\{L_1, \ldots, L_n\} \text{ is unifiable} \text{ iff there is a } \sigma \text{ with } \sigma(L_1) = \ldots = \sigma(L_n).
\sigma \text{ is mgu iff for every unifier } \sigma' \text{ there is a substitution } \delta \text{ with } \sigma' = \delta \circ \sigma.

Unification Algorithm

1. Let \(\sigma = \emptyset \) be the “identical” substitution.

2. If \(|\sigma(K)| = 1 \), then stop and return \(\sigma \).

3. Otherwise, check all \(\sigma(L_i) \) in parallel from left to right, until there are different symbols in two literals.

4. If none of these symbols is a variable, then stop with clash failure.

5. Otherwise, let \(X \) be the variable and \(t \) be the subterm in the other literal. If \(X \) occurs in \(t \), then stop with occur failure.

6. Otherwise, let \(\sigma = \{X/t\} \circ \sigma \) und go back to step 2.
Resolution for Predicate Logic

R is a *resolvent* of K_1 and K_2 iff

- $\nu_1(K_1)$ and $\nu_2(K_2)$ are variable-disjoint
- $L_1, \ldots, L_m \in \nu_1(K_1)$, $L'_1, \ldots, L'_n \in \nu_2(K_2)$ with $n, m \geq 1$ and $\{\overline{L_1}, \ldots, \overline{L_m}, L'_1, \ldots, L'_n\}$ has mgu σ
- $R = \sigma((\nu_1(K_1) \setminus \{L_1, \ldots, L_m\}) \cup (\nu_2(K_2) \setminus \{L'_1, \ldots, L'_n\}))$

Example

\[
\{\overline{p(f(X))}, \overline{\neg q(Z)}, \overline{p(Z)}\} \quad \{\overline{\neg p(X)}, \overline{r(g(X))}\}
\]

$\nu_1 = \emptyset$

$\nu_2 = \{X/U, U/X\}$

$\sigma = \{Z/f(X), U/f(X)\}$