
Logic Programming SS 2013

Exam 16.09.2013

aaProf. Dr. Jürgen Giesl Carsten Otto

Bachelor/Master Exam Version V3B

First Name:

Last Name:

Immatriculation Number:

Course of Studies (please mark exactly one):

� Informatik Bachelor � Mathematik Master

� TK Master � Other:

Maximal Points Achieved Points

Exercise 1 8

Exercise 2 16

Exercise 3 12

Exercise 4 10

Exercise 5 10

Exercise 6 4

Total 60

Grade -

Instructions:

� On every sheet please give your �rst name, last name, and immatriculation number.

� You must solve the exam without consulting any extra documents (e.g., course notes).

� Make sure your answers are readable. Do not use red or green pens or pencils.

� Please answer the exercises on the exercise sheets. If needed, also use the back sides of the

exercise sheets.

� Answers on extra sheets can only be accepted if they are clearly marked with your name, your

immatriculation number, and the exercise number.

� Cross out text that should not be considered in the evaluation.

� Students that try to cheat do not pass the exam.

� At the end of the exam, please return all sheets together with the exercise sheets.

1

Logic Programming SS 2013

Exam 16.09.2013

Name: Immatriculation Number:

Exercise 1 (Theoretical Foundations): (5 + 3 = 8 points)

Let ' = p(s2(0); 0)^8X (p(s2(X); X)! p(s4(X); s2(X)))^:p(s3(0); s(0)) and = 9Y p(s6(0); Y)

be formulas over the signature (�;�) with � = �0 [�1;�0 = f0g;�1 = fsg, and � = �2 = fpg.

Here, s2(0) stands for s(s(0)), etc.

a) Prove that f'g j= by means of SLD resolution.

Hint: First transform the formula ' ^ : into an equivalent clause set.

b) Explicitly give a Herbrand model of the formula ' (i.e., specify a carrier and a meaning for all

function and predicate symbols). You do not have to provide a proof for your answer.

2

Logic Programming SS 2013

Exam 16.09.2013

Name: Immatriculation Number:

Exercise 2 (Procedural Semantics, SLD tree): (7 + 7 + 2 = 16 points)

Consider the following Prolog program P which can be used to replace the letter sequence 'ba' by 'zz':

replace([], []).

replace([b,a|XS], [z,z|YS]) :- replace(XS, YS).

replace([X|XS], [X|YS]) :- replace(XS, YS).

For example, the query ?- replace([b,a,b,a], Z) would give the answer substitution Z = [z,z,z,z].

Due to backtracking it is also possible to leave (parts of) the word unchanged. Because of that the

answer substitutions Z = [b,a,z,z], Z = [z,z,b,a], and Z = [b,a,b,a] are also possible.

a) Consider the following query:

?- replace([a,b,b,a], Res).

For the logic program P please show a successful computation for the query above (i.e., a com-

putation of the form (G;?) `+
P
(�; �) where G = f:replace([a,b,b,a], Res)g). It su�ces

to give substitutions only for those variables which are used to de�ne the value of the variable Res

in the query.

3

Logic Programming SS 2013

Exam 16.09.2013

Name: Immatriculation Number:

b) Please give a graphical representation of the SLD tree for the query

?- replace([a,b,b,a], Res).

in the program P.

c) Modify the program P by inserting a single cut. No other modi�cation is allowed. Your modi�ed

program must replace all ocurrences of 'ba' by 'zz'.

For example, now the query ?- replace([b,a,b,a], Z) must have the only answer substitution

Z = [z,z,z,z].

4

Logic Programming SS 2013

Exam 16.09.2013

Name: Immatriculation Number:

Exercise 3 (De�nite Logic Programming): (12 points)

Implement the predicate noDupl/2 in Prolog. This predicate can be used to identify numbers in a list

that appear exactly once, i.e., numbers which are no duplicates. The �rst argument of noDupl is the

list to analyze. The second argument is the list of numbers which are no duplicates, as described below.

As an example, for the list [2; 0; 3; 2; 1] the result [0; 3; 1] is computed (because 2 is a duplicate). In

Prolog the corresponding call noDupl([s(s(0)), 0, s(s(s(0))), s(s(0)), s(0)], Res) gives the

answer substitution Res = [0, s(s(s(0))), s(0)].

In your implementation you may (only) use the following two prede�ned predicates:

� contained(X, XS) is true if and only if the list XS contains X.

� notContained(X, XS) is true if and only if the list XS does not contain X.

Important: You may not use the cut or any other prede�ned predicates in your implementation!

However, you may implement auxiliary predicates.

5

Logic Programming SS 2013

Exam 16.09.2013

Name: Immatriculation Number:

Exercise 4 (Meta-Programming): (10 points)

Consider a set M � N. Let fM : N! f0; 1g be the characteristic function of M:

fM(x) =

{
1 if x 2 M

0 if x 62 M

In Prolog we encode the function fM using the predicate fM/1 such that fM(x) is true if fM(x) = 1 and

it is false if fM(x) = 0.

Please implement the predicate filter/3 that can be used to �lter a list of numbers based on a

characteristic function as described above.

The �rst argument of filter is a list of numbers. The second argument contains a function symbol

f/0. Here, we assume that for this f/0 there exists a predicate symbol f/1 which is a characteristic

function for a set as described above. The third argument is the result of �ltering the list in the �rst

argument using the predicate in the second argument: the list in the third argument contains exactly

those elements of the input list (in that order) for which the predicate in the second argument is true.

For example, assuming that fODD/1 is a predicate that is true exactly for odd numbers, the query

?- filter([1,2,3], fODD, X) is evaluated by executing the calls fODD(1) (which is true), fODD(2)

(which is false), and fODD(3) (which is true). It yields the answer substitution X = [1,3].

Hints:

� You may use the built-in predicate =../2.

� When called with the empty list as input, the result always is the empty list.

� You may use the cut (!) or negation as failure.

6

Logic Programming SS 2013

Exam 16.09.2013

Name: Immatriculation Number:

Exercise 5 (Di�erence Lists): (10 points)

Below you can �nd an implementation of the Quicksort algorithm that can be used to sort lists. Here,

the implementations of the predicate partition and the pre-de�ned predicate append are not shown1.

quicksort([], []).

quicksort([X|XS], Sorted) :-

partition(XS, X, Left, Right),

quicksort(Right, RS),

quicksort(Left, LS),

append(LS, [X|RS], Sorted).

Based on this implementation, please implement a modi�ed variant of the Quicksort algorithm. You

should implement a predicate qs/2 where, like in the case of quicksort/2 above, the �rst argument

is the input list in standard list representation. In the second argument of qs, you should make use of

di�erence lists.

Instead of using append (working on standard lists), make use of the following fact that can be used to

append two di�erence lists in a single step: app(A-B, B-C, A-C).

The call qs(x; Output - []) for a list x in standard representation should compute the answer

substitution Output = y where y is a standard list containing the entries of x in sorted order. If

quicksort(x, y) holds then qs(x, y - []) holds. As an example, qs([3,1,2], X) should com-

pute an answer substitution like X = [1,2,3|Y] - Y and qs([3,1,2], X - []) should compute the

answer substitution X = [1,2,3].

Hint: You do not need to change the implementation of partition or change the call to it.

1partition(XS, X, Left, Right) copies the elements of the list XS into two lists Left and Right which contain the

values of XS that are smaller or equal resp. bigger than the pivot element X. As an example, partition([7,4,6,5],

5, [4,5], [7,6]) is true.

7

Logic Programming SS 2013

Exam 16.09.2013

Name: Immatriculation Number:

Exercise 6 (Arithmetic): (4 points)

Tetration is the logical extension of multiplication and exponentiation:

multiplication a � n := a + a + � � �+ a︸ ︷︷ ︸
n

exponentation an := a � a � : : : � a︸ ︷︷ ︸
n

tetration a "" n := a

(
a�

�

�

(aa)
)

︸ ︷︷ ︸
n

Examples:

� 4 "" 2 = 44 = 256

� 1 "" 3 = 1(1
1) = 11 = 1

� 2 "" 4 = 2

(
2(2

2)
)
= 2(2

4) = 216 = 65:536

Implement the predicate tetration/3 in Prolog. For numbers x > 0; y > 0 the call tetration(x; y , Z)

gives the answer substitution Z = m where m is x "" y .

As an example, tetration(2, 4, Z) gives the answer substitution Z = 65536.

Your predicate only needs to work on input values x > 0; y > 0, i.e., for other input values the result of

the computation is irrelevant.

Hint: To compute xy in Prolog you can use x**y.

8

