotations if one rewrites an instance of ℓ where the subterm at
position π contains annotations.4

Definition 11 (Variable Reposition Functions). Let ℓ → {p1 : r1, . . . , pk :
rk}m be an ADP. A family of functions φj : PosV(ℓ) → PosV(rj) ⊎ {⊥} with
1 ≤ j ≤ k is called a family of variable reposition functions (VRF) for the ADP iff
for all 1 ≤ j ≤ k we have ℓ|π = rj |φj(π) whenever φj(π) ̸= ⊥.

Now we can define arbitrary (possibly non-innermost) rewriting with ADPs.

Definition 12 (Rewriting with ADPs, ↪−→P). ADPs and canonical ADPs are
defined as in the innermost case. Let P be an ADP problem. A term s ∈ T #

rewrites with P to µ = {p1 : t1, . . . , pk : tk} (denoted s ↪−→P µ) if there are an
ℓ −→ {p1 : r1, . . . , pk : rk}m ∈ P, a VRF (φj)1≤j≤k for this ADP, a substitution σ,
and a π ∈ PosD∪D#(s) such that ♭(s|π) = ℓσ, and for all 1 ≤ j ≤ k we have:

tj = s[#Φj
(rjσ)]π if π ∈ PosD#(s) and m = true (at)

tj = ♭↑π(s[#Φj
(rjσ)]π) if π ∈ PosD#(s) and m = false (af)

tj = s[#Ψj
(rjσ)]π if π ̸∈ PosD#(s) and m = true (nt)

Here, Ψj ={φj(ρ).τ | ρ∈PosV(ℓ), φj(ρ) ̸=⊥, ρ.τ ∈PosD#(s|π)} and Φj =PosD#(rj) ∪ Ψj.

So Ψj considers all positions ρ.τ of annotated symbols in s|π that are below
positions ρ of variables in ℓ. If φj maps ρ to a variable position ρ′ in rj , then
the annotations below π.ρ in s are kept in the resulting subterm at position π.ρ′

after the rewriting. As an example, consider D(D(G)) ↪−→DP(R3)
{1 : c(G,G)}. Here,

we use the ADP d(d(x)) → {1 : c(x,G)}true (9), with π = ε, σ(x) = g, and the
VRF φ1(1.1) = 1. We get ♭(D(D(G))|ε) = d(d(g)) = ℓσ, 1.1 ∈ PosV(ℓ), 1.1.ε ∈
PosD#(s|π), and thus Ψ1 = {φ1(1.1).ε} = {1} and Φ1 = PosD#(r1) ∪ Ψ1 = {1, 2}.

The case (nf) from Def. 8 is missing in Def. 12, as we do not consider (argument)
normal forms anymore. ADPs without annotations in the right-hand side and with

4 VRFs were introduced in [33] when adapting ADPs to full relative rewriting. However,
due to the probabilistic setting, our definition is slightly different.

10 J.-C. Kassing, J. Giesl

the flag false are not needed for non-AST chain trees and thus, they could simply
be removed from ADP problems.

Note that our VRFs in Def. 11 map a position of the left-hand side ℓ to at
most one position in each right-hand side rj of an ADP, even if the ADP is
duplicating. A probabilistic rule or ADP ℓ → µ is non-duplicating if all rules in
{ℓ→ r | r ∈ Supp(µ)} are, and a PTRS or ADP problem is non-duplicating if all
of its rules are (disregarding the flag for ADPs). For example, for the duplicating
ADP d(x)→ {1 : c(x, x)}true (8), we have three different VRFs which map position
1 to either ⊥, 1, or 2, but we cannot map it to both positions 1 and 2.

Therefore, our VRFs cannot handle duplicating rules and ADPs correctly. With
VRFs as in Def. 11, DP(R2) would be considered to be AST, as D(G) only rewrites
to {1 : c(G, g)} or {1 : c(g,G)}, but the annotation cannot be duplicated. Hence,
the chain criterion would be unsound for duplicating PTRSs like R2.

To handle duplicating rules, one can adapt the direct application of orderings
to prove AST from [28] and try to remove the duplicating rules of the PTRS before
constructing the canonical ADPs.

Alternatively, one could modify the definition of the rewrite relation ↪−→P and use
generalized VRFs (GVRFs) which can duplicate annotations instead of VRFs. This
would yield a sound and complete chain criterion for full AST of possibly duplicating
PTRSs, but then one would also have to consider this modified definition of ↪−→P
for the processors of the ADP framework in Sect. 4. Unfortunately, almost all
processors would become unsound when defining the rewrite relation ↪−→P via
GVRFs (see Ex. 22, 35, and 37). Therefore, we use VRFs instead and restrict
ourselves to non-duplicating PTRSs for the soundness of the chain criterion.5

Chain trees (CTs) are now defined like iCTs, where instead of
i
↪→P we only

require steps with ↪−→P . Then an ADP problem P is AST if |T|Leaf = 1 for all P-CTs
T. This leads to our desired chain criterion for AST.

Theorem 13 (Chain Criterion for AST). A non-duplicating PTRS R is AST
iff DP(R) is AST.

The above chain criterion allows us to analyze full AST for a significantly
larger class of PTRSs than Thm. 3: we do not impose non-overlappingness and
left-linearity anymore, and only require non-duplication instead of right-linearity.

Similar to Thm. 4, the ADP framework becomes more powerful if we restrict
ourselves to basic start terms. Then it suffices if the PTRS is spare (instead of
non-duplicating), since then redexes are never duplicated. In fact, weak spareness
is sufficient, which subsumes both spareness and non-duplication. A rewrite step
ℓσ →R µσ is weakly spare if σ(x) ∈ NFR for every x ∈ V where x occurs less often
in ℓ than in some r ∈ Supp(µ). An R-RST is weakly spare if all rewrite steps
corresponding to its edges are weakly spare. A PTRS R is weakly spare if each
R-RST that starts with {1 : t} for a basic term t is weakly spare. The sufficient
conditions for spareness in [16] can easily be adapted to weak spareness.

In the ADP framework for bAST, we only have to prove that no term starting a
non-AST evaluation can be reached from a basic start term. Here we use basic ADP

5 A related restriction is needed in the setting of (non-probabilistic) relative termination
due to the VRFs [33].

Annotated DPs for Full AST of Probabilistic Term Rewriting 11

problems (I,P), where I and P are finite sets of ADPs. P are again the ADPs
which we analyze for AST and the reachability component I contains so-called
initial ADPs. A basic ADP problem (I,P) is bAST if |T|Leaf = 1 holds for all those
(I ∪ P)-CTs T that start with a term t# where t ∈ T is basic, and where ADPs
from I \ P are only used finitely often within the tree T. Thus, every basic ADP
problem (I,P) can be replaced by (I \ P,P). For a PTRS R, the canonical basic
ADP problem is (∅,DP(R)).

Theorem 14 (Chain Criterion for bAST). A weakly spare PTRS R is bAST iff
(∅,DP(R)) is bAST.

Remark 15. In the chain criterion for non-probabilistic DPs, it suffices to regard
only instantiations where all terms below an annotated symbol are terminating.
The reason is the minimality property of non-probabilistic term rewriting, i.e.,
whenever a term starts an infinite rewrite sequence, then it also starts an infinite
sequence where all proper subterms of every used redex are terminating. However,
in the probabilistic setting the minimality property does not hold [30]. For R3, g
starts a non-AST RST, but in this RST, one has to apply Rule (3) to the redex
d(d(g)), although it contains the proper subterm g that starts a non-AST RST.

4 The Probabilistic ADP Framework for Full Rewriting

The idea of the DP framework for non-probabilistic TRSs is to apply processors
repeatedly which transform a DP problem into simpler sub-problems [17,18]. Since
different techniques can be applied to different sub-problems, this results in a
modular approach for termination analysis. This idea is also used in the ADP
framework. An ADP processor Proc has the form Proc(P) = {P1, . . . ,Pn} for
ADP problems P,P1, . . . ,Pn. Let Z ∈ {AST, iAST}. Proc is sound for Z if P is Z
whenever Pi is Z for all 1 ≤ i ≤ n. It is complete for Z if Pi is Z for all 1 ≤ i ≤ n
whenever P is Z. The definitions for bAST are analogous, but with basic ADP
problems (I,P). Thus, one starts with the canonical (basic) ADP problem and
applies sound (and preferably complete) ADP processors repeatedly until there are
no more remaining ADP problems. This implies that the canonical (basic) ADP
problem is Z and by the chain criterion, the original PTRS is Z as well.

An ADP problem without annotations is always AST, because then no rewrite
step increases the number of annotations (recall that VRFs cannot duplicate
annotations). Hence, then any term with n annotations only starts rewrite sequences
with at most n steps of the form (at) or (af), i.e., all P-CTs are finite.

In the following, we recapitulate the main processors for iAST from [31] and
adapt them to our new framework for AST and bAST.

4.1 Dependency Graph Processor

The innermost P-dependency graph is a control flow graph whose nodes are the
ADPs from P. It indicates whether an ADP α may lead to an application of
another ADP α′ on an annotated subterm introduced by α. This possibility is
not related to the probabilities. Hence, here we use the non-probabilistic variant

12 J.-C. Kassing, J. Giesl

np(P) = {ℓ → ♭(rj) | ℓ → {p1 : r1, . . . , pk : rk}true ∈ P, 1 ≤ j ≤ k}, which is an
ordinary TRS over the original signature Σ. For np(P) we only consider rules with
the flag true, since only they are needed for rewriting below annotations. We define
t ⊴# s if there is a π ∈ PosD#(s) and t = ♭(s|π), i.e., t results from a subterm of s
with annotated root symbol by removing its annotations.

Definition 16 (Innermost Dependency Graph).The innermost P-dependency
graph has the set of nodes P, and there is an edge from ℓ1 −→ {p1 : r1, . . . , pk : rk}m
to ℓ2 → . . . if there are substitutions σ1, σ2 and a t ⊴# rj for some 1 ≤ j ≤ k such

that t#σ1
i→∗
np(P) ℓ

#
2 σ2 and both ℓ1σ1 and ℓ2σ2 are in ANFP .

So there is an edge from an ADP α to an ADP α′ if after a
i
↪→P -step of the

form (at) or (af) with α at position π there may eventually come another
i
↪→P -step

of the form (at) or (af) with α′ on or below π. Since every infinite path in an iCT
contains infinitely many nodes from A, every such path traverses a cycle of the
innermost dependency graph infinitely often. Thus, it suffices to consider its strongly
connected components (SCCs)6 separately. In our framework, this means that we
remove the annotations from all ADPs except those in the SCC that we want to
analyze. Since checking whether there exist σ1, σ2 as in Def. 16 is undecidable, to
automate the following processor, the same over-approximation techniques as for
the non-probabilistic dependency graph can be used, see, e.g., [2,18,23]. In the
following, ♭(P) denotes the ADP problem P where all annotations are removed.

Theorem 17 (Dependency Graph Processor for iAST). For the SCCs P1,
. . . ,Pn of the innermost P-dependency graph, the processor ProcDG(P) = {P1 ∪
♭(P \ P1), . . . ,Pn ∪ ♭(P \ Pn)} is sound and complete for iAST.

Example 18. Consider the PTRS R2 and its canonical ADPs from Ex. 6. The in-

(7)

(8)

nermost DP(R2)-dependency graph is on the right. As the only SCC {(7)}
does not contain (8), we can remove all annotations from (8). However,
(8) has no annotations. Thus, ProcDG does not change DP(R2).

Adaption for AST: To handle full rewriting, we have to change the definition of
the dependency graph as we can now also perform non-innermost steps.

Definition 19 (Dependency Graph). The P-dependency graph has the nodes
P and there is an edge from ℓ1 −→ {p1 : r1, . . . , pk : rk}m to ℓ2 → . . . if there are

substitutions σ1, σ2 and a t ⊴# rj for some 1 ≤ j ≤ k with t#σ1 →∗
np(P) ℓ

#
2 σ2.

Theorem 20 (Dependency Graph Processor for AST). For the SCCs P1, . . . ,
Pn of the P-dependency graph, ProcDG(P) = {P1 ∪ ♭(P \ P1), . . . ,Pn ∪ ♭(P \ Pn)}
is sound and complete for AST.

Example 21. Consider Ralg and its canonical ADPs from Ex. 7. The DP(Ralg)-de-
pendency graph is given below. Its SCCs are {(11), (12)}, {(13)}, {(14)}, {(16)}.

6 A set P ′ of ADPs is an SCC if it is a maximal cycle, i.e., a maximal set where for any
α, α′ in P ′ there is a non-empty path from α to α′ only traversing nodes from P ′.

Annotated DPs for Full AST of Probabilistic Term Rewriting 13

(11)

(12)

(14)

(16)

(15)

(13)

(17)

For each SCC we create a separate ADP problem, where all annota-
tions outside the SCC are removed. This leads to the ADP prob-
lems {(11), (12), ♭(13) - ♭(17)}, {(13), ♭(11), ♭(12), ♭(14) - ♭(17)},
{(14), ♭(11) - ♭(13), ♭(15) - ♭(17)}, and {(16), ♭(11) - ♭(15), ♭(17)}.

Example 22. If we used GVRFs that can duplicate annotations,
then the dependency graph processor would not be sound. The
reason is that ProcDG maps ADP problems without annotations to
the empty set. However, this would be unsound if we had GVRFs,
because then the ADP problem with a→ {1 : b}true and d(x)→ {1 : c(x, d(x))}true
would not be AST. Here, the use of GVRFs would lead to the following CT with an
infinite number of (at) steps that rewrite A to b.

1 : d(A) 1 : c(A, d(A)) 1 : c(b, d(A)) . . .

Adaption for bAST: Here, ADPs that are not in the considered SCC Pi may still
be necessary for the initial steps from the basic start term to the SCC. Thus, while
we remove the annotations of ADPs outside the SCC Pi in the second component
P of a basic ADP problem (I,P), we add (the original versions of) those ADPs to
I that reach the SCC Pi in the (I ∪ P)-dependency graph. Let Pi↑ be the set of
all J ⊆ (I ∪ P) \ Pi such that all ADPs of J reach Pi in the (I ∪ P)-dependency
graph, and for all pairs of ADPs α, β ∈ J with α ̸= β, α reaches β or β reaches α
in the (I ∪ P)-dependency graph. Furthermore, J must be maximal w.r.t. these
properties, i.e., if α ̸∈ J then α does not reach Pi or there exists a β ∈ J such
that α does not reach β and β does not reach α.

Theorem 23 (Dependency Graph Processor for bAST). For the SCCs P1,
. . . ,Pn of the P-dependency graph, the processor ProcDG(I,P) = {(J ∪ ♭(I \ J),
Pi ∪ ♭(P \ Pi)) | 1 ≤ i ≤ n, J ∈ Pi↑} is sound and complete for bAST.

As remarked in Sect. 3.2, every basic ADP problem (I,P) can be replaced by
(I \ P,P). Thus, this should be done after every application of a processor.

Example 24. To prove bAST of Ralg, we start with (∅,DP(Ralg)). The SCC {(16)}
is only reachable from (11) and (12), leading to the basic ADP problem ({(11), (12)},
{(16), ♭(11) - ♭(15), ♭(17)}). The SCC {(11), (12)} is not reachable from other ADPs
and thus, here we obtain (∅, {(11), (12), ♭(13) - ♭(17)}), etc.

Example 25. The next ADP problem Pg illustrates the reachability component.

init→ {1 : F(g)}true (18) g→ {1/2 : c(g, g, g, g), 1/2 : 0}true (19)

f(c(x1, x2, x3, x4))→ {1 : c(F(x1),F(x2),F(x3),F(x4))}true (20)

Although (19) has no annotations, the basic ADP problem (∅,Pg) is not bAST:

1 : Init 1 : F(g)

1/2 : F(0)

1/2 : F(c(g, g, g, g)) 1/2 : c(F(g), F(g), F(g), F(g)) . . .

This is a random walk biased towards non-termination, where the number of F(g)
subterms increases by 3 or decreases by 1, both with probability 1/2.

14 J.-C. Kassing, J. Giesl

(18)

(20)

(19)Since the only SCC of the Pg-dependency graph on the right
is {(20)}, ProcDG replaces F(g) by f(g) in (18) and obtains P ′

g =
{♭(18), (19), (20)}. However, (∅,P ′

g) would be bAST. So for the sound-
ness of the dependency graph processor, we have to add the original ADP (18) to
the reachability component and obtain ({(18)},P ′

g) which is again not bAST.

4.2 Usable Terms Processor

The dependency graph processor removes either all annotations from an ADP or
none. But an ADP can still contain terms t with annotated root where no instance
tσ1 rewrites to an instance ℓ#σ2 of a left-hand side ℓ of an ADP with annotations.
The usable terms processor removes the annotation from the root of such non-
usable terms like D(. . .) in DP(R2) = {(7), (8)}. So instead of whole ADPs, here
we consider the subterms in the right-hand sides of an ADP individually.

Theorem 26 (Usable Terms Processor for iAST). Let ℓ1 ∈ T and P be
an ADP problem. We call t ∈ T # with root(t) ∈ D# innermost usable w.r.t. ℓ1
and P if there are substitutions σ1, σ2 and an ℓ2 −→ µ2 ∈ P where µ2 contains

an annotated symbol, such that #{ε}(t)σ1
i→∗
np(P) ℓ#2 σ2 and both ℓ1σ1 and ℓ2σ2

are in ANFP . Let ∆ℓ,P(s) = {π ∈ PosD#(s) | s|π is innermost usable w.r.t. ℓ and
P }. The transformation that removes the annotations from the roots of all non-
usable terms in the right-hand sides is TUT(P)= {ℓ→{p1 : #∆ℓ,P(r1)(r1), . . . , pk :
#∆ℓ,P(rk)(rk)}m | ℓ→{p1 : r1, . . . , pk : rk}m∈P}. Then ProcUT(P) = {TUT(P)} is
sound and complete for iAST.

So for DP(R2), ProcUT replaces (7) by g→ {3/4 : d(G), 1/4 : 0}true (7′).

Adaption for AST and bAST: Similar to the dependency graph, for full rewriting,
we remove the ANF requirement and allow non-innermost steps to reach the next
ADP. To adapt the processor to bAST, in the reachability component we consider
usability w.r.t. I ∪ P, since one may use both I and P in the initial steps.

Theorem 27 (Usable Terms Processor for AST and bAST). We call t ∈ T #

with root(t) ∈ D# usable w.r.t. an ADP problem P if there are substitutions
σ1, σ2 and an ℓ2 −→ µ2 ∈ P where µ2 contains an annotated symbol, such that

#{ε}(t)σ1 →∗
np(P) ℓ

#
2 σ2. Let ∆P(s) = {π ∈ PosD#(s) | s|π is usable w.r.t. P } and

TUT(P) = {ℓ→ {p1 : #∆P(r1)(r1), . . . , pk : #∆P(rk)(rk)}m | ℓ→ {p1 : r1, . . . , pk :
rk}m ∈ P}. Then ProcUT(P) = {TUT(P)} is sound and complete for AST and
ProcUT(I,P) = {(TUT(I ∪ P), TUT(P))} is sound and complete for bAST.

Example 28. For AST, ProcUT transforms {(11), (12), ♭(13) - ♭(17)} from Ex. 21 into
{(11′), (12′), ♭(13) - ♭(17)} with

loop1(y)→ {1/2 : L1(double(y)), 1/2 : loop2(double(y))}true (11′)

loop1(y)→ {1/3 : L1(triple(y)), 2/3 : loop2(triple(y))}true (12′)

The reason is that the left-hand sides of the only ADPs with annotations in the
ADP problem have the root loop1. Thus, L2-, D-, or T-terms are not usable.

Annotated DPs for Full AST of Probabilistic Term Rewriting 15

For bAST, applying ProcUT to ({(11), (12)}, {(16), ♭(11) - ♭(15), ♭(17)}) and af-
terwards removing those ADPs from the reachability component that also occur in
the second component yields ({(11′), (12′′)}, {(16), ♭(11) - ♭(15), ♭(17)}) with

loop1(y)→ {1/3 : L1(T(y)), 2/3 : loop2(T(y))}true (12′′)

The reason is that the left-hand sides of ADPs with annotations in their right-hand
sides have the root symbols loop1 (in (11) and (12)) or triple (in (16)).

4.3 Usable Rules Processor

In an innermost rewrite step, all variables of the used rule are instantiated with
normal forms. The usable rules processor detects rules that cannot be used below
annotations in right-hand sides of ADPs when their variables are instantiated with
normal forms. For these rules we can set their flag to false, indicating that the
annotated subterms on their right-hand sides may still lead to a non-iAST sequence,
but the context of these annotations is irrelevant.

Theorem 29 (Usable Rules Processor for iAST). Let P be an ADP problem
and for f ∈ Σ#, let RulesP(f) = {ℓ → µtrue ∈ P | root(ℓ) = f}. For t ∈ T #,
its usable rules UP(t) are the smallest set with UP(x) = ∅ for all x ∈ V and
UP(f(t1, ..., tn))=RulesP(f) ∪

⋃n
i=1UP(ti) ∪

⋃
ℓ→µtrue∈RulesP(f),r∈Supp(µ) UP(♭(r)),

otherwise. The usable rules of P are U(P) =
⋃

ℓ→µm∈P,r∈Supp(µ),t⊴#r UP(t#). Then

ProcUR(P) = {U(P) ∪ {ℓ → µfalse | ℓ → µm ∈ P \ U(P)}} is sound and complete,
i.e., we turn the flag of all non-usable rules to false.

Example 30. The ADP problem {(7′), (8)} has no subterms below annotations. So
both rules are not usable and we set their flags to false which leads to

g→ {3/4 : d(G), 1/4 : 0}false (7′′) d(x)→ {1 : c(x, x)}false (8′)

Adaption for AST: For full rewriting and arbitrary start terms, the usable rules
processor is unsound. This is already the case for non-probabilistic rewriting, but
in the classical DP framework there nevertheless exist processors for full rewriting
based on usable rules which rely on taking the Cε-rules h(x, y)→ x and h(x, y)→ y
for a fresh function symbol h into account, see, e.g., [18,17,24,47]. However, the
following example shows that this is not possible for AST.

Example 31. The ADP problem P ′
g from Ex. 25 is not AST. It has no usable rules

and thus, ProcUR would transform P ′
g into P ′′

g where the flag of all ADPs is false.
However, then we can no longer rewrite the argument g of F(g). Similarly, if
we start with F(G), rewriting G would remove the annotation of F above, i.e.,
F(G) ↪−→P′′

g
{1/2 : f(c(g, g, g, g)), 1/2 : f(0)}. Hence, then all CTs are finite. This also

holds when adding the Cε-ADPs h(x, y)→ {1 : x}true and h(x, y)→ {1 : y}true.

Thus, even integrating the Cε-rules to represent non-determinism would not
allow a usable rule processor for AST with arbitrary start terms. Moreover, the
corresponding proofs in the non-probabilistic setting rely on the minimality property,
which does not hold in the probabilistic setting, see Remark 15.

16 J.-C. Kassing, J. Giesl

Adaption for bAST: For bAST, we can apply the usable rules processor as for
innermost rewriting. Since the start term is basic, in the first application of an
ADP all variables are instantiated with normal forms. Hence, the only rules that
can be applied for rewrite steps below annotated symbols are the ones that are
introduced in right-hand sides of ADPs. Therefore, we can use the same definitions
as in Thm. 29 to over-approximate the set of ADPs that can be used below an
annotated symbol in a CT that starts with a basic term. Here, we have to consider
the reachability component as well for the usable rules, as these ADPs can also be
used in the initial rewrite steps.

Theorem 32 (Usable Rules Processor for bAST). The following processor is
sound and complete for bAST:

ProcUR(I,P) = {
((
I ∩ U(I ∪ P)

)
∪ {ℓ→ µfalse | ℓ→ µm ∈ I \ U(I ∪ P)},(

P ∩ U(I ∪ P)
)
∪ {ℓ→ µfalse | ℓ→ µm ∈ P \ U(I ∪ P)}

)
}.

Example 33. For the basic ADP problem ({(11′), (12′′)}, {(16), ♭(11) - ♭(15), ♭(17)})
from Ex. 28, only the double- and triple-ADPs ♭(14), ♭(15), (16), ♭(17) are usable. So
we can set the flag of all other ADPs in this problem to false. The same holds for
the other basic ADPs resulting from the dependency graph and the usable terms
processor in this example, i.e., here the usable rules processor also sets the flags of
all ADPs except the double- and triple-ADPs to false.

Example 34. To see why we use P ∩U(I ∪P) instead of U(P) in Thm. 32 (whereas
TUT(P) instead of TUT(I∪P) suffices for the second component in Thm. 27), consider
the basic ADP problem ({(18)},P ′

g) from Ex. 25 which is not bAST. As noted in
Ex. 31, U(P ′

g) = ∅, but if one sets the flags of all ADPs in P ′
g to false, then all

CTs are finite (i.e., then ProcUR would be unsound). In contrast, for I = {(18)},
we have U(I ∪ P ′

g) = {(19)}, because g occurs below the annotated symbol F in
(18). Hence, ProcUR({(18)},P ′

g) only sets the flags of all ADPs except (19) to false
and thus, the resulting basic ADP problem is still not bAST.

Example 35. Note that if one used GVRFs, then the usable rules processor would
be unsound on ADP problems that are not weakly spare. For instance, it would
transform the ADP problem (∅, {(7′), (8)}) (which is not bAST when using GVRFs)
into (∅, {(7′′), (8′)}) (see Ex. 30). However, as (8′) has the flag false, it cannot be
applied at the position of the non-annotated symbol d, since Def. 8 does not have
a case of the form (nf). Hence, (∅, {(7′′), (8′)}) is bAST.

4.4 Reduction Pair Processor

Next we adapt the reduction pair processor which lifts the direct use of orderings
from PTRSs to ADP problems. This processor is the same for iAST and AST.

Annotated DPs for Full AST of Probabilistic Term Rewriting 17

To handle expected values, as in [28,31] we only consider orderings based on
polynomial interpretations [36]. A polynomial interpretation Pol is a Σ#-algebra
which maps every function f ∈ Σ# to a polynomial fPol ∈ N[V]. It is monotonic if
x > y implies fPol(. . . , x, . . .) > fPol(. . . , y, . . .) for all f ∈ Σ#. Pol(t) denotes
the interpretation of a term t ∈ T # by Pol. An arithmetic inequation Pol(t1) >
Pol(t2) holds if it is true for all instantiations of its variables by natural numbers.

The constraints (1) - (3) in Thm. 36 are based on the conditions of a ranking
function for AST as in [39]. If we prove AST by considering the rules ℓ → {p1 :
r1, . . . , pk : rk} of a PTRS directly, then we need a monotonic polynomial interpre-
tation Pol and require a weak decrease when comparing Pol(ℓ) to the expected
value

∑
1≤j≤k pj · Pol(rj) of the right-hand side, and additionally, at least one

Pol(rj) must be strictly smaller than Pol(ℓ) [28]. For ADPs, we adapt these con-
straints by comparing the value Pol(ℓ#) of the annotated left-hand side with the
#-sum of the right-hand sides rj , i.e., the sum of the polynomial values of their
annotated subterms Sum(rj) =

∑
t⊴#rj

Pol(t#). This allows us to remove the re-

quirement of (strong) monotonicity (every polynomial fPol with natural coefficients
is weakly monotonic, i.e., x ≥ y implies fPol(. . . , x, . . .) ≥ fPol(. . . , y, . . .)).

Here, (1) we require a weak decrease when comparing the annotated left-hand
side with the expected value of #-sums in the right-hand side. The processor then
removes the annotations from those ADPs where (2) in addition there is at least
one right-hand side rj whose #-sum is strictly decreasing.7 Finally, (3) for every
rule with the flag true (which can therefore be used for steps below annotations),
the expected value must be weakly decreasing when removing the annotations. As
in [4,28,31], to ensure “monotonicity” w.r.t. expected values, we restrict ourselves
to interpretations with multilinear polynomials, i.e., all monomials must have the
form c · xe1

1 · . . . · xen
n with c ∈ N and e1, . . . , en ∈ {0, 1}.

Theorem 36 (Reduction Pair Processor for iAST & AST). Let Pol :T # → N[V]
be a multilinear polynomial interpretation. Let P=P≥⊎P> with P> ̸=∅where:

(1) ∀ℓ −→ {p1 : r1, . . . , pk : rk}m ∈ P : Pol(ℓ#) ≥
∑

1≤j≤k pj · Sum(rj).

(2) ∀ℓ −→ {p1 : r1, . . . , pk : rk}m ∈ P> : ∃j ∈ {1, . . . , k} : Pol(ℓ#) > Sum(rj).
If m = true, then we additionally have Pol(ℓ) ≥ Pol(♭(rj)).

(3) ∀ℓ −→ {p1 : r1, . . . , pk : rk}true ∈ P : Pol(ℓ) ≥
∑

1≤j≤k pj · Pol(♭(rj)).

Then ProcRP(P) = {P≥ ∪ ♭(P>)} is sound and complete for iAST and AST.

Example 37. To conclude iAST for R2 we have to remove all remaining annotations
in the ADP problem {(7′′), (8′)} from Ex. 30 (then another application of the
dependency graph processor yields the empty set of ADP problems). Here, we can
use the reduction pair processor with the polynomial interpretation that maps G to
1, and all other symbols to 0. Then (8′) is weakly decreasing, and (7′′) is strictly

7 In addition, the corresponding non-annotated right-hand side ♭(rj) must be at least
weakly decreasing. This ensures that nested annotations behave “monotonically”. So
we have to ensure that Pol(A) > Pol(B) also implies that the #-sum of F (A) is greater
than F (B), i.e., Pol(A) > Pol(B) must imply that Sum(F (A)) = Pol(F (a))+Pol(A) >
Pol(F (b)) + Pol(B) = Sum(F (B)), which is ensured by Pol(a) ≥ Pol(b).

18 J.-C. Kassing, J. Giesl

decreasing, since (1) Pol(G) = 1 ≥ 3/4 · Sum(d(G))+ 1/4 · Sum(0) = 3/4 ·Pol(G) = 3/4
and (2) Pol(G) = 1 > Sum(0) = 0. Thus, the annotation of G in (7′′) is deleted.

Note that this polynomial interpretation would also satisfy the constraints for
DP(R2) = {(7), (8)} from Ex. 6, i.e., it would allow us to remove the annotations
from the canonical ADP directly. Hence, if we extended our approach for AST to
GVRFs that can duplicate annotations, then the reduction pair processor would
be unsound, as it would allow us to falsely “prove” AST of DP(R2). The problem
is that we compare terms with annotations via their #-sum, but for duplicating
ADPs like (8), Pol(d(x)) ≥ Pol(c(x, x)) does not imply Sum(d(G)) ≥ Sum(c(G,G))
since Sum(d(G)) = Pol(G) and Sum(c(G,G)) = Pol(G) + Pol(G).

Example 38. To prove AST for Ralg, we also have to remove all annotations from
all remaining sub-problems. For instance, for the sub-problem {(11′), (12′), ♭(13) -
♭(17)} from Ex. 28, we can use the reduction pair processor with the polynomial
interpretation that maps s(x) to x+ 1, double(x) to 2x, triple(x) to 3x, L1(x) to 1,
and all other symbols to 0. Then (12′) is strictly decreasing, since (1) Pol(L1(y)) =
1 ≥ 1/3 · Sum(L1(triple(y))) + 2/3 · Sum(loop2(triple(y))) = 1/3 and (2) Pol(L1(y)) =
1 > Sum(loop2(triple(y))) = 0. Similarly, (11′) is also strictly decreasing and we can
remove all annotations from this ADP problem. One can find similar interpretations
to delete the remaining annotations also from the other remaining sub-problems.
This proves AST for DP(Ralg), and hence for Ralg.

Adaption for bAST: To adapt the reduction pair processor to bAST, we only
have to require the conditions of Thm. 36 for the second component P of a basic
ADP problem (I,P). So the reachability component I is needed to determine
which rules are usable in the usable rules processor, but it does not result in any
additional constraints for the reduction pair processor. Thus, proving bAST is never
harder than proving AST, since the second component changes in the same way for
AST and bAST in all processors except for the usable rules processor, which is not
applicable for AST. The conditions of Thm. 36 ensure that to prove AST, infinitely
many (at) or (af) steps with ADPs from P> do not have to be regarded anymore
and thus, we can remove their annotations in P . However, these ADPs may still be
applied in finitely many initial (at) or (af) steps. Thus, similar to the dependency
graph processor, we have to keep the original annotated ADPs from P> in the
reachability component I.

Theorem 39 (Reduction Pair Processor for bAST). Let Pol : T # → N[V] be
a multilinear polynomial interpretation and let P = P≥ ⊎ P> with P> ̸= ∅ satisfy
the conditions of Thm. 36. Then ProcRP(I,P) = {(I ∪ P>,P≥ ∪ ♭(P>))} is sound
and complete for bAST.

Example 40. If we only want to prove bAST of Ralg, then the application of the
reduction pair processor is easier than in Ex. 38, as we have less constraints.
For instance, consider the basic ADP problem from Ex. 33 which results from
({(11′), (12′′)}, {(16), ♭(11) - ♭(15), ♭(17)}) by setting the flags of all ADPs except
the double- and triple-ADPs ♭(14), ♭(15), (16), ♭(17) to false. When using the poly-
nomial interpretation Pol(T(x)) = x, Pol(s(x)) = x+ 1, Pol(double(x)) = 2x, and
Pol(triple(x)) = 3x, the ADP (16) is strictly decreasing and ♭(14) - ♭(17) are weakly

Annotated DPs for Full AST of Probabilistic Term Rewriting 19

decreasing. Thus, we can remove all annotations without having to regard any of
the other (probabilistic) ADPs. In contrast, when proving AST instead of bAST, all
ADPs in the corresponding ADP problem {(16), ♭(11) - ♭(15), ♭(17)} have the flag
true and thus, here we have to find a polynomial interpretation which also makes
the ADPs ♭(11) - ♭(13) weakly decreasing.

4.5 Probability Removal Processor

Finally, in proofs with the ADP framework, one may obtain ADP problems P with
a non-probabilistic structure, i.e., every ADP has the form ℓ→ {1 : r}m. Then the
probability removal processor allows us to switch to ordinary (non-probabilistic)
DPs. Ordinary DP problems for termination of TRSs have two components (D,R):
a set of dependency pairs D, i.e., rules with annotations only at the roots of both
sides, and a TRS R containing rules that can be used below the annotations. Such
a DP problem is considered to be (innermost) non-terminating if there exists an
infinite chain t0, t1, t2, . . . with ti →D ◦ →∗

R ti+1 (ti
i→D,R ◦

i→∗
R ti+1) for all i ∈ N.

Here, “◦” denotes composition and
i→D,R is the restriction of →D to rewrite steps

where the used redex is in NFR. This definition corresponds to an infinite chain
tree consisting of only a single path.

Theorem 41 (Probability Removal Processor for iAST). Let P be an ADP
problem where every ADP in P has the form ℓ → {1 : r}m. Let dp(P) = {ℓ# →
t# | ℓ → {1 : r}m ∈ P, t ⊴# r}. Then P is iAST iff the non-probabilistic DP
problem (dp(P),np(P)) is innermost terminating. So the processor ProcPR(P) = ∅
is sound and complete for iAST iff (dp(P),np(P)) is innermost terminating.

Adaption for AST and bAST: ProcPR works in an analogous way for (b)AST, i.e.,
for both AST and bAST, we can switch to ordinary DPs for full rewriting. Of course,
here the “only if” direction does not hold for bAST because the non-probabilistic
DP framework considers arbitrary (possibly non-basic) start terms.

Theorem 42 (Probability Removal Processor for bAST and AST). Let P
be an ADP problem where every ADP in P has the form ℓ → {1 : r}m. Then P
is AST iff the non-probabilistic DP problem (dp(P),np(P)) is terminating. So the
processor ProcPR(P) = ∅ is sound and complete for AST iff (dp(P),np(P)) is termi-
nating. Similarly, (I,P) is bAST if (dp(P),np(P)) is terminating. So ProcPR(I,P)
= ∅ is sound and complete for bAST if (dp(P),np(P)) is terminating.

4.6 Switching From Full to Innermost AST

In the non-probabilistic DP framework for analyzing termination of TRSs, there is
a processor to switch from full to innermost rewriting if the DP problem satisfies
certain conditions [17, Thm. 32]. This is useful as the DP framework for innermost
termination is more powerful than the one for full termination and in this way,
one can switch to the innermost case for certain sub-problems, even if the whole
TRS does not belong to any class where innermost termination implies termination.
However, the soundness of this processor relies on the minimality property, which

20 J.-C. Kassing, J. Giesl

does not hold in the probabilistic setting, see Remark 15. Indeed, the following
example which corresponds to [45, Ex. 3.15] shows that a similar processor in the
ADP framework would be unsound.

Example 43. The ADP problem with f(x) → {1 : F(a)}true and a → {1 : a}true is
not AST as we can rewrite F(a) to itself with the f-ADP. However, it is iAST as in
innermost evaluations, we have to rewrite the inner a, which does not terminate
but does not use any annotations, i.e., any (at) or (af) steps. The ADPs are
non-overlapping, and left- and right-linear. Thus, Thm. 3 to switch from full to
innermost AST cannot be applied on the level of ADP problems.

Hence, for AST of PTRSs that satisfy the conditions of Thm. 3 or 4, one should
apply the ADP framework for iAST [31], because its processors are more powerful.
But otherwise, one has to use our novel ADP framework for full AST.

5 Conclusion and Evaluation

In this paper, we introduced the first DP framework for AST and bAST of PTRSs,
which is based on the existing ADP framework from [31] for iAST. It is particularly
useful when analyzing (b)AST of overlapping PTRSs, as for such PTRSs we cannot
use the criteria of [30] for classes of PTRSs where iAST implies (b)AST.

Compared to the non-probabilistic DP framework for termination of TRSs
[2,17,18,23,24], analyzing AST automatically is significantly more difficult due to
the lack of a “minimality property” in the probabilistic setting, which would allow
several further processors. Moreover, the ADP framework for PTRSs is restricted
to multilinear reduction pairs. The following table compares the ADP frameworks
for AST, bAST, and iAST. The parts in italics show the differences to the non-
probabilistic DP framework. Here, “S” and “C” stand for “sound” and “complete”.

Processor ADP for AST ADP for bAST ADP for iAST

Chain Crit. S & C for non-duplicating S & C for weakly spare S & C

Dep. Graph S & C S & C S & C
Usable Terms S & C S & C S & C
Usable Rules ¬ S (even with Cε-Rules) S & C S & C

Reduction Pairs S & C (multilinearity) S & C (multilinearity) S & C (multilinearity)
Probability Removal S & C S & C S & C

For our experimental evaluation, we compared all existing approaches to prove
(b)AST of PTRSs. More precisely, we compared our implementation of the novel
ADP framework for (b)AST in a new version of AProVE [19] with the old version of
AProVE that only implements the techniques from [30,28,31], and with the direct
application of polynomial interpretations from [28].8

To this end, we extended the existing benchmark set of 118 PTRSs from [30]
by 12 new examples including all PTRSs presented in this paper and PTRSs for
typical probabilistic algorithms on lists and trees. Of these 130 examples, the direct

8 In addition, an alternative technique to analyze PTRSs via a direct application of
interpretations was presented in [4]. However, [4] analyzes PAST (or rather strong AST),
and a comparison with their technique can be found in [28].

Annotated DPs for Full AST of Probabilistic Term Rewriting 21

application of polynomials can find 37 (1) AST proofs, old AProVE shows AST for
50 (1) PTRSs, and our new AProVE version proves AST for 58 (6) examples. In
brackets we indicate the number of AST proofs when only regarding the 12 new
examples. The 118 benchmarks from [30] lack non-determinism by overlapping
rules and thus, here we are only able to prove AST for three more examples than old
AProVE. In contrast, our new 12 examples contain non-determinism and create
random data objects, which are accessed or modified afterwards (see App. A).
Our experiments show that our novel ADP framework can for the first time prove
AST of such PTRSs. If we consider basic start terms, the numbers rise to 62 (1) for
old AProVE and 74 (8) for new AProVE. For details on our experiments and for
instructions on how to run our implementation in AProVE via its web interface or
locally, see https://aprove-developers.github.io/ADPFrameworkFullAST.

Reduction pairs were also adapted to disprove reachability [50], and thus, in the
future we will also integrate reachability analysis into the ADP framework for bAST.
Moreover, we aim to analyze stronger properties like PAST via DPs. Here, we will
again start with innermost evaluation, which is easier to analyze. Furthermore, we
want to develop methods to automatically disprove (P)AST of PTRSs.

Acknowledgments. This paper is dedicated to Joost-Pieter Katoen whose ground-
breaking work on verification of probabilistic programs laid the foundations for
this whole research area. His scientific excellence, his enthusiasm in developing out-
standing new research results, and his energy and commitment in the establishment
of new research projects (like, e.g., the DFG research training group UnRAVeL) are
outstanding. While originally we only analyzed “classical” (non-probabilistic) pro-
grams, it is due to Joost-Pieter and this research training group that we extended
the focus of our research towards probabilistic programs. Joost-Pieter is not only a
major inspiration for our work and a fantastic chair of the research training group
UnRAVeL, but he is a great and close colleague, and we look forward to many more
joint years together in Aachen at the Chair i2.

References

1. Agrawal, S., Chatterjee, K., Novotný, P.: Lexicographic ranking supermartingales:
An efficient approach to termination of probabilistic programs. Proc. ACM Program.
Lang. 2(POPL) (2017). https://doi.org/10.1145/3158122

2. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theor.
Comput. Sc. 236(1-2), 133–178 (2000). https://doi.org/10.1016/S0304-3975(99)00207-
8

3. Arts, T., Giesl, J.: A collection of examples for termination of term rewriting us-
ing dependency pairs. Tech. rep., RWTH Aachen University (2001), https://verify.
rwth-aachen.de/giesl/papers/examples.pdf

4. Avanzini, M., Dal Lago, U., Yamada, A.: On probabilistic term rewriting. Sci. Comput.
Program. 185 (2020). https://doi.org/10.1016/j.scico.2019.102338

5. Avanzini, M., Moser, G., Schaper, M.: A modular cost analysis for
probabilistic programs. Proc. ACM Program. Lang. 4(OOPSLA) (2020).
https://doi.org/10.1145/3428240

6. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press
(1998). https://doi.org/10.1017/CBO9781139172752

https://aprove-developers.github.io/ADPFrameworkFullAST
https://doi.org/10.1145/3158122
https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.1016/S0304-3975(99)00207-8
https://verify.rwth-aachen.de/giesl/papers/examples.pdf
https://verify.rwth-aachen.de/giesl/papers/examples.pdf
https://doi.org/10.1016/j.scico.2019.102338
https://doi.org/10.1145/3428240
https://doi.org/10.1017/CBO9781139172752

22 J.-C. Kassing, J. Giesl

7. Batz, K., Kaminski, B.L., Katoen, J.P., Matheja, C., Verscht, L.: A calculus
for amortized expected runtimes. Proc. ACM Program. Lang. 7(POPL) (2023).
https://doi.org/10.1145/3571260

8. Beutner, R., Ong, L.: On probabilistic termination of functional programs
with continuous distributions. In: Proc. PLDI ’21. pp. 1312–1326 (2021).
https://doi.org/10.1145/3453483.3454111

9. Bournez, O., Kirchner, C.: Probabilistic rewrite strategies. applications to ELAN. In:
Proc. RTA ’02. pp. 252–266. LNCS 2378 (2002). https://doi.org/10.1007/3-540-45610-
4 18

10. Bournez, O., Garnier, F.: Proving positive almost-sure termination. In: Proc. RTA ’05.
pp. 323–337. LNCS 3467 (2005). https://doi.org/10.1007/978-3-540-32033-3 24

11. Chatterjee, K., Fu, H., Novotný, P.: Termination analysis of probabilistic pro-
grams with martingales. In: Barthe, G., Katoen, J.P., Silva, A. (eds.) Founda-
tions of Probabilistic Programming, p. 221–258. Cambridge University Press (2020).
https://doi.org/10.1017/9781108770750.008

12. Dal Lago, U., Grellois, C.: Probabilistic termination by monadic affine sized typing.
In: Proc. ESOP ’17. pp. 393–419. LNCS 10201 (2017). https://doi.org/10.1007/978-3-
662-54434-1 15

13. Dal Lago, U., Faggian, C., Della Rocca, S.R.: Intersection Types and (Posi-
tive) Almost-Sure Termination. Proc. ACM Program. Lang. 5(POPL) (2021).
https://doi.org/10.1145/3434313

14. Faggian, C.: Probabilistic rewriting and asymptotic behaviour: On termina-
tion and unique normal forms. Log. Methods in Comput. Sci. 18(2) (2022).
https://doi.org/10.46298/lmcs-18(2:5)2022

15. Ferrer Fioriti, L.M., Hermanns, H.: Probabilistic termination: Soundness, com-
pleteness, and compositionality. In: Proc. POPL ’15. pp. 489–501 (2015).
https://doi.org/10.1145/2676726.2677001

16. Frohn, F., Giesl, J.: Analyzing Runtime Complexity via Innermost Runtime Complex-
ity. In: Proc. LPAR ’17. pp. 249–228. EPiC 46 (2017). https://doi.org/10.29007/1nbh

17. Giesl, J., Thiemann, R., Schneider-Kamp, P.: The dependency pair framework: Com-
bining techniques for automated termination proofs. In: Proc. LPAR ’04. pp. 301–331.
LNCS 3452 (2004). https://doi.org/10.1007/978-3-540-32275-7 21

18. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and
improving dependency pairs. J. Autom. Reason. 37(3), 155–203 (2006).
https://doi.org/10.1007/s10817-006-9057-7

19. Giesl, J., Aschermann, C., Brockschmidt, M., Emmes, F., Frohn, F., Fuhs, C., Hensel,
J., Otto, C., Plücker, M., Schneider-Kamp, P., Ströder, T., Swiderski, S., Thiemann,
R.: Analyzing program termination and complexity automatically with AProVE. J.
Autom. Reason. 58(1), 3–31 (2017). https://doi.org/10.1007/s10817-016-9388-y

20. Giesl, J., Giesl, P., Hark, M.: Computing expected runtimes for constant
probability programs. In: Proc. CADE ’19. pp. 269–286. LNCS 11716 (2019).
https://doi.org/10.1007/978-3-030-29436-6 16

21. Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Prob-
abilistic programming. In: Proc. FOSE ’14. pp. 167–181 (2014).
https://doi.org/10.1145/2593882.2593900

22. Gutiérrez, R., Lucas, S.: MU-TERM: Verify Termination Properties Automatically
(System Description). In: Proc. IJCAR ’20. pp. 436–447. LNCS 12167 (2020).
https://doi.org/10.1007/978-3-030-51054-1 28

23. Hirokawa, N., Middeldorp, A.: Automating the dependency pair method. Inf. Comput.
199(1-2), 172–199 (2005). https://doi.org/10.1016/j.ic.2004.10.004

24. Hirokawa, N., Middeldorp, A.: Tyrolean termination tool: Techniques and features.
Inf. Comput. 205(4), 474–511 (2007). https://doi.org/10.1016/J.IC.2006.08.010

https://doi.org/10.1145/3571260
https://doi.org/10.1145/3453483.3454111
https://doi.org/10.1007/3-540-45610-4_18
https://doi.org/10.1007/3-540-45610-4_18
https://doi.org/10.1007/978-3-540-32033-3_24
https://doi.org/10.1017/9781108770750.008
https://doi.org/10.1007/978-3-662-54434-1_15
https://doi.org/10.1007/978-3-662-54434-1_15
https://doi.org/10.1145/3434313
https://doi.org/10.46298/lmcs-18(2:5)2022
https://doi.org/10.1145/2676726.2677001
https://doi.org/10.29007/1nbh
https://doi.org/10.1007/978-3-540-32275-7_21
https://doi.org/10.1007/s10817-006-9057-7
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/978-3-030-29436-6_16
https://doi.org/10.1145/2593882.2593900
https://doi.org/10.1007/978-3-030-51054-1_28
https://doi.org/10.1016/j.ic.2004.10.004
https://doi.org/10.1016/J.IC.2006.08.010

Annotated DPs for Full AST of Probabilistic Term Rewriting 23

25. Huang, M., Fu, H., Chatterjee, K., Goharshady, A.K.: Modular verification for almost-
sure termination of probabilistic programs. Proc. ACM Program. Lang. 3(OOPSLA)
(2019). https://doi.org/10.1145/3360555

26. Kaminski, B.L., Katoen, J.P., Matheja, C., Olmedo, F.: Weakest precondition rea-
soning for expected runtimes of randomized algorithms. J. ACM 65, 1–68 (2018).
https://doi.org/10.1145/3208102

27. Kaminski, B.L., Katoen, J.P., Matheja, C.: Expected runtime analyis by pro-
gram verification. In: Barthe, G., Katoen, J.P., Silva, A. (eds.) Foundations
of Probabilistic Programming, p. 185–220. Cambridge University Press (2020).
https://doi.org/10.1017/9781108770750.007

28. Kassing, J.C., Giesl, J.: Proving almost-sure innermost termination of probabilistic
term rewriting using dependency pairs. In: Proc. CADE ’23. pp. 344–364. LNCS
14132 (2023). https://doi.org/10.1007/978-3-031-38499-8 20

29. Kassing, J.C., Giesl, J.: Proving almost-sure innermost termination of
probabilistic term rewriting using dependency pairs. CoRR abs/2305.
11741 (2023). https://doi.org/10.48550/arXiv.2305.11741

30. Kassing, J.C., Frohn, F., Giesl, J.: From innermost to full almost-sure termination of
probabilistic term rewriting. In: Proc. FoSSaCS ’24. pp. 206–228. LNCS 14575 (2024).
https://doi.org/10.1007/978-3-031-57231-9 10

31. Kassing, J.C., Dollase, S., Giesl, J.: A complete dependency pair framework for almost-
sure innermost termination of probabilistic term rewriting. In: Proc. FLOPS ’24. pp.
62–80. LNCS 14659 (2024). https://doi.org/10.1007/978-981-97-2300-3 4

32. Kassing, J.C., Dollase, S., Giesl, J.: A complete dependency pair framework for almost-
sure innermost termination of probabilistic term rewriting. CoRR abs/2309.00344
(2024). https://doi.org/10.48550/arXiv.2309.00344

33. Kassing, J.C., Vartanyan, G., Giesl, J.: A dependency pair framework for relative
termination of term rewriting. In: Proc. IJCAR ’24. pp. 360–380. LNCS 14740 (2024).
https://doi.org/10.1007/978-3-031-63501-4 19

34. Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean termination tool 2. In:
Proc. RTA ’09. pp. 295–304. LNCS 5595 (2009). https://doi.org/10.1007/978-3-642-
02348-4 21

35. Kozen, D.: A probabilistic PDL. J. Comput. Syst. Sci. 30(2), 162–178 (1985).
https://doi.org/10.1016/0022-0000(85)90012-1

36. Lankford, D.S.: On proving term rewriting systems are Noetherian. Memo mtp-
3, math. dept.,, Louisiana Technical University, Ruston, LA (1979), https://www.
ens-lyon.fr/LIP/REWRITING/TERMINATION/Lankford Poly Term.pdf

37. Leutgeb, L., Moser, G., Zuleger, F.: Automated expected amortised cost analysis
of probabilistic data structures. In: Proc. CAV ’22. pp. 70–91. LNCS 13372 (2022).
https://doi.org/10.1007/978-3-031-13188-2 4

38. McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Systems.
Springer (2005). https://doi.org/10.1007/B138392

39. McIver, A., Morgan, C., Kaminski, B.L., Katoen, J.P.: A new proof rule
for almost-sure termination. Proc. ACM Program. Lang. 2(POPL) (2018).
https://doi.org/10.1145/3158121

40. Meyer, F., Hark, M., Giesl, J.: Inferring expected runtimes of probabilistic integer
programs using expected sizes. In: Proc. TACAS ’21. pp. 250–269. LNCS 12651 (2021).
https://doi.org/10.1007/978-3-030-72016-2 14

41. Moosbrugger, M., Bartocci, E., Katoen, J.P., Kovács, L.: Automated Termination
Analysis of Polynomial Probabilistic Programs. In: Proc. ESOP ’21. pp. 491–518.
LNCS 12648 (2021). https://doi.org/10.1007/978-3-030-72019-3 18

https://doi.org/10.1145/3360555
https://doi.org/10.1145/3208102
https://doi.org/10.1017/9781108770750.007
https://doi.org/10.1007/978-3-031-38499-8_20
https://doi.org/10.48550/arXiv.2305.11741
https://doi.org/10.1007/978-3-031-57231-9_10
https://doi.org/10.1007/978-981-97-2300-3_4
https://doi.org/10.48550/arXiv.2309.00344
https://doi.org/10.1007/978-3-031-63501-4_19
https://doi.org/10.1007/978-3-642-02348-4_21
https://doi.org/10.1007/978-3-642-02348-4_21
https://doi.org/10.1016/0022-0000(85)90012-1
https://www.ens-lyon.fr/LIP/REWRITING/TERMINATION/Lankford_Poly_Term.pdf
https://www.ens-lyon.fr/LIP/REWRITING/TERMINATION/Lankford_Poly_Term.pdf
https://doi.org/10.1007/978-3-031-13188-2_4
https://doi.org/10.1007/B138392
https://doi.org/10.1145/3158121
https://doi.org/10.1007/978-3-030-72016-2_14
https://doi.org/10.1007/978-3-030-72019-3_18

24 J.-C. Kassing, J. Giesl

42. Ngo, V.C., Carbonneaux, Q., Hoffmann, J.: Bounded expectations: Resource
analysis for probabilistic programs. In: Proc. PLDI ’18. pp. 496–512 (2018).
https://doi.org/10.1145/3192366.3192394

43. Saheb-Djahromi, N.: Probabilistic LCF. In: Proc. MFCS ’78. pp. 442–451. LNCS 64
(1978). https://doi.org/10.1007/3-540-08921-7 92

44. Schröer, P., Batz, K., Kaminski, B.L., Katoen, J., Matheja, C.: A deductive verification
infrastructure for probabilistic programs. Proc. ACM Program. Lang. 7(OOPSLA2),
2052–2082 (2023). https://doi.org/10.1145/3622870

45. Thiemann, R.: The DP Framework for Proving Termination of Term Rewriting.
Ph.D. thesis, RWTH Aachen University (2007), https://verify.rwth-aachen.de/da/
thiemann-diss.pdf

46. Toyama, Y.: Counterexamples to termination for the direct sum of term rewriting
systems. Inf. Process. Lett. 25(3), 141–143 (1987). https://doi.org/10.1016/0020-
0190(87)90122-0

47. Urbain, X.: Modular and incremental automated termination proofs. J. Autom.
Reason. 32(4), 315–355 (2004). https://doi.org/10.1007/BF03177743

48. Wang, D., Kahn, D.M., Hoffmann, J.: Raising expectations: Automating ex-
pected cost analysis with types. Proc. ACM Program. Lang. 4(ICFP) (2020).
https://doi.org/10.1145/3408992

49. Yamada, A., Kusakari, K., Sakabe, T.: Nagoya Termination Tool. In: Proc. RTA-
TLCA ’14. pp. 466–475. LNCS 8560 (2014). https://doi.org/10.1007/978-3-319-08918-
8 32

50. Yamada, A.: Term orderings for non-reachability of (conditional) rewriting. In: Proc.
IJCAR ’22. pp. 248–267 (2022). https://doi.org/10.1007/978-3-031-10769-6 15

https://doi.org/10.1145/3192366.3192394
https://doi.org/10.1007/3-540-08921-7_92
https://doi.org/10.1145/3622870
https://verify.rwth-aachen.de/da/thiemann-diss.pdf
https://verify.rwth-aachen.de/da/thiemann-diss.pdf
https://doi.org/10.1016/0020-0190(87)90122-0
https://doi.org/10.1016/0020-0190(87)90122-0
https://doi.org/10.1007/BF03177743
https://doi.org/10.1145/3408992
https://doi.org/10.1007/978-3-319-08918-8_32
https://doi.org/10.1007/978-3-319-08918-8_32
https://doi.org/10.1007/978-3-031-10769-6_15

Annotated DPs for Full AST of Probabilistic Term Rewriting 25

Appendix

In App. A, we present three examples to demonstrate how our novel ADP framework
can be used for full rewriting on data structures like lists or trees. App. B contains
all proofs for our new contributions and observations.

A Examples

In this section, we show that in contrast to most other techniques for analyzing AST,
due to probabilistic term rewriting, our approach is also suitable for the analysis of
algorithms on algebraic data structures other than numbers.

A.1 Lists

We start with algorithms on lists. Similar to Alg. 1, the following algorithm first
creates a random list, filled with random numbers, and afterwards uses the list
for further computation. In general, algorithms that access or modify randomly
generated lists can be analyzed by our new ADP framework.

The algorithm below computes the sum of all numbers in the generated list.
Here, natural numbers are again represented via the constructors 0 and s, and
lists are represented via nil (for the empty list) and cons, where, e.g., cons(s(0),
cons(s(0), cons(0, nil))) represents the list [1, 1, 0]. The function createL(xs) adds
a prefix of arbitrary length filled with arbitrary natural numbers in front of the
list xs. Moreover, app(xs, ys) concatenates the two lists xs and ys. Finally, for a
non-empty list xs of numbers, sum(xs) computes a singleton list whose only element
is the sum of all numbers in xs . So sum(cons(s(0), cons(s(0), cons(0, nil)))) evaluates
to sum(s(s(0)), nil).

init → {1 : sum(createL(nil))}
addNum(x, xs) → {1/2 : cons(x, xs), 1/2 : addNum(s(x), xs)}

createL(xs) → {1/2 : addNum(0, xs), 1/2 : createL(addNum(0, xs))}
plus(0, y) → {1 : y}

plus(s(x), y) → {1 : s(plus(x, y))}
sum(cons(x, nil)) → {1 : cons(x, nil)}

sum(cons(x, cons(y, ys))) → {1 : sum(cons(plus(x, y), ys))}
sum(app(xs, cons(x, cons(y, ys)))) → {1 : sum(app(xs, sum(cons(x, cons(y, ys)))))}

app(cons(x, xs), ys) → {1 : cons(x, app(xs, ys))}
app(nil, ys) → {1 : ys}
app(xs, nil) → {1 : xs}

Note that the left-hand sides of the two rules app(nil, ys) → {1 : ys} and
app(xs, nil)→ {1 : xs} overlap and moreover, the last sum-rule overlaps with the
first app-rule. Hence, we cannot use the techniques from [30] to analyze full AST of
this PTRS. Furthermore, there exists no polynomial ordering that proves AST for
this example directly (i.e., without the use of DPs), because the left-hand side of
the last sum-rule is embedded in its right-hand side. With our new ADP framework,
AProVE can now prove AST of this example automatically.

26 J.-C. Kassing, J. Giesl

Next, consider the following adaption of this example. Here, we only create lists
of even numbers.

init → {1 : sum(createL(nil))}
addNum(x, xs) → {1/2 : cons(plus(x, x), xs), 1/2 : addNum(s(x), xs)}

createL(xs) → {1/2 : addNum(0, xs), 1/2 : createL(addNum(0, xs))}
plus(0, y) → {1 : y}

plus(s(x), y) → {1 : s(plus(x, y))}
sum(cons(x, nil)) → {1 : cons(x, nil)}

sum(cons(x, cons(y, xs))) → {1 : sum(cons(plus(x, y), xs))}
sum(app(xs, cons(x, cons(y, ys)))) → {1 : sum(app(xs, sum(cons(x, cons(y, ys)))))}

app(cons(x, xs), ys) → {1 : cons(x, app(xs, ys))}
app(nil, ys) → {1 : ys}
app(xs, nil) → {1 : xs}

Due to the subterm plus(x, x) in the right-hand side, the addNum-rule is dupli-
cating. Hence, we cannot use the ADP framework for AST. However, the PTRS is
weakly spare, as the arguments of plus cannot contain defined function symbols if
we start with a basic term. Hence, AProVE can use the ADP framework for bAST
and successfully prove bAST of this example.

A.2 Trees

As another example, our new ADP framework can also deal with trees. In the
following algorithm (adapted from [3]), we consider binary trees represented via
leaf and tree(x, y), where concat(x, y) replaces the rightmost leaf of the tree x by
y. The algorithm first creates two random trees and then checks whether the first
tree has less leaves than the second one.

init → {1 : lessleaves(createT(leaf), createT(leaf))}
concat(leaf, y) → {1 : y}

concat(tree(u, v), y) → {1 : tree(u, concat(v, y))}
lessleaves(x, leaf) → {1 : false}

lessleaves(leaf, tree(x, y)) → {1 : true}
lessleaves(tree(u, v), tree(x, y)) → {1 : lessleaves(concat(u, v), concat(x, y))}

createT(xs) → {1 : xs}
createT(xs) → {1/3 : xs, 1/3 : createT(tree(xs, leaf)), 1/3 : createT(tree(leaf, xs))}

Note that the last two rules are overlapping. Again, our new ADP framework
is able to prove AST for this example, while both [30] and the direct application of
polynomial interpretations fail.

B Proofs

In this section, we give all proofs for our new results and observations. In the
following, let L(x) = (pTx , t

T
x) denote the labeling of the node x in the chain tree T.

We say that a CT (or RST) T converges (or terminates) with probability p ∈ R if
we have |T|Leaf = p. Moreover, we often write #ε(t) instead of #{ε}(t) and #D(t)
instead of #PosD(t)(t) to annotate all defined symbols in a term t. We can now
start with the proof of the sound and complete chain criterion for AST.

Annotated DPs for Full AST of Probabilistic Term Rewriting 27

Theorem 13 (Chain Criterion for AST). A non-duplicating PTRS R is AST
iff DP(R) is AST.

Proof.

Soundness: Assume that R is not AST. Then, there exists an R-RST T = (V,E,L)
whose root is labeled with (1 : t) for some term t ∈ T that converges with probability
< 1. We will construct a DP(R)-CT T′ = (V,E, L′, V \ LeafT) with the same
underlying tree structure and an adjusted labeling such that pTx = pT

′

x for all x ∈ V ,
where all the inner nodes are in A. Since the tree structure and the probabilities
are the same, we then get |T|Leaf = |T′|Leaf. To be precise, the set of leaves in
T is equal to the set of leaves in T′, and they have the same probabilities. Since
|T|Leaf < 1, we thus have |T′|Leaf < 1. Hence, there exists a DP(R)-CT T′ that
converges with probability < 1 and DP(R) is not AST either.

1 t

p1 t1 p2 t2

p3 t3 p4 t4 p5 t5

.

⇝

1 #D(t)

A

p1 #D(t1)

A

p2 #D(t2)

A

p3 #D(t3)

A

p4 #D(t4)

A

p5 #D(t5)

A

.

We label all nodes x ∈ V in T′ with #D(tx), where tx is the term for the node x
in T. The annotations ensure that we rewrite with Case (at) of Def. 12 so that
the node x is contained in A. We only have to show that T′ is indeed a valid
CT, i.e., that the edge relation represents valid rewrite steps with ↪−→DP(R). Let

x ∈ V \ Leaf and xE = {y1, . . . , yk} be the set of its successors. Since x is not
a leaf, we have tx →R {

py1

px
: ty1 , . . . ,

pyk

px
: tyk
}. This means that there is a rule

ℓ → {p1 : r1, . . . , pk : rk} ∈ R, a position π, and a substitution σ such that
tx|π = ℓσ. Furthermore, we have tyj = tx[rjσ]π for all 1 ≤ j ≤ k.

The corresponding ADP for the rule is ℓ→ {p1 : #D(r1), . . . , pk : #D(rk)}true.
Furthermore, π ∈ PosD#(#D(tx)) as all defined symbols are annotated in #D(tx).
Hence, we can rewrite #D(tx) with ℓ→ {p1 : #D(r1), . . . , pk : #D(rk)}true, using
the position π, the substitution σ, and Case (at) of Def. 12 applies. Furthermore,
we take some VRF (φj)1≤j≤k that is surjective on the positions of the variables
in the right-hand side, i.e., for all 1 ≤ j ≤ k and all positions τ ∈ PosV(rj) there
exists a τ ′ ∈ PosV(ℓ) such that φj(τ

′) = τ . Such a VRF must exist, since R is
non-duplicating. We have #D(tx) ↪−→DP(R) {p1 : #D(ty1), . . . , pk : #D(tyk

)} since
by rewriting with (at) we get #D(tx)[#Φj (rjσ)]π = #D(tyj) with Φj defined as in
Def. 12. Note that since the used VRF is surjective on the variable positions of the
right-hand side, we do not remove any annotation in the substitution. Furthermore,
we annotated all defined symbols in rj . Thus, we result in #D(tyj

) where all defined
symbols are annotated again.

Completeness: Assume that DP(R) is not AST. Then, there exists a DP(R)-CT
T = (V,E,L,A) whose root is labeled with (1 : t) for some annotated term t ∈ T #

that converges with probability < 1. We will construct an R-RST T′ = (V,E, L′)
with the same underlying tree structure and an adjusted labeling such that pTx = pT

′

x

for all x ∈ V . Since the tree structure and the probabilities are the same, we then

28 J.-C. Kassing, J. Giesl

get |T′|Leaf = |T|Leaf < 1. Therefore, there exists an R-RST T′ that converges with
probability < 1. Hence, R is not AST either.

1 t

p1 t1 p2 t2

p3 t3 p4 t4 p5 t5

.

⇝

1 ♭(t)

p1 ♭(t1) p2 ♭(t2)

p3 ♭(t3) p4 ♭(t4) p5 ♭(t5)

.

We label all nodes x ∈ V in T′ with ♭(tx), where tx is the term for the node x in
T, i.e., we remove all annotations. We only have to show that T′ is indeed a valid
RST, i.e., that the edge relation represents valid rewrite steps with →R, but this
follows directly from the fact that if we remove all annotations in Def. 12, then we
get the ordinary probabilistic term rewriting relation again. ⊓⊔

Next, we prove the sound and complete chain criterion for bAST. In the following,
for two (possibly annotated) terms s, t we define s

.
= t if ♭(s) = ♭(t).

Theorem 14 (Chain Criterion for bAST). A weakly spare PTRS R is bAST iff
(∅,DP(R)) is bAST.

Proof. Since the reachability component of the canonical basic ADP problem is
empty, we just consider DP(R)-CTs.
Soundness: We use the same construction as for AST but the definition of the terms
in the new DP(R)-CT is slightly different. Previously, all defined symbols were
annotated. Now, we do not annotate all of them, but we may remove annotations
from defined symbols if the corresponding subterm at this position is in normal
form. Furthermore, the initial term t is a basic term and thus, #D(t) = t#.

1 t

p1 t1 p2 t2

p3 t3 p4 t4 p5 t5

.

⇝

1 t#

A

p1 t′1

A

p2 t′2

A

p3 t′3

A

p4 t′4

A

p5 t′5

A

.

We construct the new labeling L′ for the DP(R)-CT inductively such that for
all inner nodes x ∈ V \ Leaf with children nodes xE = {y1, . . . , yk} we have
t′x ↪−→DP(R) {

py1

px
: t′y1

, . . . ,
pyk

px
: t′yk
}. Let X ⊆ V be the set of nodes x where

we have already defined the labeling L′(x). Furthermore, for any term t ∈ T let
PosPoss(t,R) = {π | π ∈ PosD(t), t|π /∈ NFR}. During our construction, we ensure
that the following property holds:

For every node x ∈ X we have tx
.
= t′x and PosPoss(tx,R) ⊆ PosD#(t′x). (21)

This means that the corresponding term tx for the node x in T has the same
structure as the term t′x in T′, and additionally, at least all possible redexes in
tx are annotated in t′x. The annotations ensure that we rewrite with Case (at)

Annotated DPs for Full AST of Probabilistic Term Rewriting 29

of Def. 12 so that the node x is contained in A. We label the root of T′ with t#.
Here, we have t

.
= t# and PosPoss(t,R) = {ε} = PosD#(t#), since t is a basic

term. As long as there is still an inner node x ∈ X such that its successors are
not contained in X, we do the following. Let xE = {y1, . . . , yk} be the set of its
successors. We need to define the corresponding terms t′y1

, . . . , t′yk
for the nodes

y1, . . . , yk. Since x is not a leaf, we have tx →R {
py1

px
: ty1

, . . . ,
pyk

px
: tyk
}, i.e., there

is a rule ℓ → {p1 : r1, . . . , pk : rk} ∈ R, a position π, and a substitution σ such
that tx|π = ℓσ. Furthermore, we have tyj = tx[rjσ]π for all 1 ≤ j ≤ k.

The corresponding ADP for the rule is ℓ→ {p1 : #D(r1), . . . , pk : #D(rk)}true.
Furthermore, π ∈ PosPoss(tx,R) ⊆(IH) PosD#(t′x) and tx

.
=(IH) t′x. Hence, we

can rewrite t′x with ℓ → {p1 : #D(r1), . . . , pk : #D(rk)}true, using the position π
and the substitution σ, and Case (at) of Def. 12 applies. Additionally, we use a
VRF (φj)1≤j≤k that is surjective on the positions of those variables that occur
at least as often in the left-hand side as in the right-hand sides. The positions of
all other variables (i.e., all variables that are duplicated) are mapped to ⊥. Note
that R is weakly spare, hence such variables can only be instantiated by normal
forms. We get t′x ↪−→DP(R) {p1 : t′y1

, . . . , pk : t′yk
} with t′yj

= t′x[#Φj (rjσ)]π by (at)

with Φj defined as in Def. 12. This means that we have tyj

.
= t′yj

. It remains
to prove PosPoss(tyj

,R) ⊆ PosD#(t′yj
) for all 1 ≤ j ≤ k. For all positions τ ∈

PosPoss(tyj
,R) = PosPoss(tx[rjσ]π,R) that are orthogonal or above π, we have τ ∈

PosPoss(tx,R) ⊆(IH) PosD#(t′x), and all annotations orthogonal or above π remain
in t′yj

as they were in t′x. For all positions τ ∈ PosPoss(tyj ,R) = PosPoss(tx[rjσ]π,R)
that are below π, we have two possibilities: (1) at least the defined root symbol of
tyj
|τ is inside rj , and thus τ ∈ PosD#(t′yj

), as all defined symbols of rj are annotated
in t′yj

= t′x[#Φj
(rj)σ]π, or (2) τ is below a non-duplicated variable (otherwise the

subterm tyj
|τ has to be a normal form and thus, τ /∈ PosPoss(tyj

,R)), and hence,
it is still annotated in t′yj

due to the used VRF. This ends the induction proof for
this direction.

Completeness: Completely the same as in the proof of Thm. 13. ⊓⊔

Next, we consider the theorems regarding the processors that we adapted from
[31] to our new framework for AST and bAST. We first recapitulate the notion of a
sub-chain tree from [29].

Definition 44 (Subtree, Sub-CT). Let P be an ADP problem and let T =
(V,E,L,A) be a tree that satisfies Conditions (1)-(5) of a P-CT. Let W ⊆ V
be non-empty, weakly connected, and for all x ∈ W we have xE ∩ W = ∅ or
xE ∩W = xE. Then, we define the subtree (or sub-CT if it satisfies Condition (6)
as well) T[W] by T[W] = (W,E ∩ (W ×W), LW , A ∩ (W \WLeaf)). Here, WLeaf

denotes the leaves of the tree GT[W] = (W,E ∩ (W × W)) so that the new set
A ∩ (W \WLeaf) only contains inner nodes. Let w ∈ W be the root of GT[W]. To
ensure that the root of our subtree has the probability 1 again, we use the labeling

LW (x) = (
pT
x

pT
w
: tTx) for all nodes x ∈W . If W contains the root of (V,E), then we

call the sub-chain tree grounded.

Example 45. Reconsider the PTRSR1 containing the only rule g→ {3/4 : d(g), 1/4 :
0}. Below one can see the R1-RST from Sect. 2 (on the left), and the subtree that

30 J.-C. Kassing, J. Giesl

starts at the node of the term d(g) (on the right). Note that the probabilities are
normalized such that the root has the probability 1 again.

1 g

3/4 d(g) 1/4 0

NFR1
9/16 d(d(g)) 3/16 d(0)

NFR1.

1 d(g)

3/4 d(d(g)) 1/4 d(0)

NFR1.

The property of being non-empty and weakly connected ensures that the
resulting graph GT[W] is a tree again. The property that we either have xE∩W = ∅
or xE ∩W = xE ensures that the sum of probabilities for the successors of a node
x is equal to the probability for the node x itself.

Next, we recapitulate a lemma and adapt another important lemma from [29].
Afterwards, we prove the theorems on the processors. We start with the A-partition
lemma. This lemma was proven in [29] (where it was called “P-partition lemma”)
and still applies to our new ADP problems, since the structure of our CTs is the
same as in [28,29].

Lemma 46 (A-Partition Lemma). Let P be an ADP problem and let T =
(V,E,L,A) be a P-CT that converges with probability < 1. Assume that we can
partition A = A1 ⊎A2 such that every sub-CT that only contains A-nodes from A1

converges with probability 1. Then there is a grounded sub-CT T′ that converges
with probability < 1 such that every infinite path has an infinite number of nodes
from A2.

Proof. See [29], as this proof does not depend on the used rewrite strategy but
just on the structure of a chain tree. ⊓⊔

Next, we adapt the proof of the starting lemma from [29,32]. It shows that
w.l.o.g., we can assume that we label the root of our CT with (1 : t) for an annotated
term t such that PosD#(t) = {ε}, i.e., only the root is annotated. This obviously
holds for bAST, but the starting lemma shows that it can also be assumed for AST.
For the following proofs, we extend Def. 12 by the missing (nf) case. As discussed
in Sect. 3, this does not change the definition of AST for chain trees, but it allows
us to still perform the same rewrite steps in a CT if annotations are removed.

Definition 47 (Rewriting with ADPs Including (nf)). Let P be an ADP
problem. A term s ∈ T # rewrites with P to µ = {p1 : t1, . . . , pk : tk} (denoted
s ↪−→P µ) if there are an ADP ℓ −→ {p1 : r1, . . . , pk : rk}m ∈ P, a VRF (φj)1≤j≤k for
this ADP, a substitution σ, and a position π ∈ PosD∪D#(s) such that ♭(s|π) = ℓσ,
and for all 1 ≤ j ≤ k we have

tj = s[#Φj
(rjσ)]π if π ∈ PosD#(s) and m = true (at)

tj = ♭↑π(s[#Φj
(rjσ)]π) if π ∈ PosD#(s) and m = false (af)

tj = s[#Ψj
(rjσ)]π if π ̸∈ PosD#(s) and m = true (nt)

tj = ♭↑π(s[#Ψj
(rjσ)]π) if π ̸∈ PosD#(s) and m = false (nf)

Here, Ψj ={φj(ρ).τ | ρ∈PosV(ℓ), φj(ρ) ̸=⊥, ρ.τ ∈PosD#(s|π)} and Φj =PosD#(rj) ∪ Ψj.

Annotated DPs for Full AST of Probabilistic Term Rewriting 31

Lemma 48 (Starting Lemma). If an ADP problem P is not AST, then there
exists a P-CT T with |T|Leaf < 1 that starts with (1 : t) where PosD#(t) = {ε}.

Proof. We prove the contraposition. Assume that every P-CT T converges with
probability 1 if it starts with (1 : t) and PosD#(t) = {ε}. We now prove that then
also every P-CT T that starts with (1 : t) for some arbitrary term t converges with
probability 1, and thus P is AST. We prove the claim by induction on the number
of annotations in the initial term t.

If t contains no annotation, then the CT starting with (1 : t) is trivially finite
(it cannot contain an infinite path, since there are no nodes in A) and hence, it
converges with probability 1. Next, if t contains exactly one annotation at position
π, then we can ignore everything above the annotation, as we will never use an A-
step above the annotated position, and we cannot duplicate or change annotations
by rewriting above them, since we use VRFs and not GVRFs. However, for t|π
with PosD#(t|π) = {ε}, we know by our assumption that such a CT converges with
probability 1.

Now we regard the induction step, and assume for a contradiction that for a
term t with n > 1 annotations, there is a CT T that converges with probability
< 1. Here, our induction hypothesis is that every P-CT T that starts with (1 : t′),
where t′ contains m annotations for some 1 ≤ m < n converges with probability 1.
Let Π1 = {τ} and Π2 = {χ ∈ PosD#(t) | χ ̸= τ} for some τ ∈ PosD#(t) and
consider the two terms #Π1(t) and #Π2(t), which contain both strictly less than n
annotations. By our induction hypothesis, we know that every P-CT that starts with
(1 : #Π1

(t)) or (1 : #Π2
(t)) converges with probability 1. Let T1 = (V,E, L1, A1)

be the tree that starts with (1 : #Π1
(t)) and uses the same rules as we did in T.

(Here, the new definition of the rewrite relation ↪−→P including the case (nf) from
Def. 47 is needed in order to ensure that one can still use the same rules as in T
although we now may have less annotations.)

We can partition A into the sets A1 and A2 = A \A1. Note that T1 itself may
not be a P-CT again, since there might exist paths without an infinite number of
A1-nodes, but obviously every subtree T′

1 of T1 such that every infinite path has
an infinite number of A1-nodes is a P-CT again. Moreover, by extending such a
subtree to be grounded, i.e., adding the initial path from the root of T1 to T′

1, we
created a P-CT that starts with #Π1

(t), and hence by our induction hypothesis,
converges with probability 1. Thus, this also holds for T′

1.
We want to use the A-partition lemma (Lemma 46) for the tree T. For this,

we have to show that every sub-CT T′
1 of T that only contains A-nodes from A1

converges with probability 1. But since T′
1 only contains A-nodes from A1 it must

either contain infinitely many A1-nodes, and by the previous paragraph it converges
with probability 1, or it contains only finitely many A1-nodes, hence must be finite
itself, and also converges with probability 1.

Now, we have shown that the conditions for the A-partition lemma (Lemma 46)
are satisfied. Thus, we can apply the A-partition lemma to obtain a grounded
sub-CT T′ of T with |T′|Leaf < 1 such that on every infinite path, we have an
infinite number of A2 nodes. Let T2 be the tree that starts with #Π2

(t) and uses
the same rules as we did in T′. Again, all local properties for a P-CT are satisfied.
Additionally, this time we know that every infinite path has an infinite number

32 J.-C. Kassing, J. Giesl

of A2-nodes in T′, hence we also know that the global property for T2 is satisfied.
This means that T2 is a P-CT that starts with #Π2

(t) and with |T2|Leaf < 1. This
is our desired contradiction, which proves the induction step. ⊓⊔

As only the root position of the term at the root of the CT is annotated, we
can assume that the step from the root of the CT to its children corresponds to
a rewrite step at the root of this term. The reason is that we have to eventually
rewrite at this root position of the term in a CT that converges with probability
< 1. Hence, w.l.o.g. we can start with this root rewrite step.

Next, we adapt the soundness and completeness proofs for the processors from
[32] from innermost to full rewriting.

Theorem 20 (Dependency Graph Processor for AST). For the SCCs P1, . . . ,
Pn of the P-dependency graph, ProcDG(P) = {P1 ∪ ♭(P \ P1), . . . ,Pn ∪ ♭(P \ Pn)}
is sound and complete for AST.

Proof. Let X = X ∪ ♭(P \X) for X ⊆ P.
Completeness: Every Pi-CT is also a P-CT with fewer annotations in the terms. So

if some Pi is not AST, then there exists a Pi-CT T that converges with probability
< 1. By adding annotations to the terms of the tree, we result in a P-CT that
converges with probability < 1 as well. Hence, if Pi is not AST, then P is not AST
either.

Soundness: Let G be the P-dependency graph. Suppose that every Pi-CT converges
with probability 1 for all 1 ≤ i ≤ n. We prove that then also every P-CT converges
with probability 1. Let W = {P1, . . . ,Pn} ∪ {{v} ⊆ P | v is not in an SCC of G}
be the set of all SCCs and all singleton sets of nodes that do not belong to any
SCC. The core steps of this proof are the following:

1. We show that every ADP problem X with X ∈W is AST.
2. We show that composing SCCs maintains the AST property.
3. We show that for every X ∈ W , the ADP problem

⋃
X>∗

GY Y is AST by

induction on >G.
4. We conclude that P must be AST.

Here, for two X1, X2 ∈ W we say that X2 is a direct successor of X1 (denoted
X1 >G X2) if there exist nodes v ∈ X1 and w ∈ X2 such that there is an edge
from v to w in G.

1. Every ADP problem X with X ∈W is AST.
We start by proving the following:

Every ADP problem X with X ∈W is AST. (22)

To prove (22), note that if X is an SCC, then it follows from our assumption
that X is AST. If X is a singleton set of a node that does not belong to any
SCC, then assume for a contradiction that X is not AST. By Lemma 48 there
exists an X-CT T = (V,E, L,A) that converges with probability < 1 and starts
with (1 : t) where PosD#(t) = {ε} and ♭(t) = sθ for a substitution θ and some
ADP s → {p1 : t1, . . . , pk : rk}m ∈ X. If s → . . . /∈ X, then the resulting terms

Annotated DPs for Full AST of Probabilistic Term Rewriting 33

after the first rewrite step contain no annotations anymore and this cannot start
a CT that converges with probability < 1. Hence, we have s → . . . ∈ X and
thus, X = {s → . . .}, since X is a singleton set. Assume for a contradiction
that there exists a node x ∈ A in T that is not the root and introduces new
annotations. W.l.o.G., let x be reachable from the root without traversing any
other node that introduces new annotations. This means that for the corresponding
term tx for node x there is a t′ ⊴# tx at position τ such that t′ = sσ′ for some
substitution σ′ and the only ADP s → . . . ∈ X (since this is the only ADP in
X that contains any annotations in the right-hand side). Let (z0, . . . , zm) with
zm = x be the path from the root to x in T. The first rewrite step at the root
must be sθ ↪−→

X
{p1 : r1θ, . . . , pk : rkθ}. After that, we only use ADPs with the flag

true below the annotated position that will be used for the rewrite step at node
x, as otherwise, the position τ would not be annotated in tx. Therefore, we must
have an 1 ≤ j ≤ k and a t′′ ⊴# rj such that t′′#θ →∗

np(P) s
#σ′, which means that

there must be a self-loop for the only ADP in X, which is a contradiction to our
assumption that X is a singleton consisting of an ADP that is not in any SCC of G.

Now, we have proven that the X-CT T does not introduce new annotations.
By definition of a P-CT, every infinite path must contain an infinite number of
nodes in A, i.e., nodes where we rewrite at an annotation. Thus, every path in T
must be finite, which means that T is finite itself, as the tree is finitely branching.
But every finite CT converges with probability 1, which is a contradiction to our
assumption that T converges with probability < 1.

2. Composing SCCs maintains the AST property.
Next, we show that composing SCCs maintains the AST property. More precisely,
we prove the following:

Let X̂ ⊆ W and Ŷ ⊆ W such that there are no X1, X2 ∈ X̂ and Y ∈ Ŷ
which satisfy both X1 >∗

G Y >∗
G X2 and Y ̸∈ X̂, and such that there are

no Y1, Y2∈ Ŷ and X ∈ X̂ which satisfy both Y1 >∗
G X >∗

G Y2 and X ̸∈ Ŷ .

If both
⋃

X∈X̂ X and
⋃

Y ∈Ŷ Y are AST, then
⋃

X∈X̂ X ∪
⋃

Y ∈Ŷ Y is AST.

(23)

To show (23), we assume that both
⋃

X∈X̂ X and
⋃

Y ∈Ŷ Y are AST. Let Z =⋃
X∈X̂ X ∪

⋃
Y ∈Ŷ Y . The property in (23) for X̂ and Ŷ says that a path between

two nodes from
⋃

X∈X̂ X that only traverses nodes from Z must also be a path
that only traverses nodes from

⋃
X∈X̂ X, so that

⋃
Y ∈Ŷ Y cannot be used to

“create” new paths between two nodes from
⋃

X∈X̂ X, and vice versa. Assume for a

contradiction that Z is not AST. By Lemma 48 there exists a Z-CT T = (V,E, L,A)
that converges with probability < 1 and starts with (1 : t) where PosD#(t) = {ε}
and ♭(t) = sθ for a substitution θ and an ADP s→ . . . ∈ Z.

If s→ . . . /∈
⋃

X∈X̂ X∪
⋃

Y ∈Ŷ Y , then the resulting terms contain no annotations
anymore and this cannot start a CT that converges with probability < 1. W.l.o.g.,
we may assume that the ADP that is used for the rewrite step at the root is in⋃

X∈X̂ X. Otherwise, we simply swap
⋃

X∈X̂ X with
⋃

Y ∈Ŷ Y in the following.

We can partition the set A of our Z-CT T into the sets

• A1 := {x ∈ A | x together with the labeling and its successors represents a step
with an ADP from

⋃
X∈X̂ X}

34 J.-C. Kassing, J. Giesl

• A2 := A \A1

Note that in the case of x ∈ A2, we know that x together with its successors and
the labeling represents a step with an ADP from P \

⋃
X∈X̂ X. We know that

every
⋃

Y ∈Ŷ Y -CT converges with probability 1, since
⋃

Y ∈Ŷ Y is AST. Thus, also

every
⋃

Y ∈Ŷ Y \
⋃

X∈X̂ X-CT converges with probability 1 (as it contains fewer

annotations than
⋃

Y ∈Ŷ Y). Furthermore, we have |T|Leaf < 1 by our assumption.

By the A-partition lemma (Lemma 46) we can find a grounded sub Z-CT T′ =
(V ′, E′, L′, A′) with |T′|Leaf < 1 such that every infinite path has an infinite number
of A1-edges. Since T′ is a grounded sub-CT of T it must also start with (1 : t).

We now construct a
⋃

X∈X̂ X-CT T′′ = (V ′, E′, L′′, A′′) with A1∩A′ ⊆ A′′ that
has the same underlying tree structure and adjusted labeling such that all nodes
get the same probabilities as in T′. Since the tree structure and the probabilities
are the same, we then obtain |T′|Leaf = |T′′|Leaf. To be precise, the set of leaves in
T′ is equal to the set of leaves in T′′, and every leaf has the same probability. Since
|T′|Leaf < 1 we thus have |T′′|Leaf < 1, which is a contradiction to our assumption
that

⋃
X∈X̂ X is AST.

1 t

A1

p1 t′1 p2 t′2

A2

p3 t′3

A1

p4 t′4

A2

p5 t′5

A1

.

⇝
1 t

A1

p1 t′′1 p2 t′′2

p3 t′′3

A1

p4 t′′4 p5 t′′5

A1

.

The core idea of this construction is that annotations introduced by rewrite steps
at a node x ∈ A2 are not important for our computation. The reason is that if
annotations are introduced using an ADP from

⋃
Y ∈Ŷ Y that is not contained in⋃

X∈X̂ X, then by the prerequisite of (23), we know that such an ADP has no
path in the dependency graph to an ADP in

⋃
X∈X̂ X. Hence, by definition of the

dependency graph, we are never able to use these terms for a rewrite step with
an ADP from

⋃
X∈X̂ X to introduce new annotations. We can therefore apply the

non-annotated ADP from
⋃

Y ∈Ŷ Y to perform the rewrite step.

We now construct the new labeling L′′ for the
⋃

X∈X̂ X-CT T′′ recursively.
Let Q ⊆ V be the set of nodes where we have already defined the labeling L′′.
Furthermore, for any term t′x, let JunkX̂(t′x) denote the positions of all annotated

subterms s ⊴# t′x that can never be used for a rewrite step with an ADP from X̂,
as indicated by the dependency graph. To be precise, we define π ∈ JunkX̂(t′x):⇔
there is no A ∈ W with A >∗

G X for some X ∈ X̂ such that there is an ADP
ℓ → {p1 : r1, . . . , pk : rk}m ∈ A, and a substitution σ with #ε(t

′
x|π) →∗

np(P) ℓ
#σ.

During our construction, we ensure that the following property holds:

For every x ∈ Q we have t′x
.
= t′′x and PosD#(t′x) \ JunkX̂(t′x) ⊆ PosD#(t′′x). (24)

We start by setting t′′v = t′v for the root v of T′. Here, our property (24)
is clearly satisfied. As long as there is still an inner node x ∈ Q such that its

Annotated DPs for Full AST of Probabilistic Term Rewriting 35

successors are not contained in Q, we do the following. Let xE = {y1, . . . , yk}
be the set of its successors. We need to define the corresponding terms for the
nodes y1, . . . , yk in T′′. Since x is not a leaf and T′ is a Z-CT, we have t′x ↪−→

Z

{py1

px
: t′y1

, . . . ,
pyk

px
: t′yk
}, and hence, we have to deal with the following two cases:

1. If we use an ADP from
⋃

X∈X̂ X in T′, then we perform the rewrite step
with the same ADP, the same VRF (φj)1≤j≤k, the same position π, and the
same substitution in T′′. Since we have t′x

.
=(IH) t

′′
x, we also get t′yj

.
= t′′yj

for
all 1 ≤ j ≤ k. Furthermore, since we rewrite at position π it cannot be in
JunkX̂(t′x), and hence, if π ∈ PosD#(t′x), then also π ∈ PosD#(t′′x) by (24).
Thus, whenever we create annotations in the rewrite step in T′ (a step with
(af) or (at)), then we do the same in T′′ (the step is also an (af) or (at) step,
respectively), and whenever we remove annotations in the rewrite step in T′′ (a
step with (af) or (nf)), then the same happened in T′ (the step is also an (af)
or (nf) step). Therefore, we also get PosD#(t′yj

) \ JunkX̂(t′yj
) ⊆ PosD#(t′′yj

) for
all 1 ≤ j ≤ k and (24) is again satisfied.

2. If we use an ADP from P \
⋃

X∈X̂ X in T′, and we use the ADP ℓ → {p1 :
r1, . . . , pk : rk}m, then we can use ℓ → {p1 : ♭(r1), . . . , pk : ♭(rk)}m instead,
with the same VRF (φj)1≤j≤k, the same position π, and the same substitution.
Note that if π ∈ PosD#(t′x), then all the annotations introduced by the ADP
are in JunkX̂(t′yj

) for all 1 ≤ j ≤ k, since the used ADP is not in
⋃

X∈X̂ X and
by (23) we cannot use another ADP to create a path in the dependency graph
to a node in

⋃
X∈X̂ X again. Otherwise, we remove the annotations during the

application of the rule anyway. Again, (24) is satisfied.

We have now shown that (23) holds.

3. For every X ∈W , the ADP problem
⋃

X>∗
GY Y is AST.

Using (22) and (23), by induction on >G we now prove that

for every X ∈W , the ADP problem
⋃

X>∗
GY Y is AST. (25)

Note that >G is well founded, since G is finite.
For the base case, we consider an X ∈W that is minimal w.r.t. >G. Hence, we

have
⋃

X>∗
GY Y = X. By (22), X is AST.

For the induction step, we consider an X ∈W and assume that
⋃

Y >∗
GZ Z is AST

for every Y ∈W withX >+
G Y . Let Succ(X) = {Y ∈W | X >G Y } = {Y1, . . . Ym}

be the set of all direct successors of X. The induction hypothesis states that⋃
Yu>∗

GZ Z is AST for all 1 ≤ u ≤ m. We first prove by induction that for all

1 ≤ u ≤ m,
⋃

1≤i≤u

⋃
Yi>∗

GZ Z is AST.

In the inner induction base, we have u = 1 and hence
⋃

1≤i≤u

⋃
Yi>∗

GZ Z =⋃
Y1>∗

GZ Z. By our outer induction hypothesis we know that
⋃

Y1>∗
GZ Z is AST.

In the inner induction step, assume that the claim holds for some 1 ≤ u < m.
Then

⋃
Yu+1>∗

GZ Z is AST by our outer induction hypothesis and⋃
1≤i≤u

⋃
Yi>∗

GZ Z is AST by our inner induction hypothesis. By (23), we know

that then
⋃

1≤i≤u+1

⋃
Yi>∗

GZ Z is AST as well. The conditions for (23) are clearly

36 J.-C. Kassing, J. Giesl

satisfied, as we use the reflexive, transitive closure >∗
G of the direct successor

relation in both
⋃

1≤i≤u

⋃
Yi>∗

GZ Z and
⋃

Yu+1>∗
GZ Z.

Now we have shown that
⋃

1≤i≤m

⋃
Yi>∗

GZ Z is AST. We know that X is AST

by our assumption and that
⋃

1≤i≤m

⋃
Yi>∗

GZ Z is AST. Hence, by (23) we obtain

that
⋃

X>∗
GY Y AST. Again, the conditions of (23) are satisfied, since X is strictly

greater w.r.t. >+
G than all Z with Yi >

∗
G Z for some 1 ≤ i ≤ m.

4. P is AST.
In (25) we have shown that

⋃
X>∗

GY Y for every X ∈ W is AST. Let X1, . . . , Xm

∈W be the maximal elements of W w.r.t. >G. By induction, one can prove that⋃
1≤i≤u

⋃
Xi>∗

GY Y is AST for all 1 ≤ u ≤ m by (23), analogous to the previous

induction. Again, the conditions of (23) are satisfied as we use the reflexive,
transitive closure of >G. In the end, we know that

⋃
1≤i≤m

⋃
Xi>∗

GY Y = P is AST

and this ends the proof. ⊓⊔

Theorem 23 (Dependency Graph Processor for bAST). For the SCCs P1,
. . . ,Pn of the P-dependency graph, the processor ProcDG(I,P) = {(J ∪ ♭(I \ J),
Pi ∪ ♭(P \ Pi)) | 1 ≤ i ≤ n, J ∈ Pi↑} is sound and complete for bAST.

Proof. Let X
P
= X ∪ ♭(P \X) for X ⊆ P and X

I
= X ∪ ♭(I \X) for X ⊆ I ∪P .

Completeness: Every (J I ∪ Pi
P
)-CT is also a (I ∪ P)-CT with fewer annotations

in the terms. So if some (J I
,Pi

P
) is not bAST, then there exists a (J I ∪ Pi

P
)-CT

T that converges with probability < 1 and uses J I \ Pi
P
only finitely often. By

adding annotations to the terms of the tree, we result in an (I ∪ P)-CT that
converges with probability < 1 as well and uses ADPs from I \ P only finitely

often. Hence, if (J I
,Pi

P
) is not bAST, then (I,P) is not bAST either.

Soundness: Let (I,P) be not bAST. Then there exists an (I,P)-CT T that converges
with probability < 1, whose root is labeled with (1 : t#) for a basic term t, and
I \ P is used only finitely often. So there exists a depth H ∈ N, such that we only
use ADPs from P and no ADPs from I \ P anymore. All the subtrees that start at
depth H are P-CTs and one of them needs to converge with probability < 1, since
T converges with probability < 1. W.l.o.G., let x be the root node of such a subtree
that converges with probability < 1 (with x at depth H). We can use the previous
proof of Thm. 20 to show that then there exists an SCC Pi ⊆ P and a CT T′ such
that T′ starts with (1 : tx), where tx is the term of the node x in T, T′ converges

with probability < 1, and T′ is a Pi
P
-CT. It remains to show that we can reach

the root term tx of T′ from a basic term in a (J I ∪ Pi
P
)-CT with J ∈ Pi↑.

Let ℓ → µ be the ADP used at the root of T. Since the root of T is t# for a
basic term t, the ADP from Pi applied to tx must be reachable from ℓ → µ in
the (I ∪ P)-dependency graph. Hence, there exists a J ∈ Pi↑ such that one can

reach tx from t# by applying only ADPs from J I ∪ Pi
P
. Therefore, T′′ together

with the prefix tree that includes the path from t# to tx is a (J I
,Pi

P
)-CT that

converges with probability < 1. Hence, (J I
,Pi

P
) is not bAST. ⊓⊔

Annotated DPs for Full AST of Probabilistic Term Rewriting 37

Theorem 27 (Usable Terms Processor for AST and bAST). We call t ∈ T #

with root(t) ∈ D# usable w.r.t. an ADP problem P if there are substitutions
σ1, σ2 and an ℓ2 −→ µ2 ∈ P where µ2 contains an annotated symbol, such that

#{ε}(t)σ1 →∗
np(P) ℓ

#
2 σ2. Let ∆P(s) = {π ∈ PosD#(s) | s|π is usable w.r.t. P } and

TUT(P) = {ℓ→ {p1 : #∆P(r1)(r1), . . . , pk : #∆P(rk)(rk)}m | ℓ→ {p1 : r1, . . . , pk :
rk}m ∈ P}. Then ProcUT(P) = {TUT(P)} is sound and complete for AST and
ProcUT(I,P) = {(TUT(I ∪ P), TUT(P))} is sound and complete for bAST.

Proof.
Completeness: We only prove this direction for AST. The proof for bAST is completely
analogous. Every TUT(P)-CT is also a P-CT with fewer annotations in the terms.
So if TUT(P) is not AST, then there exists a TUT(P)-CT T that converges with
probability < 1. By adding annotations to the terms of the tree, we result in a
P-CT that converges with probability < 1 as well. Hence, if TUT(P) is not AST,
then P is not AST either.

Soundness: Here, the proofs for AST and bAST differ slightly, similar to the proofs
of Thm. 20 and Thm. 23. We start with the proof of AST.

Let P be not AST. Then by Lemma 48 there exists a P-CT T = (V,E,L,A) that
converges with probability < 1 whose root is labeled with (1 : t) and PosD#(t) = {ε}.
We will now create a TUT(P)-CT T′ = (V,E, L′, A), with the same underlying tree
structure, and an adjusted labeling such that pTx = pT

′

x for all x ∈ V . Since the tree
structure and the probabilities are the same, we then get |T′|Leaf = |T|Leaf < 1,
and hence TUT(P) is not AST either.

We construct the new labeling L′ for the TUT(P)-CT T′ recursively. Let X ⊆ V
be the set of nodes where we have already defined the labeling L′. During our
construction, we ensure that the following property holds for every node x ∈ X:

For every x ∈ X we have tx
.
= t′x and PosD#(tx) \ Junk(tx) ⊆ PosD#(t′x). (26)

Here, for any term tx, let Junk(tx) be the set of positions that can never be used
for a rewrite step with an ADP that contains annotations. To be precise, we define
π ∈ Junk(tx):⇔ there is no ADP ℓ→ {p1 : r1, . . . , pk : rk}m ∈ P with annotations
and no substitution σ such that #ε(tx|π)→∗

np(P) ℓ
#σ.

We start with the same term t at the root. Here, our property (26) is clearly
satisfied. As long as there is still an inner node x ∈ X such that its successors
are not contained in X, we do the following. Let xE = {y1, . . . , yk} be the set of
its successors. We need to define the terms for the nodes y1, . . . , yk in T′. Since
x is not a leaf and T is a P-CT, we have tx ↪−→P {

py1

px
: ty1 , . . . ,

pyk

px
: tyk
}. If we

performed a step with ↪−→P using the ADP ℓ → {p1 : r1, . . . , pk : rk}m, the VRF
(φj)1≤j≤k, the position π, and the substitution σ in T, then we can use the ADP
ℓ→{p1 : #∆P(r1)(r1), . . . , pk : #∆P(rk)(rk)}m with the same VRF (φj)1≤j≤k, the
same position π, and the same substitution σ. Now, we directly get tyj

.
= t′yj

for all 1 ≤ j ≤ k. To prove PosD#(tyj) \ Junk(tyj) ⊆ PosD#(t′yj
), note that if

π ∈ PosD#(tx)∩Junk(tx), then ℓ→ {p1 : r1, . . . , pk : rk}m contains no annotations
by definition of Junk(tx). Therefore, it does not matter whether we rewrite with
case (at) or (nt) ((af) or (nf)). Otherwise, if π ∈ PosD#(tx) \ Junk(tx), then
the original rule contains the same terms with possibly more annotations, but all

38 J.-C. Kassing, J. Giesl

missing annotations are in Junk(tx) by definition of #∆P(rj)(rj). Thus, we get
PosD#(tyj

) \ Junk(tyj
) ⊆ PosD#(t′yj

) for all 1 ≤ j ≤ k.
Next, we consider bAST. Let (I,P) be not bAST. Then there exists an (I,P)-CT

T that converges with probability < 1, whose root is labeled with (1 : t#) for a
basic term t, and I \ P is used only finitely often. So there exists a depth H ∈ N,
such that we only use ADPs from P and no ADPs from I \ P anymore. All the
subtrees that start at depth H are P-CTs and one of them needs to converge with
probability < 1, since T converges with probability < 1. W.l.o.G., let x be the root
node of such a subtree that converges with probability < 1 (with x at depth H).
We can use the previous proof for AST to show that then there exists a TUT(P)-CT
T′ such that T′ starts with (1 : tx), where tx is the term of the node x in T, and
T′ converges with probability < 1. It remains to show that we can reach the root
term tx of T′ from a basic term in a (TUT(I ∪P), TUT(P))-CT. But since we consider
both I and P in TUT(I ∪ P), we can use the same construction as before to show
that we can reach a term t′x with tx

.
= t′x and PosD#(tx) \ Junk(tx) ⊆ PosD#(t′x),

which is sufficient. ⊓⊔

Theorem 32 (Usable Rules Processor for bAST). The following processor is
sound and complete for bAST:

ProcUR(I,P) = {
((
I ∩ U(I ∪ P)

)
∪ {ℓ→ µfalse | ℓ→ µm ∈ I \ U(I ∪ P)},(

P ∩ U(I ∪ P)
)
∪ {ℓ→ µfalse | ℓ→ µm ∈ P \ U(I ∪ P)}

)
}.

Proof. Let X = (X ∩ U(I ∪ P)) ∪ {ℓ→ µfalse | ℓ→ µm ∈ X \ U(I ∪ P)}.
Completeness: Every (I ∪ P)-CT is also an (I ∪ P)-CT with fewer annotations in

the terms. If (I,P) is not bAST, then there exists an (I ∪ P)-CT T that converges
with probability < 1 and uses ADPs from I \ P only finitely often. By adding
annotations to the terms of the tree, we result in an (I ∪ P)-CT that converges
with probability < 1 as well and uses ADPs from I \ P only finitely often. Hence,
if (I,P) is not bAST, then (I,P) is not bAST either.

Soundness: Assume that (I,P) is not bAST. Then there exists an (I ∪ P)-CT that
converges with probability < 1, whose root is labeled with (1 : t#) for a basic term
t, and I \ P is used only finitely often. As t is basic, in the first rewrite step at the
root of the tree, the substitution only instantiates variables of the ADP by normal
forms.

By the definition of usable rules, as in the non-probabilistic case, rules ℓ →
µm ∈ I ∪P that are not usable (i.e., ℓ→ µm ̸∈ U(I ∪P)) will never be used below
an annotated symbol in such an (I ∪ P)-CT. Hence, we can also view T as an
(I ∪ P)-CT that converges with probability < 1 and thus (I,P) is not bAST. ⊓⊔

In the following, we use the prefix ordering (π ≤ τ ⇔ there exists χ ∈
N∗ such that π.χ = τ) to compare positions.

Theorem 36 (Reduction Pair Processor for iAST & AST). Let Pol :T # → N[V]
be a multilinear polynomial interpretation. Let P=P≥⊎P> with P> ̸=∅where:

(1) ∀ℓ −→ {p1 : r1, . . . , pk : rk}m ∈ P : Pol(ℓ#) ≥
∑

1≤j≤k pj · Sum(rj).

Annotated DPs for Full AST of Probabilistic Term Rewriting 39

(2) ∀ℓ −→ {p1 : r1, . . . , pk : rk}m ∈ P> : ∃j ∈ {1, . . . , k} : Pol(ℓ#) > Sum(rj).
If m = true, then we additionally have Pol(ℓ) ≥ Pol(♭(rj)).

(3) ∀ℓ −→ {p1 : r1, . . . , pk : rk}true ∈ P : Pol(ℓ) ≥
∑

1≤j≤k pj · Pol(♭(rj)).

Then ProcRP(P) = {P≥ ∪ ♭(P>)} is sound and complete for iAST and AST.

Proof. For the proof for iAST, see [32]. Let P = P≥ ∪ ♭(P>).

Completeness: Every P-CT is also a P-CT with fewer annotations in the terms.

So if P is not AST, then there exists a P-CT T that converges with probability < 1.
By adding annotations to the terms of the tree, we result in a P-CT that converges
with probability < 1 as well. Hence, if P is not AST, then P is not AST either.

Soundness: This proof uses the proof idea for AST from [39]. The core steps of the
proof are the following:

(I) We extend the conditions (1), (2), and (3) to rewrite steps instead of just rules
(and thus, to edges of a CT).

(II) We create a CT T≤N for any N ∈ N.
(III) We prove that |T≤N |Leaf ≥ pNmin for any N ∈ N.
(IV) We prove that |T≤N |Leaf = 1 for any N ∈ N.
(V) Finally, we prove that |T|Leaf = 1.

Here, pmin is the minimal probability occurring in P. Parts (II) to (V) remain
completely the same as in [29]. We only show that we can adjust part (I) to our
new rewrite relation for AST.

(I) We extend the conditions to rewrite steps instead of just rules
We show that the conditions (1), (2), and (3) of the lemma extend to rewrite steps
instead of just rules:

(a) If s → {p1 : t1, . . . , pk : tk} using a rewrite rule ℓ → {p1 : r1, . . . , pk : rk}
with Pol(ℓ) ≥ Pol(rj) for some 1 ≤ j ≤ k, then we have Pol(s) ≥ Pol(tj).

(b) If a ↪−→P {p1 : b1, . . . , pk : bk} using the ADP ℓ→ {p1 : r1, . . . , pk : rk}m ∈ P>

at a position π ∈ PosD#(a), then Sum(a) > Sum(bj) for some 1 ≤ j ≤ k.
(c) If s → {p1 : t1, . . . , pk : tk} using a rewrite rule ℓ → {p1 : r1, . . . , pk : rk}

with Pol(ℓ) ≥
∑

1≤j≤k pj · Pol(rj), then Pol(s) ≥
∑

1≤j≤k pj · Pol(tj).
(d) If a ↪−→P {p1 : b1, . . . , pk : bk} using the ADP ℓ → {p1 : r1, . . . , pk : rk}m ∈ P,

then Sum(a) ≥
∑

1≤j≤k pj · Sum(bj).

(a) In this case, there exist a rule ℓ→ {p1 : r1, . . . , pk : rk} with Pol(ℓ) ≥ Pol(rj)
for some 1 ≤ j ≤ k, a substitution σ, and a position π of s such that s|π = ℓσ
and th = s[rhσ]π for all 1 ≤ h ≤ k.
We perform structural induction on π. So in the induction base, let π = ε.
Hence, we have s = ℓσ → {p1 : r1σ, . . . , pk : rkσ}. By assumption, we have
Pol(ℓ) ≥ Pol(rj) for some 1 ≤ j ≤ k. As these inequations hold for all
instantiations of the occurring variables, for tj = rjσ we have

Pol(s) = Pol(ℓσ) ≥ Pol(rjσ) = Pol(tj).

In the induction step, we have π = i.π′, s = f(s1, . . . , si, . . . , sn), f ∈ Σ, si →
{p1 : ti,1, . . . , pk : ti,k}, and tj = f(s1, . . . , ti,j , . . . , sn) with ti,j = si[rjσ]π′ for

40 J.-C. Kassing, J. Giesl

all 1 ≤ j ≤ k. Then by the induction hypothesis we have Pol(si) ≥ Pol(ti,j).
For tj = f(s1, . . . , ti,j , . . . , sn) we obtain

Pol(s) = Pol(f(s1, . . . , si, . . . , sn))
= fPol(Pol(s1), . . . ,Pol(si), . . . ,Pol(sn))
≥ fPol(Pol(s1), . . . ,Pol(ti,j), . . . ,Pol(sn))

(by weak monotonicity of fPol and Pol(si) ≥ Pol(ti,j))
= Pol(f(s1, . . . , ti,j , . . . , sn))
= Pol(tj).

(b) In this case, there exist an ADP ℓ → {p1 : r1, . . . , pk : rk}m ∈ P>, a VRF
(φj)1≤j≤k, a substitution σ, and position π ∈ PosD#(a) with ♭(a|π) = ℓσ and
bj

.
= a[rjσ]π. First, assume that m = true. Let I1 = {τ ∈ PosD#(a) | τ < π} be

the set of positions of all annotations strictly above π, I2 = {τ ∈ PosD#(a) |
γ ∈ PosV(ℓ), π < τ ≤ π.γ} be the set of positions of all annotations inside the
left-hand side ℓ of the used redex ℓσ (but not on the root of ℓ), I3 = {τ ∈
PosD#(a) | γ ∈ PosV(ℓ), π.γ < τ} be the set of positions of all annotations
inside the substitution, and let I4 = {τ ∈ PosD#(a) | τ⊥π} be the set of
positions of all annotations orthogonal to π. Furthermore, for each τ ∈ I1 let
κτ be the position such that τ.κτ = π, and for each τ ∈ I3 let γτ and ρτ
be the positions such that γτ ∈ PosV(ℓ) and π.γτ .ρτ = τ . By Requirement
(2), there exists a 1 ≤ j ≤ k with Pol(ℓ#) > Sum(rj) =

∑
s⊴#rj

Pol(s#) and,

additionally, Pol(ℓ) ≥ Pol(♭(rj)) since m = true. As these inequations hold for
all instantiations of the occurring variables, we have

Sum(a) =
∑

s⊴#a Pol(s#)

= Pol(#ε(s|π)) +
∑

τ∈I1
Pol(#ε(a|τ)) +

∑
τ∈I2

Pol(#ε(a|τ)) +
∑

τ∈I3
Pol(#ε(a|τ))

+
∑

τ∈I4
Pol(#ε(a|τ))

≥ Pol(#ε(s|π)) +
∑

τ∈I1
Pol(#ε(a|τ)) +

∑
τ∈I3

Pol(#ε(a|τ))
+

∑
τ∈I4

Pol(#ε(a|τ))
(removed I2)

= Pol(#ε(ℓ)σ) +
∑

τ∈I1
Pol(#ε(a|τ)) +

∑
τ∈I3

Pol(#ε(a|τ))
+

∑
τ∈I4

Pol(#ε(a|τ))
(as #ε(s|π) = #ε(ℓ)σ)

>
∑

s⊴#rj
Pol(#ε(s)σ) +

∑
τ∈I1

Pol(#ε(a|τ)) +
∑

τ∈I3
Pol(#ε(a|τ))

+
∑

τ∈I4
Pol(#ε(a|τ))

(as Pol(#ε(ℓ)) >
∑

s⊴#rj
Pol(#ε(s)), hence Pol(#ε(ℓ)σ) >

∑
s⊴#rj

Pol(#ε(s)σ))

≥
∑

s⊴#rjσ
Pol(#ε(s)) +

∑
τ∈I1

Pol(#ε(a|τ [rjσ]κτ))

+
∑

τ∈I3
Pol(#ε(a|τ)) +

∑
τ∈I4

Pol(#ε(a|τ))
(by Pol(ℓ) ≥ Pol(rj) and (a))

≥
∑

s⊴#rjσ
Pol(#ε(s)) +

∑
τ∈I1

Pol(#ε(a|τ [rjσ]κτ))

+
∑

τ∈I3,φj(γτ)̸=⊥ Pol(#ε(bj |π.φj(γτ).ρτ)) +
∑

τ∈I4
Pol(#ε(a|τ))

(moving τ = π.γτ .ρτ ∈ I3 via the VRF)

=
∑

s⊴#bj
Pol(s#)

= Sum(bj)

In the case m = false, we remove
∑

τ∈I1
Pol(#ε(a|τ [rjσ]κτ

)), so that the
inequation remains correct.

(c) In this case, there exist a rule ℓ → {p1 : r1, . . . , pk : rk} with Pol(ℓ) ≥∑
1≤j≤k pj · Pol(rj), a substitution σ, and a position π of s such that s|π = ℓσ,

and tj = s[rjσ]π for all 1 ≤ j ≤ k.

Annotated DPs for Full AST of Probabilistic Term Rewriting 41

We perform structural induction on π. So in the induction base π = ε we have
s = ℓσ → {p1 : r1σ, . . . , pk : rkσ}. As Pol(ℓ) ≥

∑
1≤j≤k pj ·Pol(rj) holds for all

instantiations of the occurring variables, for tj = rjσ we obtain

Pol(s) = Pol(ℓσ) ≥
∑

1≤j≤k

pj · Pol(rjσ) =
∑

1≤j≤k

pj · Pol(tj).

In the induction step, we have π = i.π′, s = f(s1, . . . , si, . . . , sn), si → {p1 :
ti,1, . . . , pk : ti,k}, and tj = f(s1, . . . , ti,j , . . . , sn) with ti,j = si[rjσ]π′ for all 1 ≤
j ≤ k. Then by the induction hypothesis we have Pol(si) ≥

∑
1≤j≤k pj ·Pol(ti,j).

Thus, we have

Pol(s) = Pol(f(s1, . . . , si, . . . , sn))
= fPol(Pol(s1), . . . ,Pol(si), . . . ,Pol(sn))
≥ fPol(Pol(s1), . . . ,

∑
1≤j≤k pj · Pol(ti,j), . . . ,Pol(sn))

(by weak monotonicity of fPol and Pol(si) ≥
∑

1≤j≤k pj · Pol(ti,j))
=

∑
1≤j≤k pj · fPol(Pol(s1), . . . ,Pol(ti,j), . . . ,Pol(sn))

(as fPol is multilinear)
=

∑
1≤j≤k pj · Pol(f(s1, . . . , ti,j , . . . , sn))

=
∑

1≤j≤k pj · Pol(tj).

(d) In this case, there exist an ADP ℓ→ {p1 : r1, . . . , pk : rk}m ∈ P , a substitution
σ, and position π with ♭(a|π) = ℓσ and bj

.
= a[rjσ]π. First, assume that

m = true and π ∈ PosD#(a). Let I1 = {τ ∈ PosD#(a) | τ < π} be the set
of positions of all annotations strictly above π, I2 = {τ ∈ PosD#(a) | γ ∈
PosV(ℓ), π < τ ≤ π.γ} be the set of positions of all annotations inside the
left-hand side ℓ of the used redex ℓσ (but not on the root of ℓ), I3 = {τ ∈
PosD#(a) | γ ∈ PosV(ℓ), π.γ < τ} be the set of positions of all annotations
inside the substitution, and let I4 = {τ ∈ PosD#(a) | τ⊥π} be the set of
positions of all annotations orthogonal to π. Furthermore, for each τ ∈ I1 let
κτ be the position such that τ.κτ = π, and for each τ ∈ I3 let γτ and ρτ
be the positions such that γτ ∈ PosV(ℓ) and π.γτ .ρτ = τ . By Requirement
(1), we have Pol(#ε(ℓ)) ≥

∑
1≤j≤k pj ·

∑
t⊴#rj

Pol(#ε(t)) and by (3) we have

Pol(ℓ) ≥
∑

1≤j≤k pj ·Pol(♭(rj)). As these inequations hold for all instantiations
of the occurring variables, we have

Sum(a) =
∑

t⊴#a Pol(t#)

= Pol(#ε(a|π)) +
∑

τ∈I1
Pol(#ε(a|τ)) +

∑
τ∈I2

Pol(#ε(a|τ)) +
∑

τ∈I3
Pol(#ε(a|τ))

+
∑

τ∈I4
Pol(#ε(a|τ))

≥ Pol(#ε(a|π)) +
∑

τ∈I1
Pol(#ε(a|τ)) +

∑
τ∈I3

Pol(#ε(a|τ)) +
∑

τ∈I4
Pol(#ε(a|τ))

(removed I2)
= Pol(#ε(ℓ)σ) +

∑
τ∈I1

Pol(#ε(a|τ)) +
∑

τ∈I3
Pol(#ε(a|τ)) +

∑
τ∈I4

Pol(#ε(a|τ))
(as a|π = #ε(ℓ)σ)

≥
∑

1≤j≤k pj ·
∑

t⊴#rjσ
Pol(#ε(t)) +

∑
τ∈I1

Pol(#ε(a|τ)) +
∑

τ∈I3
Pol(#ε(a|τ))

+
∑

τ∈I4
Pol(#ε(a|τ))

(by Pol(#ε(ℓ)) ≥
∑

1≤j≤k pj ·
∑

t⊴#rj
Pol(#ε(t)),

hence Pol(#ε(ℓ)σ) ≥
∑

1≤j≤k pj ·
∑

t⊴#rjσ
Pol(#ε(t)))

≥
∑

1≤j≤k pj ·
∑

t⊴#rjσ
Pol(#ε(t)) +

∑
τ∈I1

∑
1≤j≤k pj · Pol(#ε(a|τ [rjσ]κτ))

+
∑

τ∈I3
Pol(#ε(a|τ)) +

∑
τ∈I4

Pol(#ε(a|τ))
(by Pol(ℓ) ≥

∑
1≤j≤k pj · Pol(rj) and (c))

42 J.-C. Kassing, J. Giesl

=
∑

1≤j≤k pj ·
∑

t⊴#rjσ
Pol(#ε(t)) +

∑
1≤j≤k

∑
τ∈I1

pj · Pol(#ε(a|τ [rjσ]κτ))

+
∑

τ∈I3
Pol(#ε(a|τ)) +

∑
τ∈I4

Pol(#ε(a|τ))
=

∑
1≤j≤k pj ·

∑
t⊴#rjσ

Pol(#ε(t)) +
∑

1≤j≤k pj ·
∑

τ∈I1
Pol(#ε(a|τ [rjσ]κτ))

+
∑

τ∈I3
Pol(#ε(a|τ)) +

∑
τ∈I4

Pol(#ε(a|τ))
=

∑
1≤j≤k pj ·

∑
t⊴#rjσ

Pol(#ε(t)) +
∑

1≤j≤k pj ·
∑

τ∈I1
Pol(#ε(a|τ [rjσ]κτ))

+
∑

1≤j≤k pj ·
∑

τ∈I3
Pol(#ε(a|τ)) +

∑
1≤j≤k pj ·

∑
τ∈I4

Pol(#ε(a|τ))
=

∑
1≤j≤k pj ·

(∑
t⊴#rjσ

Pol(#ε(t)) +
∑

τ∈I1
Pol(#ε(a|τ [rjσ]κτ))

+
∑

τ∈I3
Pol(#ε(a|τ)) +

∑
τ∈I4

Pol(#ε(a|τ))
)

≥
∑

1≤j≤k pj ·
(∑

t⊴#rjσ
Pol(#ε(t)) +

∑
τ∈I1

Pol(#ε(a|τ [rjσ]κτ))

+
∑

τ∈I3,φj(γτ)̸=⊥ Pol(#ε(bj |π.φj(γτ).ρτ)) +
∑

τ∈I4
Pol(#ε(a|τ))

)
(moving τ = π.γτ .ρτ ∈ I3 via the VRF)

=
∑

1≤j≤k pj ·
∑

t⊴#bj
Pol(t#)

= Sum(bj)

In the case π /∈ PosD#(a), we need to remove Pol(#ε(ℓ)σ) as this annotated
subterm does not exist in a, and therefore also

∑
t⊴#rjσ

Pol(t#) in the end,
leading to the same result. In the case m = false, we additionally remove∑

i∈I1
Pol(#ε(a|τ [rjσ]κτ

)) in the end.

The rest is completely analogous to the proof in [28]. ⊓⊔

Theorem 39 (Reduction Pair Processor for bAST). Let Pol : T # → N[V] be
a multilinear polynomial interpretation and let P = P≥ ⊎ P> with P> ̸= ∅ satisfy
the conditions of Thm. 36. Then ProcRP(I,P) = {(I ∪ P>,P≥ ∪ ♭(P>))} is sound
and complete for bAST.

Proof. Analogous to the proof of Thm. 36. We can only use the ADPs from I \ P
finitely often, hence we can ignore them for the constraints in the theorem. ⊓⊔

Theorem 42 (Probability Removal Processor for bAST and AST). Let P
be an ADP problem where every ADP in P has the form ℓ → {1 : r}m. Then P
is AST iff the non-probabilistic DP problem (dp(P),np(P)) is terminating. So the
processor ProcPR(P) = ∅ is sound and complete for AST iff (dp(P),np(P)) is termi-
nating. Similarly, (I,P) is bAST if (dp(P),np(P)) is terminating. So ProcPR(I,P)
= ∅ is sound and complete for bAST if (dp(P),np(P)) is terminating.

Proof. Let P be an ADP problem such that every ADP in P has the form
ℓ→ {1 : r}m. Note that every P-chain tree is a single (not necessarily finite) path.
For such a chain tree T that is only a single path, we have only two possibilities for
|T|Leaf. If the path is finite, then |T|Leaf = 1, since we have a single leaf in this tree
with probability 1. Otherwise, we have an infinite path, which means that there is
no leaf at all and hence |T|Leaf = 0.

“only if”
This direction only works for AST. Assume that (dp(P),np(P)) is not terminating.
Then there exists an infinite (dp(P),np(P))-chain

t#0 →dp(P) ◦ →∗
np(P) t

#
1 →dp(P) ◦ →∗

np(P) t
#
2 →dp(P) ◦ →∗

np(P) ...

such that for all i ∈ N we have t#i = ℓ#i σi for some dependency pair ℓ#i → r#i ∈
dp(P) and some substitution σi. From this infinite (dp(P),np(P))-chain, we will

Annotated DPs for Full AST of Probabilistic Term Rewriting 43

now construct an infinite P-chain tree T = (V,E, L,A). As explained above, we then
know that this infinite P-chain tree must be an infinite path, and thus |T|Leaf = 0,
which means that P is not AST, and thus, a processor with ProcPR(P) = ∅ would
be unsound.

1 t#0

A

1 a!
1 1 a!

2
. . .

We start our chain tree with (1 : t#0). In the non-probabilistic rewrite sequence, we

have t#0 →dp(P) ◦ →∗
np(P) t

#
1 , so there exists a natural number k ≥ 1 such that

t#0 = ℓ#0 σ0 →dp(P) r
#
0 σ0 = v#1 →np(P) v

#
2 →np(P) . . . →np(P) v

#
k = t#1 = ℓ#1 σ1

Performing the same rewrite steps with P yields terms a1, . . . , ak such that vi ⊴# ai
for all 1 ≤ i ≤ k. Here, one needs that all ADPs that yield the rules in np(P) have
the flag true and thus, the annotations above the redex are not removed. For all
1 ≤ i ≤ k, we now construct ai inductively.

In the induction base (i = 1), let ℓ0 → {1 : r′0}m ∈ P be the ADP that

was used to create the dependency pair ℓ#0 → r#0 in dp(P). This means that we

have r0 ⊴# r′0. Since we have t#0 = ℓ#0 σ0, we can also rewrite t#0 with the ADP
ℓ0 → {1 : r′0}m ∈ P and the substitution σ0. We result in a1 = r′0σ0 and thus we
have v1 = r0σ0 ⊴# r′0σ0 = a1.

In the induction step, we assume that we have vi ⊴# ai for some 1 ≤ i < k. Let
π be the annotated position of ai where vi = ♭(ai)|π. In our non-probabilistic rewrite

sequence we have v#i →np(P) v
#
i+1 using a rule ℓ′ → ♭(r′) ∈ np(P) and substitution

δi at a position τ ∈ N+ such that v#i |τ = ℓ′δi and v#i+1 = v#i [♭(r′)δi]τ . We can
mirror this rewrite step with the ADP ℓ′ → {1 : r′}true ∈ P, since by construction
we have vi ⊴# ai and vi = ♭(ai)|π. We obtain ai ↪−→P ai+1 = ai[#X(r′δi)]π.τ with
X = Φ1 (step with (at)) or X = Ψ1 (step with (nt)) by rewriting the subterm of
ai at position π.τ , which implies vi+1 = vi[♭(r

′)δi]τ ⊴# ai[#X(r′δi)]π.τ = ai+1.
At the end of this induction, we result in ak. Next, we can mirror the step

t#1 →dp(P) ◦ →∗
np(P) t

#
2 from our non-probabilistic rewrite sequence with the same

construction, etc. This results in an infinite P-chain tree. To see that this is indeed
a P-chain tree, note that all the local properties are satisfied since every edge
represents a rewrite step with ↪−→P . The global property is also satisfied since, in
an infinite (dp(P),np(P))-chain, we use an infinite number of steps with →dp(P)

so that our resulting chain tree has an infinite number of nodes in A.

“if”
This direction works analogously for both AST and bAST, and we prove it only for
AST. For bAST we simply ignore the reachability component I. Assume that P is
not AST, i.e., that the processor ProcPR(P) = ∅ is unsound. By Lemma 48, there
exists a P-chain tree T = (V,E,L,A) that converges with probability < 1 and
starts with (1 : t#) such that t# = ℓ#σ0 for some substitution σ0 and an ADP
ℓ→ {1 : r}m ∈ P. As explained above, this tree must be an infinite path.

1 t#

A

1 a!
1 1 a!

2
. . .

44 J.-C. Kassing, J. Giesl

From T, we will now construct an infinite (dp(P),np(P))-chain, which shows that

(dp(P),np(P)) is not terminating. We start our infinite chain with the term t#0 = t#.
We have t# ↪−→P {1 : a1}, where a1 = #Φ1

(rσ0) = rσ0.

There must be a term r0 ⊴# r (i.e., r#0 σ0 ⊴ rσ0) such that if we replace

a1 = rσ0 with r#0 σ0 and obtain the same P-chain tree except when we would
rewrite terms that do not exist anymore (i.e., we ignore these rewrite steps), then
we still end up in an infinite number of nodes in A (otherwise, T would not have
an infinite number of nodes in A).

Let π be the annotated position of rσ0 where r0σ0 = ♭(rσ0)|π. We can rewrite

the term t#0 with the dependency pair ℓ# → r#0 ∈ dp(P), using the substitution σ0

since t0 = t = ℓσ0. Hence, we result in t#0 →dp(P) r
#
0 σ0 = v#1 . Next, we mirror the

rewrite steps from the P-chain tree that are performed strictly below the root of
r#0 σ0 with np(P) until we would rewrite at the root of r#0 σ0. With this construction,

we ensure that each the term v#i in our (dp(P),np(P))-chain satisfies vi ⊴# ai
and vi = ♭(ai)|π. A rewrite step at position π.τ in ai with P is then mirrored with

np(P) in v#i at position τ . Note that we only use a finite number of np(P) steps
until we rewrite at the root.

So eventually, we result in a term t#1 = v#k with vk = ♭(ak)|π, and we rewrite
at position π in the P-chain tree. We mirror the step ak ↪−→P ak+1 with dp(P) and
then use the same construction again until we reach term t#2 , etc. This construction

creates a sequence t#0 , t
#
1 , . . . of terms such that

t#0 →dp(P) r
#
0 σ0 →∗

np(P) t#1 →dp(P) r
#
1 σ1 →∗

np(P) . . .

Therefore, (dp(P),np(P)) is not terminating. ⊓⊔

Example 49. A counterexample for the “only if” part of Thm. 41 for bAST is
the basic ADP problem (∅,P) with P containing the ADPs f(a, b, x) → {1 :
F(x, x, x)}true, h(x, y) → {1 : x}true, and h(x, y) → {1 : y}true, which is based
on the well-known TRS from [46]. It is bAST, but the DP problem (D,R) with
D = {F(a, b, x) → F(x, x, x)} and R = {h(x, y) → x, h(x, y) → y} considers
termination w.r.t. arbitrary start terms again, hence it is non-terminating.

	Annotated Dependency Pairs forFull Almost-Sure Termination ofProbabilistic Term Rewriting

